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ABSTRACT
Geographic Information Systems (GIS) are increasingly manag-
ing very large sets of data and hence a centralized data repository
may not always provide the most scalable solution. Here we intro-
duce a novel approach to manage spatial data by leveraging struc-
tured Peer-to-Peer (P2P) systems based on Distributed Hash Ta-
bles (DHTs). DHT algorithms provide efficient exact-match object
search capabilities without requiring global indexing and as a result
they are extremely scalable. Furthermore, the adoption of uniform
hash functions ensures excellent load balancing. However, range
queries – which are very common with spatial data – cannot be ex-
ecuted efficiently because the hash functions unfortunately destroy
any existing data locality. Here we report on the design of an Adap-
tive Spatial Peer-to-pEer Network (ASPEN) that extends Content
Addressable Networks (CAN) to preserve spatial locality informa-
tion while also retaining many of the load balancing properties of
DHT systems. We introduce the concept of scatter regions, which
are spatial data distribution units that optimize both load balancing
and spatial range query processing at the same time. We present a
data object key generation function and algorithms for spatial range
queries. We rigorously evaluate our technique with both synthetic
and real world data sets and the results demonstrate the efficient
execution of spatial range queries in the ASPEN system.
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1. INTRODUCTION
Recent research work in the area of structured Peer-to-Peer (P2P)

systems has produced novel approaches for the scalable distribution
of large data sets in a decentralized manner. As a common charac-
teristic, in systems such as CAN [10], Chord [13], and Pastry [11],
node identifiers are usually randomly assigned when nodes join the
systems. Each node only needs to maintain a small routing table
with a few neighbor nodes entries. These systems use Distributed
Hash Tables (DHTs) to allocate data objects to nodes with no cen-
tral control. This method ensures the uniform distribution of data
objects, which results in superb scalability, load balancing and ro-
bustness of DHT systems. With DHT exact match queries can be
performed in a very efficient way. In a n-node system, the process
of locating a particular data object on average requires only O(log
n) search steps.

Some of the large scale data sets now available are distributed in
nature. For example, Geographic Information Systems (GIS) uti-
lize spatial data, such as road networks, maps, and boreholes, from
various data sources, integrating them with textual and other infor-
mation and creating innovative and powerful end user applications.
By their very nature, queries on spatial data commonly concern a
certain range or area, for example queries relate to intersections,
containment, and nearest neighbors. Thus the spatial locality of
data objects needs to be preserved when spatial data objects are dis-
tributed. However, DHT mechanisms adopted by most structured
P2P systems tend to distribute data objects uniformly and maintain
no spatial locality. Consequently, spatial queries in these systems
can only be supported inefficiently through an exhaustive search.
On the other hand, spatial data objects are usually not uniformly
distributed within their space domain (e.g., road networks are more
dense in cities). If we simply select a locality-preserving hash func-
tion, the uniform data distribution will be destroyed, which may re-
sults in a performance bottleneck. Therefore, it is desirable to scat-
ter data objects in the areas with a high object density to achieve a
certain level of load balancing.

In this paper we propose an Adaptive Spatial Peer-to-pEer Net-
work (ASPEN), which is based on our previous work [16], to store
spatial data objects in distributed environments with constrained
load balancing and the preservation of spatial locality. Our work
leverages the design of CAN [10] to support spatial data manage-
ment in P2P systems. The contributions of our work are:

• We introduce the concept of scatter regions. A scatter re-
gion is a logical data distribution unit that covers multiple
zones in a physical plane. Instead of uniformly hashing data
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objects within the complete space, our design introduces a
data object key generation function to uniformly distribute
data objects within their scatter region. This function is able
to efficiently support spatial range queries, as well as exact
match queries.

• We describe a system design for distributing spatial data ob-
jects with fixed (static) scatter regions first. The proposed ap-
proach constrains the data distribution to provide data local-
ity while retaining load balancing properties. However, P2P
systems are dynamic and self-organizing by nature, hence
the number of nodes and the data object distribution vary
over time. Consequently, we extend our design to provide
dynamically adjustable scatter regions, which autonomously
adapt their size with regard to changes in the node and data
object distribution.

• We propose a spatial range query algorithm in ASPEN. Our
complexity analysis and simulation results indicate that the
hop count and the message count for our spatial range query
algorithm are of order O(n1/d) and O(n), respectively, in a n
node system with d dimensional, equally partitioned space.

• We report extensive experimental results based on two spatial
data sets. Our results demonstrate that the ASPEN system is
able to provide constrained load balancing with a wide vari-
ety of scatter region sizes.

The rest of this paper is organized as follows. The related work is
described in Section 2. In Section 3 we introduce ASPEN’s scatter
region design, the data object key generation function, and algo-
rithms in support of spatial range queries. The experimental val-
idation of ASPEN, using both synthetic data and real world data,
is presented in Section 4. Finally, we discuss the conclusions and
future work in Section 5.

2. RELATED WORK
A number of studies have addressed range query support in DHT

systems [5], [7], [12]. Gao et al. [5] introduced the Range Search
Tree (RST) to map data partitions into nodes. Range queries are
decomposed into sub-queries corresponding to nodes in the RST
trees. Hellerstein et al. [7] use prefix hash trees, which hashes
common prefixes into a multi-way retrieval tree, to support range
queries. Schmidt et al. [12] used the Hilbert Space-Filling Curve [3]
in the index space to support partial keywords and range queries in
DHT systems. However, these techniques are focused on one di-
mensional data, thus spatial data cannot be directly supported by
these approaches.

