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Abstract

Modern cryptography and the digital world (CMOS mainly) have been advancing side-by-

side. Although cryptographic algorithms only need to be proven with theoretical soundness,

cryptographic engineering on digital device requires more efforts to achieve a secure implemen-

tation than simply just design theories. Although properties like energy-efficiency, low-latency,

and minimal area overhead are desired in hardware-based implementations for cryptographic

modules, they could potentially weaken the theoretical justification of cryptosystems, where

adversaries can break the secret key inside the hardware.

In this dissertation, we develop novel attack to uniquely determine the secret key for hard-

ware implementation of GIFT-COFB, one of the ten finalists for National Institute of Standards

and Technology (NIST) Lightweight Cryptography Standardization Process. The 2-round par-

tial unrolled design of GIFT-COFB is shown to be the most energy-efficient among all other

r-round partial unrolling and fully unrolled settings. Our proposed chosen-plaintext attack can

effectively break the master key K on this 2-round partial unrolled GIFT-COFB. In addition,

we present two chosen-plaintext attacks on multicycle AES implementations with fault-based

attacks. Both attacks on GIFT-COFB and multicycle AES include explanations from algebraic

cryptanalysis perspective.

In parallel, the adoption of horizontal business models in semiconductor manufacturing is

negatively affected by the overproduction of integrated circuits (ICs) and the piracy of intel-

lectual properties (IPs), which compromised the integrity of the digital world’s semiconductor

supply chain. Logic locking emerges as a primary design-for-security measure to counter these

threats, where ICs become fully functional only when unlocked with a secret key. However,

Boolean satisfiability-based attacks have rendered most locking schemes ineffective. This gives

rise to numerous defenses and new locking methods to achieve SAT resiliency. Subsequent at-

tacks have been proposed to target these newly proposed solutions. The reasons behind the

effectiveness of SAT attack and the following SAT-based attack have yet to be explored. In this
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dissertation, we provide a unique perspective on SAT attack efficiency based on conjunctive

normal form (CNF) stored in SAT solver. We demonstrate how this attack learns new relations

between keys in every iteration using distinguishing input patterns and the corresponding or-

acle responses. Each input-output pair gives additional CNF clauses of unknown keys to be

appended to SAT formulation, which leads to an exponential reduction in incorrect key values.

Overall, SAT attack is shown to break most locking scheme within the linear iteration com-

plexity of key size. Our analysis provides a new perspective on the capabilities of SAT attack

against multiplier benchmark c6288 with possibly new directions to achieve SAT resiliency.

In the digital world, it is also crucial to reduce manufacturing defect escapes in today’s

safety-critical applications requires increased fault coverage. However, generating a test set

using commercial automatic test pattern generation (ATPG) tools that lead to zero-defect escape

is still an open problem. It is challenging to detect all stuck-at faults to reach 100% fault

coverage. It remains challenging to detect hard-to-detect and redundant faults for large VLSI

circuits. More optimization needs to be done as undetected faults still exist under the state-

of-the-art commercial ATPG tools. Rather than attacking logic locking with SAT solvers, in

this dissertation, we propose a novel test pattern generation approach constructively using the

powerful SAT attack on logic locking. A stuck-at fault is modeled as a locked gate with a secret

key, where it can effectively deduce the satisfiable assignment with reduced backtracks under

key initialization of the SAT attack. The input pattern that determines the key is a test for the

stuck-at fault. We propose two different approaches for test pattern generation. First, a single

stuck-at fault is targeted, and a corresponding locked circuit with one key bit is created. This

approach generated one test pattern per fault. We also consider a group of faults and convert the

circuit to its locked version with multiple key bits. The inputs obtained from the SAT attack tool

are the test set for detecting this group of faults. Our approach finds test patterns for all hard-

to-detect faults that were previously undetected in commercial ATPG tools. The proposed test

pattern generation approach can efficiently detect redundant faults with ITC’99 benchmarks.

The results show that we can detect all the hard-to-detect faults and identify redundant faults,

and a 100% stuck fault coverage is achieved.
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Finally, we consider privacy-enhancing solutions to offer additional benefits for securing

the digital world. In this dissertation, we develop an efficient, secure, and on-demand com-

munication protocol using zero-knowledge proofs (ZKPs) that allow the prover to provide evi-

dence of its secret without revealing that to the verifier. The edge device, acting as the prover,

convinces the central server, the verifier, of the unique PUF response stored inside the device

without requiring the actual storage of PUF responses on the server. The non-interactive char-

acteristic of zk-SNARK, Zero-Knowledge Succinct Non-Interactive Argument of Knowledge,

offers better optimization to authentication frequency, communication bandwidth between de-

vice and server, and protection of device-specific secret, all of which contribute to constructing

our proposed device authentication framework.
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Alice and the “Hardware” Bob
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Chapter 1

Introduction

Cryptography is everywhere. Whether in checking the latest weather updates, sending emails,

or downloading software packages, we are using cryptography, however implicit it may seem,

every day. Dear reader, you are now reading this dissertation in pdf format obtained from

Auburn University Electronic Theses and Dissertations (AUETD) database, https://etd.

auburn.edu/. You have already made a secure connection with AUETD server before you

can download the dissertation to your electronic device, i.e., PC, laptop, tablet, or phone. How

is this connection established between your device and the server, you may ask? Or how this

dissertation is downloaded securely without malicious modifications by potential adversarial

parties in-transit? The answer is in Transport Layer Security (TLS) 1.3. TLS 1.3 protects

network communications with client initiating the handshake protocol with server using Ellip-

tic Curve Diffie-Hellman key exchange (ECDHE) server to agree on shared secret and subse-

quently the session keys; then it proceeds with record layer for both parties, where authenticated

encryption with associated data (AEAD) is performed based on shared secret keys for secure

communication. As shown in Figure 1.1, the authenticated encryption scheme AES 256 GCM

is applied to encrypt the following communications with AUETD server, which is how the dis-

sertation is delivered to your digital device.

In the abstract view, one may consider the main business of cryptography in TLS 1.3

as securing messages transmitted between two parties, A and B, in the midst of passive and

active adversaries. Parties A and B, on the other hand, are generally referred to as Alice and

Bob, since Ron Rivest coined them in the seminal work of RSA in 1978 [1]. With a plethora

of attackers trying to break cryptographic schemes which Alice and Bob are using in order
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Figure 1.1: TLS 1.3 and authenticated encryption scheme AES 256 GCM are used to secure commu-
nications with AUETD server, https://etd.auburn.edu/. Screenshot was taken with Google
Chrome.

to extract their secret messages, these adversaries are given various names according to their

roles, i.e., Eve the eavesdropper, Mallory the malicious attacker, Oscar the opponent, Trudy

the intruder, etc. They can launch network-based attacks such as message injection attack,

message dropping attack, re-ordering attack, reflection attack, replay attack, etc. In theory,

on the other hand, they are categorized by ciphertext-only attacks, known-plaintext attacks,

chosen-plaintext attacks (CPA), chosen-ciphertext attacks (CCA), or existential unforgeability

under chosen-message attacks (EUF-CMA) for digital signatures. Correspondingly, security

notions for passive and active attacks have been developed by cryptographic community: EAV–

security, CPA–security, CCA–security, and EUF-CMA–security, etc.

Digital world, in parallel with the timing for development of modern cryptography, has

been advancing with complementary metal oxide semiconductor (CMOS) technology and the

ever-shrinking technology nodes based on Moore’s law. The transformation in the digital realm,
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dear reader, brings the technical innovations in PCs, laptops, tablets, phones, etc., which you

are now using it to read this dissertation. In addition, the incentive to achieve power efficiency

and reducing energy consumption drives the development and designs of microcontrollers, em-

bedded device, Internet of Things (IoTs), low-power application-specific integrated circuits

(ASICs) and field programmable gate arrays (FPGAs).

Considering from cryptographic engineering perspective, the digital world has certainly

facilitated algorithmic development of efficient implementations for both power reduction, per-

formance increase, and area/footprint minimization on diverse platform from servers to PCs,

embedded systems, ASICs, and FPGAs. Intel’s Advanced Encryption Standard (AES) New

Instructions (AES-NI)* is one notable example which runs round-based AES in dedicated hard-

ware inside the CPU. It achieves up to 10× performance increase than the software counter-

parts. Processor families since Intel Westmere and AMD Bulldozer of 2010 support AES-NI for

cryptographic hardware accelerations. This exemplifies the fact that optimizations in hardware

implementations offer better performance in cryptographic engineering than software imple-

mentations.

Nevertheless, digital world also brings new sets of attacks to cryptosystem designs as

never before. In addition to passively or actively attacking through communication chan-

nels, ubiquitous hardware provides novel attack venues to adversaries. Side-channel attacks

(SCAs) and fault attacks (FAs) give attackers the additional capabilities to recover the secret

inside hardware device, e.g., encryption/decryption keys for cryptographic algorithms. These

include power-based SCA, electromagnetic-based SCA, timing-based SCA, Flush+Reload at-

tacks, cache template attacks, speculative execution attacks, load value injection attacks, clock

glitching attacks, voltage glitching attacks, undervolting attacks, laser injection attacks, to just

name a few. Attacks like above exploits the hardware the adversaries are currently in pos-

session of, i.e., ASICs, FPGAs, microcontrollers, and DRAMs, or even launch these attack

remotely for some SCAs (hardware is required still). One of the earliest record of SCA at-

tacks can be dated back to World War II, where scientists from Bell Labs decoded Signal Corps

teletypewriter’s encrypted message with 75% accuracy [2]. This demonstrates the successful

*Breakthrough AES Performance with Intel® AES New Instructions, Intel Corporation, 2010.
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side-channel based attack on hardware, i.e., the typewriter, where key press happened about 80

feet away from the observation site.

1.1 Thesis Statement and Research Questions

In the dissertation, we follow two main themes: (i) hardware-based attacks, and (ii) hardware-

based solutions. This section explains the intuitions behind our title “When Alice meets the

‘Hardware’ Bob — Attacks and Solutions in the Digital World” and Part I of this dissertation,

including the roles which Alice and Bob played in each theme.

When focusing on hardware-based attacks, Alice, our main character, will become the ad-

versary in this dissertation, who is launching attacks to break the secret key and derive its secret

value with a series of challenge-response pairs via interactions with the “Hardware” Bob. This

challenge-response pair can be thought of as plaintext-ciphertext pairs from a cryptographic

module, or simply input-output response of a hardware locked circuit. Note that in Kerchoff’s

principle, information about cryptographic designs or systems are public save the secret key. In

hardware security domain, the locked circuit generally can be obtained by some means or from

specific entities (may or may not be malicious), while the key which locks the design is kept se-

cure, i.e., tamper-proof memory. The goal for Alice the adversary, on the other hand, is to break

these keys and successfully determine their values with the help of some challenge-response

pairs, known or chosen by purpose.

We consider hardware-based solutions in the last part of this dissertation. Our character

Alice, then, returns to its former benign profession. In VLSI testing, Alice is mainly con-

cerned with increasing stuck-at faults coverage for Bob the hardware (hardware circuits) in

automatic test pattern generation (ATPG). More specifically, two paths are considered: (i) test

pattern generation for hard-to-detect faults where commercial ATPG tools failed to find suit-

able patterns, and (ii) identification of redundant faults where no test pattern will be needed.

Another solution we explore in this dissertation is device authentication performed in a large

digital-ecosystem, such as IoT nodes for an in-field applications. The “hardware” Bob repre-

sents the IoT edge node that is required to prove and demonstrate to Alice, acting as server
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and the verifier, of its authenticity. In this scenario, Alice is applying privacy-enhancing cryp-

tography to build achieve authentications of edge device for central server, while taking into

consideration the malicious parties’ potential disruptions of authentication process or attempts

to stole device-specific proprietary information. Her overarching goals are to find solutions to

hardware-related problems in VLSI testing and hardware security.

Therefore, we expand the scope of Alice and Bob, along with their interactions, though tra-

ditional defined in cryptography alone, into hardware security and VLSI testing realms as well.

The digital world, on the other hand, relies heavily on hardware as its foundation, along with

the ever-evolving development and advancement in chip design, manufacturing, testing, as-

sembly and packaging process. For the above reasons, the dissertation aims to look at research

problems from the hardware perspective. In particular, (i) how hardware can be exploited or

facilitate additional attack vectors to break the internal secret? (ii) How would hardware be a

core benefit to help form new solutions for hardware assurance and quality assurance?

1.2 Contributions

This dissertation proposes novel attacks and/or solutions in cryptography, hardware security,

VLSI testing as mentioned above. The contributions of this dissertation are summarized as

follows:

In Part I (Chapters 1, 2), we begin this dissertation with introductory discussions on Al-

ice and the “Hardware” Bob, the big picture of attacks and solutions in the digital world, as

well as preliminaries. Background and necessary preliminaries in cryptography’s substitution-

permutation network, authenticated encryption with associated data, semiconductor supply

chain, zero-knowledge proof (ZKP) and its properties are introduced in Chapter 2.

In Part II (Chapters 3, 4, 5, 6), we discuss multiple hardware-based attacks in broader

scope of cryptography and hardware security. It ranges from algebraic cryptanalysis on hardware-

based GIFT-COFB and multicycle AES; the analysis of Boolean satisfiability (SAT) attack, its

iteration complexity on various logic locking schemes; to fault-based attack on logic locking

from ATPG perspective to retrieve its internally programmed secret key. These chapters include

the following publications:
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Hardware-based Attacks

• Y. Zhong, and U. Guin, “Chosen-Plaintext Attack on Energy-Efficient Hardware Im-

plementation of GIFT–COFB,” in IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), pp. 1-4, 2022.

• Y. Zhong, and U. Guin, “Fault-Injection Based Chosen-Plaintext Attacks on Multicy-

cle AES Implementations,” in ACM Great Lakes Symposium on VLSI (GLSVLSI), pp.

1-6, 2022.

• Y. Zhong, and U. Guin, “Complexity Analysis of the SAT Attack on Logic Locking,”

in IEEE Transactions on Computer-Aided Design of Integrated Circuits, pp. 1-14, 2023.

• Y. Zhong, A. Jain, M.T. Rahman, N. Adadi, J. Xie, and U. Guin, “AFIA: ATPG-

Guided Fault Injection Attack on Secure Logic Locking,” Journal of Electronic Testing:

Theory and Applications, pp. 1-20, 2022.

Chapter 3 develops the chosen-plaintext attack (CPA) on the most-energy-efficient hard-

ware implementation of GIFT-COFB, one of the ten finalists in the NIST Lightweight Cryp-

tography Standardization Process [3]. Only a constant number of nonce-tag pairs is required

to break the 128-bit key with O(24) attack complexity [4]. Chapter 4 presents the fault in-

jection attacks on Advanced Encryption Standard (AES), a widely adopted symmetric cipher

standardized by NIST in 2000. By injecting faults on a single-bit register, the overall attack

complexity to break a 128-bit key is O(28). This complexity can be further extended to 192-

bit and 256-bit keys as well [5]. Chapter 5 describes the full anatomy of the SAT attack, one

the most effective break against logic locking. Linear iteration complexity is observed for the

traditional locking on ISCAS’85 benchmarks. Analysis and explanations are given to provide

additional insights into the SAT-based attacks on post-SAT solutions [6]. Chapter 6 introduces

AFIA: ATPG-guided fault injection attack on secure logic locking [7]. The average complexity

to break the secret key of a locked circuit is linear to the key length. A quadratic complexity is

only needed in the worst-case scenario to completely determine the key bits.
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In Part III (Chapters 7, 8, 9), we target hardware-based solutions in VLSI testing and de-

vice authentication. In addition, future work with possible solutions and mitigation in hardware

security and VLSI testing are discussed. Papers included in this theme are listed as follows:

Hardware-based Solutions

• Y. Zhong, and U. Guin, “A Comprehensive Test Pattern Generation Approach Ex-

ploiting SAT Attack for Logic Locking,” in IEEE Transactions on Computers, pp. 1-13,

2023.

• Y. Zhong, J. Hovanes, and U. Guin, “On-Demand Device Authentication using

Zero-Knowledge Proofs for Smart Systems,” in Great Lakes Symposium on VLSI

(GLSVLSI), pp. 569-574, 2023.

• J. Hovanes, Y. Zhong, and U. Guin, “A Novel IoT Device Authentication Scheme

Using Zero-Knowledge Proofs,” in GOMACTech, pp. 1-4, 2023.

• Y. Zhong, A. Ebrahim, U. Guin, and V. Menon, “A Modular Blockchain Framework

for Enabling Supply Chain Provenance,” in IEEE Physical Assurance and Inspection of

Electronics (PAINE), pp. 1-7, 2023.

Chapter 7 proposes novel test pattern generation approaches using the efficient SAT attack

on logic locking. We exploit the linear iteration complexity in the SAT attack for generating

tests for undetected faults, of which the commercial ATPG tools, e.g., TetraMAX II, failed to

find suitable test patterns or determine as reduced faults. The equivalence of a stuck-at fault

(sa0, sa1) is converted to its equivalent key gates. Our proposed approaches achieve 100% fault

coverage by identifying redundant faults and producing test patterns for undetected faults [8].

Chapter 8 provides a novel device authentication protocol to for IoT devices [9,10]. The widely

available SRAM PUF on each edge device is its device fingerprint. This proposed zk-SNARK-

based approach protects secrecy of the PUF response even if the central server is compromised

by adversaries. It is also resilient against machine learning-based PUF attacks since it is im-

possible for an adversary to observe any challenge-response pair in a meaningful way. Chapter

9 concludes the dissertation and discusses possible future directions in cryptography, hardware

security, and VLSI testing.
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A list of all 9 co-authored peer-reviewed publications along with links to source code are

included in the Appendix.

1.3 Organization of this Thesis

The rest of this dissertation is organized as follows and shown in Figure 1.2.

Part II: Hardware-based Attacks

In Chapter 3, we propose a chosen-plaintext attack on the most-energy-efficient hardware

implementation of GIFT-COFB by Caforio et al. As any attacker could have access to the IoT

device, he/she can apply a nonce to the GIFT-COFB encryption oracle and observe the 2-round

update from the 128-bit output tag. Multiple nonce-tag pairs can be captured through resetting

the oracle and assigning new values to the input nonce. With only a few nonce-tag pairs, the

adversary can recover both round keys of round 1 and 2, and use them to derive the 128-bit

secret key, K, through the reverse of key schedule. The attack was published at HOST 2022

(Washington DC) and has been cited in NIST IR 8454*:

 Y. Zhong, and U. Guin, “Chosen-Plaintext Attack on Energy-Efficient Hardware Im-

plementation of GIFT–COFB,” in IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), pp. 1-4, 2022.

In Chapter 4, we propose two attacks to break the multicycle AES implementations. Both

attacks take three plaintext-ciphertext pairs to evaluate one key byte. The first attack is de-

signed to break vulnerable AES implementations which leaks round operation to the output.

An adversary can also access the internal scan chains and observe the round register value.

By varying one byte in plaintext, we showed that the effect of three other key bytes of the

same MixColumns operation, along with key addition, can be eliminated by XORing the same

output byte using only two plaintext-ciphertext pairs. However, one more plaintext-ciphertext

pair is necessary to remove the redundant solution to uniquely determine the correct key byte.

The second attack focuses on breaking a multicycle AES implementation where the contents in

*NIST IR 8454: Status Report on the Final Round of the NIST Lightweight Cryptography Standardization
Process, June 2023.
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ciphertext registers are updated once all the round computations are complete. The adversary

can launch the attack by injecting a fault in the flag register which signals the completion of

all computations (e.g., done). Once a fault is injected, the internal states of the round registers

are dumped as the ciphertext. An adversary can perform the same steps mentioned in the first

attack to determine the key after observing the first round result from the ciphertext. This attack

is also applicable to the encryption round that skips MixColumns. As no faults are injected in

the internal computations of AES, the traditional fault detection schemes can not identify this

attack. We demonstrated both attacks on different AES implementations with 128-bit key size

(AES-128) from the OpenCores benchmarks with the key search space complexity of O(28).

The same attacks can be applied to other AES implementations with 192/256-bit keys. Our

attack was published at GLSVLSI 2022 (Irvine, CA):

 Y. Zhong, and U. Guin, “Fault-Injection Based Chosen-Plaintext Attacks on Multicycle

AES Implementations,” in ACM Great Lakes Symposium on VLSI (GLSVLSI), pp. 1-6,

2022.

In Chapter 5, we present two novel aspects to analyze the iteration complexity of the

oracle-guided SAT attack. First, we provide a detailed analysis of the SAT attack based on

the conjunctive normal form (CNF) clauses stored in the SAT solver. The SAT attack itera-

tively finds DIPs to eliminate an equivalent class of incorrect keys. We explore what the attack

learned after finding a DIP at each iteration. We show that the SAT tool is implicitly construct-

ing a relationship between different key bits by applying the DIP to the oracle and observing

the correct response. Please note that the desired goal for any logic locking technique is to

achieve an exponential iteration complexity of key size so that an adversary cannot determine

the correct key value within given time constraints. However, our analysis points to the linear

growth of the required patterns or iterations rather than the desired exponential increase with

keys. Using examples, we showed how the attack uses a DIP to eliminate a class of equivalent

keys which results in the linear iteration complexity. We also confirmed that the complexity

gets even lower for circuits with multiple overlapping logic cones. Note that a logic cone can

be described as a directed graph where the input nodes and gates point toward the sole output.
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Second, one interesting observation is that the complexity (i.e., number of iterations/DIPs) of

the SAT attack often reduces with increasing key size. We provided detailed explanations of

why it takes fewer iterations to find the correct key when we locked a circuit with a larger key

size. Finally, we analyzed the SAT attack complexity for a circuit locked with point functions.

Our complexity analysis was published at IEEE Transactions on Computer-Aided Design of

Integrated Circuits, 2023:

 Y. Zhong, and U. Guin, “Complexity Analysis of the SAT Attack on Logic Locking,” in

IEEE Transactions on Computer-Aided Design of Integrated Circuits, pp. 1-14, 2023.

In Chapter 6, we details how an adversary can extract the secret key from a locked netlist,

even if all the existing countermeasures are in place. An adversary can determine the secret key

by injecting faults at the key registers, which hold the key value during normal operation, and

performing differential fault analysis. We present a key sensitization-based ATPG-guided fault

injection attack (AFIA), to break any locking scheme. The entire process can be performed

in three steps. First, we processed the locked netlist and converted it into a directed graph to

extract all logic cones and construct a key-cone association matrix that records the distribution

of keys among different cones. This structural analysis facilitates total fault reduction for the

subsequent test pattern generation. Second, it is necessary to select an input pattern that pro-

duces an incorrect response for the target key bit only while keeping its dependent keys at faulty

states. This can be achieved by using a constrained automatic test pattern generation (ATPG)

to generate such a test pattern, which is widely popular for testing VLSI circuits. A 1-bit key

value can be determined by generating a test pattern that can detect the stuck-at fault (saf ) at

the target key (corresponds to that key bit) while keeping its dependent keys at logic 1 (or logic

0). This is due to the fact that dependencies are often inserted to prevent direct sensitization of a

key bit to the output by test patterns due to other key lines blocking its path. In our proposed ap-

proach, the pattern which detects a stuck-at 1 (sa1) fault at one key line with logical constraints

for the recovered key lines is sufficient to determine that key bit. One can also use stuck-at

0 (sa0) fault to derive such pattern. Note that the fault-free and faulty responses are always

the complements under the test pattern which detects that fault, which in turn can to derive the
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key-bit value. The same process needs to be applied for other key bits to generate similar input

patterns, and this results in at most K patterns for determining the entire key of size K. Note

that one test pattern can detect multiple key bits when they are placed in different logic cones

(of no dependencies). Third, we applied these test patterns to only one instance of unlocked

chip and collect the responses. Faults can be injected at the blocking key registers using laser

fault injection equipment and obtain the key value by comparing the output responses with test

patterns’ generated by constrained ATPG. Our fault attack on logic locking was published at

Journal of Electronic Testing: Theory and Applications, 2022:

 Y. Zhong, A. Jain, M.T. Rahman, N. Adadi, J. Xie, and U. Guin, “AFIA: ATPG-Guided

Fault Injection Attack on Secure Logic Locking,” Journal of Electronic Testing: Theory

and Applications, pp. 1-20, 2022.

Part III: Hardware-based Solutions

In Chapter 7, we demonstrate the novel miter construction for test pattern generation of

stuck-at-0 (sa0) and stuck-at-1 (sa1) faults, where each fault has its equivalent locked circuit to

be applied with the existing SAT-based attack. We target undetected faults where commercial

ATPG tools TetraMAX II fall short in producing test patterns. Our work focuses on identifying

the redundant ones from these undetected faults and finding suitable patterns for detecting non-

redundant faults to increase fault coverage further. The equivalence of a stuck-at fault (sa0,

sa1) is an AND or OR key-gate, respectively. Once the stuck fault is converted to a key-

dependent AND/OR gate, SAT attack is applied to solve the key and return the distinguishing

input patterns it used in deriving the key value. A distinguishing input pattern returned by the

SAT attack allows us to sensitize a stuck fault and propagate the faulty response to the output.

To the best of our knowledge, this research was the first attempt to apply the SAT-based logic

locking attack on the equivalent keyed circuit to (i) find test patterns for undetected faults, (ii)

identify redundant faults, and (iii) reduce test pattern count for the combination of multiple

faults. Our SAT attack-based test pattern generation was published at IEEE Transactions on

Computers, 2023:
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 Y. Zhong, and U. Guin, “A Comprehensive Test Pattern Generation Approach Exploiting

SAT Attack for Logic Locking,” in IEEE Transactions on Computers, pp. 1-13, 2023.

Chapter 8 proposes an efficient, secure, and on-demand device authentication protocol

using Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARK). The

signature from a physically unclonable function (PUF) is used to create the proof, which can be

verified by the central server acting as a verifier without storing the actual PUF response. The

edge device periodically generates proofs using a self-generated random seed. The proof can

then be made public for verification for anyone with the common reference string (CRS). This

allows repeated authentication by verifying the identity of an edge device without access to the

PUF secret. This work was done in collaboration with my colleague Joshua Hovanes. Our zk-

SNARK-based solutions were published at GLSVLSI 2023 (Knoxville, TN) and GOMACTech

2023 (San Diego, CA):

 Y. Zhong, J. Hovanes, and U. Guin, “On-Demand Device Authentication using Zero-

Knowledge Proofs for Smart Systems,” in Great Lakes Symposium on VLSI (GLSVLSI),

pp. 569-574, 2023.

 J. Hovanes, Y. Zhong, and U. Guin, “A Novel IoT Device Authentication Scheme Using

Zero-Knowledge Proofs,” in GOMACTech, pp. 1-4, 2023.

