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ABSTRACT
The result of a distance join operation on two sets of objects
R, S on a spatial network G is a set P of object pairs <p, q>,
p ∈ R, q ∈ S such that the distance of an object pair <p, q>
is the shortest distance from p to q in G. Several varia-
tions to the distance join operation such as UnOrdered,
Incremental, Top-k, Semi-Join impose additional con-
straints on the distance between the object pairs in P , the
ordering of object pairs in P , and on the cardinality of P .
A distance join algorithm on spatial networks is proposed
that works in conjunction with the SILC framework, which
is a new approach to query processing on spatial networks.
Experimental results demonstrate up to an order of mag-
nitude speed up when compared with a prominent existing
technique.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial Databases and GIS ; E.1 [Data Structures]: Graphs
and Networks; H.2.4 [Database Management]: Systems—
Query Processing

General Terms
Algorithms, Performance, Design

Keywords
Location-based services, Spatial networks, SILC framework,
Query processing, Path coherence, Spatial databases

1. INTRODUCTION
The distance join operation computes a subset of the Carte-

sian product R× S of two sets R and S of a specified order
and is based on the distance [10]. The result of a distance
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join operation is a set P of ordered pairs of objects <p, q>,
such that p ∈ R and q ∈ S. In this paper, we propose dis-
tance join operations on a spatial network G, where R and
S are sets of objects in G and the distance of an object pair
<p, q> in P is the shortest distance dN(p, q) from p to q in
G. Additionally, spatial and non-spatial constraints could
be further imposed either on P , on the object pairs in P ,
or on both. This results in many different variants of the
distance join operation, some of which are discussed below.

The first variant deals with the order in which pairs of ob-
jects in P are reported. The result of an Ordered distance
join operation is a set P of object pairs that is obtained and
reported in an increasing (or decreasing) order of the dis-
tance between the pairs i.e., the first pair in P is the closest
object pair in R× S, while the last element in P is the far-
thest object pair in R×S. A distance join operation is said
to be UnOrdered if an ordering of P is not specified.

Distance join operations may generate a very large num-
ber of object pairs even for sets of objects R,S of a modest
size. For example, R and S both containing 50, 000 objects
may generate up to 2.5 billion object pairs. However, in
practice, we may be only interested in a small number of
pairs in the result set. Hence, computing all the possible
pairs in R × S may result in wasted work. The Top-k dis-
tance join operation computes the first k pairs of objects in
P of a distance join operation. Note that the Top-k con-
straint implicitly assumes that a distance ordering of the
objects in P is specified. Hence, we slightly modify the ef-
fect of the Top-k constraint on Ordered and UnOrdered
distance join operations. An UnOrdered Top-k distance
join operation computes the ”Top-k” object pairs of R×S,
although the object pairs in P are still unordered, i.e., we
do not establish a total ordering of the k object pairs in
P . In contrast, the ”Top-k” constraint applied to an Or-
dered distance join operation results in an ordered set of
object pairs in P containing k object pairs. Such a join
operation has interesting applications to GIS. For example,
given a set of locations corresponding to exits R on a high-
way and a set of restaurants S, we may wish to determine
the k closest pairs containing an exit on the highway and
a restaurant. Incidentally, such a query is a variant of the
”in-route” query proposed in [17]. Figure 1c illustrates the
top-10 pairs of an Ordered distance operation on a road
network of Washington, DC.

Instead of limiting the cardinality of the result set P us-
ing a Top-k constraint, the distance join operation may be
constrained to report only those object pairs that are within
a specified minimum d− and maximum d+ distance values
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Figure 1: Example of a distance join operation on a road network of Washington, DC. a) Objects in R are
shown using square icons, and objects in S are shown using circular icons. A subset of the result of a distance
join operation, such that b) object pairs at a distance of less than 2.5 miles, and c) the top 10 object pairs in
the result.

(a) (b) (c)

Figure 2: a) A subset of the result of a distance semi-join operation on the sets of objects R and S shown in
Figure 1a. When R is an object, b) an Ordered distance operation is an incremental nearest neighbor search
on S. c) an UnOrdered distance join with a distance restriction is a range search on S.

i.e., ∀ <p, q > ∈ P , such that d− ≤ dN (p, q) ≤ d+. For
example, given a set of locations R on a road network corre-
sponding to where employees of a chain store reside, and the
set of stores S, we can find the set of stores that each em-
ployee can reach within ε distance, or alternatively within ε
time when the time taken to travel an edges of the road net-
work is provided. Figure 1b is an illustration of a distance
join operation when the minimum and maximum distance
between the object pairs is specified.