Load balancing in DHT systems has been studied in [6] and [2].
Aspnes et al. [2] proposed a mechanism to assign elements with
similar keys to the same server to maintain load balancing in the
system. Rao et al. [6] introduced the concept of virtual server in
their design. Each virtual server is assigned the same load. Nodes
are dynamically grouped so that each virtual server remains below
its load capacity. However, these techniques focus only on one
dimensional data with no consideration to spatial locality preserva-
tion.

Recent work that addressed spatial data support in DHT systems
are [9] and [14]. Tanin et al. [14] proposed a design for efficiently
querying spatial data objects over structured P2P systems. Based
on the Quad-tree algorithm [4], their design recursively divides a
two dimensional (2-D) space into smaller grid areas. Each grid
space is managed by a control point. Each data object is associ-
ated with the smallest grid that contains the object in its entirety.
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Figure 1: An example of CAN plane and its Virtual Identifier
(VID) tree.
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Figure 2: Example of CAN space partitioning as 5 nodes join
in succession in 2-D dimension.

The 2-D space is thus transformed into a tree structure that stores
spatial data objects. Each control point is hashed to a node in the
underlying Chord ring [13]. Although this design can preserve spa-
tial locality by directly mapping control points to nodes in Chord,
the system may not always achieve good load balancing: if a grid
area contains abundant data objects, a single control point will be
responsible for all of them. Similarly, Mondal et al. [9] proposed
the design of a P2PR-tree, a decentralized R-tree based index for
spatial data in DHT systems. Their design combines static space
decomposition at the top index levels with dynamic space group-
ing at the lower levels of indexing to cope with highly skewed data
distribution over peers. However, peers generally have a high fre-
quency of joins and departures in P2P systems, it is extremely chal-
lenging to keep the index updated with an R-tree based dynamic
space grouping algorithm. Although this design addresses the is-
sue of handling highly skewed data, more efficient algorithms are
desirable to achieve good load balancing in spatial DHT systems.

Content-addressable networks (CAN) introduce a logical Carte-
sian coordinate plane to store data objects. We leverage the de-
sign of CAN by applying physical spatial meaning to the coordi-
nate plane for storing spatial data objects. The next section reviews
the basic operation of CAN.

2.1 Content-addressable Networks (CAN)
CAN introduces a novel approach for creating a scalable in-

dexing mechanism in P2P environments. It creates a logical d-
dimensional Cartesian coordinate plane divided into zones, where
zones can be dynamically partitioned or merged as nodes join and
depart. Each zone in this plane is addressed with a Virtual Identi-
fier (VID), which is calculated from the location of a zone in the
logical plane. Each node in the system is responsible for storing
all data objects assigned to a specific zone. Figure 1a shows an
example of a 2-D plane partitioned into 7 CAN zones. Each zone
is controlled by a node and the node address is represented by its
VID. The corresponding structure of the VID tree is shown in Fig-
ure 1b. The concatenation of branch values on the path from the
tree root node to a specific node represents its VID. The partitioning
is performed by following a well-known ordering of dimensions in
deciding along which dimension the partition is to be done. For ex-
ample, in a 2 dimensional space, the partitioning first occurs along
the X dimension, then the Y dimension, then X again followed by
Y , and so forth. Figure 2 shows the partitions of a 2-D CAN space
as five nodes join in succession.
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Figure 3: The node insertion operation in CAN.

CAN nodes operate without global knowledge of the plane. Each
node maintains a routing table that consists of the IP addresses and
logical zone areas of its immediate neighbors. For each CAN mes-
sage with a destination coordinate, nodes consult their routing ta-
ble and simply apply a greedy forwarding algorithm to route the
message to the neighbor with coordinates closest to the destination
location.

When a new node joins a CAN system, several steps must be
taken to allocate a zone for it. First, the new node must find an
existing node (also called the bootstrap node), which is already a
member of the CAN system. Second, the bootstrap node randomly
chooses a destination coordinate in the logical CAN plane, and the
bootstrap node routes the new node to the zone covering that des-
tination coordinate. Third, the destination zone is split into halves,
each being controlled by one node. Finally, the neighbors of the
split zone will be notified to update their routing tables.

Figure 3 illustrates the node insertion operation in CAN. When
a new node G joins the system, it first uses node E as the bootstrap
node. Node E generates a destination point in the plane, which
is in the zone controlled by node D in this example (Figure 3(a)).
Node E routes node G to node D through node C (Figure 3(b)).
A greedy algorithm that selects the neighbor with coordinates clos-
est to the destination location is applied in the routing. Then the
destination zone is split into two halves, which are controlled by
nodes D and G, respectively. Figure 3(c) shows the CAN plane
after the node insertion. Note that the VID of node D changes in
this operation. The routing table of nodes D and G and their neigh-
bors (nodes B, C, and F in this example) also need to be updated
(Figure 3(d)).

When a data object is about to be inserted or removed, CAN
generates a key based on the object identifier (e.g., filename) and
inserts the data object as a {key, value} pair. The key is mapped
into a point P in the CAN plane by using a uniform hash function.
The {key, value} pair is inserted or removed at the node which
controls the point P . For the retrieval of a data object, the same
hash function is applied to the key in order to regenerate the point
P in the logical CAN plane. The query is routed to the zone which
controls the point P , to retrieve the data object.

CAN is designed to uniformly distribute data objects in distrib-
uted environments with no spatial locality preservation. Spatial
queries thus can be inefficiently supported by an exhaustive search.
However, CAN constructs a pure logical coordinate plane to uni-
formly distribute data objects. This characteristic allows us to ex-
tend the logical plane with physical spatial meaning for distrib-
uting spatial data objects. We describe the design of scatter re-
gions in Section 3, which constrain spatial data object distribution
in ASPEN to achieve both good load balancing and spatial locality
preservation.