In Chapter 9, we conclude the dissertation and discuss possible future directions. This in-

clude possible solutions to secure semiconductor supply chain with modular blockchain-based

approaches [11], future work in heterogeneous integration, 3D packaging, as well as possible

hardware-based applications with privacy-enhancing technologies (PETs).
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Chapter 2

Background and Preliminaries

2.1 Substitution-Permutation Network, Authenticated Encryption, Authenticated Encryption

with Associated Data

Modern cryptography and digital world (CMOS mainly) have grown side-by-side. Although

cryptographic designs only need to be proven sound theoretically, cryptographic engineering

on digital device requires more efforts to achieve a secure implementation than just theoretical

soundness.

Since NIST’s standardization of Advanced Encryption Standard (AES), block ciphers sub-

sequently designed are largely based on substitution-permutation network (SPN) or its tweak-

able version. AES has 10, 12, or 14 encryption rounds for 128-bit, 192-bit, or 256-bit key,

respectively. Each encryption round includes SubBytes, ShiftRows, MixColumns, and Ad-

dRoundKey. All are linear operations except SubBytes, where sixteen 8-bit Sboxes have non-

linear property between its input and output byte. Similarly, GIFT–128 is a 128-bit SPN block

cipher with 40 encryption rounds [12]. Each round contains, SubCells, PermBits, AddRound-

Key. GIFT Sbox (GS) is a non-linear function of 4-bit input/output with algebraic degree of

3.

Authenticated Encryption (AE) achieves secrecy and integrity simultaneously in the pres-

ence of an active adversary. It consists of symmetric encryption and Message Authentication

Code (MAC), where generally encrypt-then-MAC is adopted. In terms of secrecy, AE need

to satisfy CCA-Security. For authentication, unforgeability must be met, where any tampered
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encrypted messages by attackers will be discovered. Authenticated Encryption with Associ-

ated Data (AEAD), on the other hand, also includes associated data as the input, which is

authenticated but not encrypted, e.g., packet header. AEAD has nonce N , message M , and

associated data A as inputs; ciphertext C of the same length as the original message, and mes-

sage authentication tag T (fixed length) as outputs. NIST initiated the process to standardize

lightweight cryptography (LWC) back in 2015 requiring submissions in AEAD with optional

hashing functionalities. Emphasis is placed on schemes suitable for constrained environment

like RFID tags, industrial controllers, sensor nodes and smart cards [13]. GIFT-128 with com-

bined output feedback mode (COFB) was selected as one of the ten finalists in the third round

of NIST LWC competition.

2.2 Globalization of Semiconductor Supply Chain

The integrated circuits (ICs) are fundamental to virtually every technology in the Department

of Defense (DoD), industrial and commercial spaces. Moore’s Law has guided the microelec-

tronics industry for decades to enhance the performance of ICs. The continuous addition of

new functionalities in SoCs has forced design houses to adopt newer technology nodes ever-

decreasing transistor size to continuously improve operational speed, reduce power consump-

tion, overall die area, and the resultant cost of a chip. The exponential growth of electron-

ics becomes feasible due to the globalization of semiconductor design, manufacturing, and

test processes, and the markets and nation-state incentives which support the much needed

investments production capability and capacity. Building and maintaining a fabrication unit

(foundry) requires a multi-billion dollar investment [14]. As a result, a system-on-a-chip (SoC)

design house acquires intellectual properties (IPs) from many vendors and sends the design to

a foundry for manufacturing, typically located offshore due to the horizontal integration in the

semiconductor industry. At present, the majority of the SoC design houses no longer design the

complete SoC and/or manufacture chips on their own. As a result, the trusted foundry model is

no longer assumed to be valid for producing ICs, where the trustworthiness of microelectronic

parts is often questioned.
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Figure 2.1: Overview of electronics supply chain and possible attack surface.

With horizontal business model in semiconductor supply chain, ensuring the security, in-

tegrity, and authenticity of electronic components, systems, and the supply chain that delivers

them becomes highly challenging. Unfortunately, the same globalization opens Pandora’s box

of threats, including (i) counterfeit ICs [15–19], (ii) piracy of intellectual properties (IPs) and

cloning [20–23], and (iii) malicious modifications or tampering with hardware Trojans [24–26],

as shown in Figure 2.1. These threats could present in multiple stages in the electronics supply

chain, including design, fabrication, assembly, distribution, and system integration, etc. Due to

the sophistication of today’s critical infrastructures, electronic products could be manufactured

from multiple levels of system integration. For example, smaller systems, such as FPGAs and

microcontroller boards, can be assembled first using discrete components, and we call it level-1

(L1) system integration. Complex systems, such as helicopter electronics, require the integra-

tion of multiple smaller L1 systems, and we denote it as level-2 (L2) system integration. Due

to the complex globalized supply chain, an adversary could control or disrupt the supply chain

or launch cyber attacks by exploiting hardware vulnerabilities. The hardware hack reported

by Bloomberg shows a tiny chip, the size of a grain of rice, can be covertly hidden in a larger
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system to infiltrate data in U.S. companies [27, 28]. The threat was undetected due to the dif-

ficulty of observing and understanding the complete functionality of the electronic system and

its supply chain. Observing and understanding the electronics and supply chain operations has

many challenges and, if improperly conducted, can expose further vulnerabilities and threats to

intellectual property and trade secrets.

2.3 Zero-Knowledge Proof

First developed in 1980s by Goldwasser, Micali, and Rackoff [29], a zero-knowledge proof

(ZKP) allows the prover (P) to convince the verifier (V) that a statement is true, yet without

revealing any details about its secret witness. The verifier learns no additional information

beyond the validity of the statement. In addition, Goldreich et al. [30] showed that ZKP proof

systems exist for all non-deterministic polynomial (NP) languages.

The definition for ZKP is described as follows:

Definition

• Let L be a NP-language, with witness relationR, s.t. L =
{
x
∣∣∃w : R(x,w) = 1

}
• Let P be the prover and V be the verifier.

• P needs to convince V that x ∈ L and also that P knows w.

Details of how P proves a statement or how V convinces of the validity of the statement

itself are associated with the three properties of ZKP [29] – completeness, soundness, and

zero-knowledge. The definition below is based on Groth’16 [31] and Bünz et al. [32]:

Properties of ZKP

• Completeness: For every x ∈ L,

Pr
[
(σ, τ)← Setup(R);π ← Prove(R, σ, x, w) : Vrf(R, σ, x, π) = 1

]
= 1− ϵ.

Note that ϵ is negligible, and ϵ = 0 for perfect completeness for honest provers. (i.e.,

honest prover P convinces the verifier V of the secret w.)

• Soundness: For all probabilistic polynomial time (PPT) adversary A,
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Pr

 (R, z)← R(1λ); (σ, τ)← Setup(R); (x, π)← A(R, z, σ) :

x /∈ LR and Vrf(R, σ, x, π) = 1

→ 0,

where λ is the security parameter. (i.e., cheating prover or adversaryA fakes proofs with

negligible probability.)

• Zero-Knowledge: For every PPT verifier V , there exist a PPT simulator S with ∀x ∈

L, probability ensembles of
{
ViewV

(
<P,V>(x)

)}
and

{
S(V , x)

}
are computationally

indistinguishable. Equivalently, For all PPT adversary A ,

Pr

 (σ, τ)← Setup(R);

π ← Prove(R, σ, x, w)
: A(R, z, σ, τ, π) = 1

 ≈
Pr

 (σ, τ)← Setup(R);

π ← S(R, τ, x)
: A(R, z, σ, τ, π) = 1

.

In other words, the proof reveals nothing to the verifier V except x ∈ L. In particularly,

proofs should not reveal prover P’s secret witness w. (i.e., verifier learns nothing except

the validity of proofs.)
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Part II

Hardware-Based Attacks
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Chapter 3

Chosen-Plaintext Attack on Energy-Efficient Hardware Implementation of GIFT-COFB

3.1 Introduction

The recent advancement of the Internet of Things (IoT) results in more connected electronic

devices than ever. Vast chunks of data are being transferred over the unsecured channel for in-

creasingly ubiquitous computing. This may give rise to the potential breach of confidentiality,

integrity, and authentication if, somehow, the devices transmit information without the proper

protection mechanism. As IoT devices are resource-constrained and low-cost, have limited

area, and less computation power, the previously standardized Advanced Encryption Standard

(AES) block cipher is not suited for these devices. Thus, NIST instantiated the process to

standardize lightweight cryptographic algorithm, stressing its importance on RFID tags, sen-

sor nodes, industrial controllers, and smart cards [33]. Among all the candidates submitted to

NIST, ten were selected as the finalists [34]. All finalists ensured tight security bounds and en-

sured efficient implementation in both hardware and software. One of the ten finalists is GIFT-

COFB [35], which integrates combined-feedback mode (COFB) with GIFT-128 cipher [12] to

offer authenticated encryption with associated data.

GIFT block cipher, as shown in Figure 3.1, belongs to the Substitution-Permutation Net-

works (SPNs), which utilizes 4-bit Sbox and bit permutation PermBits as the underlying SPN.

Compared to the lightweight block cipher PRESENT [36], GIFT provides better efficiency in

both area and performance as well as mitigates the vulnerability to the linear hull attack [37]

against PRESENT. Although there have been a few attacks against GIFT cipher, such as cache

attack [38], side-channel attack [39], and fault-injection attack [40], GIFT-COFB has shown
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to be secure against large encryption queries [41–43]. Various forgery attacks described in

[41–43] requires the attacker to perform either O(264) encryption or decryption blocks to break

GIFT-COFB’s authentication. As lightweight cryptography is implemented on IoT devices, it

is equally important to examine the security bound for the same authenticated encryption in its

hardware implementation.

The rest of the chapter is organized as follows. We briefly introduce the background for

hardware implementations of GIFT-COFB and describe the threat model in Section 3.2. Our

proposed attack is presented in Section 3.3. The result for the proposed attack is described in

Section 3.4. Finally, we summarize this chapter in Section 3.5.

3.2 NIST Lightweight Cryptography Finalist GOFT-COFB

As IoT devices are resource-constrained, having multicycle hardware implementations of light-

weight ciphers on these embedded systems offer better area, power, and performance efficiency.

It offsets the inherent limitations of these devices. Each clock cycle finishes one round of en-

cryption, storing the intermediate result to the round registers. However, the major weakness

in multicycle hardware implementation of crypto primitives is that the output for each encryp-

tion round is directly assigned to the ciphertext variable [44]. Consequently, by saving the

result straight to the ciphertext, the adversary is granted access to the internal rounds, where

the intermediate round result is updated at every clock cycle.

3.2.1 Threat Model

The threat model is given to defining the capabilities and intentions of an adversary, and is

summarized as follows:

• An adversary has access to a fully functional IoT device where the secret key K is stored

in the non-volatile memory (NVM). The possession of this device allows the adversary

to perform the chosen-plaintext attack and observe the corresponding ciphertext.

• The adversary can also acquire the gate-level netlist of the corresponding cipher imple-

mented in the IoT device. It can be extracted either through IC reverse engineering [45]
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or from GDSII files [46]. An untrusted foundry or a rouge employee of an SoC design

house can pirate the GDSII file to an adversary.

3.2.2 Lightweight Hardware Implementation of GIFT-COFB

Under the requirement of authenticated encryption [33], GIFT-COFB supports the encryption

of a fixed-length nonce, followed by variable-length associated data and variable-length plain-

texts. GIFT-128 [12] block cipher, which consists of 40 encryption rounds is used in GIFT-

COFB [47, 48]. Although the typical architecture for the multicycle implementation of block

ciphers is to compute every round per clock cycle, it would be sub-optimal for GIFT-COFB.

The computation of ciphertext could incur undesired latency for GIFT-COFB in authenticated

encryption compared to other finalists whose underlying block ciphers are of a smaller round

size [48]. It is possible to incorporate multiple rounds into one clock cycle at the cost of in-

creased area utilization in replicating the round function. Caforio et al. [48] examined different

partial r-round unrolling scenarios and the fully unrolled setting of GIFT-COFB and found

that the minimum energy consumption of 0.251 nJ/128-bits is observed when two encryption

rounds finish at each clock cycle (r = 2) along with clock gating and register borrowing.

We focus on this hardware implementation of GIFT-COFB. The datapath of interest is

shown in Figure 3.2. Inputs, outputs, and wire names are presented in blue and the module

instantiation names are in green. At the start of the authenticated encryption, GIFT-COFB

loads a 128-bit nonce into the 128-bit register state reg with selection bit core load at logic

1 for the first clock cycle. The output from state reg is XORed with the 128-bit input data

(either the associated data or plaintext) to generate the ciphertext. After the nonce is passed to

the state reg, the control signal core load is changed to 0. The default value for control signal

core done is logic 0, which allows the output from state reg to pass through the multiplexer and

it updates to logic 1 when the encryption reaches the 40th round. Two GIFT round functions,

rf1 and rounds[1], are serially connected. Each round function has two other inputs, the 6-bit

round constants and the 128-bit round key. The 128-bit tag receives the output from round

function rounds[1]. These details can be found in aead.vhd and controller.vhd [47].

24



nonce

128

core_load

data

ciphertextD Q 
0

1
 

0

1

clk

128

 
1

0
 

1

0 GIFT 

Round 

Function

GIFT 

Round 

Function

tag
128

core_done

128
state_reg

rf1

...

rounds[1]

S
u

b
C

el
ls

 (
S

C
)

P
er

m
B

it
s 

(P
B

)

A
d

d
R

o
u

n
d

K
ey

 

(A
K

)

S
u

b
C

el
ls

 (
S

C
)

P
er

m
B

it
s 

(P
B

)

A
d

d
R

o
u

n
d

K
ey

 

(A
K

)

Key (K) Key Schedule

r2r2r1

Figure 3.2: Hardware implementation of 2-round partial unrolled GIFT-COFB.

GIFT-COFB begins authenticated encryption by loading nonce and encrypting it with

GIFT cipher and the master key K at the speed of 2 encryption rounds per clock cycle. Hence,

the attacker could observe the second round result of GIFT’s encryption of nonce or any con-

secutive 2-round (before the reach of 40th round) through output variable tag. The remaining

question for the adversary is to recover the secret key K under the 2-round encryption of GIFT.

Without the loss of generality, we analyze the first two rounds of nonce encryption to explain

our attack methodology.

3.3 Chosen-Plaintext Attack on GIFT-COFB

Lightweight crypto modules (e.g., GIFT-COFB) are designed to support authenticated encryp-

tion for low-cost IoT devices, which can be deployed in diverse locations. These devices can

easily be accessed by an adversary, who can launch an attack to extract the secret key. This
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Figure 3.3: Differential Distribution Table (DDT) of GIFT Sbox

section presents a novel chosen-plaintext attack that breaks GIFT-COFB on the order of O(24).

Our attack can recover 4-bit key group in parallel even with the nonlinearity in Sboxes. Let us

begin by analyzing the round function to launch the attack.

GIFT round function consists of three steps, SubCells (SC), PermBits (PB), and AddRound-

Key (AK), as shown in the dashed boxes in Figure 3.2. SubCells comprises 32 Sboxes, where

each 4-bit input cell is transformed by one 4-bit Sbox (s(·)), a non-linear and bijective map-

ping in GF (24). Figure 3.3 shows the differential properties of GIFT Sbox, DS(∆x,∆y) =

♯
{
x ∈ F4

2

∣∣∣S(x)⊕ S(x⊕∆x) = ∆y
}

, in differential distribution table (DDT). PermBits per-

forms bit-level permutation, and AddRoundKey is the modulo-2 addition of the 128-bit from

PermBits with a 64-bit round key at bit location [95...32]. A 6-bit constant is XORed with bit

locations 23, 19, 15, 11, 7, and 3, and constant 1 is XORed with bit location 127. We denote

the 128-bit input nonce as N and the 128-bit output after 2 rounds as T , the 64-bit round key

associated with the round functions as K̂1 and K̂2, and the corresponding round constants as
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r̂1 and r̂2. In uniformity with the 128-bit vector expressions below, we extend the 64-bit round

keys, K̂1, K̂2, to 128-bit K1 and K2 by zero-padding into the remaining bit locations. Simi-

larly, we expanded r̂1 and r̂2 to the zero-padded 128-bit r1 and r2. In the following, we present

the detailed steps to obtain the secret key K.

• Step 1 – Sample collection: Two tags corresponding to two nonces are collected. The

adversary first chooses a nonce, N , passes it to the oracle, and captures the corresponding

output tag, T , after the first clock cycle of authenticated encryption. As two encryption

rounds are performed in one clock cycle, we can compute the tag as:

T =

2nd round︷ ︸︸ ︷
PB(SC(PB(SC(N))⊕K1 ⊕ r1︸ ︷︷ ︸

1st round

))⊕K2 ⊕ r2 (3.1)

Since SubCells and PermBits are deterministic, the adversary can calculate PB(SC(N))

directly. We denote the XOR of r1 and PB(SC(N)) as Q, where Q = PB(SC(N)) ⊕ r1.

We can then rewrite Equation 3.1 as:

T = PB(SC(Q⊕K1))⊕K2 ⊕ r2 (3.2)

Under a different input nonce N ′, N ′ ̸= N , the adversary can obtains the 2-round output

T ′ and derive the corresponding Q′ = PB(SC(N ′))⊕ r1 as seen earlier:

T ′ = PB(SC(Q′ ⊕K1))⊕K2 ⊕ r2 (3.3)

For the adversary, this can be achieved by resetting the GIFT-COFB crypto-system and

then providing a difference nonce, N ′.

• Step 2 – Dependency Removal of round key K2: The adversary removes the dependency

of the second round key K2 by XORing Equation 3.2 and 3.3,

T ⊕ T ′ = PB(SC(Q⊕K1))⊕ PB(SC(Q′ ⊕K1)) (3.4)
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The linearity of PermBits with its additive property allows us to rewrite Equation 3.4 as,

T ⊕ T ′ = PB(SC(Q⊕K1)⊕ SC(Q′ ⊕K1)). (3.5)

Since bit permutation in PermBits is reversible, it is straightforward for an adversary to

derive back to the output from SubCells (SC),

PB−1(T ⊕ T ′) = SC(Q⊕K1)⊕ SC(Q′ ⊕K1) (3.6)

where PB−1 is the inverse bitwise permutation of PB. Since PB−1(T ⊕ T ′) is a constant,

we denote it as L = PB−1(T ⊕ T ′).

• Step 3 – Decomposition of K1 to 16 key cells: Equation 3.6 can be further split into 32

4-bit cells. The middle sixteen cells can be represented as

Lj = s(Qj ⊕K1
j )⊕ s(Q′

j ⊕K1
j ) (3.7)

where cell index j satisfies j ∈ {23, 22, ..., 16} since the 64-bit round key is only effective

at bit indices [95...32]. However, it is not possible to uniquely determine each key cell

K1
j with Qj and Q′

j , where Qj ̸= Q′
j , derived from two noncea N and N ′, where N ̸= N ′

and Equation 3.7 alone, where different values for a key cell K1
j could lead to the same

Lj (see details in Section 3.4).

• Step 4 – Recovery of each key cell in K1: The adversary can now restart the GIFT-COFB

with a third nonce, N ′′, and acquire its tag T ′′. Repeating Steps 1-3, the attacker obtains

Q′′ = PB(SC(N ′′))⊕ r1, L′ = PB−1(T ⊕ T ′′), and

L′
j = s(Qj ⊕K1

j )⊕ s(Q′′
j ⊕K1

j ). (3.8)

With carefully chosen nonces {N,N ′, N ′′}, each key cell K1
j can be uniquely recovered

with Equation 3.7 and 3.8 by exhaustive search on all 16 combinations of 4-bit key, as
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shown in Section 3.4. The attacker can compute all sixteen key cells in K1 in parallel,

since each 4-bit key has its own Equation 3.7 and 3.8 independent of other key bits.

• Step 5 – Recovery of K2 and the secret key K: After deriving the entire round key K1,

the second round key K2 can be simply obtained through

K2 = T ⊕ PB(SC(PB(SC(N))⊕K1))⊕ r2, (3.9)

where T , PB(SC(PB(SC(N)), and K1 are all known to the attacker. Then, the master

key K is recovered through the reversing of key schedule [12] with round keys K1 and

K2, K = {K2
[95..64]||K1

[95..64]||K2
[63..32]||K1

[63..32]}, where || denotes the concatenation of

bit vectors. The complexity of this attack lies in the recovery of K1, not K2. Thus, the

attack fully deciphers the secret key K.

3.4 Result and Discussions

In this section, we quantitatively analyze the number of different nonces required for the at-

tacker to derive the secret key K based on the construction of GIFT’s Sbox. The computation

complexity arises primarily from the computation of round key K1, since K2 is computed

through Equation 3.9 with O(1). First, we show that having two nonce-tag pairs is insuffi-

cient to derive the value for any key cells. When we obtain two different nonce-tag pairs, we

can perform Steps 1-3 and proceed to Equation 3.7 of Section 3.3, where each key cell can

be solved independently. To cover all the possibilities of Qj and Q′
j , we exhaustively search

all 16 combinations of K1
j under every possible pair of {Qj, Q

′
j} with Qj ̸= Q′

j . From our

simulation [49], under any fixed {Qj.Q
′
j}, where Qj ̸= Q′

j , at least two solutions exist for a

key cell K1
j giving the same value of Lj .

On the other hand, if the attacker applies three nonce N,N ′, and N ′′ and obtains the

corresponding tag output, he/she subsequently gets Equation 3.7-3.8 for each key cell from

Steps 1-4. Out of all possible,
(
16
3

)
= 560, pairs of {Qj, Q

′
j, Q

′′
j}, where Qj ̸= Q′

j ̸= Q′′
j , there

are 416 pairs that give different {Lj, L
′
j} for all 16 possible key cells, allowing the adversary
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to uniquely determine each 4-bit key [49]. This enables the recovery of one key cell through

the exhaustive search of 24 = 16 possible combinations to find the correct solution satisfying

Equation 3.7 and 3.8. All sixteen key cells in K1 can be solved separately and in parallel,

resulting in the time complexity of O(24) on searching the correct key value. The construction

of nonce can be easily derived under the desired values for Q’s with N = SC−1(PB−1(Q⊕ r1)).

3.5 Summary

this chapter presents a novel chosen-plaintext attack on the energy-efficient hardware imple-

mentation of GIFT-COFB, one of the finalists for NIST’s Lightweight Cryptography. The pro-

posed attack exploits the 2-round instantiation of GIFT block cipher inside the partial-unrolled

structure of GIFT-COFB. The entire secret key can be solved with a minimum of three nonce-

tag pairs. The key cells can be recovered in parallel by solving the corresponding constraint

equations, resulting in a O(24) worst-case complexity.
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Chapter 4

Fault-Injection Based Chosen-Plaintext Attacks on Multicycle AES Implementations

Advanced Encryption Standard (AES) [50] is one of the most common encryption algorithms

used in various applications and protocols, e.g.,, disk encryption, Internet Protocol Security,

Transport Layer Security, etc.. With the objective to speed up the execution of algorithms,

there is an increasing demand for creating dedicated hardware [51, 52] other than optimizing

software. This holds for cryptographic algorithms as well [53, 54], and their hardware imple-

mentations offer better performance on both encryption and decryption. For example, these

low-cost hardware implementations of AES can be well suited for different Internet of Things

(IoT) and Cyber-Physical Systems (CPS) for enabling data security, which is practically non-

existent for low-cost IoT devices [55]. The hardware implementation of AES is generally mul-

ticycle, where each round uses the same hardware resource to provide better area efficiency.

Due to the extensive use of AES across diverse sectors, hardware designers can reference the

open-source HDL designs which are available in OpenCores [56]. These implementations offer

designers greater flexibility by choosing the one that matches their design criteria.

Over the years, different researchers have proposed various types of attacks on AES, and

successful countermeasures have also been proposed. AES attacks can be divided into three

categories – algebraic attacks [57–60], differential fault analysis [61–65], and side-channel

attacks [66, 67]. Dunkelman et al. [60] have theoretically explored the effect of excluding

the MixColumns transformation. For a reduced-round AES-128 with a single round, they can

eliminate the majority of keys by sequentially guessing four bytes in the round key and discard

those that failed consistency checks. It needs 216 trial encryptions, and the search complexity

is O(232). Bouillaguet et al. [59] require O(240) simulations [68] with one known-plaintext of
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a full round of encryption for key derivation. They conjecture the time complexity under the

same setup with one more known-plaintext; however, the attack may not uniquely determine

the AES key. Besides algebraic analysis, differential fault analysis becomes popular where

errors or faults are introduced either inside the computation of a particular round or within the

Key Schedule algorithm. Blömer et al. [61] proposed an attack on AES by resetting a bit after

the XOR of input key and plaintext to zero. Observing the difference in output ciphertext, it

helps the attacker decipher one key bit per fault. However, this attack needs to inject faults at

the metal wires with extreme timing precision [69]. Moradi et al. [62] and Pogue et al. [70]

perform differential fault analysis to extract the secret key, where faults are assumed at the

encryption rounds. Ali et al. [64], Giraud et al. [65], and Kim [63] have successfully retrieved

the key with differential fault analysis when faults occur at the Key Schedule. Multiple fault

detection schemes [71–73] have been proposed to identify faults through either error detection

codes or partial replication of the internal computation of AES. Several fault-resilient AES

implementations have also been proposed [74–76].

This chapter is organized as follows. We briefly introduce the background for AES and

describe the threat model in Section 4.1. Our proposed attacks are presented in Section 4.2. A

theoretical perspective for our proposed attacks is analyzed in Section 4.3. Finally, we conclude

the chapter in Section 4.4.

4.1 Existing AES Implementation, Notations, and Threat Model

The hardware implementations of AES are often multicycle, where area efficiency is assured

since all the rounds use the same resources at different clock cycles. Depending on the key

size, the ciphertext is produced after 10, 12, or 14 clock cycles. If each encryption takes

more than one clock cycle to finish, the ciphertext is generated after an integer multiple of

10, 12, or 14 clock cycles for AES-128, AES-192, and AES-256, respectively, as illustrated

in Figure 4.1. Each encryption round contains SubBytes (SB), ShiftRows (SR), MixColumns

(MC), and AddRoundKey (
⊕

) modules, while the last one skips MC, as shown inside the

dashed box of Figure 4.2.

Notations: We use the following notations to maintain uniformity across the entire paper.
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• We adopt the following notations, where the superscript index (i) in a variable indicates

the current encryption round and the subscript index (j) are for the byte index, from 0 to

15. For example, the jth byte in ith round key is Ki
j and Ri is the result for ith encryption

round. We use K, without any superscript, to refer to the input key, which can be either

16, 24, or 32-byte for AES-128, AES-192, or AES-256. To facilitate the derivation in

the subsequent sections, we abbreviate the round one result R1 to R. Aside from the

input key, the size for all other variables, e.g.,, plaintext P , round register Ri, round key

Ki, and ciphertext C, are 16 bytes. Note that, in this chapter, the ciphertext register C

may not contain the actual encrypted data. C, as explained in Section 4.2, can store the

internal round result, before the complete encryption finishes. We use ciphertext and

round one result R interchangeably.