An interesting variant of the distance join is the distance
Semi-Join, which restricts the number of occurrences of any
object p ∈ R in P . The result of a distance Semi-Join
operation computes a set P of object pairs, such that for all
p ∈ R, there exists exactly one pair <p, qi>, qi ∈ S in P .
The result of an Ordered distance semi-join operation pairs

is an ordered set of object pairs, such that each object in R
is paired with its closest object in S. Incidentally, the result
of an Ordered distance semi-join is equivalent to the ANN
join [5]. For example, given a set of stores R and a set of
warehouses S on a spatial network, the Ordered distance
semi-join associates each store with its closest warehouse.
Figure 2a is an illustration of a distance Semi-Join operation
on a road network.

Incidentally, an Ordered distance join operation can also
be Incremental – that is, each invocation of the join only
computes the next object pair in the result set. For simplic-
ity sake, we assume that all Ordered distance join opera-
tions are also Incremental, although this need not always
be the case.
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In this paper, we present an algorithm that can perform
a variety of distance join operations on spatial networks.
The inputs to the algorithm determine the nature of the
distance join, i.e., the user can choose between Ordered
versus UnOrdered, Join versus Semi-Join, and distance
pruning versus Top-k. However, it should be clear that
not all combinations of these operations yield meaningful
results.

The rest of the paper is organized as follows. Section 2
discusses related work. A brief introduction to the SILC
framework is provided in Section 3. Our join algorithm is
presented in Section 4. Experimental results are discussed in
Section 5, while concluding remarks are drawn in Section 6.

2. RELATED WORK
Performing spatial queries on transportation networks, also

known as spatial networks, is an application that is of great
interest to the GIS community [15, 16, 17]. Transporta-
tion networks form an integral part of GIS applications like
location-based services and locational analysis. Moving ob-
ject databases [16, 20] and trip-planning [17] are closely re-
lated to location-based services. The join algorithm pro-
posed in this paper is based on the SILC framework [15]
which is a new approach to query processing on spatial net-
works.

In our earlier work [15], we proposed an incremental near-
est neighbor algorithm using the SILC framework. Given a
query object q and a set of objects P on a spatial network,
our algorithm incrementally obtains the nearest neighbors
to q from objects in P . On the other hand, the related
IER and INE techniques of Papadias et al. [13], and the
subsequent improvements to the INE technique by Cho and
Chung [4], use a technique that is based on Dijkstra’s short-
est path algorithm to find the k-nearest neighbors to a query
object q on a spatial network. However, their methods are
not incremental. Kolahdouzan and Shahabi [12] speed-up
the process of finding the k-nearest neighbors by precom-
puting the Voronoi diagram for a set of locations P on a
spatial network from which the k neighbors to q are drawn.
The landmark approach is another method which is used by
Jing et al. [11], and Goldberg and Harrelson [7] to speed up
Dijkstra’s algorithm.

There are two key differences between our approach which
is based on the SILC framework and the above approaches.
First, our technique requires precomputation of the shortest
path between every pair of vertices in a spatial network. Al-
though this can be quite expensive for large spatial networks,
it can be achieved with a sufficient investment of time and
hardware resources. Our method enables storing the short-
est paths compactly and makes provision for retrieving them
efficiently. A compact representation of the shortest paths
of a spatial network G is termed the path encoding of G.

The second difference is that our method has an advantage
when multiple datasets share the path encoding to perform
queries on spatial networks. For example, a path encod-
ing of Manhattan, NY can potentially be shared by several
datasets of landmarks pertaining to postal addresses in Man-
hattan for query processing. Moreover, spatial networks are
usually static structures, while datasets of objects may be
updated frequently. For example, when dealing with a set
of mobile hosts on a road network, the current positions
of the objects are frequently updated, while the road net-
work in itself would largely remain static. Moreover, the

datasets and the network can be updated independently of
each other. In effect, what we have done is to decouple
the data from the underlying domain. In this respect, our
work is distinguished from the work of Papadias et al. [13]
and Kolahdouzan et al. [12] who perform path and distance
queries at run-time, while making no provisions to reuse
such computations across queries and across datasets. For
example, the network Voronoi diagram in [12] computed for
a set of restaurants in Manhattan cannot be used for another
dataset of post offices in Manhattan.