3. ASPEN SYSTEM DESIGN AND COMPO-
NENTS

In this section we describe the core components of the ASPEN
system. In Section 3.1 we introduce the concept of spatial data
distribution units, called scatter regions. Next, in Section 3.2, we
present a novel spatial data object key generation function that as-
signs data objects to scatter regions. We address the ASPEN system
operations and introduce a spatial range query algorithm with sta-
tic scatter regions in Section 3.3. Finally, we extend our design to
dynamic scatter regions in Section 3.4. For a concise presentation,
we assume that spatial data objects in ASPEN are point data. How-
ever, our design can be extended to support other spatial data types
(e.g., lines, rectangles, and polygons).

3.1 Scatter Regions
To efficiently support spatial data objects in ASPEN, we trans-

form the logical space used in CAN into a bounded physical space.
Spatial objects are mapped onto this space according to their phys-
ical coordinates. Scatter regions are created in this physical plane
as logical distribution units, each covering multiple zones. Their
purpose is to preserve the spatial locality inherent in the data ob-
jects. Figure 4 illustrates a plane with 16 scatter regions. We define
S to be the set of scatter regions in ASPEN (for symbol definitions
see Table 1). Let Saddr ∈ S be a scatter region with address addr.
This address is generated by interleaving the bit strings associated
with the region’s location. For instance, Figure 4 identifies a scat-
ter region with address 1011, denoted as S1011. Spatial data objects
located in a specific scatter region are uniformly distributed across
the zones within the scatter region (they cannot be distributed to
adjacent regions). Data object B in Figure 4, for instance, can only
be distributed to any zone within scatter region S1011.

Notation Definition

S The set of scatter regions in ASPEN.
Saddr Saddr ∈ S, with the scatter region address addr.

Li The load on the node i.
LMAXi Max load on a node i with stable scatter regions.
LMINi Min load on a node i with stable scatter regions.

Sinit Initial scatter region size in ASPEN.

Table 1: Definition of notations in ASPEN.

The purpose of scatter regions is to simultaneously constrain the
distribution of spatial data objects, while uniformly scattering them
within the regions. Larger sized regions result in a more uniform
distribution of spatial data objects. However, they also result in a
larger search area for spatial range queries.
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3.2 Spatial Data Object Key Generation
Function

The spatial data object key generation function (or key genera-
tion function for short) is the basis of our methodology in that it
enforces the constraints of scatter regions. First, we present the
data object key structure that is used. Next, we illustrate the data
object key generation procedure with an example.

The data object key generated by our function consists of a scat-
ter region address for preserving spatial locality and a zone address
to maintain good load balancing. Figure 5 illustrates the data ob-
ject key structure, which is a bit string consisting of four parts:
key header, scatter region address, zone address, and object iden-
tifier [15]. The length of each part is a bits, b bits, c bits and d bits,
respectively. We term the scatter region address and the zone ad-
dress (b+ c bits) collectively as the region address. The key header
defines the user selected length of the scatter region address, re-
flecting an initial bound for the spatial data object distribution in
ASPEN. The object identifier is concatenated to the key header and
the region address to ensure the uniqueness of each data key. Note
that the length of the region address also defines the system capac-
ity (we can set the length of the region address to be very large to
support a nearly infinite number of nodes in the system). Hence,
the maximum number of zones in ASPEN is 2b+c and the scatter
region size is equal to 1/2b of the complete plane.

To generate an object key for a spatial data object, the key gener-
ation function first maps the physical coordinates of the spatial data
object to a scatter region in which the object is located, thus deter-
mining its scatter region address. Next, the zone address within
the scatter region is decided by applying a consistent hash function
such as SHA-1 [1] to the data object identifier. The final object key
of the data object consists of the concatenation of the key header,
the scatter region address, the zone address, and the object identi-
fier.

Consider the following example to illustrate the key generation
process for object A in the example plane of Figure 4. Assume
that we build an ASPEN system with a region address length of 10
bits. The maximum number of zones is therefore 210 = 1, 024.
Consequently, the key header a must be �log2 10� = 4 bits long to
define the length of the scatter region address. The scatter region

size in Figure 4 is set to one sixteenth (1/16 = 1/24) of the full
plane, thus the length of the scatter region address b is 4. The key
header is then set to be “0100” in binary reflecting the length of the
scatter region address. The length of zone address c is 10 − 4 = 6
bits.

To obtain the data object key, the key generation function first
sets the scatter region address to “1100” based on the physical loca-
tion of A. Next the object identifier of A (e.g., spatial coordinates)
is hashed. Assume the result is “101011” identifying the zone ad-
dress. The final object key is the concatenation of the key header,
the region address, and the object identifier of A: “0100 + 1100 +
101011 + object identifier”.

The key generation function ensures the uniform distribution of
spatial data objects within the scatter regions. More importantly,
it provides a method to select the load distribution versus spatial
locality preservation along a spectrum as a function of the length of
the scatter region address in the key header.

3.3 Static Scatter Regions
In the following sections we describe the fundamental ASPEN

system operations: node join and departure, spatial data object in-
sertion and deletion, and the execution of spatial range queries.
We start our description of these operations with the assumption
that scatter regions are static (i.e., the value of the key header is
constant at all nodes). Succeeding sections will extend these al-
gorithms to support dynamic scatter regions which autonomously
adjust the scatter region size in ASPEN.