• The S-box function is denoted as s(·). Round constant is RC.

4.1.1 Threat Model

As the hardware implementations of different crypto primitives become prevalent, an adversary

can launch the attacks by physically accessing the device. This section describes the adversarial

capabilities that help to carry out the attacks. The threat model is summarized as follows:

• The attacker possesses a fully functional chip where the secret key has already been

programmed. For example, an electronic device that ensures secure communication can

be obtained from an IoT/CPS application. By having the device, an adversary can apply

a plaintext and observe its corresponding ciphertext.

• The adversary can obtain the gate-level netlist of the AES implementation. It can be

either acquired through IC reverse engineering [45] or from the GDSII files [46]. As

the majority of the IC production is offshore, an untrusted foundry can also provide the

reverse-engineered netlist to the adversary.

• The adversary can have access to the design-for-testability (DFT) or scan architecture

to observe the internal state of the design (e.g., round registers). He/she can launch our
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proposed first attack to obtain the secret key. Note that the DFT architecture provides

the necessary support for manufacturing tests [77]. If not, the attacker can use fault

injection equipment to inject a fault in the completion-indicator (CI) register to launch

our proposed second attack. Laser fault injection equipment can induce very precise

faults and target a single flip-flop [78]. As this equipment is available at universities, we

assume that an adversary also has the means to acquire such equipment.

4.2 Proposed Attacks on Multicycle AES Implementations

We present two attacks to efficiently break multicycle AES implementations. The first attack

exploits the minor issues in the implementations [79–81], where the round registers and ci-

phertext are updated simultaneously in every round. The second attack, however, requires fault

injection for breaking a correct multicycle AES implementation which assigns the round result

to the ciphertext output only when it is in the final round [82]. Both attacks work on all three

key sizes of AES. For simplicity of discussion, in this section, we will first show all the attacks

on AES-128. The same attack methodology can be applied to AES-192 and AES-256 with

constant overhead in worst-case search complexity, which we briefly describe how to extend

both attacks to key sizes larger than 128-bit at the end.

4.2.1 Proposed Exhaustive Key-Byte Search Attack

Our first attack is specific to the multicycle AES implementations, where the output for each

encryption round can be observed as ciphertext C, where Figure 4.3 illustrates the first two

encryption rounds of AES, the target of this attack. Figure 4.2 shows an abstract view of the

multicycle AES implementation when a designer incorrectly implements AES or an adversary

has access to the internal scan chains. For example, one implementation from OpenCores [79]

assigns the ith round result, MCi ⊕Ki, straight to the ciphertext output, and other implemen-

tations [80,81] connect the ciphertext to the round registers. Both data-paths are highlighted in

blue in Figure 4.2.

The traditional AES implementation mixes different key bytes in such a way that an ad-

versary cannot remove the interdependency among the key bytes in the ciphertext. As a result,
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Figure 4.2: Hardware implementation of multicycle AES-128.∗

AES remains secure no matter how many plaintext-ciphertext pairs one can observe. However,

if an adversary can observe the round outputs stored in the round registers of a multicycle AES

implementation, it is possible to remove the dependency across the key bytes. We show that

one key byte can be determined without knowing the other key bytes in this attack. Thereby,

we determine a key byte through simulating all 28 key combinations and compare the result

with one byte round register value from the working chip under attack to derive the correct key.

In the following, we present the detailed steps to obtain the first key byte, K0. Similar analysis

can be performed to reveal the other key bytes.

• Step-1: The adversary chooses two plaintexts, P and P ′, and observes the two corre-

sponding round outputs R and R′ after the first clock cycle from the chip.

∗This figure is based on AES designs from OpenCores [79–81].
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• Step-2: The first byte (R0) of round output R is computed using the following equation:

R0 = {MC(SR(SB(P ⊕K0)))⊕K1}0

= {MC(SR(SB(P ⊕K0)))}0 ⊕K1
0

= [02⊗ s(P0 ⊕K0)⊕ 03⊗ s(P5 ⊕K5)⊕ (P10 ⊕K10)⊕

s(P15 ⊕K15)]⊕ [K0 ⊕ s(K13)⊕RC]. (4.1)

From Equation 4.1, we can observe that the value of R0 depends on K0, K5, K10, K13,

and K15. Key bytes which can be derived from the equation are highlighted as boldface

letters. At this point, it is sub-optimal to brute force all five key bytes as they cannot be

uniquely determined. Multiple collisions occur for the 240 key combinations that lead to

the same 8-bit R0 value. Therefore, we choose another plaintext P ′ with the following

properties:

P0 ̸= P ′
0, and Pi = P ′

i , i = 5, 10, 15

The R′
0 can be computed using the following equation:

R′
0 = {MC(SR(SB(P ′ ⊕K0)))⊕K1}0

= {MC(SR(SB(P ′ ⊕K0)))}0 ⊕K1
0

= [02⊗ s(P ′
0 ⊕K0)⊕ 03⊗ s(P5 ⊕K5)⊕ (P10 ⊕K10)⊕

s(P15 ⊕K15)]⊕ [K0 ⊕ s(K13)⊕RC]. (4.2)

The computation details can be found in [50].
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• Step-3: R0 and R′
0 are XORed to remove the dependency for other key bytes.

R0 ⊕R′
0 = [02⊗ s(P0 ⊕K0)⊕ 03⊗ s(P5 ⊕K5)⊕ (P10 ⊕K10)

⊕ s(P15 ⊕K15)]⊕ [K0 ⊕ s(K13)⊕RC]⊕ [02

⊗ s(P ′
0 ⊕K0)⊕ 03⊗ s(P5 ⊕K5)⊕ (P10 ⊕K10)⊕

s(P15 ⊕K15)]⊕ [K0 ⊕ s(K13)⊕RC]

= 02⊗ s(P0 ⊕K0)⊕ 02⊗ s(P ′
0 ⊕K0) (4.3)

We can rewrite Equation 4.3 as:

s(P0 ⊕K0)⊕ s(P ′
0 ⊕K0) = M0 (4.4)

where, M0 is a constant.

• Step-4: Brute-force attack is performed using Equation 4.4.

The only unknown in Equation 4.4 is K0, allowing the attacker to enumerate all 256

combinations of K0 to find the one that satisfies it. However, there exists more than one

solution due to the nonlinearity introduced by the S-box.

Claim-1. There exist two solutions for Equation 4.5.

s(p⊕ k)⊕ s(p′ ⊕ k) = m (4.5)

where, p, p′, k, and m are of one byte, and p ̸= p′.

Observation. There are 128 unique values for byte m for all 256 combinations of k under

any fixed p, p′ and p ̸= p′. One can verify the above observation using code available in

GitHub [83]. We denote the 128 unique values of m as mi, i ∈ 0, 1, ..., 127 and mi ̸= mj

when i ̸= j.
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Proof. For each valid mi, there is at least one unique key kI
i , i ∈ 0, 1, ..., 127, that

satisfies:

s(p⊕ kI
i )⊕ s(p′ ⊕ kI

i ) = mi (4.6)

Due to mi ̸= mj , when i ̸= j, and the bijective property of the S-box, kI
i ̸= kI

j , when

i ̸= j, with fixed p, p′, p ̸= p′. We denote the set of these 128 solutions as Group I.

The proof for the existence of another solution for each mi is sufficient for validating the

claim.

Let us consider another key byte kII
i with the form kII

i = kI
i ⊕ p⊕ p′. Clearly, kII

i ̸= kI
i

since p ̸= p′.

Applying the value of kII
i in Equation 4.6, we compute:

s(p⊕ kII
i )⊕ s(p′ ⊕ kII

i )

= s(p⊕ kI
i ⊕ p⊕ p′)⊕ s(p′ ⊕ kI

i ⊕ p⊕ p′)

= s(kI
i ⊕ p′)⊕ s(kI

i ⊕ p) = mi (4.7)

Next, we show that all these 128 kII
i ’s are unique as well. Now consider any two solutions

kII
i and kII

j , ∀i ̸= j. As kI
i ̸= kI

j , then (kI
i ⊕p⊕p′) ̸= (kI

j⊕p⊕p′). This results kII
i ̸= kII

j .

This proves that no two kII
i , kII

j , i ̸= j are the same, and we denote the set of these 128

solutions as Group II.

Finally, the proof will be complete, if we show that there is no overlap between the

solutions in Group I (kI
i ’s) and Group II (kII

i ’s), where each group contains 128 unique

key within. Let us assume that kII
i belongs to Group I and denote with index j, where

i ̸= j, kII
i = kI

j . Substitute kI
j in Equation 4.6, and we get

s(p⊕ kI
j )⊕ s(p′ ⊕ kI

j ) = mj. (4.8)

Combining Equation 4.8 and Equation 4.7 for kI
i , we have mi = mj , which contradict the

uniqueness of 128 mi’s for i ̸= j. Thus, there are no common solutions between Group
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I and Group II and the 256 solutions from the joint groups make up all the possible key-

byte combinations. Therefore, we proved that there exist only two solutions for each mi

that satisfies Equation 4.5.

• Step-5: The double-solution is removed by selecting another plaintext (P ′′) with P ′′
0

differs from both P0 and P ′
0 (i.e., P ′′

0 ̸= P0 ̸= P ′
0), and keeping P ′′

5 = P5, P ′′
10 = P10, and

P ′′
15 = P15 unchanged. Using Step-2 and Step-3, we obtain the following equation:

s(P0 ⊕K0)⊕ s(P ′′
0 ⊕K0) = N0, (4.9)

where, N0 is a constant. Equation 4.9 is applied on the two previously obtained solutions

(i.e., KI
0 and KII

0 ) to determine the correct key byte.

Claim-2. Both solutions, KI
0 and KII

0 , cannot be valid under both Equations 4.4 and 4.9.

Proof. Let us assume that both solutions, KI
0 and KII

0 , are valid and satisfy Equation 4.9.

As a result, we can write,

s(P0 ⊕KI
0 )⊕ s(P ′′

0 ⊕KI
0 ) = N0

and

s(P0 ⊕KII
0 )⊕ s(P ′′

0 ⊕KII
0 ) = N0

Using Claim-1, we can write s(P0 ⊕ KI
0 ) = s(P ′′

0 ⊕ KII
0 ). Also, with Claim-1 and

Equation 4.4, we can write s(P0 ⊕ KI
0 ) = s(P ′

0 ⊕ KII
0 ). This results, s(P ′

0 ⊕ KII
0 ) =

s(P ′′
0 ⊕KII

0 ). This can’t be true as P ′ ̸= P ′′.

In the same manner, key bytes K5, K10, and K15 are determined through either of the

first four-bytes from round output, R0, R1, R2, R3, by varying the corresponding plaintext byte,

P5, P10, or P15 and constraining the other three plaintext bytes to remain unchanged.

To find the remaining key bytes, we need to consider three bytes of the round register,

one from R4 − R7, R8 − R11, and R12 − R15 each. These three bytes are sufficient to find
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the remaining key bytes as their MixColumns transformation incorporate all 12 key bytes. For

example, we consider R4, R8, and R12, as shown below:

R4 = [02⊗ s(P4 ⊕K4)⊕ 03⊗ s(P9 ⊕K9)⊕ s(P14 ⊕K14)⊕

s(P3 ⊕K3)]⊕ [K4 ⊕K0 ⊕ s(K13)⊕RC] (4.10)

R8 = [02⊗ s(P8 ⊕K8)⊕ 03⊗ s(P13 ⊕K13)⊕ s(P2 ⊕K2)⊕

s(P7 ⊕K7)]⊕ [K8 ⊕K4 ⊕K0 ⊕ s(K13)⊕RC] (4.11)

R12 = [02⊗ s(P12 ⊕K12)⊕ 03⊗ s(P1 ⊕K1)⊕ s(P6 ⊕K6)⊕

s(P11 ⊕K11)]⊕ [K12 ⊕K8 ⊕K4 ⊕K0 ⊕ s(K13)⊕RC] (4.12)

The remaining key bytes can be determined iteratively using Equations 4.10-4.12 and

Steps 1-5. Note that an adversary can also choose R1, R5, R9 and R13 or a few other combina-

tions to determine all 16 key bytes as well.

4.2.2 Proposed Fault-Injection Attack

The first attack is efficient in determining the key when an adversary can access the round

registers that hold the output of each round. An adversary can use the scan architecture or

exploit a faulty implementation for such a purpose. However, one cannot always assume access

to registers. This motivates us to propose a fault injection attack that allows us to observe the

internal state and utilize the previously presented brute-force attack. Note that the fault injection

has become an effective means to launch an attack. It has been demonstrated that laser fault

injection can successfully target a single register [78]. The same methodology and procedure

in [78] is applicable to launching our proposed fault injection attack on AES. This attack leads

to two possible scenarios, and both are elaborated below.

First, let us examine an example in OpenCores [82], which does not have the weakness of

other implementations described in Section 4.2.1. Figure 4.4 shows this multicycle AES imple-

mentation where the ciphertext register receives the round register value at the last encryption

round (e.g., when done d1 == 1 and done d2 == 0). We also assume that an adversary does
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Key (K)
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round_cnt Reg ?= 11

done_d1 Reg ?= 1 

Ki

done_d2 Reg ?= 0

pr_data_0 <= r_00 when round_cnt=11 
else mixcol_0;

...

elsif rising_edge(clk) then
  if(start_d2 = '1' and start_d1 = '0') then
    done_d1 <= '0'; done_d2 <= '0';
  elsif(round_cnt = 10) then
    done_d1 <= '1';

if(done_d1 = '1' and done_d2 = '0') then
  data_out <= (next_round_data_0(0) 

 & next_round_data_0(1) ... 

Figure 4.4: Structure of multicycle AES-128, where round result Ri is sent to ciphertext C only
after the last round of encryption, code segment from Lines 319-326, 399-428.∗

not have access to the internal scan chains and only observes the ciphertexts. The round op-

erations are the same with Figure 4.2. We include the HDL code excerpt [82]. in Figure 4.4

which describes how the completion-indicator (CI) registers (e.g., done d1 and done d2), and

the ciphertext (i.e., data out) are updated. As the done d2 register holds a logic 0 value dur-

ing the round operations, the round registers values (e.g., next round data 0), are propagated

to the ciphertext output (e.g., data out) when done d1=1. It is thus sufficient to inject only

one logic 1 fault to done d1 register to extract round register value. Once the internal value is

observed, an adversary can perform Steps 1-5 presented in Section 4.2.1 to retrieve the secret

key completely.
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Second, a hardware implementation can have the same logical condition applied to both

skipping the MixColumns transformation and assigning the round register result to the cipher-

text C, since both should happen at the last encryption round. In this way, if the attacker injects

all the necessary fault to force the round result observable, the MixColumns step is also af-

fected and bypassed. Alternatively, it may be possible for an adversary to inject faults on both

CI register and round counter (e.g., round cnt) so that he/she obtains the result from the first

encryption round, but skips the MixColumns module. We briefly describe how an attack can

be launched when bypassing the MixColumns operation.

• Brute-force attack without MixColumns Operation. Let us consider the first byte of round

register R (i.e., R0) after applying the first plaintext P , which can be computed as:

R0 = s(P0 ⊕K0)⊕ [K0 ⊕ s(K13)⊕RC].

After applying the second plaintext P ′ with P0 ̸= P ′
0, we can write:

R′
0 = s(P ′

0 ⊕K0)⊕ [K0 ⊕ s(K13)⊕RC].

Finally, we obtain

s(P0 ⊕K0)⊕ s(P ′
0 ⊕K0) = M0

where, M0 is a constant.

Then, we can follow the same procedure described in Steps 4-5 in Section 4.2.1 to recover

key byte K0.

4.2.3 Extending the Proposed Attacks to AES-192 and AES-256

The attacks presented in Sections 4.2.1-4.2.2 can retrieve the entire 16 bytes of the secret key

for AES-128. It can also recover the first 16 bytes from AES-192 and AES-256, although

the exact expression for round key in Key Expansion is different. However, it is necessary to

extract the remaining 8 and 16 bytes for 192- and 256-bit keys, respectively. These key bytes

belong to the second round key K1, where they influence the result of the first encryption round
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through AddRoundKey (
⊕

). As a result, the adversary can decipher these key bytes from any

one of the plaintext-ciphertext pairs obtained in Section 4.2.1 or 4.2.2, without the need to give

additional plaintexts to the oracle or perform extra fault injections. For AES-192, the first eight

bytes of the round key K1, K1
0 , ..., K

1
7 , are the last 8 bytes of the input key K, K16, ..., K23,

respectively [50]. Likewise, the entire round key K1 is nothing but the last 16 bytes of input

key K for AES-256, K1 = {K16, ..., K31} [50]. We show how to determine key byte K16 of

AES-192 from the observed R in the following:

R0 = {MC(SR(SB(P ⊕K0)))⊕K1}0

= {MC(SR(SB(P ⊕K0)))}0 ⊕K1
0

= [02⊗ s(P0 ⊕K0)⊕ 03⊗ s(P5 ⊕K5)⊕ (P10 ⊕K10)⊕

s(P15 ⊕K15)]⊕ [K16]

= K16 ⊕Q1, (4.13)

where Q1 = 02⊗ s(P0 ⊕K0)⊕ 03⊗ s(P5 ⊕K5)⊕ (P10 ⊕K10)⊕ s(P15 ⊕K15) is a constant

as K0 −K15 are known. One can directly compute K16 by XORing R0 and Q1.

It is also possible to determine K16 directly, if adversary chooses to bypass the Mix-

Columns operation. We can also write:

R0 = s(P0 ⊕K0)⊕ [K16], (4.14)

where s(P0⊕K0) is a constant as K0−K15 are known. The key byte K16 can be computed by

XORing R0 and s(P0 ⊕K0) like before.

The other key bytes (i.e., K17 − K23) can be obtained similarly from R1 − R7. One

can perform similar analysis to obtain the remaining K16 −K31 key bytes from R0 − R15 for

AES-256.

45



4.2.4 Number of Plaintext Requirement

In Section 4.2.1, three plaintexts are sufficient to derive one key byte. Note, in these three

plaintexts, we only vary one byte of the same index and constrain the bytes at the three other

indices to remain unchanged. Because we do not have constraints on all 15 remaining plaintext

bytes, we are allowed with more flexibility on other plaintext bytes that do not belong to the

same MixColumns computation as the key byte of interest. Instead of the apparent 3 ∗ 16 = 48

plaintexts to recover all 16-byte key, we can reduce this number by having four plaintext bytes,

where no two bytes resides in the same MixColumns operation, vary concurrently in one plain-

text, e.g.,, P0, P4, P8, P12. Hence, the minimum number of plaintexts needed for this attack is

1+2×4 = 9, where the minimal three plaintexts are satisfied by having one reference plaintext

and its corresponding two variants. Once all nine ciphertexts are obtained, all sixteen key bytes

can be determined in parallel, making the worst-case complexity of O(28). Suppose the round

result skips MixColumns transformation, as of the second possible scenario in Section 4.2.2,

each key byte is still recovered with three plaintext-ciphertext pairs. However, since we do not

have the restriction on the other three plaintext bytes as for Section 4.2.1, it does not matter if

other bytes stay the same or not. Hence, we can reduce the required number of plaintexts to

break the entire key from 9, as for the attack in Section 4.2.1, down to 3, as long as the byte at

the same index (e.g.,, index j) is different in all three plaintexts, Pj ̸= P ′
j ̸= P ′′

j . The worst-case

complexity of this attack is still 28 = O(28), since all sixteen key bytes, Kj’s, can be recovered

concurrently, without the need to wait for any other bytes to be resolved first.

4.3 Theoretical Justification of Double-Solution for Equation 4.5

Aside from the exhaustive simulation we performed in Section 4.2.1, we present another per-

spective on the dual solutions, kI and kII , for Equation 4.5. Instead of the common ap-

proach [57] to expand the S-box to a system of equations in a bit-by-bit manner, we consider

the polynomial in GF (28) as the fundamental unit. To differentiate matrix multiplication from

polynomial multiplication under GF (28) with irreducible polynomial IP = [1 0 0 0 1 1 0 1 1],

we use · for matrix multiplication. S-box s(x) = y contains two operations [50]. It first find

46



the inverse polynomial, x−1 of its input byte x under GF (28) and IP . Then, it applies the

affine transformation on x−1 with a reversible matrix H of size 8× 8 bits and an 8-bit column

vector c = [1 1 0 0 0 1 1 0]T to get output byte y = H · x−1 ⊕ c [50].

For our analysis, we can expand Equation 4.5 with the details of the internal construction

of S-box as: (
H · (p⊕ k)−1 ⊕ c

)
⊕

(
H · (p′ ⊕ k)−1 ⊕ c

)
= m.

Note that (p⊕ k)−1 and (p′ ⊕ k)−1 are the inverse of (p⊕ k) and (p′ ⊕ k), respectively. After

rearranging terms, we get

H ·
(
(p⊕ k)−1 ⊕ (p′ ⊕ k)−1

)
= m.

Since 8-by-8 bit matrix H has inverse, denoted as H−1, we obtain

(p⊕ k)−1 ⊕ (p′ ⊕ k)−1 = H−1 ·m.

Now, both sides of the equation are polynomials in GF (28). We use constant d to represent

H−1 ·m, d = H−1 ·m, for clarity.

If we multiply both side with polynomial (p⊕ k) and (p′ ⊕ k), we get

(p′ ⊕ k)⊕ (p⊕ k) = d⊗ (p⊕ k)⊗ (p′ ⊕ k).

We can further simplify it as

p⊕ p′ = d⊗
[
(k ⊗ k)⊕ (p⊕ p′)⊗ k ⊕ (p⊗ p′)

]
.

Since d is a polynomial under GF (28) and it is not the zero polynomial, the inverse of d exists

and we denote it as d−1. Multiply both side with d−1 and abbreviate k⊗k as k2 under GF (28),

we have

k2 ⊕ (p⊕ p′)⊗ k ⊕ (p⊗ p′)⊕ d−1 ⊗ (p⊕ p′) = 0.
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Thus, we complete the derivation and it is clear that Equation 4.5 is a quadratic equation with

respect to the unknown variable k.

Under any quadratic equation x2+ ax+ b = 0 in R, the two roots x1, x2 satisfy x1+x2 =

−b, x1 × x2 = c. We made an interesting observation that these properties also hold true for

Equation 4.3. The two solution for Equation 4.5, kI , kII uphold both

kI + kII = p⊕ p′, and

kI ⊗ kII = (kII ⊕ p⊕ p′)⊗ kII

= (kII)2 ⊕ (p⊕ p′)⊗ kII

= (p⊗ p′)⊕ d−1 ⊗ (p⊕ p′).

4.4 Summary

In this chapter, we presented two novel attacks targeting the hardware implementations of mul-

ticycle AES. In both attacks, each key byte requires only three plaintext-ciphertext pairs to

retrieve its value. The entire secret key is recovered by solving all key bytes in parallel, re-

sulting in a O(28) worst-case complexity. If the internal round result is not observable in the

output, we propose to inject fault on the completion-indicator register to reveal the internal

state. Any traditional method can be applied to inject faults, and the protection against the fault

injection attacks can be bypassed since no intermediate result is affected. We also showed the

algebraic perspective on the dual solutions of Equation 4.5. Finally, we provide the theoretical

extension of the properties of a regular quadratic equation to the finite field GF (28), which

support Claim-1.
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Chapter 5

Complexity Analysis of the SAT Attack on Logic Locking

The integrated circuits (ICs) are fundamental to virtually every technology in the Department of

Defense (DoD), industrial and commercial spaces. Moore’s Law has guided the microelectron-

ics industry for decades to enhance the performance of ICs. The continuous addition of new

functionalities in SoCs has forced design houses to adopt newer and lower technology nodes

to increase operational speed, reduce power consumption, overall die area, and the resultant

cost of a chip. This exponential growth becomes feasible due to the globalization of semicon-

ductor design, manufacturing, and test processes. Building and maintaining a fabrication unit

(foundry) requires a multi-billion dollar investment [14]. As a result, a system-on-a-chip (SoC)

design house acquires intellectual properties (IPs) from many vendors and sends the design to

a foundry for manufacturing, typically located offshore due to the horizontal integration in the

semiconductor industry. At present, the majority of the SoC design houses no longer design the

complete SoC and manufacture chips on their own. As a result, the trusted foundry model is

no longer assumed to be valid for producing ICs, where the trustworthiness of microelectronic

parts is often questioned.

Due to the outsourced IC design and fabrication, the underlying hardware in various infor-

mation systems that were once trusted can no longer be so. The untrusted chip fabrication and

test facilities represent security threats to the current horizontal integration. The security threats

posed by these entities include: (i) overproduction of ICs, where an untrusted foundry fabri-

cates more chips without the consent of the SoC design house to generate revenue by selling

them in the market [84–90], and (ii) piracy of IPs, where an entity in the supply chain can use,

modify and/or sell functional IPs illegally [21,22,91,92]. An untrusted foundry has access to all
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Figure 5.1: Overview of logic locking. (a) Architecture of a locked circuit. (b) Original design. (c)
XOR-based locking, with secret key of k0k1 = 01.

the mask information constructed from the GDSII or OASIS files and then reconstructs all the

layers and the complete netlist with advanced tools [46]. In addition, reverse engineering (RE)

of ICs becomes feasible even for advanced technology nodes due to the advancement of the

tools for the decapsulation of the ICs and imaging. RE is commonly used in the semiconduc-

tor industry to perform failure analysis, defect identification, and verify intellectual property

(IP) infringement [93, 94]. Unfortunately, the same RE can be exploited by an adversary to

reconstruct the gate-level netlist from a chip [45].

One of the best ways to prevent an adversary from cloning a netlist (either by an untrusted

foundry or a reverse engineer) is to hide or obfuscate the circuit. The attacker cannot decode

the original functionality even after extracting the netlist from RE. Logic locking promises to

hide the inner details of a circuit by inserting a set of key gates. The only way to recover

the original functionality is by applying a secret key stored in a tamper-proof memory of the

chip. Figure 7.1 shows an abstract representation of logic locking. In addition to logic locking,

hardware watermarking [95–97] could identify and prevent copying a netlist to a certain extent;

however, it does not offer a proactive protection mechanism. The initial efforts in logic lock-

ing [84,89,98,99], and hardware watermarking [95–97] were broken by Boolean Satisfiability

(SAT) attack [100]. The distinguishing input patterns, obtained from SAT solver, combined

with their corresponding responses from the oracle, are crucial for SAT attack [100] to uniquely

determine the secret key. A DIP with its oracle response is denoted as an input-output (IO) pair,

and we will use this terminology throughout the paper. The effectiveness of SAT attack propels
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Table 5.1: Summary of post-SAT logic locking techniques and corresponding attacks.