In this paper, we introduce several distance join opera-
tions on a spatial network. Our algorithm is based on ear-
lier work in [2, 10, 14, 18] which has now been applied to
spatial networks. The ”Top-k” operator is based on the
work of Carey and Kossmann in [3]. The distance semi-join
operation of R and S, computes the first nearest neighbor
to each object in R with neighbors drawn from S. Hence, it
is related to the all nearest neighbor join (ANN join) query
in [5, 19], although both [5, 19] deal with the problem in an
Euclidean space. Moreover, as the first object pair in the
result of an incremental distance join is the closest (or far-
thest) object pair drawn from R×S, our work is also related
to the ”closest pair” queries introduced in [1].

The only techniques that directly compete with our work
are the Join Euclidean Restriction (JER) and Join Network
Expansion (JNE) techniques of Papadias et al. [13], which
are both based on Dijkstra’s algorithm. Given two sets of ob-
jects R and S on a spatial network and a distance ε, the JER
and JRE algorithms compute pairs of object pairs <p, q>,
p ∈ S, q ∈ R, such that the network distance between p and
q is less than or equal to ε. Note however that both these
algorithms are limited in their capabilities. Neither JER nor
JRE can compute distance joins incrementally. Moreover,
neither JER nor JRE can perform Semi-Join operations.
Finally, a distance join operation that specifies both a lower
and an upper limit on distance between the object pairs that
are reported cannot be handled efficiently by either the JER
or JRE techniques. To perform such a query using JER or
JRE would require obtaining all the object pairs that sat-
isfy the upper bound on the distance between the object
pairs and then pruning the result against the lower bound
distance.

3. SILC FRAMEWORK
A spatial network can be abstracted to form an equiva-

lent graph representation G = (V, E), where V is the set
of vertices, E is the set of edges, n = |V |, and m = |E|.
Given e ∈ E, w(e) denotes the distance along that edge. In
addition, for every v ∈ V , p(v) denotes the spatial position
of v with respect to a reference coordinate system. We de-
fine the spatial distance between u and v, dS(u, v), as the
shortest distance from p(u) to p(v) in the embedding space.
For vertices u, v ∈ V , we define dN(u, v) to be the shortest
distance from u to v with respect to the network G(V, E).
We use πN (u, v) ⊂ V to denote the shortest path from u to
v. Note that |π(u, v)| denotes the number of vertices in the
shortest path from u to v. We also define lu(v) to be the
next vertex visited (after u) on the shortest path from u to
v.

The SILC framework precomputes the shortest path be-
tween all pairs of vertices in a spatial network. For each
vertex s ∈ V , we first compute the next link in the short-
est path from s to all other vertices in G. Then a region
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Figure 3: Example illustrating the coloring process of vertices for Silver Spring, MD. a) Sample vertex u
highlighted denoted by ”X”. b) Remaining vertices are assigned colors based on their shortest path to u
through one of the six adjacent vertices of u. c) Morton blocks corresponding to the colored regions in (b).

quadtree, termed the SILC map of s is built on the spa-
tial position of vertices, such that all vertices contained in
a block have the same first link in the shortest path from
s. We represent the blocks in the region quadtree as a set
of Morton blocks [6] and store them on disk. Figure 3 illus-
trates the process of computing the SILC map of a vertex
X in a road network of Silver Spring, Maryland.

Moreover, along with each block B in the SILC map of s,
we also record the minimum (λ−) and the maximum (λ+)
ratio of the difference between the network and the spatial
distance between s and all vertices contained in B to the
spatial distance between s and all vertices in B. Using the
two stored values λ−, λ+, we are able to quickly compute the
distances between two objects and between an object and
a region on a spatial network, although now the distances
are obtained as intervals. Distance d = (δ−, δ+) has a lower
bound δ− and an upper bound δ+.

Given two objects u and v on a spatial network, dI(u, v) is
an interval [δ−, δ+], such that δ− ≤ dN(u, v) ≤ δ+. Further-
more, the distance interval between u and v can be improved
using the refine operator, which improves the interval by
expending work. A distance interval can be refined at most
|πN (u, v)| times, after which δ− = δ+ = dN (u, v).