3.3.1 Node Join and Departure
When a new node is about to join the system, an existing node

(the bootstrap node) will be selected first. The bootstrap node ran-
domly generates a destination point in the ASPEN plane for the
new node. Next, the new node is routed to a node controlling
the destination point. When the new node reaches this destina-
tion node, it checks the node and its immediate neighbors to find
the best candidate node. To balance the number of data objects on
each node, the node with the highest system load (defined in Sec-
tion 3.4) will be selected to split into halves, each being controlled
by one node. Finally, the new and the split node update their region
addresses, and the routing information is updated among the new
node, the split node and their neighbors.

When a node departs from ASPEN, the node explicitly hands
over its state and associated data objects to one of its neighbor
nodes. The neighbor node then merges with the departing node’s
zone using the original CAN algorithm. Note that the neighbor
node being chosen cannot be in a different scatter region from the
departing node.

3.3.2 Spatial Data Object Insertion and Deletion
CAN uses a unified hash function to distribute data objects. How-

ever, with the concept of scatter regions, spatial data object inser-
tion and deletion require the use of our new key generation func-
tion to determine the scatter region in which the spatial data object
should be located. Here we describe procedures for inserting and
deleting spatial data objects in ASPEN.

A spatial data object to be inserted into the system must follow
three steps: (i) ASPEN generates a data object key using the key
generation function described in Section 3.2. (ii) The data object
is routed to a zone in the destination scatter region with the region
address closest to the region address of the data object key. (iii)
When the data object reaches the destination zone, it is stored on
the node controlling that zone.

The deletion of a spatial data object from the system requires
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four steps: (i) ASPEN determines the scatter region in which the
spatial data object is stored by applying the key generation func-
tion to the object identifier. (ii) ASPEN sends a data object deletion
message to the destination scatter region. The message includes the
object identifier of the data object. (iii) Because the spatial local-
ity is not preserved within a scatter region, an exhaustive search
is launched within the destination region, i.e., deletion messages
are forwarded among zones within the same scatter region. An ef-
ficient, parallel message forwarding mechanism can be achieved
through application-level multicast. We adopted the M-CAN algo-
rithm [10], an efficient multicast algorithm that is able to scale to
very large group sizes without requiring distribution trees or cen-
tralized control. (iv) If a data object is found on a node with the
same object identifier, the node deletes the data object and a confir-
mation message is returned.

3.3.3 Spatial Range Queries
DHT systems provide a lookup function to perform exact match

queries. The design of ASPEN focuses on providing similar search
capabilities for spatial data. Specifically, we are interested in spatial
range queries, which commonly occur in spatial data management
applications. Algorithm 1 presents the spatial range query algo-
rithm with static scatter regions. When a node in ASPEN receives
a range query request, it first calculates how many scatter regions
overlap with the query window (e.g., rectangle or polygon), see line
3. A unique query ID is assigned to the query on line 5. A query
message is then submitted to each scatter region overlapping the
query window. Query message routing from the source node to the
scatter regions is accomplished via a greedy forwarding algorithm,
as in CAN. After arriving at the scatter regions, the query messages
are forwarded among the zones with the M-CAN algorithm (line
10). Lines 12 to 14 return any matching results to the querying
node.

Algorithm 1 Spatial Range Query with Static Scatter Regions (N ,
q)
1: /* N is the querying node */
2: /* q is the query window (e.g., rectangle, polygon) */
3: invoke Find Overlapping Scatter Regions(q)
4: /* Finding the set of scatter regions S

′ ⊂ S, AND S
′ over-

lapped by the query window */
5: invoke Assign Query ID(q)
6: /* Assign a unique ID qid to the query */
7: for each scatter region S ∈ S

′ do
8: invoke Route Query(N, S, qid, q)
9: /* Forward the query message to a node N ′ within the scatter

region */
10: invoke M-CAN (N ′, S, qid, q)
11: /* Perform M-CAN within the scatter region */
12: for each data object o matches q do
13: return o to N
14: end for
15: end for

3.4 Dynamic Scatter Regions
The algorithms presented so far assume a static scatter region

layout. However, one of the characteristics of P2P systems is that
they are highly dynamic, self-organizing collections of computers.
Static scatter regions are likely to be sub-optimal in providing load
balance over the long run. We therefore extend our methodology to
provide dynamic adaptation as follows. Let the load Li of a node
i denote the resource usage on that node at that time [6](Table 1).

S1011
S1

S10S101

Figure 6: Example of 3 scatter region merges starting with
S1011 in succession given 16 initial scatter regions.

This might represent, for instance, used disk space, or other user
identified resources. The load Li on a node i exceeding an upper
threshold represents a performance bottleneck. Since data objects
within the same scatter region are uniformly distributed, this con-
dition also implies that a system overload in all the zones of the
scatter region is very likely to occur. However, neighboring scatter
regions may be less loaded and we can improve load balancing by
merging adjacent scatter regions. Data objects are then re-hashed
into the newly merged scatter region. Based on this observation,
we propose our dynamic scatter region design, which adjusts the
size of scatter regions adaptively to achieve better load balancing.

We propose two thresholds, LMAXi and LMINi, to represent
the maximum and minimum load managed by a node i. We define
the load within the range of [LMINi, LMAXi] to be the stable
load range on node i. Let Sinit be the initial scatter region size (i.e.,
the initial value of the key header) in ASPEN. Note that all nodes in
ASPEN use the same value of Sinit to ensure system consistency
during scatter region operations. Sinit also defines the minimum
scatter region size allowed in ASPEN and no further scatter region
split operations can be performed. The values of the thresholds
LMAXi, LMINi and Sinit are user selectable.