Locking
Type Techniques Attacks

Point
function

[101–111] [7, 150–166]

Cyclic [112–117] [167–169]
LUT [118–125] [125, 170, 171]
Scan [126–131] [172–174]
FSM [132–137] [175–180]

Timing [138–143] [181, 182]
HLS [144–149] [162, 163, 181]

the research community for new locking schemes in the post-SAT era, which are summarized

in Table 5.1. These include point function-based lockings [101–111], cyclic-based [112–117],

LUT/routing-based [118–125], scan and finite state machine (FSM)-based lockings [126–137],

timing-based [138–143], and high-level synthesis (HLS)-based [144–149]. Concurrently, mul-

tiple attacks [7,125,150–162,162,163,163–181,181,182] against these logic locking techniques

arise. In addition, various Machine Learning-based attacks [183–186], which are structural in

nature and do not require the oracle, target the identification and recovery of keys that are

obfuscated after synthesis process by commercial CAD tools.

The rest of the chapter is organized as follows. We introduce the background of SAT

attack and various locking methods in Section 5.1. The inter-dependency between keys learned

by SAT solver after each DIP is extensively explored in Section 5.2. The SAT attack complexity

is further analyzed and explained in Section 5.3. Analysis of the point functions is shown in

Section 5.4. The future directions are described in Section 5.5. Finally, we summarize this

chapter in Section 5.6.

5.1 Background

5.1.1 SAT attack on Logic Locking

The entire series of attacks and the solutions thereafter originated from the SAT attack [100].

Subramanyan et al. [100] exploit the idea of combinational equivalence checking with miter
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circuit and Boolean Satisfiability [187] to attack logic locking schemes. A miter circuit in SAT

attack is the XOR of the output of two copies of the locked circuits sharing identical inputs,

but not the secret keys. This oracle-guided attack successfully derives the secret key of various

logic locking techniques [84,89,95–99] within a short time frame. The SAT attack requires two

circuits, the original circuit, CO(X, Y ), and its locked version, C(X,K, Y ), where X , Y , and

K are the inputs, outputs, and key, respectively. The correct key Kc restores the original circuit

functionality so that its output response is always consistent with the original circuit (e.g., the

oracle) under every possible input combination, C(X,Kc, Y ) = CO(X, Y ). An incorrect key

programmed in the tamper-proof memory leads to output mismatch under one or more input

vectors. The output discrepancy between an incorrect key and the correct one is shown on the

miter circuit’s output. The SAT attack derives the key through the following steps:

Algorithm 1: SAT attack on logic locking [100].
Input : Unlocked circuit, oracle (CO(X, Y )) and locked circuit (C(X,K, Y ))
Output: Correct Key (Kc)

1 i← 0;
2 F ← [];
3 while (true) do
4 i← i+ 1 ;
5 [Xi, Ki, r] = sat[F ∧ (YAi

̸= YBi
)];

6 if (r == false) then
7 break;
8 end
9 Yi = sim eval(Xi);

10 F ← F ∧ C(Xi, K, Yi);
11 end
12 Kc ← Ki;
13 return Kc ;

• Finding the distinguishing input pattern (DIP) from the miter circuit: It first constructs a miter

with two copies of the locked circuit A and B. Both circuits (C(X,KA, YA) and C(X,KB, YB)

in CNF) share the same input X except for the keys, KA, KB. Any output mismatch between

the two locked circuits can be easily identified at the miter’s output. In each round (i.e., ith),

the tool finds the hypothesis key Ki, and reports a Boolean indicator r depending on whether a

satisfiable assignment for the miter exists or not, Algorithm 1, Line 5. If SAT is returned, the
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miter succeeded in amplifying the mismatched output, r is true, and the corresponding input

pattern Xi is also recorded.

• Deriving the correct key: Upon obtaining a DIP Xi, SAT attack acquires the actual output

Yi from oracle simulation, CO(Xi, Yi), Line 9. Input Xi and output response Yi are used in

updating the CNF formula F , Line 10. The clauses in F help narrow down the valid keyspace

until it is left with only the correct key(s). If the UNSAT conclusion is generated, the differential

output cannot be observed, r is assigned to false, and Xi is empty (Lines 6-8) and the program

ends. Note that the last iteration of SAT attack returns UNSAT as all incorrect keys are pruned

from the keyspace.

The SAT attack repeats the above two steps, where it iteratively checks for satisfiable

assignment of the miter circuit. If r is true at the ith iteration, we know that incorrect keys

still exist in the search space. When the miter circuit becomes UNSAT with the clauses in F ,

the Boolean variable r becomes false, indicating no differential output exists. This means no

more incorrect keys can be found as no discrepancy can be produced. If multiple keys remain

in the search space, it must be true that multiple solutions are valid since they all give the same

output response. This holds for a few locking designs [107,188] and certain locking scenarios,

e.g., chained XOR key gates, where the correct key is not unique. Returning any one of them

can restore the original circuit functionality. If only one key is left, it must be the right one.

Then, the attack exits the while loop, Lines 6-8, and extracts the last round’s hypothesis key

as the correct one, Line 12. The attack finishes by reporting the correct key to the console,

Line 13.

Note that the original SAT attack program [100] includes two preload vectors (all zeros

and all ones) at the initial setup, before invoking SAT solver with the miter circuit. The number

of IO pairs |P | used to derive the correct key is one more than the number of total iterations

TI , |P | = 2 + (TI − 1) = TI + 1. This is because the last iteration does not produce a

DIP. It is clear that the IO pair count for determining the secret key of a locked circuit is in the

same order as the iteration count, which only differs by a constant of 1. For better analyzing

the iteration complexity of SAT attack on c6288 benchmark (see Section 5.5.1, we modify the

original program [100] by disabling both preload vectors, resulting in |P | = TI − 1.
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5.1.2 SAT Resistant Logic Locking Techniques and Attacks

As SAT attack [100] successfully breaks various logic locking techniques [84, 89, 95–99], it

propels the research community to explore new locking schemes [101–110] that utilize point

functions for achieving the minimal output corruptibility. SARLock [101] only perturbs one

input pattern’s output for each incorrect key. AntiSAT [109,110,188] and CAS-Lock [107] con-

figure the point function with two complementary blocks g and g. SFLL [105,106,108] flips the

output for certain input patterns, where the correct key flips back the upset output and restores

the original functionality. Although these techniques guarantee exponential iterations in SAT

attack, various attacks [150–164] have been proposed to exploit the designs’ vulnerabilities,

e.g., from structural and functional perspectives, and restore the original circuit. Nevertheless,

SAT attack is still the backbone for the oracle-guided attacks [151–155, 159, 160, 165, 166].

5.2 SAT Attack Analysis: Pruning of Incorrect Key with CNF Update

This section presents a novel perspective of analyzing the SAT attack’s effectiveness in breaking

various locking schemes in deriving the secret key. We investigate the CNF clauses stored in

the SAT solver and how it gets updated in every iteration with a DIP and its output response.

The CNF consists of multiple clauses connected with AND (∧). One or more literals are joined

by OR (∨) inside each clause. We use literals, variables, and nodes interchangeably.

The SAT attack requires an unlocked circuit, CO(X, Y ), and its locked version, C(X,K, Y ),

where X , Y , and K are m, n and |K| bit wide. The correct key Kc restores the original function

so that its output response is always consistent with the unlocked circuit for all input combina-

tions, i.e., C(X,Kc, Y ) = CO(X, Y ). The SAT solver iteratively finds satisfiable assignments

of the miter circuit whose inputs are denoted as DIPs. DIPs and the corresponding oracle out-

puts are denoted as IO pairs. As logic values for an IO pair {X, Y } are known, C(X,K, Y ),

shown in Figure 5.2(a), is transformed into the functions of keys C(KI , KO), shown in Fig-

ure 5.2(b), where KO can be derived from KI . Further, C(KI , KO) can be expanded further

and is shown in Figure 5.2(c). Any key in KO, e.g., Kt
j , is dependent upon key bits Kt

i , i.e.,

Kt
j = f(Kt

i ), where Kt
i ⊆ KI . In addition, the combination of some key bits, e.g., Ks

i ,
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Figure 5.2: Abstract representation of functions of key bits derived from an IO pair. (a) Locked circuit
with an IO pair, (b) function of keys, and (c) subfunctions.

Ks
i ⊆ KI , produces a deterministic output, i.e., either logic 0 or 1.

C(KI , KO) ⇐⇒


C(Kt

i , K
t
j),where Kt

j = f(Kt
i ), K

t
j ̸∈ Kt

i ; i, j, t = 1, 2, . . .

C(Ks
i , {0, 1}),where {0, 1} = f(Ks

i ); i, s = 1, 2, . . .

This key-dependent function C(KI , KO) reveals additional information on the interdepen-

dency between key bits, e.g., Kt
j = f(Kt

i ) and {0, 1} = f(Ks
i ), crucial to the implicit removal

of large incorrect key combinations.

The placement of the key gates inside a particular cone is crucial as overlapping cones may

reduce the attack complexity. A logic cone can be described as a combinational logic unit that

represents a Boolean function bounded by an output and all its inputs. An increased number

of primary outputs usually leads to multiple key values propagating across different output bits

simultaneously. We begin our analysis with an example circuit with a non-overlapping cone

with a single output and show how the SAT attack decrypts the 3-bit key with 3 IO pairs. Then,
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we describe how SAT attack can use fewer patterns to determine the secret key when key gates

are placed under overlapping logic cones.

5.2.1 SAT Attack for a Locked Cone with One Output
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Figure 5.3: Step-by-step SAT attack analysis. (a) Original circuit. (b) Locked circuit with K = {001}.
CNF update and key-pruning for (c-e) 1st IO pair P1 = {1111; 1}; (f-h) 2nd IO pair P2 = {1101; 0},
and (i-k) 3rd IO pair P3 = {0111; 0}.

56



In this section, we examine how SAT attack implicitly removes the incorrect keys from the

entire key search space. As described in Section 5.1.1, SAT solver finds a valid assignment to

the miter circuit, and the tool records the extracted input vector, along with its output response

obtained from the oracle simulation. The following example shows how SAT attack learns

additional information on the secret keys from each IO pair from the miter circuit and oracle

simulation.

Let us consider an example circuit with 4 inputs x0, ..., x3 and 1 output y0 of Figure 5.3(a).

Figure 5.3(b) is the locked circuit with a 3-bit key, k0, k1, k2, using strong logic locking (SLL)

scheme. Each node is assigned a unique literal (in blue) by SAT solver. Upon finding a valid as-

signment to the miter circuit in the first iteration, DIP X1 is extracted, {X1} = {x0, x1, ..., x3} =

{1111}. The output response Y1 = 1 is obtained from oracle simulation with input X1. SAT

attack then records this IO pair P1 = {X1;Y1} = {x0, ..., x3; y0} = {1111; 1}. We show in

detail how the locked circuit’s CNF gets updated under P1, where the search space is shrunk

in half (eliminated 4 incorrect keys). The literal assignment for the locked circuit’s original

CNF remains unchanged, but the internal nodes for IO pair P1 are labeled with new variables

{16-20} (Figure 5.3(c), consistent with the internal operations of SAT attack [100]. The CNF

for C(X1, K, Y1) (abbreviated as C1) is:

C1 =

AND gate G0︷ ︸︸ ︷
(17 ∨ 18 ∨ 16) ∧ (17 ∨ 16) ∧ (18 ∨ 16) ∧

AND gate G1︷ ︸︸ ︷
(2 ∨ 3 ∨ 19) ∧ (2 ∨ 19) ∧ (3 ∨ 19) ∧

AND gate G2︷ ︸︸ ︷
(4 ∨ 5 ∨ 20) ∧ (4 ∨ 20) ∧ (5 ∨ 20) ∧

XOR gate Gk0︷ ︸︸ ︷
(6 ∨ 16 ∨ 9)∧(6 ∨ 16 ∨ 9)∧(6 ∨ 16 ∨ 9)∧(6 ∨ 16 ∨ 9)∧

XOR gate Gk1︷ ︸︸ ︷
(7 ∨ 19 ∨ 17)∧(7 ∨ 19 ∨ 17)∧(7 ∨ 19 ∨ 17)∧(7 ∨ 19 ∨ 17)∧

XNOR gate Gk2︷ ︸︸ ︷
(20 ∨ 8 ∨ 18) ∧ (20 ∨ 8 ∨ 18) ∧ (20 ∨ 8 ∨ 18)∧(20 ∨ 8 ∨ 18)
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With IO pair P1, we know the logic values for input/output, namely literals 2 = 1, 3 = 1, 4 =

1, 5 = 1, 9 = 1, and the C1 is updated as:

C1 = (17 ∨ 18 ∨ 16) ∧ (17 ∨ 16) ∧ (18 ∨ 16) ∧ (19) ∧ (20)

∧ (6 ∨ 16) ∧ (6 ∨ 16) ∧ (7 ∨ 19 ∨ 17)∧(7 ∨ 19 ∨ 17)

∧ (7 ∨ 19 ∨ 17) ∧ (7 ∨ 19 ∨ 17) ∧ (20 ∨ 8 ∨ 18)

∧ (20 ∨ 8 ∨ 18) ∧ (20 ∨ 8 ∨ 18) ∧ (20 ∨ 8 ∨ 18)

Both nodes 19, 20 are in logic 1, and the CNF is adjusted:

C1 = (17 ∨ 18 ∨ 16) ∧ (17 ∨ 16) ∧ (18 ∨ 16) ∧ (6 ∨ 16) ∧

(6 ∨ 16) ∧ (7 ∨ 17) ∧ (7 ∨ 17) ∧ (8 ∨ 18) ∧ (8 ∨ 18)

This equation reveals that literals 6 and 16 have the opposite logic values, so are 7 and 17,

while 8 and 18 are identical. The circuit representation of C1 is shown in Figure 5.3(d), still a

function of k0, k1, k2. These are the clauses appended in the formula F (Algorithm 1 Line 10).

Equivalently, what SAT attack learned from the 1st IO pair P1 is essentially a relation between

3 key bits, where k0 = AND(k1, k2), as in Figure 5.3(e). The constraint shrinks the possible

keyspace in half.

On the second iteration, SAT attack returns the 2nd IO pair P2 = {X2;Y2} = {1101; 0}, as

in Figure 5.3(d). Using the derivation we performed for the first iteration, the circuit represen-

tation of the added CNF clauses is shown in Figure 5.3(g), which again is a function between

the 3 key bits, k0 = AND(k1, k2) (Figure 5.3(h)). It further shrinks the remaining keyspace in

half, with only two keys left valid. Figure 5.3(i) shows the 3rd IO pair P3 = {0111; 0} , whose

CNF C(X3, K, Y3) and its equivalent relation k0 = AND(k1, k2) are illustrated in Figure 5.3(j),

(k), respectively. The combined effect of these three IO pairs, P1, P2, P3, Figure 5.3(e, h, k),

uniquely determine key K = {k0, k1, k2} = {001}. On the 4th iteration, no more distinguishing

input can be found for the miter circuit, where r is false, and the SAT attack is complete.
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In short, each IO pair provides additional information on the unknown key bits, where

C(Xi, K, Yi) essentially becomes an equation for the unknown keys. A new equation for key is

obtained in every iteration from the corresponding IO pair, which is independent of the findings

derived from the previous rounds. SAT attack derives the secret key once the accumulated

system of equations can uniquely determine all key bits.

5.2.2 SAT Attack against Multiple Overlapping Logic Cones
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Figure 5.4: SAT attack on 2 intersecting cones with K = {001}. (a) Original circuit. (b) Locked circuit.
CNF update and key-pruning for (c) 1st pair P1 = {111100; 11}, (d) 2nd IO pair P2 = {010101; 00}.

59



It is common for a circuit to have multiple outputs or fanouts. In other words, that circuit

has multiple logic cones. With more fanouts, incorrect key responses are more likely to be

observed than a single output. As the logic values for multiple keys can reach several outputs

simultaneously, it accelerates and facilitates the removal of incorrect combinations to get the

final key than the single logic cone where every key has to be observed from the same output

pin. This is demonstrated by the example below. The following example shows that SAT attack

needs fewer iterations to derive the secret key under multiple intersecting logic cones.

Let us consider a circuit with 2 outputs, y0 and y1, as shown in Figure 5.4(a). The locked

circuit, as shown in Figure 5.4(b), has 3 key bits, k0, k1, k2, with the same locations as in

Figure 5.3(b). It differs from the locked circuit in Figure 5.3(b) with additional gates G3, G4,

and output y1. This circuit has two logic cones; one with output y0, inputs x0, x1, x2, x3, keys

k0, k1, k2, and gates G0, G1, G2, Gk0, Gk1, Gk2; the other with output y1, inputs x2, x3, x4, x5,

key k2, and gates G2, G3, G4, Gk2. The effect of k2 can be observed from both outputs, y0 and

y1. SAT attack only needs 2 IO pairs to solve the keys, as opposed to 3 IO observations for

the locked cone with a single output y0 in Figure 5.3(b). Figure 5.4(c) illustrates the 1st IO

pair P1 = {X1;Y1} = {x0, ..., x5; y0, y1} = {011001; 00}, Its equivalent CNF expression of

C(X1, K, Y1) (abbreviated as C1) is expressed in:

C1=(21 ∨ 22 ∨ 20) ∧ (21 ∨ 20) ∧ (22 ∨ 20) ∧ (2 ∨ 3 ∨ 23)

∧ (2 ∨ 23) ∧ (3 ∨ 23)∧(4 ∨ 5 ∨ 24)∧(4 ∨ 24)∧(5 ∨ 24)

∧ (22 ∨ 25 ∨ 12) ∧ (22 ∨ 12) ∧ (25 ∨ 12)∧(6 ∨ 7 ∨ 25)

∧ (6 ∨ 25) ∧ (7 ∨ 25) ∧ (8 ∨ 20 ∨ 11) ∧ (8 ∨ 20 ∨ 11)

∧ (8 ∨ 20 ∨ 11) ∧ (8 ∨ 20 ∨ 11) ∧ (9 ∨ 23 ∨ 21)

∧ (9 ∨ 23 ∨ 21) ∧ (9 ∨ 23 ∨ 21) ∧ (9 ∨ 23 ∨ 21)

∧ (10 ∨ 24 ∨ 22) ∧ (10 ∨ 24 ∨ 22) ∧ (10 ∨ 24 ∨ 22)

∧ (10 ∨ 24 ∨ 22)
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The 1st IO pair P1 gives 2 = 1, 3 = 1, 4 = 1, 5 = 1, 6 = 0, 7 = 0, 15 = 1, 17 = 1. The

CNF for the locked circuit with P1 is adjusted analogously to the previous example (Figure 5.3)

by plugging in the logic value of these known literals. It is straightforward that node 23, the

output of AND gate G1, has logic 1, as its inputs are literals 2 = 1 (x0) and 3 = 1 (x1).

Similarly, nodes 24 = 1, and 25 = 0, based on literals 4 − 7 (x2, ..., x5). With an output 1 for

OR gate G5, its remaining input of node 22 must be 1, as 25 = 0. Therefore, the CNF clauses

added to SAT solver after the first iteration is:

C1=(21∨20)∧(21∨20)∧(8∨20)∧(8∨20)∧(9∨21)∧(9∨21)∧(10)

With C1, SAT attack determines key bit k2 = 1, along with key-dependent equation k0 =

k1, as shown in Figure 5.4(c). With the 2nd IO pair P2 = {X2;Y2} = {010101; 00}, as in

Figure 5.4(d), SAT atttack uniquely determines both key bits k0 and k1 as logic 0. In the third

round, SAT attack returns UNSAT (as all key bits are solved), and the program finishes.

Table 5.2: Comparison of SAT attack iterations (TI) between multiple primary outputs (|PO|)
and single cone.

Benchmark Locked Circuit (SLL) [100] Locked Cone (Sec. 5.3)
|PO| |K| TI |PO| |K| TI

c432 7 80 24 1 21 27
c880 32 192 76 1 50 80

c1355 32 137 29 1 17 33
c1908 25 220 110 1 92 123
c3540 22 167 40 1 58 40
c5315 123 231 55 1 78 60

In addition to the example described above, we perform experiments to show a weaker

attack resiliency for overlapping cones, as summarized in Table 5.2 with locked ISCAS’85

benchmarks. Table 5.2 compares the attack complexity with key sizes between the complete

benchmark circuit, where multiple overlapping cones exist, and the extracted single cone from

the same benchmark. Columns 2-4 and 5-7 list the number of primary outputs (|PO|), key size

(|K|), and the total SAT attack iterations (TI) for breaking the SLL-based locked benchmarks

and the corresponding largest cone, respectively. For example, SAT attack takes 76 iterations
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to determine a 192-bit key for the c880 benchmark, whereas it takes 80 iterations to break the

largest cone of c880 locked with a merely 50-bit key. We observe the same behavior for all

other benchmarks as well. The SAT attack can only break fewer keys (or smaller key size)

for a single-output logic cone than for the keys of the same benchmark circuit having multiple

PO. This confirms a lower complexity for overlapping cones, which is due to the effect of

incorrect keys manifested through multiple outputs where the interdependency between key

bits is broken. Therefore, having multiple overlapping logic cones will reduce the iteration

counts for SAT attack, making it easier to derive the final key when key bits can be observed

at the outputs simultaneously. Since we are examining and analyzing the effectiveness of SAT

attack, we henceforth focus on the analysis with a single logic cone only, as it is more complex

than multiple cones and offers an upper bound to the iteration complexity. If we show the linear

iteration complexity for a non-overlapping cone, then automatically, the same linear complexity

will be preserved for overlapping cones.

5.3 SAT Attack Analysis: Iteration Complexity

In this section, we focus on the total iterations required for the SAT attack as the SAT attack

complexity. We observe the linear iteration complexity for all ISCAS’85 benchmarks that

agrees with the previously reported results. We, however, also observe the decrease in iteration

complexity with increased key sizes for a large number of cases. To explain this phenomenon,

we analyze how the output response from oracle, under certain DIPs, can trim more incorrect

keys than other IO pairs. The complexity drop is caused by the multiple effective IO pairs

selected by the tool. This explanation can also clarify the local peaks in iteration complexity

due to the SAT attack selecting multiple less-effective IO pairs. We focus on the complexity

trend for the iteratively increase in key sizes for any XOR-based locked circuits. The iterative

insertion of keys (and key gates) ensures that the addition of one more key bit does not alter the

locations of the already inserted key bits (and key gates). To the best of our knowledge, this is

the first study to report the reduction of iteration count with increased key size.
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The overview of SAT attack complexity analysis on the same logic cone is summarized

in the following steps: (i) benchmark synthesis, (ii) cone analysis and the largest cone extrac-

tion, (iii) iterative insertion of key bits, and (iv) SAT attack iteration complexity aggregation.

Synthesis is performed under 32nm technology libraries in Synopsys Design Compiler [189].

Figure 5.5 shows an overall linear trend in total attack iterations under increased key sizes for

non-overlapping cones. The best-fit lines are drawn in dashed lines with equations. To avoid

the complexity reduction under multiple logic cones, the largest cone from each synthesized

ISCAS’85 benchmark is extracted so that the response of any incorrect key combinations is

observed through the sole output only. Each circuit is mapped to a directed graph with inputs

pointing toward gates’ output and, ultimately, the primary output. Logic cones are extracted

by reversal of edge directions [190] and breadth-search [191] from each primary output. The

ordered node list obtained in breadth-first search is used for determining (i) the largest cone

(or cones if a tie) by node count and (ii) key gate insertion sequence as breadth-first search

traverses all gates (nodes) within the same layer (same distance from output nodes) first be-

fore reaching gates at further layers. Following the same node order as in breadth-first search,

we successively add one more XOR/XNOR key gate at a time, starting from gates closest to

the primary output with increasing proximity. The original cone and its locked designs are all

converted to the bench format. SAT attack runs through all key sizes for every locked cone,

and the total iterations are recorded. Figure 5.5 shows the SAT attack iteration complexity on

9 benchmark cones with increasing key sizes. For example, c432-N421 is the logic cone from

c432 benchmark with output N421. Cone c5315-N8127 and c5315-N8128 both contain the

same gate count, but a significant overlap of gates exists. Please note that these logic cones all

have reconvergent fanouts [192].

There are two observations from Figure 5.5. First, the overall complexity increase is not

exponential, but linear. This means that, on average, the attack removes an exponential (or

sub-exponential) number of incorrect keys per iteration. Second, all 9 benchmark cones exhibit

the local non-monotonically complexity increase when additional keys are inserted. Note that a

monotonic function (f ) is either an entirely nonincreasing or nondecreasing function, where its

first derivative does not change sign [193]. Now, f is called monotonically increasing if ∀x, y,
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it satisfies f(x) ≤ f(y) for x ≤ y. We denote a function as non-monotonically increasing if it

increases globally (on average), but not monotonic.
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Figure 5.7: The iteration complexity of SAT attack on locked benchmarks c1355-G1350 and
c1908-N2811 with 6 randomized seed setups for SAT solver Lingeling.
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Figure 5.8: The iteration complexity of SAT attack on locked benchmarks c1355-G1350 and
c1908-N2811 with 100 randomized seed setups for SAT solver Lingeling.

Figure 5.6 shows the zoomed-in view of SAT attack complexity for benchmark cones. For

example, for cone c432-N421, it takes 138 iterations to break the key size of 76, but only needs

98 iterations when one more key bit is added. A non-monotonically increase in complexity is

also observed in all the other benchmark cones. Note that the same non-monotonical behavior

for the iteration complexity can still be observed under a different initialization seed setup.
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Figure 5.9: The average iteration complexity of SAT attack on locked benchmarks c1355-
G1350 and c1908-N2811 with 100 different seed setups for SAT solver Lingeling.

In addition, a non-monotonic linear increase can be observed in the averaged linear iteration

complexity with as little as 6 randomized seeds as well as 100 different initialization seeds, as

shown in Figures 5.7, 5.8, and 5.9 for c1355-G1350 and c1908-N2811. However, it does not

suggest or infer that the minimum DIP count for solving each locked circuit with increased key

sizes, a problem spans in PSPACE complexity instead. It is evident that the insertion of more

key gates does not always lead to an increase in attack complexity. The non-monotonically

increasing behavior in iteration complexity is observed in all cones. The question is, what

causes the SAT attack to have such complexity drops when more keys are present in a locked

design?