The network distance interval dI(u, R) between an object
v and a block R is a distance interval [δ−, δ+] that Contains
the network distance from v to every object contained in
R. This corresponds to the MinDist (MaxDist) operators
commonly used in spatial query processing.

One of the drawbacks of the SILC framework is that the
network distance interval between a block pair <b1, b2>, or
pair <b, o> containing a block b and an object o, cannot be
easily computed. We remedy the first problem by assuming
that the spatial distance between two vertices in a spatial
network is always a lower bound on the network distance
between them. Thus, we approximate the network distance
dI(b1, b2) between the block pair <b1, b2> with the spatial
distance dS(b1, b2) between them, which is cheaper to com-
pute. We will avoid generating pairs of the second kind in
our algorithm, thus circumventing the problem.

4. SILC DISTANCE JOIN
In this section, we describe our distance join algorithm.

We first assume that the SILC encoding of a spatial network
has been precomputed and stored on disk. Furthermore, we
assume that we are provided with two sets of objects S and
R on the spatial network. For the sake of simplicity, we
assume that each object in R and S is associated with a

vertex in the spatial network, although the algorithm can
be easily modified to allow objects to be associated with the
edges of the spatial network as in [13]. Moreover, we also
assume that hierarchical disk-based data structures (e.g.,
PMR quadtree [14] or R-tree [8]) over the spatial positions
of objects in both R and S is available to the algorithm.

Algorithm 1
Procedure DistJoin[T , U , d+, d−, k, Option ]
Input: Option can be Ordered or UnOrdered, Join or

Semi-Join, Top-k or distance restriction
Input: T, U ←root node of a spatial structure on R and S
Input: d−, d+are distance restrictions on the pairs, initially

set to −∞ and ∞, respectively.
Input: So ←set of objects oi whose pairs <oi, oj > have

already been reported. It is initially empty and used
for a Semi-Join operation. If Option �= Semi-Join,
then the condition p �∈ S0 in lines 36 and 40 is always
true

Input: k ←number of object pairs in result, default value 1
(∗ dk ←∞, distance estimate to the kth object pair ∗)
Output: P : pairs of object <p, q>, p ∈ R and q ∈ S
1. Init: [δ−, δ+] ←dI(T, U)
2. if (Option = Ordered) then
3. Q ←is a priority queue on keyed tuples
4. else
5. Q ←is a list
6. end-if
7. Q.insert([Key=δ−], T, U, [δ−, δ+])
8. end-Init
9. while not (Q.empty()) do
10. (p, q, [δ−, δ+]) ←Q.pop()
11. if (Option = Top-k) then
12. if (δ− > dk) then
13. continue while-loop
14. end-if
15. Update dk using [δ−, δ+] as in [10]
16. end-if
17. if p is a Block and q is a Non-Leaf Block then
18. for each child block or object bp in p do
19. for each child block or object bq in q do
20. (δ−pq, δ

+
pq) ←dI(bp, bq)

21. if Intersects([[δ−pq , δ
+
pq ], [d−, d+]) then

22. Q.insert([Key=δ−pq ], bp, bq , [δ
−
pq , δ

+
pq])

23. end-if
24. end-for
25. end-for
26. else if p is a Block and q is a Leaf Block then
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27. for each child block or object bp in p do
28. (δ−pq , δ

+
pq) ←dI(bp, q)

29. if Intersects([[δ−pq , δ
+
pq], [d−, d+]) then

30. Q.insert([Key=δ−pq ], bp, q, [δ−pq , δ
+
pq ])

31. end-if
32. end-for
33. else if p is an Object and q is a Block then
34. for each child block or object bq in q do
35. (δ−pq , δ

+
pq) ←dI(p, bq)

36. if Intersects([[δ−pq , δ
+
pq ], [d−, d+]) and p �∈

So then
37. Q.insert([Key=δ−pq ], p, bq, [δ

−
pq , δ

+
pq])

38. end-if
39. end-for
40. else if p �∈ So then (∗ p and q are objects ∗)
41. if (Option = UnOrdered) then
42. if ([d−, d+]) Contains [δ−, δ+] then
43. if (Option = Semi-Join) then
44. add p to So