We define a specific order in which scatter regions are merged
in ASPEN such that the operation can be executed in a distributed
manner with minimal communications overhead. Figure 6 shows
three successively performed merge operations starting with scatter
region S1011 from 16 initial scatter regions. Split operations follow
the same order in reverse. The ordering allows the recording of
a change in the scatter region size on nodes and data objects by
simply modifying the value of the key header (a decrease by 1 for
a merge operation and an increase by 1 for a split operation). More
significantly, this global ordering ensures system consistency in a
dynamic, distributed environment since all nodes conform to the
same order when calculating the scatter region size and location in
scatter region operations.

If there is a node i with Li > LMAXi, then the node load is
above capacity. Consequently, the node initiates a scatter region
merge operation with its neighboring regions. In addition, the data
objects within the newly merged scatter region will be uniformly
re-distributed to improve the load balance. A drawback of such
a region merge is that more messages must be generated in order
to forward spatial range queries in a larger scatter region. Conse-
quently, if the value of Li on a node i falls below LMINi, the
node launches a scatter region split operation, with the reverse se-
mantics of the merge operation, to improve the spatial range query
efficiency.

Next we detail the scatter region merge and split operations. We
also present the modified system operations (e.g., join and depar-
ture) and the spatial range query algorithm for the dynamic scatter
region design. Finally, we discuss the spatial range query complex-
ity and the system stability.

3.4.1 Scatter Region Merge and Split
DHT systems have no central control mechanism, and therefore

nodes may receive split and merge messages in a different order
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from the actual sequence in which the messages were generated.
However, if scatter region operations are executed out-of-order, the
system state may become inconsistent, i.e., the scatter region size
may be recorded differently at various nodes. To ensure consis-
tency, ASPEN timestamps each scatter region operation message.
Every node also remembers the time stamp from the latest scatter
region operation it performed. When receiving a new message, a
node will check the time stamp against its historical information.
Only messages having newer time stamps will be accepted and ex-
ecuted on the node; other messages will be discarded.

If a node i experiences a load Li > LMAXi, the node launches
the scatter region merge operation shown in Algorithm 2. The node
submits merge messages that include a time stamp and the new key
header to nodes located in the merged scatter region via M-CAN
multicast. When a node receives a scatter region merge message,
it checks the time stamp first. If system consistency is assured,
the node launches the scatter region update operation illustrated in
Algorithm 3. First, the local node information is updated with the
new key header and the time stamp from the message. Second, the
node updates the key header of each data object it stores. Next,
the zone address of all data objects are re-hashed and new object
identifiers generated with the new scatter region setting. Finally,
the node sends data objects to new zones according to their new
region addresses.

Algorithm 2 Scatter Region Merge
1: for any node i do
2: if Li > LMAXi then
3: invoke Calculate Scatter Region Address
4: for nodes in the new merged scatter region do
5: invoke Scatter Region Update(ts,header,“Merge”)
6: /* ts is the time stamp of the scatter region operation

message */
7: /* header is the new key header */
8: end for
9: end if

10: end for

Algorithm 3 Scatter Region Update (ts, header, flag)
1: /* ts is the time stamp of scatter region operation message */
2: /* header is the new key header */
3: /* flag is to indicate whether a scatter regions merge or split

message */
4: if invoke Check Time Stamp(ts) = true then
5: /* Check if it is the most recent scatter region operation mes-

sage received */
6: invoke Update Key Header(keyheader)
7: invoke Update Time Stamp(ts)
8: for each data object o stored on the node do
9: invoke Update Data Object(keyheader)

10: /* Update the key header the data object, and re-hash to
get the new zone address of the data object */

11: invoke route(o)
12: /* Route the data object according to its new region ad-

dress */
13: end for
14: end if

If the load Li of a node i falls below LMINi while the size
of the scatter region in which the node is located is greater than
Sinit, the node launches the scatter region split operation shown

in Algorithm 4. The current scatter region will be evenly split into
halves by observing the reverse ordering of previous merge oper-
ations. The node first forwards scatter region split messages with
a time stamp and the new key header to nodes in the same scatter
region using the M-CAN multicast protocol. When a node receives
the split message, it checks for system consistency. If it is assured,
the node launches the scatter region update operation as described
in Algorithm 3.

Algorithm 4 Scatter Region Split
1: for any node i do
2: if Li falls below LMINi AND i.scatterregionsize >

Sinit then
3: invoke Calculate Scatter Region Address
4: for nodes in the new split scatter region do
5: invoke Scatter Region Update(ts, Addrsc,“Split”)
6: /* ts is the time stamp of the scatter region operation

message */
7: /* Addrsc is the new scatter region address */
8: end for
9: end if

10: end for

3.4.2 Node Join and Departure
The node join algorithm with static scatter regions is adapted to

the dynamic case as follows. The bootstrap node now generates a
destination region address for the new node based on Sinit. It also
records an absolute time stamp (e.g, 0) as the initial time stamp
of the scatter region operation on the new node. Next, when the
new node reaches the destination zone, the node controlling the
destination zone checks for key header consistency with the new
node. If key header values are different from each other, it implies
that either merge or split operations have taken place. The node
updates its key header and the time stamp to reflect the latest scatter
region operation. Other parts of the node join algorithm are the
same with the static scatter region design. The algorithm of the
node departure with dynamic scatter regions does not require any
modification from the static design.