To describe the non-monotonically increasing behavior, we consider another example

shown in Figure 5.10 where the effectiveness of individual IO pairs in eliminating incorrect

keys is explored. The purpose here is to demonstrate that all the IO pairs are not equally ef-

fective in eliminating incorrect keys, some are better than others. As the SAT tool finds a DIP,

which typically depends on the circuit topology, it is possible that the tool selects a more ef-

ficient DIP in earlier iterations for a locked circuit with a larger key that eliminates a large

number of incorrect keys which results in a reduction in iteration. Figure 5.10(a) shows the

circuit, where four keys (k0 − k3) are added (Figure 5.10(b)). Note that an OR gate (G7) is

located at the cone output. The 1st IO pair P1 = {X1;Y1} = {x0, ..., x6; y} = {0000000;1}

returned by SAT attack has y = 1 as the output. As logic 1 is the output of G7, its two in-

puts could be any of the 3 combinations {01/10/11}. As the correct key cannot be determined

uniquely, we focus on finding the incorrect ones, which are unique and result from {00}. One
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Figure 5.10: Key elimination. (a) original circuit, (b) locked circuit with 4 keys, (c) the 1st IO pair
P1 = {0000000;1} from SAT attack (d) the second IO pair P2 = {0001100;0} and equivalent relation
of k0, k1, k2, k3 under P2 only, where k0 and k1 are determined.

can simply find these incorrect ones using logic propagation, and it can be shown that there

exist only 2 incorrect keys, Table 5.3 Column 2. Any key combinations that cause an output

mismatch with the oracle’s are marked with ✗, indicating an incorrect key value implicitly re-

moved from keyspace; key value(s) which produces the same output as the oracle’s is noted

with ✓. From the 1st iteration, we observe fewer incorrect keys (i.e., 2≪ 24

2
) are removed than

the 2nd iteration (i.e., 14 ≫ 24

2
) due to the properties of OR gate, where no unique conclusion

can be made regarding its inputs (i.e., 10, 01 or 11) if the output is 1.

On the second iteration, the tool obtains another IO pair, P2 = {0001100;0}, with 0 at the

output of the OR gate. The rest 13 incorrect key combinations are identified from P2, as listed

in Table 5.3, Column 3. Here, we are interested in how P2 trims more than half of the keys in

the search space. The locked circuit with the IO pair P2 is shown in Figure 5.10(d). With the

same derivation for CNF C(X2, K, Y2), we know the outputs of gates G1, G2, G4 are 0, 0, 1,
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Table 5.3: SAT attack uses 2 patterns to eliminate all 15 incorrect keys from keypace. If output
differs from the oracle’s, ✗ is placed, else ✓. The correct key is highlighted.

4-bit key IO Pair 1 (P1) IO Pair 2 (P2)
{k0, ..., k3} {0000000;1} {0001100;0}

0000 ✓ ✓

0001 ✗ ✗

0010 ✓ ✗

0011 ✗ ✓

0100 ✓ ✗

0101 ✓ ✗

0110 ✓ ✗

0111 ✓ ✗

1000 ✓ ✗

1001 ✓ ✗

1010 ✓ ✗

1011 ✓ ✗

1100 ✓ ✗

1101 ✓ ✗

1110 ✓ ✗

1111 ✓ ✗

once we have the input X2. These gates’ outputs can be similarly decided with X1. With output

y = 0 at OR gate G7, both inputs from this OR gate must be 0. This means both outputs of

OR gate G5 and XOR gate Gk3 are 0; and subsequently, the inputs of OR gate G5 must be 0 as

well, which are the output of both XOR gates Gk0 and Gk1. This results in the unique solution

for 2 key bits k0 and k1 with k0 = 0, k1 = 0.

A similar analysis can be performed on AND gates, whose inputs are uniquely defined

under a logic 1 output. In summary, having a response of 0 at OR gates, or 1 at AND gates

effectively splits the cone into two halves, where keys in one half are independent of the keys

in the other half. This is equivalent to splitting the logic cone into two subcones based on

input ports of OR/AND gates, where keys in both subcones can be evaluated and trimmed

simultaneously. Therefore, the efficiency of removing incorrect keys depends on IO pairs,

where the selection of an IO pair depends on the locked circuit topology that changes when

adding more key bits. The effective IO pairs help remove more incorrect keys than the others.

If a few effective IO pairs are selected in earlier iterations of the SAT attack, the iteration count
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can go down significantly. This leads to a non-monotonically increasing iteration complexity

with the key size.

5.4 Case Study: Locking with Point Functions

As the efficiency of SAT attack is indisputable, the subsequent logic locking proposals shift the

focus toward building an exponential complexity in total iterations against SAT attack. One of

the common approaches is to embed a point function right before the output of a logic cone,

where the circuit’s output response is perturbed based on the designer’s chosen input com-

binations. This section presents a theoretical analysis of point functions of AntiSAT [188],

CAS-Lock [107], TTLock [104], and SFLL [105], and explains why they can also be broken

by SAT-based attacks. In this section, we present a case study on how our proposed SAT at-

tack analysis (see Sections III, IV) can be used to analyze the attack complexity of KBM &

SAT [160], a modified version of SAT attack with key constraints. The following analysis clar-

ifies how and why SAT attack can still be effective in breaking AntiSAT and CAS-Lock under

proper key constraints. Note that we are not proposing any new attacks but rather providing

explanations to demonstrate that (i) AntiSAT with fixed Kg requires only a single IO pair to de-

termine the secret key, and (ii) the linear complexity for CAS-Lock under the same constraint.

We also show that adding additional key constraints on Kg would not yield any extra benefits

on the complexity reduction to an adversary for breaking AntiSAT-based locking designs. Note

that the adversarial model for logic locking follows the same Kerckhoffs’s principle as in mod-

ern cryptography, where the security of the system is based on the secret key and not on the

obscurity of the algorithm used [161, 184, 186]. For point function-based locking techniques

such as AntiSAT and CAS-Lock, we assume that the attacker has full knowledge of the locking

scheme and the existence of a comparator logic inside the locked netlist.

5.4.1 Deterministic Property of SAT Attack with Constraints

This section analyzes the SAT attack complexity on point function-based locking schemes with

complementary blocks, g and g, where Kg and Kg are inside g and g, respectively. Sengupta et

al. [160] have shown an effective approach to reducing AntiSAT and CAS-Lock to polynomial
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Figure 5.11: SAT attack on AntiSAT with fixed key Kg. (a) Miter construction. (b) CNF update.
(c)Kg = {kr − k2r−1} is determined.

complexity with key-bit mapping (KBM) & SAT, where KBM separates Kg and Kg and SAT

attack is applied with a fixed Kg. The following analysis explains how and why SAT attack is

still effective in breaking AntiSAT and CAS-Lock under proper key constraints. Our proposed

SAT attack analysis also explains the same attack complexity of linear in iterations. In addi-

tion, we provide explanations to show (i) AntiSAT with fixed Kg requires only one IO pair to

determine the secret key, and (ii) linear complexity for CAS-Lock under the same constraint.

However, constraining Kg would not give any extra benefits on the complexity reduction to an

adversary on breaking AntiSAT.

SAT attack analysis on AntiSAT under key constraints

The two sets of keys, Kg and Kg, in AntiSAT offer two choices for the attacker, fixing one

or the other. Using our key pruning analysis of Section 5.2, we explain how an adversary can

determine the key with single IO pair only when setting Kg constant. Yet, he/she will be less

fortunate in breaking the secret key if Kg is kept constant instead.
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• Key constraint on Kg: Let us consider a circuit with r-bit input X = {x0, ..., xr−1}, 1-bit

output y, locked with 2r-bit keys of Kg = {k0, ..., kr−1} and Kg = {kr, ..., k2r−1} of r-bit

each. We assume the attacker already knows the bit locations for Kg using the KBM of [160].

Furthermore, the r-bit Kg = {k0, ..., kr−1} is set to a constant vector. SAT attack is able to find

an IO pair and uniquely determines all bits of Kg. Figure 5.11(a) shows the miter construction,

where Kg are highlighted in red to indicate a fixed value. As miter creates differential output

between two copies of the locked circuit A and B, without loss of generality, suppose the point

function of circuit A has output 0 and circuit B’s has output 1, shown in red (and vice versa in

blue). Since both circuits have the same original cone, their output is identical to both A and B

as they share the same input X . Without loss of generality, we assume the output of the original

cone under the DIP found by the miter is logic 0. One can also assume with logic 1 instead.

Hence, the output of AntiSAT block in circuit A is 0 while 1 for B’s. As AntiSAT block has

AND at the output, both inputs of this AND gate in B are 1, where g = 1, g = 1. Then, we

know that the DIP X obtained from the miter must be complementary to the fixed Kg, X = Kg

to ensure all ones for g’s AND tree of B. Following the analysis in Section 5.2, the solver

updates its CNF clauses with X and the oracle’s output (logic 0 from the assumption). When

this IO pair is applied to the locked circuit, the AntiSAT block gets a logic 0 output. Since DIP

X gives g = 1 for circuit B, we still have g = 1 during CNF update. Then, g = 0, as shown

in Figure 5.11(b). As g is the NAND gate’s output, all its inputs have logic 1. This uniquely

determines all r-bit key Kg, which is the complement of DIP X , Kg = X , and identical to Kg,

Kg = X = Kg. SAT attack completes on the 2nd iteration since key Kg is already resolved.

Therefore, the constraint on Kg helps SAT attack finish within one IO pair.

• Key constraint on Kg: If the adversary decides to set key Kg constant instead, he/she will

not get the same efficiency for key derivation as in fixing Kg. Suppose we constrain Kg =

{kr, kr+1, ..., k2r−1} to a constant r-bit vector. When SAT solver tries to find a satisfiable as-

signment to the miter circuit, following the same assumptions as before, we can derive that both

A and B have the same logic 1 for g blocks. Having an output 1 at the NAND gate is equivalent

to putting logic 0 to an AND gate. There are 2r − 1 possible solutions for the r-bit input to

produce a logic 1 at g’s output. Equivalently, there are 2r − 1 choices of DIP, satisfying the
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criterion of miter construction. When the tool updates SAT solver’s CNF with DIP and output

response, we get g = 1 for the NAND gate and g = 0 for AND gate. Since unknown key bits

are in Kg of block g, a specific IO pair can prune only 1 incorrect key combination that results

in g = 1(̸= 0). The total IO pairs required to remove all incorrect keys of the r-bit keyspace for

Kg is 2r − 1. The total iterations required for SAT attack is 2r. Therefore, by constraining Kg,

the adversary removes only one incorrect key and the overall SAT attack complexity remains

exponential.
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Figure 5.12: SAT attack on CAS-Lock with fixed Kg. (a) Miter construction and (b) Equivalent repre-
sentation. (c) CNF update at SAT attack iteration 1. (d) Key pruning after iteration 1.

SAT attack analysis on CAS-Lock under key constraints

The same analysis on key constraints in AntiSAT can be applied to CAS-Lock, where the

constraining of Kg or Kg leads to linear complexity in solving Kg or Kg, respectively. We

illustrate with a (2r = 10)-bit CAS-Lock example, where block g and g have one OR gate

each, as shown in Figure 5.12. Our analysis can be generalized and applied to any OR gate

replacement inside the cascaded AND chain of g and g. When SAT attack searches for a DIP

X for miter, as shown in Figure 5.12(a), the CAS-Lock block of one copy (i.e., A) has logic 0

while the other (i.e., B) has logic 1. As Kg is fixed, the miter is essentially solving a differential

73



output for Kg (Figure 5.12(b)). Suppose B’s CAS-Lock block is 1, then it has g = 1 and g = 1.

The DIP X obtained by SAT solver must satisfy g = 1 as Kg is constant. The oracle response,

identical to the analysis for AntiSAT, helps to determine a logic 0 for the CAS-Lock block, as

no alteration of output logic occurred. The CNF update implicitly eliminates the wrong keys

in g with g = 0 under g = 1 and output 0 for the combined blocks. After the 1st iteration,

k8, k9 are uniquely determined, which reduces the key space from 25 to 23 and is shown in

Figure 5.12(d). Note that some of the keys k5, k6, k7 will be determined in the same way in the

2nd iteration of the SAT attack. The attack will continue iterating until all key bits are uniquely

determined.

5.4.2 Extending the point function analysis to TTLock and SFLL

TTLock [104] and SFLL [105, 106] do not have two sets of keys like AntiSAT and CAS-

Lock. Both perturb unit (PU) and restore unit (RU) are serially XORed with the original

circuit, e.g., a logic cone (LC) of interest, as shown in Figure 5.13. Keys are in the restore unit

(RU) only, where the perturb function (F ∗) is key-free. The same analysis can be performed

as PU and RU with the correct key implementing the same function even though different

versions of SFLL have different output corruptibility. The output of PU, F ∗, is logic 1 for only

one input combination, where it alters the circuit behavior. The correct key helps flip back

the perturbed logic and restores the original functionality as LC. Therefore, it must be true

that the functional behavior for PU and RU are identical under the correct key so that LC’s

output is preserved. In other words, PU is the oracle for RU. If we can extract both PU and

RU, we can then apply SAT attack on both circuits only, without requiring an oracle LC. As

TTLock and SFLL perform logic synthesis after insertions of PU and RU, the adversary needs

an accurate identification of PU and RU under logic optimization. The extraction of RU during

post-synthesis is straightforward because commercial CAD tools cannot merge it inside LC

or PU when the key is unknown; however, the challenging part is to retrieve PU since CAD

tools may partially merge PU inside LC. Using the directed acyclic graph analysis [155], there

are multiple candidates for PU with full input X . One only needs to apply SAT attack to all

possible PUs with the extracted RU and perform key validation in the end. Note that we do
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not need an unlocked chip (serves as the oracle for traditional SAT attack) as the oracle is

already present in the synthesized LC & PU circuit. Our future work is to find an efficient way

to determine the valid oracle and identify the wrong ones from all extracted PUs.

5.5 Future Directions

5.5.1 Achieving Higher Time Complexity Against SAT Solvers

Even though point functions have demonstrated exponential iteration complexity, the adver-

sary can formulate the attack with structural and functional analysis so that the complexity

drops significantly. Although SAT attack has demonstrated linear trends in solving the secret

key, it is still possible, in our opinion, for a logic design to achieve SAT resiliency. Here, we

discuss how future locking schemes should consider a drastic increase in the hardness of their

design against SAT attack from the example of c6288 benchmark. Besides targeting exponen-

tial iterations required for SAT attack, it may be feasible to significantly increase the overall

time for SAT solver to find each satisfiable assignment for the miter circuit, which result in a

longer computation time within each iteration.

As described in SAT attack [100], Subramanyan et al. stated that the multiplier benchmark

c6288 is inherently challenging to SAT solvers, and was excluded from analysis. We locked

its largest cone, N6288, in the same way as we did for other benchmarks in ISCAS’85, as

described in Section 5.3. From the perspective of SAT attack iteration complexity, it remains
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Table 5.4: Anatomy of SAT attack time on c6288 N6288.

|K| |P | CPU time (s) UNSAT
Total (%)Total IO Pairs Average UNSAT

1 1 86.351 0.09108 0.09108 86.25948 99.894
2 2 84.439 0.10289 0.05145 84.33634 99.878
3 3 86.551 0.11019 0.03673 86.44092 99.872
4 4 88.804 0.11963 0.02991 88.68458 99.865
5 4 79.614 0.12705 0.03176 79.48717 99.840
6 4 62.048 0.11630 0.02908 61.93153 99.812
7 4 88.088 0.11822 0.02955 87.97006 99.865
8 4 66.762 0.11330 0.02832 66.64887 99.830
9 5 78.434 0.12385 0.02477 78.31049 99.842

10 7 62.018 0.14788 0.02113 61.87004 99.761
11 8 72.615 0.15925 0.01991 72.45534 99.780
12 6 66.560 0.19532 0.03255 66.36468 99.706
13 9 74.612 0.22130 0.02459 74.39026 99.703
14 8 78.492 0.14760 0.01845 78.34455 99.811
15 10 77.133 0.17205 0.01721 76.96051 99.776
16 11 83.077 0.23765 0.02161 82.83926 99.713
17 11 85.083 5.70418 0.51856 79.37841 93.295
18 15 72.317 0.30082 0.02006 72.01650 99.584
19 15 89.654 0.34619 0.02308 89.30831 99.613
20 14 92.588 0.32586 0.02328 92.26268 99.648
21 15 67.431 0.45250 0.03017 66.97835 99.328
22 12 80.299 0.26642 0.02220 80.03259 99.668
23 19 88.228 0.63912 0.03364 87.58904 99.275
24 15 76.825 0.42104 0.02807 76.40369 99.451
25 20 88.295 2.48402 0.12420 85.81125 97.186
30 16 73.065 0.84954 0.05310 72.21507 98.837
35 29 86.737 14.53748 0.50129 72.19920 83.239
40 27 149.097 13.34636 0.49431 135.7502 91.048
45 41 1130.466 18.31241 0.44664 1112.154 98.380
50 37 84.404 6.16717 0.16668 78.23738 92.693
55 45 1188.844 57.14645 1.26992 1131.698 95.193

linear with key size |K|, as shown on the bottom-right plot in Figure 5.5 and Column 2 of

Table 5.4. This suggests that c6288 behaves identically to other ISCAS’85 benchmarks. In

addition, one can also observe that the complexity can decrease when more keys are inserted,

as shown in Figure 5.6 and Column 2 of Table 5.4. The question is, what makes the circuit

structure of a multiplier challenging to SAT solver? To better analyze the SAT complexity in

breaking c6288 N6288, we record the CPU time spent for each iteration, including the very last
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UNSAT round. We exclude the pre-processing time, i.e., setting up arrays of literals, initializing

solver, etc. The post-processing time is also excluded from the CPU time, i.e., displaying the

correct keys and the overall status, etc. Table 5.4 lists the time duration for SAT solver to derive

the correct keys. The 1st and 2nd columns list key sizes |K| and IO pair count |P |. Column 3 is

the total time the SAT solver spent, which consists of two parts, (i) time used for generating all

IO pairs, Column 4, and (ii) time checking that no more DIP exists (UNSAT), Column 6, where

the averaged time it takes to find each IO pair is in Column 5. Column 7 reports the time ratio

of the UNSAT decision over the total time spent on SAT solver. The interesting observation

is that the major time spent was not on finding DIPs to prune off keyspace, but was on the

last iteration, where SAT solver tries various backtracking before getting the UNSAT decision.

The total time devoted to generating the IO pairs is negligible compared to the time spent in

the very last iteration (UNSAT). In particular, the time duration for UNSAT in solving c6288

benchmark cones with respect to the total time span is generally over 90%.

In summary, it can be possible to achieve SAT attack resiliency by using hard-to-find DIPs

rather than SAT iteration count. We convey this message by presenting two different case

studies of post-SAT locking with point functions. We showed the key pruning analysis on a

modified version of the SAT attack, which employs the identification of key gates and their

inputs, can eliminate an exponential number of incorrect key combinations with respect to total

key space. In order to achieve SAT resiliency, one may need to incorporate the same SAT attack

time complexity for each DIP as the last iteration of UNSAT in the c6288 multiplier benchmark.

The objective is to considerably increase the total backtracks and logic reassignment required

for SAT solvers to find a DIP in every iteration so that a longer time duration can be achieved.

We conjecture that future locking schemes can provide sufficient difficulty for the present-day

SAT solvers with conflict-driven clause learning (CDCL) algorithm [194].

5.5.2 Controllability Analysis

Controllability analysis can be incorporated prior to the key insertion to achieve a strictly mono-

tonically increasing linear iteration complexity. Controllability, widely used in VLSI testing, is

defined as the difficulty of assigning the target signal to a logic 0 or a logic 1 [77]. A high value
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indicates the easiness of setting a node to that desired logic value from the inputs. Figure 5.14

shows an example of how controllability analysis can help analyze SAT complexity. If the out-

put of AND gate is logic 1 with high probability (see Figure 5.14(a)), its inputs can be uniquely

determined, and the SAT attack can evaluate keys in parallel with the corresponding IO pair.

This location is not a preferred location for inserting a key if the controllability of 1 is very

high as many of the random input patterns will set this value. Instead, a very high probability

of setting the same node to logic 0, as shown in Figure 5.14(b), could be a desired location for

placing the key gate.
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Figure 5.14: SAT attack key evaluation of circuit with an AND gate at the output. Oracle
response of (a) logic 1, (b) logic 0.

Note that the defender’s objective is to ensure DIPs are less effective in removing an ex-

ponential or sub-exponential number of incorrect keys (or finding a DIP). The goal is to keep

the complexity in the order of O(2K1+K2) (Figure 5.14(b)), not max(O(2K1), O(2K2)), equiv-

alent to a logic 0 output at the AND gate in Figure 5.14(a). We envision, with controllability

analysis, nodes with different output probabilities for logic 0 and 1 under different gate types

could be a good indicator for the adaptive key insertion strategy.

5.5.3 Extension of the Proposed Complexity Analysis to the SMT Attacks

Our complexity analysis can be extended to the SMT attacks proposed in [181] due to the

similarities between SMT and SAT. Satisfiability modulo theories (SMT), which consider the

satisfiability of formulas under non-binary variables, offer more flexibility in the input space
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than the binary space for SAT. SMT attacks expand the capability of the SAT attack to tar-

get non-functional-based attacks such as delay and timing-based logic locking [138]. Azar et

al. [181] proposed four approaches: (i) Reduced SAT Attack, (ii) Eager SMT Attack, (iii) Lazy

SMT Attack, and (iv) Accelerated Lazy SMT Attack. Our future work will explore and extend

the proposed complexity analysis approach to these SMT attacks.

5.6 Summary

In this chapter, we provide a new perspective to analyze the efficiency of the SAT attack based

on the CNF clause updates inside the SAT solver. In each iteration, SAT attack records the

interdependencies between key bits from a distinguishing input pattern and its output response.

Any locked circuit with multiple logic cones facilitates incorrect key removal as the effect of

keys is propagated to multiple outputs. We further investigate the SAT attack complexity with

the same cone of increasing key sizes. A non-monotonically increase in SAT complexity under

increased key sizes is reported for the first time, where the insertion of additional key bits

does not guarantee a strict linear growth in the SAT attack iteration complexity. Instead, this

phenomenon of complexity drop happens to all ISCAS’85 benchmark cones. We subsequently

provided an explanation of this observation from the oracle’s response and logic gate types. It

explains why more incorrect keys are eliminated from the keyspace with a particular IO pair.

In addition, we give analytical reasoning to show how the constraining of key bits for post-

SAT solutions like AntiSAT and CAS-Lock would aggressively reduce the key search down to

constant or linear complexity. Finally, we furnish our discussions on SAT attack complexity

analysis with novel observations on breaking the multiplier benchmark c6288, along with future

directions.
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Chapter 6

AFIA: ATPG-Guided Fault Injection Attack on Secure Logic Locking

Over the last few decades, the impact of globalization has transformed the integrated circuit

(IC) manufacturing and testing industry from vertical to horizontal integration. The contin-

uous trend of device scaling has enabled the designer to incorporate more functionality in a

system-on-chip (SoC) by adopting lower technology nodes to increase performance and reduce

the overall area and cost of a system. Currently, most SoC design companies or design houses

no longer manufacture chips and maintain a foundry (fab) of their own. This is largely due

to the increased complexity in the fabrication process as new technology development is being

adopted. The cost for building and maintaining such foundries is estimated to be a multi-million

dollar investment [195]. As modern integrated circuits (ICs) are becoming more complex, parts

of the design are reused instead of designing the whole from scratch. As a result, the design

house integrates intellectual properties (IP) obtained from different third-party IP vendors and

outsources the manufacturing to an offshore foundry. Due to this distributed design and man-

ufacturing flow, which includes designing SoCs using third-party IPs, manufacturing, testing,

and distribution of chips, various threats have emerged in recent years [21, 22, 85]. The re-

search community has also been extensively involved in proposing countermeasures against

these threats [23, 84, 95–98, 196].

Logic locking has emerged as the most prominent method to address the threats from un-

trusted manufacturing [84–86, 197]. In logic locking, the netlist of a circuit is locked with a

secret key so that the circuit produces incorrect results in regular operation unless the same key

is programmed into the chip. Figure 6.1(a) shows an abstract view of logic locking where the
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Figure 6.1: Logic Locking: (a) An abstract view of the logic locking. (b) Different types of
logic locking techniques with XOR/XNOR, MUX and LUT.

key is stored in a tamper-proof memory and is applied to the locked circuit to unlock its func-

tionality. The key needs to be kept secret, and care must be taken during the design process so

that this secret key is not leaked to the primary output directly during the operation. The com-

mon logic locking techniques insert additional logic elements like XOR gates [84], multiplexers

(MUXs) [99], and look-up tables (LUTs) [89] to lock the circuit functionality, and are shown in

Figure 6.1(b). SAT attack, by Subramanyan et al. [100], was among the first ones to efficiently

attack a range of locking schemes. With SAT analysis et al. [100], the key of a locked circuit

is determined in a short period of time. The SAT attack requires the locked netlist, recovered

through reverse engineering, and a functional working chip. Since then, several SAT-resistant

locking techniques have emerged [105,113,118,119,138,141–143,169,198–201] and many of
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them were broken soon after they have been proposed [6,125,131,164,173,175,202–204]. The

majority of the research has been directed towards SAT attack resiliency. However, can we re-

liably state that a logic locking technique is completely secure even if we achieve complete SAT

resistivity? An untrusted foundry can be treated as an adversary as logic locking is proposed to

protect designs from untrusted manufacturing. The adversary has many more effective means

to determine the secret key without performing SAT analysis. A few of these attacks can be in

the form of probing [78, 205], inserting a hardware Trojan in the design [158], and analyzing

the circuit topology [156, 206, 207]. Countermeasures are also developed to partially prevent

these attacks [125, 156, 206, 208–212].

Unlike cryptosystems, not all input patterns for a locked circuit are valid for propagating

the incorrect key values to the primary outputs. Instead, only a few patterns may exist to carry

the values of key bits to the output, similar to the identification of hard-to-detect faults. This

is especially true for Post-SAT solutions [101, 102, 105–107], where they minimize the output

corruptibility for incorrect keys. For logic locking, some key bits can block the propagation

of the target key bit, i.e., SLL [98] and Post-SAT designs. This is different from the fault

injection attack in cryptography, where an entirely new output can be observed under any input

pattern even though there is a single bit change in the key as the plaintext goes through many

transformations (e.g., Shift Rows, Mix Columns and key addition for AES) [61, 213, 214]. It

is trivial for a cryptosystem to change one key bit and apply a random pattern. Unfortunately,

this is not the case for a circuit locked with a secret key. It is hard to observe the output change

with the change of a single key bit by applying a random pattern. The novelty of this paper is

that we apply the methodology in ATPG to efficiently derive the desired input pattern, which

guarantees the change in output under different keys and helps launch the fault injection attack.