45. end-if
46. report <p, q>
47. else if Intersects([δ−t , δ+

t ], [δ−, δ+]) then
48. [δ−, δ+].Refine()
49. Q.insert([Key=δ−], p, q, [δ−, δ+])
50. end-if
51. else (∗ Option = Ordered ∗)
52. ( , [δ−t , δ+

t ]) ←Q.top()
53. if Intersects([δ−t , δ+

t ], [δ−, δ+]) or not ([d−, d+]
Contains [δ−, δ+]) then

54. [δ−, δ+].Refine()
55. Q.insert([Key=δ−], p, q, [δ−, δ+])
56. else
57. if (Option = Semi-Join) then
58. add p to So

59. end-if
60. report <p, q> (and return)
61. end-if
62. end-if
63. end-if
64. end-while

Algorithm 1 describes our distance join algorithm on a
spatial network G which is based on the work by Hjaltason
and Samet [10] and Shin et al. [18]. The algorithm takes
two hierarchical data structures T and U , PMR quadtrees
in our case, on the spatial positions of the objects in R and
S, respectively. Even though we have used PMR quadtrees
to describe our algorithm, our discussion is equally applica-
ble to both object hierarchies, such as a R-tree and space
hierarchies such as quadtrees and its variants. Moreover,
we assume that the SILC decomposition of the G has been
precomputed and is available to the algorithm. The SILC
decomposition on G enables us to compute the distance in-
terval between two objects, or between an object in T and
a block in U . In addition, the algorithm has parameters
d+ and d− corresponding to the minimum and maximum
limits on the distances between object pairs in P . The next
parameter k provides an upper bound on the number of ob-
ject pairs to be computed by the join algorithm. Finally,
the Option parameter serves to differentiate Ordered and
UnOrdered output of object pairs, and between a Join
and a Semi-Join. If Option is set to Ordered, then the
first invocation of the algorithm returns the the first object
pair in the result. Subsequent object pairs in the result set

are obtained by repeated invocation of the algorithm, i.e.,
each invocation computes and returns only the next object
pair in the result. If Option is set to UnOrdered, then
the algorithm returns a set of object pairs corresponding to
the result of the distance join operation.

Lines 1–8 initialize the algorithm by first choosing an ap-
propriate data structure depending on the input parameters
to the algorithm. If Option is set to Ordered, Q is a prior-
ity queue. Otherwise, if Option is set to UnOrdered, then
Q is defined to be a list. During the course of the algorithm,
three types of pairs are generated by the algorithm – namely,
block-block, object-block and object-object pairs– and are
stored in Q. Moreover, if Q is a priority queue, then we
assume that the pairs stored in Q are ordered in increasing
order of the lower bound δ− of the network distance interval
between them which serves as the key. Q is initialized with
a pair of blocks <T, U>, corresponding to the root of the
two corresponding input hierarchical data structures.

In line 10, we obtain the pair <p, q> from the head of Q.
Let [δ−, δ+] be the network distance interval between p and
q. The algorithm’s control structure is such that blocks p
and q are split in an asymmetric manner in order to avoid
obtaining pairs of the form <p, q>, where p is a block and q is
an object. This is because computing the network distance
interval from a block to an object using SILC is expensive,
and hence, we avoid generating such pairs. If p is a block
and q is a non-leaf block (lines 17–25), then they are split
into their cp and cq children, respectively. The resulting
cp · cq pairs of children of p and q are inserted into Q. Such
a splitting strategy (termed ”Simultaneous” in Section 5),
may not be suitable when both p and q have a large outde-
gree as it may result in an explosion of pairs in Q. Another
strategy (termed ”Even” in Section 5) would be to split the
block pairs more evenly i.e., each time the larger one in p
and q is split.

As we approximate the network distance between two
blocks with their spatial distance, we may adopt different
strategies to break ties between pairs of blocks at the same
distance, each resulting in a different traversal of T and U .
Choosing the pair with a block at the deepest level, results
in a depth first traversal of T and U , while choosing the
pair with a block at the shallowest level results in a breadth
first traversal of the tree structures. These two competing
strategies (termed ”DFS” and ”BFS”) are further explored
in Section 5.

In lines 26–32 of the algorithm, we handle pairs <p, q>,
such that p is a block and q is a leaf block. Lines 33–39
handle the case when p is an object and q is a block. In the
above two cases, the network distance interval of the cp (cq)
children of p (q) to q (p) are computed and inserted into Q.