3.4.3 Spatial Data Object Insertion and Deletion
Spatial data object insertion with dynamic scatter regions can be

supported with a few modifications to the static scatter region de-
sign. First, ASPEN assigns a data object key to the data object by
using our key generation function based on Sinit. Next, when the
spatial data object reaches the destination zone, the node control-
ling the destination zone checks for key header consistency with
the spatial data object. If the key header values are different from
each other, it implies the scatter regions have changed. In such a
case the node updates the key header of the data object. The node
also re-hashes the object identifier to obtain a new zone address for
the data object. After the re-hashing the data object will be routed
according to its new region address.

To accommodate spatial data object deletion with dynamic scat-
ter regions, we made the following modifications to the static scat-
ter region design. First, Sinit is used when ASPEN determinates
the scatter region in which the spatial data object is located. The
deletion message also records the value of Sinit. Second, every
node in the scatter region forwarding the deletion message will
check its scatter region setting with the deletion message. If the
scatter region in which the node is located is larger than the value
of Sinit in the deletion message, the node updates Sinit in the dele-
tion message to enlarge the area being forwarded by M-CAN, and
keeps forwarding the message in the updated area.
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3.4.4 Spatial Range Queries
Algorithm 5 presents the spatial range query algorithm with dy-

namic scatter regions. When a node in ASPEN receives a spatial
range query request, the node first calculates how many scatter re-
gions overlap with the query window based on Sinit as shown in
line 3. Lines 5 to 8 assign a unique query ID and record Sinit

with the query. A query message is then submitted to each scat-
ter region overlapping the query window. Every node forwarding
the query message will check its scatter region setting against the
value of Sinit in the query message (line 13). If the scatter region
in which the node is located is larger than the value of Sinit in the
query message, the node updates Sinit in the query message (line
14) to enlarge the area covered by M-CAN, and keeps forwarding
the message. Any matching results will be returned to the querying
node.

Algorithm 5 Spatial Range Query with Dynamic Scatter Regions
(N , q)
1: /* N is the querying node */
2: /* q is the query window (e.g., rectangle, polygon) */
3: invoke Find Overlapping Scatter Regions(q)
4: /* Finding the set of scatter regions S

′ ⊂ S, AND S
′ over-

lapped by the query window, based on Sinit */
5: invoke Assign Query ID(q)
6: /* Assign a unique ID qid to the query */
7: invoke Assign Key Header(q, Sinit)
8: /* Assign Sinit to the query recording the initial scatter region

setting */
9: for each scatter region S ∈ S

′ do
10: invoke Route Query(N, S, qid, q)
11: /* Forward the query message to a node within the scatter

region */
12: for each node N ′ in the scatter region do
13: if N ′.scatterregionsize > q.Sinit then
14: invoke Update Scatter Region(q)
15: end if
16: for each data object o matches q do
17: return o to N
18: end for
19: invoke M-CAN (N ′, S, qid, q)
20: /* Perform M-CAN within the scatter region */
21: end for
22: end for

3.5 Query Complexity Analysis
Spatial range query execution in ASPEN consists of two phases:

the first phase represents sending query messages from the query-
ing node to the edge of scatter regions overlapping the query win-
dow. The second phase is the M-CAN message forwarding within
the scatter regions. The design of ASPEN focuses on the effi-
ciency and user experienced query latency of spatial range queries.
We utilize two metrics, the hop count and the message count, to
measure the query complexity. The hop count for a spatial range
query denotes the number nodes on the longest path along the query
message routing and M-CAN forwarding of a spatial range query,
which indicates the query latency experienced by a user. The mes-
sage count represents all the network traffic generated by a query.
Below we present the query complexity analysis in terms of the hop
count and the message count.

Given a d dimensional space partitioned into n equal zones, in-
dividual nodes maintain 2d neighbors, and the average routing path
length is (d/4)(n1/d) [10]. The first phase of the routing can be

c
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Figure 7: Message Count Analysis in ASPEN

achieved in O(n1/d). For the second phase of the query, let us as-
sume that zones are equally partitioned in scatter regions. Let there
be e scatter regions in the system, each containing n/e zones. In
a d dimensional space, the hop count is O(n/e)1/d ≈ O(n1/d).
Hence the total complexity of the hop count for an equally parti-
tioned space is O(n1/d) + O(n1/d) = O(n1/d), which indicates that
ASPEN retains the same excellent scalability property for search
operations as the original CAN.

To analyze the message count in query processing, let us assume
that zones are evenly distributed in the ASPEN space. Let c denote
the side of each zone. Let q denote the length of each side of a
spatial range query Q where q > c. Then q can be represented
as i × c + x, where x ⊂ [0, c) and i is an integer. Without loss
of generality let us consider the case where the top-left corner of
query q is located somewhere within the top-left zone of ASPEN
as shown in Fig 7 [8]. It can be verified that if the top-left corner of
Q is inside Set0 then Q covers (i + 1)2 zones, for Set1 Q covers
(i+1)2+i+1 zones, and for Set2 it is (i+2)2. Assuming uniform
distribution of spatial range queries in ASPEN, on the average Q
covers (q + c)2/c2 zones.

We can assume q2/c2 = n where n denotes the total number
of nodes in ASPEN (i.e., Query Q covers the complete space of
ASPEN) as the worse case of spatial range query, hence the number
of messages in the second phase of the query is O((q + c)2/c2) ≈
O(n). Since the message count in the first phase of the query is
O(n1/d) in a d dimensional space, thus the total complexity of the
message count is O(n).