This chapter is organized as follows: An overview of different logic locking techniques

and existing attacks along with fault injection techniques is provided in Section 6.1. We de-

scribe the previously published attack [157] in Section 6.2. The proposed attack and its method-

ology to extract the secret key from any locked circuit are described in Section 6.3. We present

the results for the implementation of the proposed attack on different locked benchmark circuits

in section 6.4. Finally, we conclude the chapter in Section 6.5.
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Figure 6.2: The inefficiency of CLIC-A attack. (a) Original circuit. (b) Locked circuit with 6
dependent key gates, where correct key {k0, ..., k5} = {001100}. (c) Key assignment and input
pattern returned by Constraint-based CLIC-A. (d) The oracle response y = 1.

6.1 Prior Work in existing logic locking and attacks

As mentioned in Chapter 2, the objective of logic locking is to obfuscate the functionality of

the original circuit by inserting a lock (secret key). The key-dependent circuit makes it diffi-

cult for the adversary to pirate or analyze the original circuit directly. In this context, various

traditional logic locking techniques were based on different location selection algorithms for

key gate placement, such as random (RLL) [215], fault analysis-based (FLL) [98], and strong

interference-based logic locking (SLL) [99]. To demonstrate the capabilities of an adversary,

Subramanyan et al. [100] developed a technique using Boolean Satisfiability (SAT) analysis to

obtain the secret key from a locked chip. This oracle-guided SAT attack iteratively rules out

incorrect key values from the key space by using distinguishing input patterns and the corre-

sponding oracle responses.

In post-SAT era, resiliency against the SAT attack became one of the crucial metrics to

demonstrate the effectiveness of newly proposed schemes [204]. Sengupta et al. proposed

stuck-at-fault based stripping of original netlist and reconstruction to form the locked netlist,

where incorrect results are produced only for chosen input patterns [105,201]. Simultaneously,

researchers have adopted a different direction to tackle the SAT attack, including restricting

access to the internal states of a circuit through scan-chains. Guin et al. proposed a design

that prevents scanning out the internal states of a design after a chip is activated and the keys

are programmed/stored in the circuit [200, 216]. The concept of scan locking gained signifi-

cant interest from the researchers, which led to the development of various scan-chain-based
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locking schemes [127,131,199]. Alrahis et al. attack scan-chain-based locking schemes by un-

rolling the sequential circuit to a combinational one, which is then provided to the SAT solver

to extract the secret key [217]. Sisejkovic et al. [211] proposed an oracle-less structural anal-

ysis attack on MUX-based (SAAM) logic locking to exploit insertion flaws in MUX-based

key gates. Deceptive multiplexer-based (D-MUX) logic locking is proposed to achieve func-

tional secrecy [165] against both SAAM and oracle-less machine learning-based attacks. As

combinational feedback loops are not translatable to SAT problems, cyclic-based locking [113]

is resistant to the initial SAT attack [100]. In addition, there has been extensive efforts in

the proposal of non-functional logic locking techniques, such as scan-chain-based [131, 218],

timing-based locking [138, 141–143], and routing-based locking [118, 119, 125].

As the research community explores new directions to understand an attacker’s latent qual-

ities, new attacks on logic locking have been proposed. An adversary may perform direct or

indirect probing on the key interconnects or registers [78]. An attacker is not required to under-

stand the complete functionality of the circuit to perform these attacks. In this, Rahman et al.

demonstrated how an attacker could target the key registers and perform optical probing to gain

knowledge regarding the fixed value for those registers. Following this, tampering attacks can

also become an attacker’s primary choice. Jain et al. exploited this notion to extract the secret

key by implementing hardware Trojans inside the locked netlist [158]. Without an oracle, the

attribute of repeated functionality in the circuit can also be used to compare the locked unit

functions and their unlocked version to predict the secret key [156]. This makes it necessary

to lock all instances of unit functions in the entire netlist to achieve a secured logic locking

scheme. CLIC-A [164, 203], an ATPG-based attack, can break keys by applying constraint-

based ATPG to propagate the target key bit to the primary output but suffers scalability in the

dependent key count. Cyclic-based locking has suffered from modified SAT-based attack [169],

where cyclic-based constraints are placed to avoid infinite loops. Several non-functional-based

locking can be broken by sequential-based attacks with limited scan access [173, 175, 204] or

SMT attack [181].
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6.1.1 Comparison of AFIA with CLIC-A

There is a major difference between our proposed AFIA and CLIC-A [164]. First, the worst-

time complexity for test generation regarding the total test pattern count for solving the key-

dependent faults between AFIA and CLIC-A differs significantly. Our worst-case complexity of

solving an n-bit key of non-mutable convergent key gates inside a single logic cone is at most

n test patterns with n·(n−1)
2

injected faults (see Theorem 6.4). This is because AFIA determines

each key bit by directly comparing the output response with the generated test pattern. On the

other hand, CLIC-A applies constraint-based ATPG by assigning constraint on the (n − 1)-bit

key and setting a stuck-at 0 at the target key line since placing don’t cares (X) on other key

bits will not produce the desired test patterns for non-mutable convergent key gates. However,

the simulated output from the constraint-based ATPG likely agrees with the oracle simulation

under the same test pattern hardness of logic locking. Note that it does not mean that the

constraints placed on the (n − 1)-bit key is the correct key values, and it only indicates that,

under the particular test pattern, the output from the netlist with constraints and the stuck-at

fault matches with the oracle output. Instead, CLIC-A has to perform additional constraints

in ATPG and check the output against the oracle to ensure that key values are correct. The

worst-case complexity in the total test pattern count for CLIC-A is exponential O(2(n−1)).

Let us consider an example of an unlocked circuit in Figure 6.2(a) locked with 6 dependent

XOR/XNOR key gates, as shown in Figure 6.2, whose correct key {k0, ..., k5} = {001100}.

As none of the keys can be sensitized to the output without knowing the correct value for the

other five, CLIC-A runs constraint-based ATPG and sets sa0 to k0. Suppose ATPG returns a

test pattern with key vector {k0, ..., k5} = {110011} and input vector {x0, ..., x3} = {1100},

along with the simulated fault-free output atpg-sim(x0, ..., x3, k0, ..., k5) = 1, as shown in

Figure 6.2(c). Although the output of the simulated netlist matches with the oracle response

y = 1, the key value returned by constraint-based ATPG is incorrect. There is no method

for CLIC-A to check whether the key vector is the actual key other than appending it as a

constraint to ATPG so that the test pattern returned at the next iteration would be different from

the current one. The worst-case complexity for CLIC-A to fully determine the 6-bit key is to
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iterate through all possible combinations of the remaining 5-bit key (excluding k0 with sa0),

resulting in a 25 test pattern count to break the locking scheme with dependent keys. On the

other hand, AFIA only requires 6 test patterns to determine all 6-bit keys, which is much more

efficient than CLIC-A. In summary, test pattern generation for CLIC-A becomes infeasible if

there are a large number of dependent keys in a logic cone.

6.1.2 Comparison of AFIA with Key Sensitization Attack

There is a similarity between our proposed AFIA and sensitization attack [98]. The similarity

between these approaches is the sensitization, i.e., the propagation, of the key to the output.

However, our approach is more general for the following reason. First, the sensitization at-

tack does not need fault activation as the key gates are XOR/XNOR gates, and the key can

propagate to the key gate output for both input 0 and 1. However, this may not hold for non-

XOR-based locking techniques. For example, MUX-based locking has keys connected to the

input of AND gate instead of the XOR gate, where one needs to set the other AND input to the

non-controlling value 1 for fault activation. Besides, it is common practice for recent locking

techniques to synthesize the locked benchmark after key insertion. The synthesis tool can op-

timize the key gate with other gate types, which results in keys directly connected to non-XOR

gates like AOI, NAND, etc. To propagate the key value to the primary output, having only key

sensitization without the activation would not work for synthesized locked circuits. For exam-

ple, we can break SFLL-hd [105], SFLL-flex [105], and SFLL-rem [219] with n patterns for a

n-bit key (see Section 6.3.7), where sensitization attack requires brute force attack (O(2n)) to

all the non-mutable keys in the SFLL restoration circuitry. Second, our proposed fault injection

can break non-mutable convergent key gates from strong logic locking, which is the counter-

measure proposed in a sensitization attack. AFIA only needs at most n (see Theorem 6.2) test

patterns for a n-bit pairwise non-mutable convergent keys, but it would take O(2n) in the worst

case to brute force the correct key under sensitization attack [98].
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6.1.3 Dissimilarities between Logic Locking and Cryptosystems

There has been considerable efforts [105,220] in the proposal of formal analysis on logic lock-

ing through introducing similar concepts used in cryptography. However, logic locking tech-

niques differ from various cryptosystems in two aspects. First, the objective for logic locking

and cryptosystem is different. The cryptographic algorithm ensures that the secret key is fully

integrated with the input plaintext (i.e.,, the addRoundKey in all ten rounds of AES encryp-

tion). Logic locking, however, focuses on perturbing the output, commonly by XORing a 1-bit

key with a wire in the circuit, under certain input patterns, where no repeated insertion of the

same key bit or its derived value to elsewhere. Second, the output of a locked circuit and the

ciphertext of a cryptosystem behaves differently under input combinations. A locked circuit

under an incorrect key may behave identically to the oracle (or locked circuit with the correct

key) under multiple input patterns. This is particularly true for Post-SAT locking solutions,

i.e.,, SARLock [101], Anti-SAT [102], SFLL [105, 106], CAS-Lock [107], where the output

corruptibility for incorrect keys is reduced to the bare minimum. This means that a locked cir-

cuit with an incorrect key behaves exactly as an unlocked circuit under an exponential number

of input combinations.

The cryptographic algorithms, especially the block ciphers, are built on confusion and

diffusion properties recommended by Claude Shannon in his classic 1949 paper [221]. This

results in a large number of output bit changes in the output (ciphertext) even for a single bit

change in the input (plaintext) [213, 214]. For example, AES has 10/12/14 rounds of diffusion

and confusion operations depending on the key size of 128/192/256 bits. It is thus trivial to

launch differential fault analysis as it will guarantee the change in the output, where one can

compare the faulty and fault-free responses by injecting a fault into a key register, one at a time.

On the contrary, digital circuits generally do not have repeated layers of operations like block

ciphers. Digital circuits, except crypto accelerators, are designed to meet the user specification

of speed, power, and area, and the functionality (change in output) depends on the user’s needs.

It is well understood and verified that digital circuits have lots of don’t cares (Xs) in the inputs.

The VLSI test community adopted test compression [222, 223] to reduce the test pins and
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resultant test times. As there exists a large number of Xs in the test pattern, it is infeasible to

apply a random pattern and expect it to propagate the target key bit (e.g., a stuck-at fault at the

key line) to output. For example, if there are 70% Xs in a test pattern with a 100 input cone

[which is very common], the probability of a random pattern propagating the key to the output

is 230/2100 ≈ 0. The effect of some keys in a locked circuit can even be muted due to the

circuit’s structural and functional behavior [98], which is in direct contrast to cryptosystems,

where every output is influenced by all key bits [214].

6.1.4 Fault Injection Methods

Over the years, several threats and methods have emerged to break a cryptosystem without

performing mathematical analysis or brute force attacks. Using these attacks, an adversary

can subvert the security of protection schemes, primarily through extracting or estimating the

secret key using physical attacks. Fault injection attacks intentionally disturb the computation

of cryptosystems in order to induce errors in the output response. To achieve this, external fault

injection is performed through invasive or non-invasive techniques. This is followed by the

exploitation of erroneous output to extract information from the device.

Fault-based analysis on cryptosystems was first presented theoretically by Boneh et al.

on RSA [224]. This contribution initiated a new research direction to study the effect of fault

attacks on cryptographic devices. The comparison between the correct and faulty encryption

results has been demonstrated as an effective attack to obtain information regarding the secret

key [225–227]. These can be realized into different categories:

• Clock Glitch: The devices under attack are supplied with an altered clock signal which

contains a shorter clock pulse than the normal operating clock pulse. For successfully

inducing a fault, these clock glitches applied are much shorter than the circuit’s tolerable

variation limit for the clock pulse. This results in setup time violations in the circuit and

skipping instructions from the correct order of execution [228, 229].

• Power Variation: This technique can be further bifurcated into two subcategories: ei-

ther the malicious entity may choose to provide a low power supply to the system (also
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abbreviated as underfeeding), or the adversary may choose to influence the power line

with spikes. This adversely affects the set-up time and influences the normal execution

of operations. The state elements in the circuit are triggered without the input reaching

any stable value, causing a state transition to skip operations or altering the sequence of

execution [230–232].

• Electromagnetic Pulses/Radiation: The eddy current generated by an active coil can be

used to precisely inject faults at a specific location in the chip. This method does not

require the chip to be decapsulated in order to inject the fault. However, the adversary is

required to possess information regarding specific modules and their location inside the

chip [233, 234].

• Laser: Fault injection using lasers is also regarded as a very efficient method because it

can precisely induce a fault at an individual register to change its value [69]. For optical

fault injection, the laser can be focused on a specific region of the chip from the backside

or front side. However, due to the metal layers on the front side, it is preferred to perform

the attack on the backside of the chip. Skorobogatov et al. [235] first demonstrated the

effectiveness of this method by using a flashgun to inject fault to flip a bit in the SRAM

cell. Several other research groups also utilized and proposed different variants of this

method to study the security of cryptographic primitives [236–239].

• Focused-ion Beam (FIB): The most effective and expensive fault injection technique is

devised with focused ion beam (FIB) [46]. This method enables cutting/connecting wires

and even operates through various layers of the IC fabricated in the latest technology

nodes [240].

• Software-based Fault Injection: This technique produces errors through software that

would have been produced when a fault targeted the hardware. It involves the modifica-

tion of programs running on the target system to provide the ability to perform the fault

injection. It does not require dedicated complex hardware, a gate-level netlist, or RTL

models that are described in hardware description languages. The faults are injected into
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accessible memory cells such as registers and memories through software that represent

the most sensitive zones of the chip [241–243].

6.2 Differential Fault Analysis (DFA) attack

In this section, we present a differential fault analysis (DFA) attack introduced in [157]. Our

attack method is inspired by VLSI test pattern generation. One test pattern is able to detect a

single stuck-at fault with the propagation of this fault to the primary output. Since key values

from tamper-proof non-volatile memory are loaded to key registers, these registers are the

potential locations for stuck-at-faults. With an active chip at hand, the adversary could target

these registers and extract the secret key.

6.2.1 Threat Model

The threat model defines the capabilities of an adversary and its standing in the IC manufac-

turing and supply chain. It is very important to know an attacker’s ability and the available

resources/tools to estimate its potential to launch the attack. The design house or entity design-

ing the chip is assumed to be trusted. The attacker is assumed to be the untrusted foundry or a

reverse engineer having access to the following:

• The locked netlist of a circuit. An untrusted foundry has access to all the layout informa-

tion, which can be extracted from the GDSII or OASIS file. Also, this locked netlist can

be reconstructed by reverse engineering the fabricated chip in a layer-by-layer manner

with advanced technological tools [46].

• An unlocked and fully functional chip is accessible to the adversary since the chip is

publicly available from the market.

• A fault injection equipment is essential to launch the attack. It is not mandatory to use

high-end fault injection equipment. The main operation is to inject faults at the locations

of key registers (all the flip-flops) on a de-packaged/packaged chip. Precise control is not

necessary as we target all the flip-flops simultaneously. An adversary can also choose
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the software methods to inject faults at these flip-flops. Once the register is at the faulty

state, the scan enable (SE) signal needs to be assigned to put the chip in test mode.

• The attacker has the know-how to determine the location of the tamper-proof memory.

Then, it will be trivial for an adversary to find the location of the key register in a netlist,

as it can easily trace the route from the tamper-proof memory.

Notations: To maintain uniformity across the entire paper, we represent frequently used terms

with the defined notations, and they will be referred to with these notations in the following

subsections.

• K denotes key length or key size, i.e., the number of bits in the key.

• K denotes the keyspace; K = {k0, k1, . . . kK−1}.

• The locked netlist of a circuit is abbreviated as CL. The unlocked and fully functional

chip/circuit, whose tamper-proof memory has been programmed with the correct key, is

denoted by CO. The two versions of fault-injected circuits are described as follows:

– CF represents a locked circuit where all the key lines (K) are injected with logic

1 (or logic 0) faults. We call it the circuit with faulty key registers for differential

fault analysis (DFA).

– CA represents the same locked circuit in which (K − 1) key lines are injected with

the same logic 1 (or logic 0) faults, leaving one key line fault-free. We denote this

circuit as a fault-free circuit for DFA.

For any given circuit, we assume the primary inputs (PI) of size |PI|, primary out-

puts (PO) of size |PO|, and secret key (K) size of K. We also use key lines or key

registers alternatively throughout this paper as their effects are the same on a circuit.

• Stuck-at fault (saf ): For any circuit modeled as a combination of Boolean gates, stuck-

at fault is defined by permanently setting an interconnect to either 1 or 0 in order to

generate a test vector to propagate the fault value at the output. Each connecting line can

91



have two types of faults, namely, stuck-at-0 (sa0) and stuck-at-1 (sa1). Stuck-at faults

can be present at the input or output of any logic gates [77].

• Injected fault: A fault is injected at the key register using a fault injection method (see

details in Section 6.1).

Note that saf is an abstract representation of a defect to generate test patterns, whereas an

injected fault is the manifestation of a faulty logic state due to fault injection.
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Fault-Free

Circuit (CA)
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Figure 6.3: The abstract representation of our DFA attack.

6.2.2 Differential Fault Analysis (DFA) Attack Methodology

This fault injection attack relies on differential fault analysis. The captured output response

of the circuit with faulty key registers with the corresponding fault-free circuits can reveal the

key. Applying any fault injection methods (see the details in Section 6.1.4), the attacker can

create the faulty chip/circuit. Figure 6.3 shows an abstract representation of DFA. The fault-

free circuit (CA) is an unlocked chip (CO) bought from the market whose key bits need to be

retrieved. Except for the key-bit targeted to be extracted, all remaining key registers are fixed to
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a particular faulty value of either 0 or 1 corresponding to the selected fault. A circuit with faulty

key registers (CF ) uses the same chip, and it is injected with a particular fault to keep all the

key registers or interconnects to a faulty value of logic 1 or 0. One input pattern is first applied

to CA, and its response is collected. The same input pattern is then applied to the CF to collect

the faulty response. By XORing the corresponding circuit response, any output discrepancy

between fault-free circuit (CA) and the circuit with faulty key registers (CF ) is revealed. If both

the circuits differ in their responses, the XORed output will be 1; otherwise, it will be 0. If

we find an input pattern that produces a conflicting result for both CA and CF only for one key

bit, the key value can be predicted. The key value is the same as the injected fault value if the

XORed output is of logic 0; otherwise, the key value is a complement to the injected fault.

The attack can be described as follows:

• Step-1: The first step is to select an input pattern that produces complementary results

for the fault-free (CA) and faulty (CF ) circuits. The input pattern needs to satisfy the

following property – it must sensitize only one key bit to the primary output(s). In other

words, only the response of one key bit is visible at the PO, keeping all other key bits at

logic 1s (or 0s). If this property is not satisfied, it will be impractical to reach a conclusion

regarding the value of a key bit. Now the question is, how can we find if such a pattern

exists in the entire input space (ξ).

To meet this requirement, our method relies on stuck-at faults (saf ) based constrained

ATPG to obtain the specific input test patterns (see details in Section 6.2.4). Considering

the fact that the adversary has access to the locked netlist, it can generate test patterns to

detect sa1 or sa0 at any key lines and add constraints to other key lines (logic 1 and 0 for

sa1 and sa0, respectively). A single fault, either sa0 or sa1 on a key line, is sufficient to

determine the value of that key bit. Therefore, we have selected sa1, and the following

subsections are explained considering this fault only. This process is iterated over all the

key bits to obtain K test patterns. The algorithm to generate the complete test pattern set

is provided in Algorithm Section 6.2.4.
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• Step-2: The complete set of generated test patterns is applied to the fault-induced func-

tional circuit with faulty key registers (CF ). The circuit is obtained by injecting logic

1 fault on the key registers if sa1 is selected in the previous step; else, the circuit is in-

jected with logic 0 faults for sa0. The responses are collected for later comparison with

fault-free responses. For CA, test patterns are applied such that it matches the fault mod-

ifications in the circuit. For example, the test pattern for the first key is applied to the

circuit when the circuit instance does not pertain to any fault on its corresponding key

register and holds the correct key value while the remaining key registers are set to logic

1 (for sa1) or 0 (for sa0). For the next key-bit, (CA) instance is created by excluding this

selected key bit from any fault while keeping all other key registers to logic 1 (for sa1)

or 0 (for sa0). This process is repeated for all key bits, and their responses are collected

for comparison in the subsequent step.

• Step-3: The adversary will make the decision regarding the key value from the observed

differences in the output responses of (CA) and (CF ). For any test pattern corresponding

to a particular key bit, when the outputs from both circuits are the same, it implies that

the injected fault on the key lines in a CF circuit is the same as the correct key bit; only

then will the outputs of both ICs be same. Otherwise, when CF and CA differ in their

output response, it concludes the correct key bit is a complement to the induced fault.

This process is repeated for all key bits. In this manner, the key value can be extracted

by comparing the output responses of both circuits for the same primary input pattern.

6.2.3 Example

We choose a combinational circuit as an example for simplicity to demonstrate the attack. The

attack is valid for sequential circuits, as well, as it can be transformed into a combinational

circuit in the scan mode, where all the internal flip-flops can be reached directly through the

scan-chains [77].

Figure 6.4 shows the test pattern generation on a circuit locked with a 3-bit secret key,

where the propagation of k0 is dependent on k1 and vice versa. First, we target to find out the

94



sa1

1

0

x0

x1

k1

x2

x3

x4

k0

y0

G1

G2

Gk1

G3

Gk0

n1
n2

n3

n4

X

1

D1

1

DD

0
0

1 n5

DD

DD
G4

1

x5

k2

y1
G5 Gk2

X

1

n6

Figure 6.4: Test pattern generation considering a sa1 at key line k0 with constraint k1 = 1 and
k2 = 1. Test pattern, P1 = [11010X] can detect a sa1 at k0.

value of k0. A test pattern P1 is generated to detect a sa1 fault at k0 with constraint k1 = 1

and k2 = 1 (adding faults on all the key lines except the target key bit). As the value of k1

is known during the pattern generation, the effect of the sa1 at k0 will be propagated to the

primary output y0. For a fault value D at k0, if [x0 x1] = [1 1] then D propagates to n2. To

propagate the value at n2 to the output of G3, its other input (n4) needs to attain logic 1. Since

k1 = 1 due to injected fault which is set as a constraint in ATPG tool, n4 = 1 for n3 = 0 which

implies [x2 x3] = [0 1]. At last, x4 = 0 propagates D propagates the value at n5 to the primary

output y0. The output y0 can be observed as D for the test pattern P1 = [1 1 0 1 0 X]. Finally,

to perform the DFA, this pattern P1 needs to be applied to both CA and CF to determine the

value of k0. Similar analysis can be performed for the other two key bits, k1 and k2.

6.2.4 Test Pattern Generation

To generate the test pattern set, an automated process relying on constrained ATPG is per-

formed. The detailed steps to be followed are provided in Algorithm 2. Synopsys Design

Compiler [189] is utilized to generate the technology-dependent gate level netlist and its test
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Algorithm 2: Test pattern generation for constrained ATPG in DFA
Input : Locked gate-level netlist (CL), test protocol (T ), and standard cell library
Output: Test pattern (P) set

1 Read the locked netlist (CL) ;
2 Read standard cell library ;
3 Run design rule check with test protocol generated from design compiler ;
4 Determine key size K from CL ;
5 for i← 0 to (K − 1) do
6 Add a sa1 fault at key line ki ;
7 for j ← 0 to (K − 1) do
8 if i ̸= j then
9 Add constraint at kj to logic 1 ;

10 end
11 end
12 Run ATPG to detect the fault ;
13 Add the test pattern, Pi to the pattern set, P ;
14 Remove all faults ;
15 Remove all constraints ;
16 end
17 Report the test pattern set, P ;

protocol from the RTL design. A test protocol is required for specifying signals and initializa-

tion requirements associated with design rule checking in Synopsys TetraMAX [244]. Auto-

matic test generation tool TetraMAX generates the test patterns for the respective faults along

with constraints for the locked gate level netlist.

The inputs to the algorithm are the locked gate-level netlist (CL), Design Compiler gen-

erated test protocol (T ), and the standard cell library. The algorithm starts with reading the

locked netlist and standard cell library (Lines 1-2). The ATPG tool runs the design rule check

with the test protocol obtained from the Design Compiler to check for any violation (Line 3).

Only upon the completion of this step is the fault model environment set up in the tool. The size

of the key (K) is determined by analyzing CL (Line 4). The remaining key lines are selected

one by one to generate test patterns (Line 5). A stuck-at-1 fault is added at the ith key line to

generate Pi (Line 6). The ATPG constraints (logic 1) are added to other key lines (Lines 7-11).

A test pattern Pi is generated to detect the sa1 at the ith key line (Lines 12-13) and added to the

pattern set, P . All the added constraints and faults are removed to generate the (i + 1)th test

pattern (Lines 14-15). Finally, the algorithm reports all the test patterns, P (Line 17).
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Figure 6.5: An abstract view of a locked circuit.

6.3 AFIA: ATPG-guided Fault Injection Attack

The objective of an adversary is to reduce the number of injected faults to launch an efficient

attack. The DFA presented in Section 6.2.2 requires 2K−1 faults to determine a single key bit,

where K denotes the secret key size. This severely limits the adversary’s capability as injecting

a large number of faults is challenging from the fault injection equipment’s perspective. All

these faults need to be injected when applying the test pattern to evaluate one key bit. In this

section, we present an efficient attack and denoted as AFIA, an ATPG-guided Fault Injection

Attack based on key sensitization. This new attack only requires injecting the fault on a key

register if there is a dependency among keys. The threat model remains the same as DFA.

We consider an untrusted foundry to have access to the gate-level netlist and can generate

manufacturing test patterns.
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6.3.1 Overall Approach

The proposed attack AFIA evaluates one key bit at a time iteratively and can be summarized

by the following steps:

• Step-1: First, AFIA analyzes the locked circuit CL and its logic cones. Some cones are

completely independent (e.g., LC0 in Figure 6.5), some cones share few inputs (e.g.,

LC1, . . . , LCp−1), and the others share the same inputs (e.g., LCp, . . . , LCN−1). It is

necessary to determine keys from cones that are a subset of other larger cones (if any)

first during the test pattern generation in order to reduce the number of injected faults.