The final case when both p and q are objects is handled
in line 40. If Option is set to UnOrdered, then the net-
work distance interval [δ−, δ+] between the object pairs is
first checked against [d−, d+] for containment. Next, if the
intervals do not intersect, then <p, q> cannot belong to the
result set and is pruned. If the network distance interval
[δ−, δ+] intersects, but is not contained in [d−, d+], then the
network distance of <p, q> is refined and <p, q> is inserted
back into Q. If the distance interval [δ−, δ+] is contained in
[d−, d+], then the object pair is added to the result set P .

If Option is set to Ordered, then < p, q > cannot be
reported unless it is certain that it is not being reported
”out of order”. In addition to checking against the distance
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constraint [d−, d+], we also need to compare it against the
next element in the priority queue Q. The network distance
interval of <p, q> is compared against the network distance
interval of the current top element in line 53 for intersection.
If [δ−, δ+] is both disjoint from the network distance interval
[δ−t , δ+

t ] of the current ”top” pair in Q and δ+ is less than
δ−t , then <p, q> is reported as the next object pair in the
result. The algorithm at this point (line 60) returns the
control back to the user. Subsequent pairs can be obtained
incrementally by invoking the algorithm as many times as
needed. If [δ−, δ+] intersects [δ−t , δ+

t ], then it is not clear
if <p, q> is the next object pair in the result. Hence, the
network distance interval of <p, q> is refined as before and
inserted back into Q (as in line 55).

If Option is set to Semi-Join, then the algorithm com-
putes the distance semi-join operation. The distance semi-
join requires that the algorithm keep track of the pairs that
have been already reported –that is, if an object pair <
o1, oi> has already been reported, subsequent object pairs
of the form <o1, oj > should be pruned. We achieve this
by storing a list So of objects in S that have already been
reported by the algorithm. In particular, object p is added
to So in line 59 thereby no subsequent pair containing p
would be reported by the algorithm. This facilities pruning
of pairs in lines 36 and 40, by comparing each pair with the
objects in So. More aggressive pruning strategies, described
in [10], can be employed here, which may result in further
reduction in the number of pairs in Q.

When Option is set to Top-k, we would estimate, as
in [10], the upper bound dk to the network distance of the kth

object pair in the result set. This would enable us to prune
object pairs (line 11–16) that cannot possibly be present
in the top k result. We use a separate priority queue, as
described in [10], in order to estimate the value of dk. We
could have also used the technique described in [18] and
leave the investigation of its use to a future study. Now,
using dk as the upper bound, we are able to prune object
pairs, while constantly improving the estimate as more pairs
are examined by the algorithm.

One interesting observation is that when T is an object,
and if Option is set to Ordered, Algorithm 1 is identical to
the Best First Search (BFS) algorithm [9]. If T is an object,
Option is set to UnOrdered and a distance constraint is
specified, our algorithm performs a range search. If T is an
object and the Top-k constraint is specified, the algorithm
retrieves the k nearest neighbors to T on the spatial network.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our algo-

rithm, and compare it with two other competing techniques
reported in the literature – the JER and JRE techniques
of Papadias et al. [13]. However, we point out that both
of these techniques are limited in their functionalities. The
JER and the JRE techniques can only perform simple Un-
Ordered distance join operations with an upper limit on
the network distance between the object pairs. All of the
experiments were carried out on a Linux (2.4.2 kernel) quad
2.4 GHz Xeon server with one gigabyte of RAM. We have
implemented our algorithms using GNU C++. We tested
our algorithms on a large road network dataset correspond-
ing to the important roads in the eastern seaboard states of
USA, consisting of 91, 113 vertices and 114, 176 edges. The
SILC encoding of this road network was precomputed and

stored on disk. The average number of the Morton blocks
in the SILC map of a vertex in the dataset is 353. Objects
belonging to the sets, R and S, were chosen at random from
the vertices of the spatial network. The algorithm uses an
LRU based cache that can hold 5% of the disk pages in the
main memory.