4. EXPERIMENTAL EVALUATION
To evaluate the performance of ASPEN we performed extensive

simulations. The metrics of interest were the load balance and spa-
tial range query performance as functions of the scatter region size.
We performed our experiments on both synthetic and real world
data sets. The results indicate that our design of scatter regions
achieves good load balancing with a wide variety of scatter region
settings. Our ASPEN approach also exhibits excellent scalability
of the spatial range query performance. In Section 4.1 we start by
describing both the synthetic and real world data sets used in our
simulation. We detail our simulator implementation in Section 4.2.
Experimental results and an analysis are presented in Section 4.3.

4.1 Experimental Data Sets
We obtained a real geotechnical data set with highly skewed spa-

tial distribution to verify the performance of ASPEN. To test the
system scalability with a large number of nodes and data objects,
we also generated a synthetic data set with up to 105 spatial data
objects in our experiments. We describe the characteristics of both
data sets in succeeding sections.
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4.1.1 Kobe Data Set
Our primary data set was provided by Kobe University, Japan1.

The data set represents geotechnical point data and contains infor-
mation about slightly more than 4,000 borehole records with co-
ordinate values located in Kobe County. Foremost examples of
geotechnical information, geotechnical boreholes are vertical holes
drilled in the ground for the purpose of obtaining samples of soil
and rock materials and determining the stratigraphy, groundwater
conditions and/or engineering soil properties. We will refer to these
records as the Kobe data set.

4.1.2 Synthetic Data Set
The Kobe data set is a highly skewed, with an increased density

in the populous, coastal areas. Additionally, the number of data ob-
jects is relatively small (approximately 4,000). To test our design
with a larger number of data objects, especially to capture the query
performance of ASPEN, we created a synthetic data set consisting
of 105 point objects. The data was organized into ten clusters, each
centered around a randomly selected, geographical centroid. The
points associated with each cluster were generated based on a nor-
mal distribution of the distance from the corresponding center point
location. Thus, data points were denser around the center point and
became sparser with increasing distance from the center point. The
standard deviation for this synthetic data set was five.

4.1.3 Query Window Data Set
We generated a set of 1,000 rectangular query windows to verify

the spatial range query performance of our design. Each query win-
dow dimension and location was chosen as follows. We first com-
puted a query window size based on a normal distribution. Then we
randomly selected a point (x1, y1) as one rectangle corner vertex,
and a value x2 inside the global boundary as the x-value of the cor-
responding diagonal vertex. Based on x1, x2, y1 and the window
size, we calculated y2, which finalized the query window location.
Our window data set consisted of 1,000 queries, with an average
query window size of 5% of the plane size, based on a normal dis-
tribution with a standard deviation of two.

4.2 Simulator Implementation
For simplicity, we assume that the data objects stored in AS-

PEN all have the same weight (i.e., utilize the same amount of re-
sources). The number data objects stored on a node i is used to
represent the load Li and the values of LMAX and LMIN are
the same on all nodes. The ASPEN simulator implements the core
functionality of ASPEN: the scatter region management, the key
generation function and the spatial range query algorithm for both
static and dynamic scatter regions 2. We have performed two main
categories of experiments: (a) measuring the system load and (b)
determining the spatial range query performance. The ASPEN sim-
ulator is structured into three main components: the 2-D plane gen-
erator, the spatial data loader, and the performance monitor. The
2-D plane generator implements our node insertion algorithms, cre-
ating a 2-dimensional ASPEN plane fully populated with a given
number of nodes. The spatial data loader computes the keys of
the spatial input data objects using the key generation function of
Section 3.2. It also assigns data objects to nodes according to the
spatial data object insertion algorithm. Finally, the performance
monitor retrieves the number of data objects on each node to mea-
sure the load balance in ASPEN. To perform spatial range query

1http://www.kobe-u.ac.jp/
2We appreciate Dr. Sylvia Ratnasamy for providing us with the
CAN simulation code.
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Figure 8: The system load as a function of number of nodes in
the system.

experiments, the performance monitor executes the query window
data set against the loaded spatial objects. For each query win-
dow, a node is randomly selected as the starting point to launch the
search. The performance monitor executes our spatial range query
algorithms and reports the number of messages generated and the
longest path (in hops) as the application-level query routing cost
and response time, respectively.

4.3 Simulation Results
We constructed an ASPEN system with a maximum capacity of

216 nodes. The experiments measured two metrics: the load bal-
ance and the spatial range query performance. The simulation was
executed on a workstation with 1 GB memory and a 1.8 GHz AMD
Opteron processor. In the discussion of the results, we use SS to
denote static scatter regions, DS to denote dynamic scatter regions,
and NS to denote a baseline setup without scatter regions, where
data objects are directly mapped onto nodes without using our key
generation function. For each experimental configuration, the AS-
PEN simulator executes 20 times and reports the average results.

4.3.1 Load Balance
We use the standard deviation of the load L on all nodes to repre-

sent the metric of the load balance. A smaller value indicates better
load balancing because data objects are more uniformly distributed
among nodes.

We were first interested in how the number of nodes affects the
load balance. Figure 8 plots the system load as a function of the
number of nodes with both the synthetic and the Kobe data sets. We
initialized Sinit to be 1/64 of the whole plane. The results clearly
show that a higher number of nodes results in an improved load
balance (i.e., more uniform load) with both the synthetic and the
Kobe data sets. Static scatter regions (SS) perform slightly better
than no scatter regions with the Kobe data set. However, dynamic
scatter regions (DS) show a significant improvement across the full
range of servers, exhibiting consistently the best and most stable
load balance.