For an independent logic cone (say LC0), we can propagate the keys one at a time without

injecting faults at keys of other cones. If the two cones are overlapped, it is beneficial to

sensitize keys to a cone with fewer unknown keys.

• Step-2: Similar to DFA, it requires an input pattern to derive a correct key bit. We denote

this key bit as the target key bit. Constraints are set on the recovered key lines, where

no fault injections are needed. The attacker performs fault injection (Step-3) solely on

keys (in the same cone) that block the propagation of the targeted key bit. The blocking

key set is determined by the returned test patterns from ATPG TetraMAX [244]. Once

a key bit is determined, AFIA targets the next key bit of the same cone by putting the

previously obtained keys as constraints during the test pattern generation.

• Step-3: The last step applies fault injections on functional chip CO using the generated

test patterns of Step-2. The targeted key value can be extracted by comparing the fault-

injected output against the output pattern computed by ATPG. When the value of all the

targeted key bits in one text pattern has been identified, we can constrain these bits with

their actual values in ATPG in the subsequent pattern.

AFIA is an iterative method, where Step-2 is performed to generate test patterns, and Step-

3 injects fault and applies that pattern to determine the targeted key bit. Once this targeted key

is determined, it will be used as a constraint in Step-2. The following subsections present these

three steps in detail.
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6.3.2 Cone Analysis

The goal of this proposed attack is to apply minimal fault injections to recover the complete

key set. It is ideal for the adversary to inject faults at key registers only when necessary. In

general, not all keys prevent the propagation of the target key bit, as many of the keys are

often distributed across the netlist and reside in different logic cones. A logic cone is a part of

the combinational logic of a digital circuit that represents a Boolean function and is generally

bordered by an output and multiple inputs [77]. Thus, cone analysis can effectively separate the

dependence of different groups of key bits, where one group does not block the propagation of

the key bits in other groups. We propose to analyze the internal structure of the locked netlist CL

by creating a directed graph G from it. We denote that both the inputs and logic gates’ outputs

are nodes. A directed edge exists from Node n1 to Node n2 if and only if they are associated

with a logic gate. Intuitively, a circuit with N outputs has N logic cones, as in Figure 6.5. Note

that the number of cones can be only primary outputs (POs) for a combinational circuit or the

sum of POs and pseudo primary outputs (PPOs) for a sequential circuit [77]. All the inputs and

logic gates whose logical values affect yj belong to logic cone LCj . The graph representation

of logic cone LCj with sink yj is a subgraph of G.

Two possible scenarios might occur during the locking of a netlist. Key bit(s) can be

placed uniquely in a logic cone and cannot be sensitized to any other POs/PPOs except the

cone’s output. Other key bits can be placed in the intersection of multiple cones and can be

sensitized through any of these. We observe that the majority of the key bits are inside the

intersections with multiple cones. What should be the best strategy to propagate a key bit to

one of the POs/PPOs when there exist multiple sensitization paths? Our objective is to reduce

the number of faults to sensitize a key bit to a PO/PPO, and it is beneficial to select a cone

with the minimum number of keys. Note that the keys in a cone can block the propagation of a

targeted key in that same cone only and requires fault injection to set a specific value to these

blocking keys. It is, thus, necessary to construct a key-cone association matrix A to capture the

correlation between the logic cones and the key bits. The matrix A not only provides insight on

which keys (and how many of them) are inside a logic cone but also offers a structured view of
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whether a key belongs to multiple logic cones, and is presented as follows:

A = [ai,j]K×N

=



LC0 LC1 ... LCN−1

k0 a0,0 a0,1 . . . a0,N−1

k1 a1,0 a1,1 . . . a1,N−1

k2 a2,0 a2,1 . . . a2,N−1

...
...

... . . . ...

kK−1 aK−1,0 aK−1,1 . . . aK−1,N−1


,

where, ai,j ∈ {0, 1}, and ai,j = 1 if key ki is present in cone LCj , otherwise, ai,j = 0.

It is straightforward for the attacker that, if he/she picks cone LCj and key bit ki (if its

value is still unknown) in this cone, only keys (other than ki) residing in LCj could potentially

impede the propagation of ki to the output yj . This is advantageous to the attacker because

the keys outside of cone LCj would not, by any means, affect the propagation of ki to yj .

Thus, he/she can safely ignore these keys, and it does not matter whether he/she already has

the correct logical values for them or not.

For example, the directed graph representation of locked netlist c432-RN320 with a 32-bit

key [245] is shown in Figure 6.6. Output nodes are in red, key registers in green (at the left-

most level), key gates in cyan, remaining input (at the left-most level), and gates in blue. The

top two logic cones with the fewest keys are LCN223 of output N223 and LCN329 of output

N329. Logic cone LCN223 has only one key (keyIn 0 4, with key gate highlighted) (all other

nodes and edges are in magenta and light green). Logic cone LCN329 is the superset of LCN223,

and it contains additional thirteen keys (all other nodes and edges exclusively in LCN329 are in

purple and orange). With AFIA, the only key in LCN223 is determined first, followed by the

remaining thirteen keys in LCN329. Because of the only key in LCN223, no fault injection is

necessary for this key’s propagation to N223.
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Figure 6.6: Directed graph of locked c432-RN320 netlist with a 32-bit key.

6.3.3 Test Pattern Generation

Once the cone analysis is performed, it is required to generate test patterns so that a targeted key

can be sensitized to one of the PO/PPO. The test pattern generation process is similar to the DFA

presented in Section 6.2.2 except with a much lesser number of ATPG constraints. We treat

undetermined keys as inputs during the test pattern generation and the recovered keys as ATPG

constraints. As the secret key remains the same in an unlocked chip, it is unnecessary to inject

faults at the recovered key bits as their values are known during the test pattern generation.

On the other hand, we need to inject faults at unknown and yet to be determined key lines.

However, it is not necessary to inject faults at all of them. We use the ATPG tool to determine

whether one or more unknown key bits do not block the propagation of the targeted key bit.

As we treat unknown keys as inputs, the ATPG tool can generate a pattern that might contain

X ′s at some of the key lines (using set atpg -fill X [244]), and we do not need to inject faults at

these bits. This allows an adversary to reduce the number of fault injections further. Similar to

DFA, a stuck-at fault, sa1 (or sa0), is placed on the target key bit with constraints on recovered
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key bits during the ATPG. When TetraMAX [244] returns a test pattern, the attacker applies

the pattern and injects faults (presented in Section 6.3.4) to sensitize the target key bit at the

PO/PPO. After recovering one key bit, AFIA sets ATPG constraints on the recovered key lines,

generates another test pattern, and applies it to sensitize the next key.

6.3.4 Fault Injection

The final step applies fault injections on functional chip CO using generated test patterns from

Section 6.3.3. Faults are injected at the key registers with any appropriate fault injection tech-

niques described in Section 6.1.4. No fault injection is necessary at the key bits whose values

are already determined as their values are no different from those already programmed in the

chip CO. If we receive a faulty response by applying the test pattern developed in Step-2, the

value of the secret key will be 1 as we have sensitized a sa1 fault during the ATPG; otherwise,

the secret key is 0. If we generate a test pattern considering a sa0 fault, the faulty response

results in the secret key of 0, and vice versa. Step-2 in Section 6.3.3 and Step-3 in Section

6.3.4 are repeated until the entire secret key is found. Consequently, fewer faults are injected

compared with the DFA since injections happen only at key locations (of the same logic cone)

that block the propagation of the to-be-determined key bits.

6.3.5 Proposed Algorithm for AFIA

Algorithm 3 describes the implementation details of AFIA. The adversary first constructs a di-

rected graph G from the locked netlist CL (Line 1), as elaborated in Section 6.3.2. Aside from

converting netlist to graph, netlist2Graph(.) returns the key list K and output list Y . By

exploiting directed graph structure, logic cone LCj can be easily extracted by flipping all edges

in graph G (Line 2) and run breadth-first-search (BFS) or depth-first-search, (DFS) [246], on

output nodes yj . The key-cone association matrix A is declared as an empty array, where the

cone and key information will be added (Line 3). Function extractCone(.) is imple-

mented with BFS. It returns the directed subgraph of logic cone LCj and a logical (true/false)

vector LKj of dimension K × 1. If key bit kq is inside cone LCj , LKj[q] = true; else,
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Algorithm 3: AFIA: ATPG-guided Fault Injection Attack.
Input : Locked gate-level netlist (CL)
Output: Secret key (KEY)

1 // ———————- Cone Analysis ——————————–
2 [K,Y,G]← netlist2Graph(CL);
3 Gflip← flipEdges(G);
4 A← [ ] ;
5 for each yj in Y do
6 [LKj , LCj]← extractCone(Gflip, K, yj);
7 A← append vector LKj as the last column ;
8 end

// ————- ATPG test pattern generation ————————
9 Recovered key bits from Step-3 of AFIA, KR ← ∅ ;

10 while (A != false) do
11 [KU

LC ]← fConeWMinKeys(A,K) ;
12 if KU

LC ! = ∅ then
13 for l← 0 to (|KU

LC | − 1) do
14 Add a sa1 fault at key line KU

LC [l] ;
15 Add constraints at recovered key bits to KR;
16 Test pattern Pl ← run ATPG (set atpg -fill X);
17 Remove all faults ;
18 Remove all constraints ;

// —————- Fault Injection ————————
19 Invoke Step-3 of AFIA with Pl;
20 Add recovered key KU

LC [l] to KR ;
21 Assign false to all entries in key KU

LC [l]’s row in A ;
22 end
23 end
24 end
25 Report the secret key, KEY ← {K,KR} ;

LKj[q] = false. Matrix A is updated by concatenating all vectors LKj’s together (Line 6) so

that the complete A has K rows and N columns, as explained in Section 6.3.2.

AFIA invokes fConeWMinKeys(.) (Line10) and obtains a vector KU
LC of all unknown

keys in the logic cone with the fewest (positive) unknown keys. For simplicity, KU
LC records

the row indices of the unknown keys, as in matrix A. For every key bit in KU
LC , the sa1 is

set on the to-be-determined key (Line 13). The recovered key values in KR are appended as

constraints (Line 14). Test pattern Pl (Line 15) is generated after invoking ATPG. All the stuck-

at faults (Line 16) and constraints (Line 17) are removed. When Pl and fault injections (Line

18) are applied on the working chip CO, KU
LC [l] bit is recovered by referencing the ATPG’s
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Figure 6.7: Test Pattern Generations for AFIA. (a) Test Pattern P0 = [XXXXX0] for sa1 at
k2. (b) Test Pattern P1 = [0X0X0X] for sa1 at k0 with injected fault k1 = 1.

predicted output of the corresponding Pl. Afterward, the correct bit value is added to the

recovered key list KR (Line 19). Since this bit is recovered, it is no longer an unknown key,

and AFIA updates the association matrix A to assign logical zero to all entries on key KU
LC [l]’s

row (Line 20). This is conceptually equivalent to deleting KU
LC [l] from the unknown key list

as fConeWMinKeys(.) will only count the number of non-zero entries per column. When

all key bits in KU
LC are determined, the adversary moves on to the subsequent logic cone (Line

10). Finally, when all cones are covered, the secret key KEY is returned (Line 24).

6.3.6 Example

Here, we use the same circuit as in Figure 6.4 as an example to illustrate how AFIA works. The

circuit has six inputs, two outputs, and three key bits. With two outputs, this circuit has two

logic cones, as in Figure 6.7. The same D-Algorithm [77] is applied to show the propagation of

stuck-at-faults. Based on cone analysis in Section 6.3.2, logic cone LC0 contains two key bits,

k0, k1, cone LC1 has only one key k2. Thus, the association matrix A can be represented as:

A =



LC0 LC1

k0 1 0

k1 1 0

k2 0 1

.

AFIA picks a logic cone with the fewest number of unknown keys to solve (Line 10,

Algorithm 3). Since all keys are unknown at this time, fConeWMinKeys(.) function selects
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logic cone LC1 and returns KU
LC = [2]. This cone has one key bit k2, to which we assign sa1.

Using D-Algorithm, fault value D is marked on this key line. Here, the output y1 is directly

connected to XOR key gate Gk2 , and we can propagate this fault D to output y1 = D with logic

1 for the other input of this XOR gate, as in Figure 6.7(a). Test pattern P0 = [x0x1 . . . x5] =

[XXXXX0] can detect sa1 for key k2. Here, the value of the recovered key is 1 when the output

is faulty. Otherwise, the recovered key is 0 as we have sensitized a sa1 fault during the ATPG.

Note that no fault injection is necessary to determine this key. Matrix A is updated with all

zeros on the k2’s row,

A =



LC0 LC1

k0 1 0

k1 1 0

k2 0 0

.

In the next iteration (Line 10), there is only one logic cone (also the cone with the least un-

known keys), LC0, left in matrix A that has unknown keys. Function fConeWMinKeys(.)

identifies LC0 and yields KU
LC = [0 1]T , which captured the indices of unknown keys k0, k1.

With two keys k0 and k1, AFIA chooses k0 first randomly (Algorithm 3 Line 13). By adding

sa1 at k0, test pattern P1 = [x0x1 . . . x5] = [0X0X0X] with logic 1 fault on k1 can propagate the

faulty response D in k0 to y0, as shown in Figure 6.7(b). Fault injection is performed at k1 by

setting its value to 1, and apply P1 to determine k0. AFIA, then, flushes out all the entries on

row k0 of matrix A,

A =



LC0 LC1

k0 0 0

k1 1 0

k2 0 0

.
After k0 is recovered, AFIA moves on to determining the other key in LC0, k1, (Line

12). We add a sa1 at k1 (Line 13), along with constraining on k0, k2 to their determined

values (Line 14). If the correct logical value for k0 is 0 (i.e., the stored key), test pattern

P2 = [x0x1 . . . x5] = [110X0X] can sensitize the sa1 of k1 to the output y0. If the stored secret
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key bit is k0 = 1, the test pattern P2 will be different, and its value will be [0X0X0X], which one

can verify using the same D-Algorithm. Note that no fault injection is necessary to determine

k1.

Finally, the matrix A will be updated to all zeros and the AFIA recovers the entire key.

6.3.7 AFIA Complexity Analysis

The average complexity of the AFIA attack is linear with the key size (K). In this section,

we show that AFIA is very effective at breaking any logic locking technique. However, the

fault injection time may vary depending on the effectiveness of the equipment. It is practically

instantaneous to obtain the secret key once the responses are collected from CO.

Lemma 6.1. One input pattern is sufficient to recover one key bit.

Proof. A single test pattern is sufficient to detect a saf if such a fault is not redundant [77]. A

redundant fault results from a redundant logic that cannot be exercised from the inputs. As the

key gates are placed to modify the functionality, it cannot be a redundant logic. As there exists

one test pattern to detect a saf at the key line, it can be used to recover one key bit.

Theorem 6.2. AFIA recovers the entire secret key, K using at most K number of test patterns,

i.e.,,

TPAFIA[fK(CL) = f(CO)] ≤ K. (6.1)

where fK() represents the functionality with K as the key.

Proof. A CL with a K-bit key is injected with a saf fault on every key line. As AFIA requires

one test pattern to obtain one key bit (see Lemma 6.1), the upper bound of the number of test

patterns is K. However, a single pattern can detect two or more stuck-at faults on the key lines

if their effect is visible in different logic cones (e.g.,, different outputs). As a result, the required

number of test patterns to recover the entire key (K) can be less than K.

Theorem 6.3. AFIA is applicable to strong logic locking [98], where pairwise key gates are

inserted to block the propagation of one key by the other.
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Proof. In strong logic locking, the propagation of one key is blocked due to the other key.

However, (K − 1) faults are injected at (K − 1) key lines, worst-case scenario, except for the

one whose value needs to be determined. Once an external fault is injected into the functional

chip, the key value is fixed and no longer remains unknown. Hence, AFIA is applicable to

strong logic locking.

Theorem 6.4. The worst-case complexity for the total number of faults injected in AFIA is

O(K2).

Proof. Let us consider a circuit with a single logic cone locked with a secret key vector

{k0, . . . , kK−1}. Suppose all key bits are pairwise non-mutable convergent, i.e., the propa-

gation of one key bit depends on all the other keys. To sensitize the 1st key bit, we need to add

K−1 faults during the fault injection process. The 2nd key bit requiresK−2 faults as the value

of the 1st key bit is known. Similarly, the 3rd key bit requires K − 3 faults, and so on. Thus,

the total number of faults is:∑K
i=1(K − i) = K·(K−1)

2
.

Thus, the worst-case complexity for the total number of faults injected is O(K2).

Theorem 6.5. The average-case complexity for the total number of faults injected in AFIA is

O(K).

Proof. Consider a circuit with N logic cones, each cone LCj has negligible or no overlap with

its neighboring cones, LCj−1 and LCj+1, andK keys are evenly distributed (amortized) among

the N cones. For each cone, it has an average a = K
N

keys). Since negligible overlap between

cones, there is no preference between the order of execution on deciphering keys in logic cones,

and each cone needs to inject K/N ·(K/N−1)
2

faults. Overall, by summing up all faults for every

logic cone, the required number of fault injections is N · K/N ·(K/N−1)
2

.

Thus, the average-case complexity is N · K/N ·(K/N−1)
2

= a−1
2
· K = O(aK) = O(K).

6.3.8 AFIA on Fault-Tolerant Circuit

Fault-tolerant circuits and circuits with redundancy may prevent the injected faults from being

revealed at the output. However, it does not affect our proposed AFIA. As the objective of logic
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locking is to produce incorrect output for wrong key combinations under certain input patterns,

these input patterns ensure the differential output behavior for keys. Thus, the key cannot be

inserted inside the region of redundancy, where no input pattern can ever produce differential

output. Any key bit placed at these locations cannot corrupt the output so that either logic 0

or logic 1 is its correct value. The SoC designer would not place a key bit in such a way that

both logic values gives the correct output since it contradicts the principle of logic locking.

In summary, redundancies are not a countermeasure against AFIA attack for a well-designed

locked circuit.

6.3.9 AFIA on Non-Functional-Based Locking Techniques

Our fault injection-based attack can also be extended to non-functional logic locking tech-

niques [119, 131]. The dynamically obfuscated scan-chain (DOSC) technique [131] has three

secrets stored in the tamper-proof memory, which are the functional obfuscation key, the LFSR

seed, and the control vector. AFIA can break the functional obfuscation key if the obfuscated

scan-chain becomes transparent to the attacker. To achieve that, the attacker needs to inject

faults at all the Scan Obfuscation Key registers directly to get a known shift out state from the

functional IP. For the routing-based locking technique [119], our proposed attack is applicable

to breaking the key-configurable logarithmic-based network (CLN) as the switch-boxes (SwB)

consist of MUX-based key gates. Once a fault is injected into a key register, the selection path

for the corresponding MUX is determined. We can target these keys one at a time with test

patterns generated from the ATPG tool and inject faults on dependent key registers.

6.4 Experimental Results

This section provides the feasibility of fault injection to break secure logic locking. Exten-

sive simulations are performed on different benchmarks with different locking techniques to

demonstrate the effectiveness of the proposed fault injection attack for breaking a secure lock-

ing technique. We have shown a significant reduction of total fault count for AFIA compared

to DFA, presented in our conference paper, in breaking the same locked benchmark.
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Figure 6.8: The FPGA board placed under the lens for laser-fault injection at the target registers.

6.4.1 Laser Fault Injection

To demonstrate the laser fault injection attack, we selected a Kintex-7 FPGA [247], which

is used as the device-under-test (DUT). Locked benchmark circuits are implemented in the

Kintex-7 FPGA, where faults are injected into key registers. Figure 8.2 shows the laser fault

injection (LFI) setup with a Hamamatsu PHEMOS-1000 FA microscope [248]. The equipment

consists of a diode pulse laser source (Hamamatsu C9215-06) with a wavelength of 1064 nm.

Three objective lenses were used during this work: 5x/0:14 NA, 20x/0:4 NA, 50x/0:76 NA.

The 50x lens is equipped with a correction ring for silicon substrate thickness. The laser diode

has two operation modes – a) low power (200 mW) pulse mode, and b) high power (800 mW)

impulse mode. The high power impulse mode can be used for laser fault injection. The laser

power can be adjusted from 2% to 100% in 0.5% steps.

Photon emission analysis [249] can be used to localize the implemented locked circuitry

in the DUT. Thereafter, the DUT is placed under the laser source for LFI. A trigger signal is
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fed to the PHEMOS-1000 to synchronize the LFI with the DUT operation. Once the device

reaches a stable state after power-on, the laser is triggered on the target key registers. After the

fault injection, we need to guarantee that the device is still functioning as expected and has not

entered into a completely dysfunctional state. The laser triggering timing can be checked by a

digital oscilloscope for greater precision.

6.4.2 Fault Count Comparison

The differential attack methodology (DFA) introduced in Section 6.2 and in [157] requires

K− 1 number of constraints per test pattern. The total number of faults that need to be injected

to determine one key bit is 2K− 1, as CA and CF require K− 1 and K faults, respectively. The

total number of faults required to decipher K key bits is (2K−1) ·K = 2K2−K. Compared to

DFA, AFIA only requires injecting faults to key registers if these key bits are interdependent,

where the propagation of one key is dependent on others.

Table 6.1 shows the number of faults to be injected for both the DFA (Algorithm 2) and

AFIA (Algorithm 3). To demonstrate the feasibility of the fault injection attack on logic lock-

ing, we computed the number of faults after generating test patterns using constrained ATPG

using the Synopsys TetraMAX tool [244]. Note that the successful generation of test patterns

using constrained ATPG guarantees the successful attack on locking. We choose benchmark

circuits with random logic locking (added ‘-RL’ after the benchmark name) and strong logic

locking (added ‘-SL’) from TrustHub [245], SFLL-hd (added ‘SFLL-hd’), SFLL-flex (added

‘SFLL-flex’), and SFLL-rem (added ‘SFLL rem’) benchmarks from [105], and GitHub [219].

Column 2 represents the secret key size, whereas Columns 3 and 4 represent the number of

faults to determine the entire key for DFA and AFIA, respectively. Data in Column 4 is col-

lected under sa1 fault in test pattern generation (Algorithm 3). Finally, Column 5 shows the

average number of faults to evaluate one key bit under AFIA. For example, with locked bench-

mark c432-RN320, the number of faults required for DFA is 2016, whereas AFIA requires only

48 faults to extract the 32 key bits, leading to 1.5 faults per key bit. For c1355-SL1280, the

number of faults increased significantly to 32,640 for DFA. AFIA only requires 1,419 faults to

determine the 128 key bits, or 11.09 faults per key bit.
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Table 6.1: Comparison of Number of Injected Faults

Locked Benchmark Key Size DFA AFIA
(K) FT FT FT/K

c432-RN320 32 2016 48 1.5
c432-RN640 64 8128 165 2.58

c432-RN1280 128 32640 1085 8.48
c2670-RN1280 128 32640 520 4.06
c3540-RN1280 128 32640 268 2.09
c5315-RN1280 128 32640 282 2.20
c6288-RN1280 128 32640 268 2.09
c7552-RN1280 128 32640 334 2.61
c1355-SL1280 128 32640 1419 11.09
c1908-SL1280 128 32640 654 5.11
c5315-SL1280 128 32640 3469 27.10
c6288-SL1280 128 32640 368 2.88
c7552-SL1280 128 32640 188 1.47

b14 C k8 SFLL-hd 8 120 28 3.5
b14 C k16 SFLL-flex 16 496 120 7.5
b14 C k32 SFLL-flex 32 2016 496 15.5
b14 C k64 SFLL-flex 64 8128 2016 31.5

b14 C k128 SFLL-flex 128 32640 8128 63.5
c432 k8 SFLL-hd 8 120 28 3.5

c432 k16 SFLL-flex 16 496 120 7.5
c432 k32 SFLL-flex 32 2016 496 15.5
c880 k8 SFLL-hd 8 120 28 3.5

c880 k16 SFLL-flex 16 496 120 7.5
c880 k32 SFLL-flex 32 2016 496 15.5

SFLL rem k128 [219] 128 32640 8128 63.5

Based on Theorem 6.5, if keys are uniformly distributed among logic cones, the number

of fault injections for AFIA is linear with respect to key size, O(aK) = O(K), with variable a

indicating the average key size per logic cone. If having the same key size, an RLL circuit with

more logic cones, or a smaller a, (provided that the size of all logic cones are about the same),

should, generally, has fewer fault injections than one with fewer logic cones. This is equivalent

to having fewer injected faults in an RLL-based circuit that contains more output than the ones

without (see definition of the number of logic cones in 6.3.2). Benchmark c432-RN1280 has

a larger a than other 128-bit RLL circuits, for c432 has only seven outputs, while c2670 has

140 outputs, c3540 has 22, c5315 has 123, c6288 has 32, c7552 has 108 outputs respectively.

(Note, not all logic cones will have keys inside, but the circuit with more output usually has
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more key-embedded cones than those with fewer outputs.) This is the reason that c432-RN1280

requires considerably more fault injections in total, 1085, than other locked netlist with same

key size, where c2670-RN1280 needs 520 faults, c3540-RN1280 has 268, c5315-RN1280 has

282, c6288-RN1280 has 268, c7552-RN1280 has 334, see Table 6.1.

RLL randomly picks a location in the original unlocked circuit for key gate insertion,

while SLL produces more blocking keys. In terms of theoretical complexity analysis, as long

as the key gates in RLL locked circuit are distributed uniformly, the number of fault injections

for SLL should be larger than RLL, under the same original unlocked benchmark and the same

key size, e.g.,, c5315-RN1280 and c5315-SL1280, c6288-RN1280 and c6288-SL1280. For

SFLL-hd and SFLL-flex, each locked circuit has a perturbation unit and a restoration unit. All

keys reside in the functionality restoration unit, where every key passes through the output of

the restoration subcircuit to reach the primary output [161, 207]. Because of this restoration

unit, all key bits are interdependent. Hence, all SFLL-flex and SFLL-hd circuits belong to the

worst-case scenario as in Theorem 6.4, in which the number of injected faults is K·(K−1)
2

. We

also evaluated our proposed attack on the latest SFLL variant, SFLL-rem [106,250]. Although

SFLL-rem does not have the added perturb unit, the keys are present in the restoration unit

only, and our attack can still break it.