In our experiments we examined the effect of choosing
various block pair splitting strategies, as well as the various
tree traversals on the performance of the algorithm. A block
pair <p, q> can be split simultaneously (termed ”Simul”)
into children blocks i.e., both p and q are split into chil-
dren blocks, or only the bigger block among p and q is split
(termed ”Even”). Also, the algorithm can choose between
a depth first (DFS) or a breadth first (BFS) traversal of T
and U . The effect of choosing one of these four variants on
an UnOrdered distance join is shown in Figure 4a. From
the graph it is clear that depth first traversal (”DFS”) with
simultaneous (”Simul”) splitting of block pairs was found
to be slightly better than the other techniques. Figure 4b
shows the effect of these variations on an Incremental dis-
tance join operation. Again, we can see that depth first
traversal (”DFS”) with simultaneous (”Simul”) splitting of
block pairs was found to be slightly better than the other
techniques.
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Figure 5: Execution time for a ”Top-k” distance join
operation with different values of k.

Figures 5–6 shows the performance of the Top-k distance
join and semi-join operations on a road network dataset.
Figure 5 shows the effect of varying the value of k on the
performance of Top-k UnOrdered distance joins between
two sets of objects, R and S containing 1000 and 450 ob-
jects, respectively. Notice that the Top-k UnOrdered
distance join operation is slightly more expensive than an
UnOrdered distance join operation shown in Figure 4a.
Figure 6 shows the effect of varying the value of k on the
performance of an UnOrdered distance semi-join opera-
tion with 18000 objects in R and 4500 objects in S. Notice
that a larger proportion of the cost in Figure 6 is attributed
to the CPU than in Figure 5, indicating that the algorithm
expends a large number of clock cycles to ensure that an
object pair is not present in So.

Figure 7 is a comparison of the time taken to perform dis-
tance join operations with an upper bound restriction on the
network distance between object pairs using our approach
(termed ”SILC”) with the JER and the JRE techniques.
Our implementation of the JER and the JRE techniques is
slightly different from the original formulation of Papadias
et al. in [13]. In particular, we associate each object is R and
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Figure 4: Execution time for list ordering and different block pair splitting strategies for an a) UnOrdered,
b) Ordered distance join operation on a road network.
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Figure 7: a) Execution times for the JER, JRE and our method (”SILC”) is shown for distance join operation
with a limit on the maximum distance between the object pairs. b) Figure in (a) has been redrawn (y axis
not in logscale) in order to contrast the relative performance of the methods.
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Figure 6: Execution time for a ”Top-k” distance
semi-join operation with different values of k.

S with a vertex in the spatial network, whereas Papadias et
al. associate each object with an edge in the spatial net-
work. Consequently, the ”find entities” operation discussed
in [13] is no longer performed in our implementation of the
JER and the JRE algorithms. Figure 7 shows that our tech-
nique, when compared to the JER and the JRE techniques,
is at least an order of magnitude faster.

Figure 8 shows the performance of an incremental dis-
tance join operation on a road network dataset. As we can
see from Figure 8, the bulk of the time taken by the join op-
eration is spent on performing disk IO. Incidentally, a bulk
of the IO time resulted from the repeated invocation of the
Refine operator in line 48 of Algorithm 1. In effect, as the
result of this operation is ordered, it has to establish a to-
tal ordering of the pairs in the result set, thereby resulting
in several invocations of the Refine operator. One possible
explanation is that choosing R and S uniformly has resulted
in a large number of objects in S to be at the same distance
interval with respect to objects in R thereby requiring many
Refine operations.

Figure 9 shows the performance of a distance semi-join
algorithm on the road dataset. The performance of this
algorithm is similar to Figure 8.

6. CONCLUDING REMARKS
An algorithm has been presented that can perform a va-

riety of distance join operations on spatial networks. Some
possible directions for future work include the study of other
join algorithms (e.g., kNN join [5, 19]) on spatial networks
and improvements to the SILC framework. In particular,
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Figure 8: Execution time for incremental distance
join algorithm
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Figure 9: Execution time for incremental distance
semi-join algorithm

we plan to extend the capabilities of SILC to be able to
efficiently compute the network distance interval between
two blocks, and between a block and an object. One pos-
sible solution that would allow the computation of the net-
work distance interval between a block and an object is to
compute an inverse SILC map for each vertex in a spatial
network G, where an inverse SILC map of a vertex w is a
region quadtree on the spatial positions of the vertices in G,
such that the shortest paths from all the vertices contained
in a block of the region quadtree to w share the same last
link. Computing such an inverse SILC map would enable
the computation of the network distance interval between a
block and an object, although this does incur a considerable
investment of additional disk storage.
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