Next, we explored the relationship between the load balance and
the initial scatter region size Sinit. We varied the value of Sinit

from 1/2 to 1/256 of the complete plane in divisions of 2. Figure 9
plots the experimental results with the Kobe data set. The num-
ber of nodes in the system is 512 and 1024, respectively. We set
LMAX to be 30, and LMIN to be 10. Correspondingly, Fig-
ure 10 plots experimental results with the synthetic data set. Here
the number of nodes in the system is 512, 1024, 2048, and 4096,
respectively. We set LMAX to be 120, and LMIN to be 30.
Figures 9 and 10 illustrate that the system achieves excellent load
balancing with large initial scatter region sizes and the load balance
deteriorates as the initial scatter region size decreases. Intuitively
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Figure 9: The system load as a function of Sinit with the Kobe
data set.
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Figure 10: The system load as a function of Sinit with the syn-
thetic data set.

with a smaller initial scatter region size, the space for uniformly
distributing data objects becomes more constrained with static scat-
ter regions, which adversely affects the load balance. On the other
hand, as shown in Figures 9(b), 10(c) and 10(d), the load balance
stabilizes once the scatter region size is reduced below a certain
value. This illustrates the effect of scatter region merges (or splits)
once the value of L deviates from the stable load range. Data ob-
jects are re-distributed and the value of L is constrained in the sta-
ble range. Hence the load balance is excellently maintained with
dynamic scatter regions. The results also demonstrate that for all
possible initial scatter region sizes, both static and dynamic scat-
ter regions maintain better load balancing than the cases without
scatter regions.

Figure 11 demonstrates snapshots of the scatter region distribu-
tion and the number of objects on each node with the Kobe data set.
The number of nodes in the system is 512. We set LMAX to be
30, LMIN to be 10, and Sinit to be 1/32. Figure 11(b) shows the
initial data distribution with Sinit. Some of the regions are heavily
loaded while others are empty. Figure 11(c) shows the benefits of
dynamic scatter regions: the number of data objects on all nodes is
constrained to the stable range through merge operations and hence
the load balance is much improved.

4.3.2 Query Performance
We use the hop and message counts to represent the metric of
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Figure 11: Snapshots of the scatter region distribution in AS-
PEN with the Kobe data set
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Figure 12: The query message count as a function of Sinit with
the synthetic data set.

spatial range query performance. Our simulation reports the hop
and message counts as described in Section 3.5. A smaller num-
ber for the hop and message counts represents a better spatial range
query performance. We measured the query performance of AS-
PEN with the synthetic data set. Figures 12 and 13 illustrate the
average hop and message counts for the ASPEN system.

We make several observations from Figure 12. As a general
trend, the number of query messages drops in correspondence with
the decrease of the initial scatter region size. Our explanation for
this difference is that a larger scatter region implies a higher num-
ber of nodes per region. Since spatial range queries must be for-
warded within scatter regions overlapping the query window, more
messages are required in order to forward queries in a larger scatter
region. Figure 12(a) shows an exception to this general trend. Here,
a considerable number of query messages is required in a wide va-
riety of dynamic scatter regions with 512 servers. This is because
with 105 data objects distributed over 512 servers, our dynamic
scatter region design continues to merge scatter regions until the
whole space is a single region in order to constrain the value of L
on all nodes to be within the stable range. Therefore, an exhaustive
search is required for spatial range queries. This can be avoided by
increasing the value of LMAX so that the system has a wider sta-
ble range. Second, the query message count with dynamic scatter
regions is higher than the one with static scatter regions across a
wide range of initial scatter region sizes. This is because dynamic
scatter regions will perform a scatter region merge to achieve better
load balancing when there is a node i with Li > LMAXi. This
results in a higher number of messages for spatial range queries.
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Figure 13: The query hop count as a function of Sinit with the
synthetic data set.

On the other hand, Figure 13 shows a steady query hop count with
various scatter region sizes. This is expected from our spatial range
query complexity analysis in Section 3.5. Our simulation works on
a 2-D space, which shows the hop count is only a function of the
number of nodes in ASPEN. Given the parallel processing capa-
bilities of P2P systems, the ASPEN system provides advantages in
processing of large numbers of concurrent queries while maintain-
ing good response times.

Our experimental results show that a smaller scatter region size
reduces the number of messages required with spatial range queries.
This is, however, causing a worse load balance. On the other hand,
a large scatter region size is able to distribute spatial data objects
more uniformly but is requiring more messages for spatial range
queries. Hence the relation of load balance versus spatial range
query performance can be selected on a spectrum. Users are able
to choose preferred values of Sinit, LMAXi, and LMINi that
reflect which feature is more important in their application. Specif-
ically, our design of dynamic scatter regions is able to adaptively
distribute the system load. Hence a small initial scatter region size,
which performs well for spatial range queries, can be adaptively
adjusted to achieve a specific level of load balancing.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

DHT systems have generated intense interest in research because
their robustness, load balancing, and scalability are desirable for
large-scale systems. We have presented ASPEN, a novel spatial
DHT-based system, that preserves both spatial locality information
and load balancing in distributed environments. Specifically, we
have integrated our design with CAN by introducing the concept
of scatter regions to efficiently support spatial data. We have pre-
sented ASPEN system operations, such as spatial data object in-
sertion and deletion, with both static and dynamic scatter region
settings. We also have illustrated the practicality of supporting spa-
tial range queries with constrained load balancing and the results
that we observed are very promising.

We plan to extend our work in several directions. First, we will
integrate dynamic network-level topology models to acquire more

accurate information about the trade-off in performance when ad-
justing parameters along the spectrum of spatial locality preserva-
tion versus data load balancing. Second, we intend to study the
query success rate under dynamic network environments. Further-
more, the support of more types of spatial queries, such as the near-
est neighbor queries, is worth exploring.
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