6.5 Summary

This chapter presents AFIA, a novel stuck-at fault-based fault injection attack that undermines

the security of any logic locking technique. AFIA utilizes cone analysis to analyze the depen-

dency of keys. Faults are injected only at the interdependent key bits, which is a significant

improvement from the previously published attack DFA [157], dropping the total number of

faults to the linear multiple of key size. With the automatic test pattern generation (ATPG)

tool, we constructed a pattern set, which is used to apply to an unlocked chip. Each pattern is

sufficient to determine a one-bit key. All key bits are derived by comparing collected responses

from fault injections and the predicted response from test pattern generation. We performed
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laser fault injections on Kintex-7 FPGA with various locked benchmark circuits and state-of-

the-art locking techniques, and our results have demonstrated the effectiveness of the proposed

AFIA scheme. Our future work will focus on developing a locking technique to prevent AFIA.
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Part III

Hardware-Based Solutions
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Chapter 7

A Comprehensive Test Pattern Generation Approach Exploiting the SAT Attack for Logic
Locking

The exponential growth of integrated circuits (ICs) in our critical infrastructure requires aggres-

sive testing as system failure has severe safety consequences. As a result, it is critical that the

escape of manufacturing defects to the next stage approaches zero. For example, multiple safety

standards, like AEC-Q100 and ISO 26262 [251], are defined to meet the zero-defective-parts-

per-million goal for safety-critical automotive chips. Testing plays a vital role in detecting all

defects in the manufactured chips to avoid the potentially devastating effects of defective ones

slipping from the testing facility. Today’s commercial automatic test pattern generation (ATPG)

can generate test patterns for stuck-at, delay, bridging, and a few other fault models [244]. How-

ever, achieving a fault coverage that leads to zero-defect escape is still an open problem. For

example, it is challenging to reach 100% stuck-at fault coverage using commercial ATPG tools.

It can be extremely difficult to sensitize a hard-to-detect fault and propagate the faulty response

at the outputs of a large circuit, limiting the desired goal of achieving perfect fault coverage. It

is also challenging to identify all the redundant faults as their effects cannot be propagated to

the output. These faults can be ignored for determining a meaningful fault coverage, as they do

not impact the function of a circuit.

Over the past few decades, we have seen a steady increase in the fault coverage for digi-

tal circuits using the continued advancement in combinational ATPG techniques, from Roth’s

D-Algorithm [252, 253] to PODEM [254], FAN [255], SOCRATES [256], TRAN [257], etc.

Along with these techniques, SAT-based test pattern generation has also been proposed as a
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Figure 7.1: Logic Locking. (a) Overview of logic locking (b) Original circuit. (c) XOR-based
locking with {k0k1} = {01}.

solution to achieve higher fault coverage [258–265]. For SAT-based techniques, the miter con-

struction between the fault-free circuit and faulty circuit with a stuck-at fault (saf ) is the core

for generating a test pattern for detecting that saf. The increased number of conflicts for larger

circuits resulting from the miter circuits and getting resolved at a later stage makes hard-to-

detect faults undetectable. As these SAT-based prior works were concluded nearly a decade

ago, it is fair to assume that the Industry has already assimilated the state-of-the-art research.

However, we still observe several hard-to-detect and redundant faults that a commercial ATPG

tool, e.g., Synopsys TetraMAX II [244] fails to identify even with the maximum abort limit

(see Section 7.3). Some undetected faults are redundant faults in the circuit, where no pattern

could propagate the faulty effect to the primary output. Others are the hard-to-detect faults,

where the ATPG tools fall short in finding the appropriate test patterns even if such tests exist

to detect these faults. Therefore, the main bottleneck from reaching high fault coverage for

IC testing is in the undetected faults, specifically, the classification of redundant faults and test

pattern generation for hard-to-detect faults. The focus of this paper is to analyze and classify

these undetected faults, not identified by commercial ATPG tools, so that (i) we can accurately

distinguish any redundant faults from non-redundant ones; (ii) generate the test patterns for

each hard-to-detect faults; and (iii) generate tests for combining multiple hard-to-detect faults

to reduce the total pattern count.

The hardware security community has been actively involved in solving the threat of intel-

lectual property (IP) piracy [15, 21, 22, 92, 266] and IC overproduction [23, 84–89], originating

from the horizontal integration of semiconductor design, manufacturing, and test. Due to the
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increased chip design complexity and manufacturing processes, it is practically infeasible for

many design houses to manufacture chips on their own. An untrusted entity in the semicon-

ductor supply chain can pirate the design details and cause irreparable damage. Logic lock-

ing [23, 84, 89, 98, 99] was proposed to counter IP piracy, where a circuit design is obfuscated

using a secret key. Figure 7.1 shows an abstract representation of logic locking with a simple

example. The secret key (K) is programmed into the tamper-proof memory, as shown in Fig-

ure 7.1(a). Figure 7.1(b) shows an example of the original netlist with function y = x0x1+x2x3.

A lock is inserted using two XOR gates with key {k0k1}, as shown in Figure 7.1(c). This mod-

ifies the original functionality y to y′ = (x0x1 ⊕ k0) + (x2x3 ⊕ k1). The secret key value

{k0k1} = {01} maps y′ to y for all possible input combinations. The security of any locking

scheme relies on the secrecy of the key. The original netlist can be recovered if an adversary

obtains the correct key values. Subramanyan et al. showed that Boolean Satisfiability (SAT)

could be used to break traditional locking schemes effectively [100]. The attack constructs a

miter circuit and asks SAT solver to find an input pattern that produces differentiating output

behavior between incorrect keys and the right one, similar to revealing the faulty state to the

output [7, 99, 157]. The attack is very effective in determining the key (i.e., the value of k, the

key-input of XOR shown in Figure 7.1(c)) no matter where the key gate (XOR) is placed in the

netlist. This motivates us to develop a novel test pattern generation scheme using this powerful

SAT attack. The question is, can we model a stuck-at fault to its key-dependent locked circuit

counterpart so that the SAT attack can find a test pattern to determine the key, and, thus, a test

for the same stuck-at fault?

The chapter is organized as follows. We begin with a brief introduction to test pattern

generation and the SAT attack on logic locking in Section 7.1. Our proposed approach to

increase fault coverage is presented in Section 7.2. The result and analysis for the proposed

approach are described in Section 7.3. Finally, we conclude this chapter in Section 7.4.
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7.1 Prior Works

In parallel, the research community explored SAT-based test pattern generation. The ini-

tial SAT-based technique, proposed by Larrabee [258], constructs the Boolean difference be-

tween the faulty and fault-free circuits to detect single stuck-at faults. Stephan et al. proposed

TEGUS that uses gate characteristic functions added in depth-first search order from inputs

to outputs [259]. Over the years, different SAT-based test pattern generation techniques have

been proposed to obtain a high fault coverage [260–265]. Eggersgluss et al. explored SAT-

based test compaction with a large number of unspecified bits [260–262]. Drechsler et al.

includes the modeling of tristate elements with additional unknown (U ) and high-impedance

(Z) states [263]. Balcarek et al. [265] filters the unexcitable faults based on the static and dy-

namic implications. Fujita et al. [264] targets test pattern generation with multiple faults. How-

ever, to find a test pattern for a hard-to-detect fault, the SAT solver encounters a large number

of conflicting assignments and requires an increased number of backtracks, which makes test

generation time excessively high.
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Figure 7.2: Conflicts in solving miter circuit presented in Fujita et al.. (a) A simple circuit with
a sa0 fault. (b) Conflict during SAT assignment.

Fujita et al. [264] constructs the miter with a faulty circuit with modeled faults and fault-

free circuits. Figure 7.2(a) shows a simple circuit with a sa0 fault. Figure 7.2(b) shows the

miter circuit used for test generation [264]. As the OR gate for modeling sa1 should remain
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ineffective as we are targeting sa0, one can simply ignore it by having its input y3 tied to 0.

Without loss of generality, we assume the SAT solver first makes a decision to the upper input

node (corresponding to the output of the faulty circuit) of miter XOR gate Gm with logic 1.

With unit clause propagation, the output of the faulty circuit is 1, and all nodes inside the

faulty circuit can be uniquely determined. Conflict arises at the fault-free circuit’s Boolean

assignment as the input {x0, x1, x2} = {111} derived from the faulty circuit cannot satisfy

the required logic 0 output for the fault-free circuit. Therefore, the SAT solver is required to

perform backtracks and resolves the conflict with logic 0 decision for the faulty circuit response

and 1 for fault-free. In addition, if a conflict arises, it can be determined after logic assignments

for all the nodes. This motivates us to construct a miter that reduces the possible backtracks or

resolves conflicts at an earlier stage to ensure manageable test generation time.

7.1.1 SAT attack on Logic Locking

Over the years, the optimization and advancement of SAT algorithms have led to a significant

decrease in average runtime for SAT solvers [267]. This leads to a growing number of SAT-

based applications. One of the most prominent attacks to counter logic locking, proposed by

Subramanyan et al. [100], invokes SAT solver [268] to trim keyspace efficiently and derive the

correct key. Although various logic locking approaches [23, 84, 89, 98] have been proposed to

obfuscate the original circuitry, SAT attack breaks all of them effectively. Furthermore, the SAT

attack is also the backbone of the subsequent logic locking attacks [6, 152, 153, 159]. Unlike

structural attack [269] that exploits logic redundancy to recover the secret key partially, the SAT

attack relies on finding the DIP, which produces differential output for circuits with incorrect

keys, analogous to test patterns that differentiate the faulty and fault-free circuits. This oracle-

guided attack receives two circuits as its input, the original circuit, CO(X, Y ), and its locked

version, C(X,K, Y ). The correct key Kc unlocks the circuit so that it behaves identically to

the oracle, C(X,Kc, Y ) = CO(X, Y ), but the circuit with an incorrect key would lead to one

or more output bits mismatch under certain input vectors. This discrepancy in output response,

compared with the oracle, is exploited by the SAT attack. The SAT attack works in two steps,

the initialization and the iterative process of pruning the key space.
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Algorithm 4: SAT attack on logic locking [100].
Input : Unlocked circuit, oracle (CO(X, Y )) and locked circuit (C(X,K, Y ))
Output: Correct Key (Kc)

1 i← 1 ;
2 F ← C(X,KA1 , YA1) ∧ C(X,KB1 , YB1);
3 [Xi, Ki, f ] = sat[F ∧ (YAi

̸= YBi
)];

4 while (f == true) do
5 Yi = sim eval(Xi);
6 F ← F ∧ C(Xi, KAi

, Yi) ∧ C(Xi, KBi
, Yi);

7 [Xi+1, Ki+1, f ] = sat[F ∧ (YAi+1
̸= YBi+1

)];
8 i← i+ 1 ;
9 end

10 Kc ← Ki;
11 return Kc ;

Initialization

It first constructs the miter circuit, where the locked circuit is replicated twice, C(X,KA, YA)

and C(X,KB, YB), Algorithm 4, Line 2. The two circuits share input X but not the keys

KA, KB. Any output mismatch between the two circuits can be easily identified. In the miter

circuit, the corresponding output bits from YA and YB are XORed and then ORed together so

that a logic one at the final output indicates the output disagreement between YA and YB while

a logic zero does not.

Pruning of key space

The attack iteratively removes the equivalence classes of incorrect keys. Since the main focus

of SAT attack is the use of SAT solver to generate the appropriate input vectors, we denote

the ith query of the SAT solver (abstracted as a function sat[·]) as the ith iteration of the SAT

attack. At ith round, it finds a distinguishing input pattern Xi along with assigning f == true,

where at least one output bit diverges between C(Xi, KAi
, YAi

) and C(Xi, KBi
, YBi

), YAi
̸=

YBi
, Line 3, Line 7. The actual output Yi for this distinguishing input Xi is obtained from

oracle simulation, CO(Xi, Yi), Line 5. Both Xi and Yi are stored in the solver assumptions,

Line 6, and carried to the subsequent iterations. By appending this input-output pair {Xi, Yi}

to the conjunctive normal form (CNF) in F , it facilitates the removal of any incorrect key

combination that produces output other than the correct one Yi. The input-output pairs are
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accumulated so that, at the subsequent iteration, the distinguishing input pattern that the SAT

solver finds not only differential output for the miter circuit but also satisfies all the constraint

pairs
∧

i=1,2...{C(Xi, KAi
, Yi) ∧ C(Xi, KBi

, Yi)} of the previous findings. Note that the SAT

attack initializes key KAi+1
with logic values consistent with these learned IO pairs from the

previous iterations. The decisions the SAT attack makes depend on the solver seeds. The

SAT attack continues to eliminate the incorrect key classes and shrinks keyspace until no more

distinguishing input patterns can be found, then assigns f == false. This implies that no

more incorrect keys remain. It may occur to some circuits, though rare, that more than one key

is left in the key space when distinguishing input patterns no longer exists to differentiate these

keys. These keys are in the equivalence class of the correct key since none would produce an

output that diverges from the oracle’s output. The SAT solver returns the key assignment of the

last iteration as the correct key Kc. The detailed attack is shown in Algorithm 4. It is worth

noting that, for every locked circuit, the very last iteration of the SAT attack always produces

a UNSAT result (f == false) where the SAT solver has exhausted all distinguishing input

patterns.

7.2 Proposed SAT-based Test Generation Approach

The test pattern returned by ATPG for detecting a sa1 (or sa0) fault for a given node will yield

one or more output differences for the faulty circuit against the fault-free one. In particular,

the ATPG tool controls the faulty line with the opposite fault value and generates a test pattern

where the faulty response is visible at the output. However, the ATPG tool may fail to find the

appropriate input pattern during test pattern generation due to the complexity of making fault

observable, like the D-Algorithm’s fault activation, fault propagation, and line justification. We

can broadly categorize faults as redundant and non-redundant. If the fault is redundant, no test

pattern can detect it since the faulty logic does not affect the circuit’s functionality. If the fault

is not redundant, an input pattern must exist to propagate the fault to the output. Although

ATPG may not successfully deduce a test pattern, it does not necessarily say that the fault is

redundant. The fault could still belong to either group, redundant or non-redundant. The focus
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of this section is to generate test patterns for non-redundant faults and, at the same time, sep-

arate the redundant faults. In particular, this section presents how to precisely label a fault as

redundant or not when ATPG fails to give the test pattern for an undetected fault or determines

the appropriate test pattern in concurrence with the identification of a hard-to-detect fault. We

introduce a novel approach to construct an equivalence mapping between test pattern gener-

ation of stuck-at faults and the SAT attack on logic locking. Our fault modeling inserts key

gates at the faulty lines so that both fault observability and controllability are fulfilled when the

SAT attack tries to find distinguishing patterns to decrypt the key bits. For redundant faults, our

model returns UNSAT at the first iteration of the SAT attack without any distinguishing input

pattern, indicating that no pattern could make the fault observable. For any hard-to-detect fault,

the SAT attack obtains a satisfiable input assignment at the first round, which is the desired test

vector. Our approach offers a solution for the test pattern generation problem of hard-to-detect

faults, in a novel perspective from logic locking, where any patterns derived from the SAT

attack are the ones we need in the test pattern generation domain.

7.2.1 Novel miter construction for stuck-at fault with key-dependent circuit in logic locking

The SAT attack on logic locking has shown tremendous success in deriving the correct key of

various locking in a few seconds [100]. As described in Section 7.1.1, this means that the SAT

attack found the input patterns necessary for removing all incorrect key combinations within

the recorded time frame. For example, the locked benchmark of c880 with the 192-bit key

from random logic locking (randomly inserts XOR/XNOR key gates) is broken by the SAT

attack using only 30 distinguishing input patterns in less than 1 second. The efficiency of SAT

attack, in terms of both attack time and the number of input patterns, motivates us to exploit

it to identify any non-redundant faults and generate the associated test patterns for these hard-

to-detect faults that were not previously detected by a commercial ATPG tool. Moreover, it

is also desired if we can simultaneously determine any undetected faults that are redundant.

To equivalently transform a circuit with stuck-at faults to a locked one, we need to make sure

that the properties of these faults are controllable and observable when the SAT attack derives
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Figure 7.3: Logic locking-based modeling of a saf with AND or OR key gate. Converting a
sa0 to AND key gate, (a) successful propagation of key k with logic 1, (b) failed propagation
of k with logic 0; a sa1 to OR key gate, (c) successful propagation of k with logic 0, and (d)
failed propagation of k with logic 1.

distinguishing input patterns. This section presents the application of novel miter construction

in the SAT attack for test generation of stuck-at faults.

As logic locking uses XOR key gates, the question that first comes to mind is whether it

is possible to model a stuck-at fault using an XOR gate. Unfortunately, we cannot model a

stuck-at fault due to the symmetric nature of the XOR gate. If we model a stuck-at fault with

an XOR gate as a key, either a logic 0 or 1 at the input can propagate the key to its output.

However, during ATPG of a stuck-at 0 sa0, or stuck-at 1 (sa1), a logic 1 or 0, should be placed

on the fault site to activate it. This made it impossible for XOR-based locking to model saf as

both patterns are valid DIPs for the key bit.

As XOR/XNOR key gates can not be applied inside the miter construction in generating

a test for a stuck-at fault, we need to find a different key gate so that its input can only have

the opposite value of the stuck-at fault for key propagation. Logic 1 complements sa0 fault for

making it observable, while logic 0 does not change the functionality. If we pick AND gate,

instead of XOR, as the key gate, logic 1 at the input of the key gate will help k to the key gate’s

output, as shown in Figure 7.3(a), but a logic 0 at the input blocks the key propagation with a

constant 0 at the output, as shown in Figure 7.3(b). This means that, if a DIP exists, the SAT

attack will assign logic 1 to the input of the key gate for the miter circuit since logic 0 could

not fulfill the differential output condition between the incorrect and correct keys. The input
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vector used for key derivation in the SAT attack satisfies the controllability and observability

requirement of sa0 in test pattern generation.

For sa1 fault, we need to assign logic 0 at the fault site for observing the sa1 since having

the same logic as the fault, logic 1, impedes it from being revealed. Analogous to selecting

AND key gate for sa0 test pattern generation, we choose OR gate to represent sa1. A logic

0 at the input of the OR key gate allows k to appear at the key gate’s output, as shown in

Figure 7.3(c). However, placing a logic 1 at the input blocks the key visibility with a constant 1

at the output, as shown in Figure 7.3(d). Similar to the analysis on AND key gate and sa0, for

generating DIPs, the SAT attack must assign logic 0 to the input of the key gate because logic

1 fails to differentiate the circuit’s output between the incorrect and the correct key bit.
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Figure 7.4: Stuck-at-faults in the presence of multiple fanout branches. (a) Fanout branch nam-
ing with TetraMAX. (b) Naming convention used in .bench file. (c) Fanout branch renaming
using buffers.

To address the stuck-at fault detection at fanouts, we need to rename the fanout segment

in the .bench file used by the SAT attack. Note that any synthesized netlist from a commercial

tool considers each fanout segment with a unique name, which is tied to either the input or

the output of a gate. Figure 7.4(a) shows the fanout where the output of gate G1 is connected

to both the inputs of G2 and G3. TetraMAX inserts faults, both sa1 and sa0, at all the fanout

segments, named as G1/Y,G2/A2, and G3/A1, respectively. However, as these three segments
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share the same logic value, in the .bench file, all these segments will be treated as a single node,

say n1. As a result, we cannot add faults to the green or blue segments only. However, the SAT

attack requires the bench file as input, all the fanout branches have the same name, as shown in

Figure 7.4(b). So, we can only add two faults instead of six. To address this problem, we added

one buffer to rename the fanout branches. Figure 7.4(c) shows the equivalent locked circuit of

a sa1 fault at the first input of gate G3.

Based on the above analysis, any sa0 or sa1 can be converted to its AND key gate or OR

key gate equivalent in logic locking while preserving the observability of stuck-at fault. Note

that, aside from generating DIPs, the SAT attack also derives the key value. From the logic

locking perspective, the correct key decrypts the locked circuit so that it is functionally the

same as the oracle, C(X,Kc, Y ) = CO(X, Y ). For the AND key gate, the logical value on the

wire (before locking) can pass through the key gate unmodified with key k = 1, but assigning

key k = 0 forces the AND output to constant 0, which alters the original circuit functionality.

Likewise, with OR as the key gate, the correct key is k = 0, while the output of the key gate

will be kept at constant 1 for the incorrect key value k = 1. Hence, in addition to DIPs, our

equivalent representation of stuck-at faults can be further confirmed by checking the correct

key k = 1 for all sa0 and k = 0 for sa1 faults.

7.2.2 Identification of Redundant Faults

Our proposed miter construction with the SAT attack for test generation can also identify any

redundant faults. If a stuck-at fault (either sa0 or sa1) is redundant, no pattern can ever propa-

gate this fault since it is not influencing the circuit’s functionality. The output behaves the same

for the faulty and fault-free circuits. In the same way, when we turn the redundant fault to its

equivalent locked circuit, the key cannot be observed from the output as well, as it is located at

the redundant line without affecting the primary output.

Let us assume that the ith stuck-at fault in the circuit is redundant. Once we lock it with

the appropriate key gate (and buffer if needed) with 1-bit key ki, we invoke the SAT attack

in an attempt to find a DIP for this fault. Since the SAT attack constructs the miter circuit to

search for the DIP, as illustrated in Figure 7.5, both locked circuits share the common m-bit

125



x
m

Locked Circuit

ki = 0

Locked Circuit

ki = 1
1/0

1/0

0
nn

y

y'

nn

nn

Figure 7.5: SAT attack’s miter circuit with 1-bit key ki for ith saf (redundant fault).

input x. The n-bit outputs, y and y′, are XORed in a bit-by-bit manner. As the ith fault is

redundant, the key bit ki has no impact on the n-bit output y, and the two locked circuits have

an identical response for ki = 0 and ki = 1. For test pattern generation, the miter circuit would

produce the exact same output y = y′ under any input combinations. As a result, the miter

output is always zero, and no output difference between y and y′ can be observed. This means

that the SAT attack could not find any DIP to differentiate ki = 0 and ki = 1, and it would

reach the UNSAT conclusion at the first query of SAT solver on Line 3, Algorithm 4. Note that,

as redundant faults do not change the circuit’s functionality, we can ignore them during fault

coverage computation if identified correctly.

7.2.3 ATPG using the SAT Attack on Logic Locking

Just as a few test patterns from the ATPG tool could expose multiple stuck-at faults, the SAT

attack can also rule out the exponential number of incorrect keys with a few distinguishing

patterns. When it comes to test pattern generation for hard-to-detect faults, we have the option

to select how many of these faults we can analyze together. The conservative approach is

to generate a test pattern for every fault. This approach can also identify whether a fault is

redundant or not by checking if the SAT attack returns a DIP. On the other hand, we can

combine the equivalent conversion of multiple faults in one locked circuit with the same number

of key gates as the faults. We then ask the SAT attack to break this locked circuit and collect

all the DIPs. As the SAT attack generally trims multiple incorrect keys from the search space

with only a few DIPs, analyzing a group of faults has the potential of reduced pattern set

than inspecting one fault at a time. Both strategies work for any stuck-at fault, regardless of
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being redundant or not. The following sections present a comprehensive discussion of both

approaches by focusing on undetected faults. The first approach asks the SAT attack for a DIP

on every undetected fault, while the second one targets a group of faults so that the SAT attack

solves key bits simultaneously.

Approach 1 – Generate One Test Pattern per Fault

Approach 1 focuses on finding a single test pattern for an undetected stuck-at fault using the

SAT attack. The equivalent locked circuit contains a 1-bit key. To solve the 1-bit key, the SAT

attack only needs to query the SAT solver twice. At the first query, Line 3 of Algorithm 4,

the SAT solver returns the input pattern where the primary output differs for the correct and

incorrect key assignments, that is, between logic 0 and logic 1. This input pattern, along with

the corresponding output, simulated from the oracle, is saved in the IO constraints F . Note

that the wrong key bit is implicitly removed from the search space as it does not satisfy the

IO pair stored in F . Only the correct key bit matches the IO behavior in F , and it is the only

candidate that remains in the search space. With constraint, F appended in the satisfiability

of the miter circuit (Algorithm 4, Line 6), the SAT solver must return UNSAT at the second

query, and it could not produce any differential output when no more incorrect keys exist in

the key space. The second scenario is that the SAT attack could not find any distinguishing

input pattern to differentiate the keys in the search space at the first query of SAT solver, and it

terminates the while loop (Algorithm 4, Lines 4-9). It also returns the hypothesis key Ki, but it

may not align with the correct key value discussed in the novel miter construction for stuck-at

faults, Section 7.2.1. This is caused by the fault at the redundant line where faulty value can

never reach the output ports, and no input pattern can be found. By including one fault at a

time, we can quickly identify which fault is redundant by determining whether DIP is obtained

from the SAT attack.

Compared to [264], our proposed approach can determine the test patterns without con-

flicts or resolve conflicts at an earlier stage due to the initialization of keys in one locked circuit

inside the miter. Figure 7.6(a) shows the example circuit with a sa0 fault. Note that two pos-

sible scenarios exist for our proposed approach where the SAT attack assigns k1 to logic 1 or
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Figure 7.6: The proposed test pattern generation with the SAT attack miter. (a) A simple circuit
with a sa0 fault. (b) No backtrack in deriving the satisfiable assignment with k1 = 1. (c)
Backtrack at an earlier stage with k1 = 0.

0 at the start. Let us first consider when the SAT attack assigns k1 = 1, denotes as Case 1)

and is shown in Figure 7.6(b). Applying the same assumption mentioned in Section 7.1, the

SAT solver assigns the first input of Gm to logic 1. All the literals in the miter can be iteratively

implied without raising conflict or backtracking for CNF clauses, and a test is found. If the SAT

attack starts with k1 = 0, denoted as Case 2 and shown in Figure 7.6(c), a conflict arises at the

output of key gate Gk and is resolved locally by conflict-driven clause learning (CDCL) [270]

without having to trace back the entire miter circuit like [264]. As a result, the output of circuit

A is reassigned to 0 at an earlier stage [264]. This ensures the SAT solver backtrack at a much

earlier stage to determine the satisfiability, and a hard-to-detect fault can be found efficiently.

Approach 2 – Generate Test Patterns for a Group of Faults

While the first approach details the test pattern generation considering a single fault, this Ap-

proach 2 targets multiple faults simultaneously. Instead of adding one key gate per locked

circuit as in Approach 1, the second approach locks a circuit with multiple key gates where the
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Figure 7.7: Test generation with a group of faults. (a) circuit with multiple faults (b) the saf s
equivalence with logic locking.

number of keys is the same as the to-be-analyzed faults. This approach resembles the prevalent

strategy within the logic locking community, where a circuit is locked with multiple key bits.

From the SAT attack perspective, each distinguishing pattern can, in general, remove multiple

incorrect keys in the search space. This is because any incorrect key assignment in the tradi-

tional logic locking techniques is more likely to produce the wrong and corrupted output on

a given input vector. This statement also applies to our proposed logic locking conversion of

stuck-at faults with AND/OR key gates at the fault sites (as illustrated in the example below).

In addition, our key-dependent fault-equivalence conversion supports the test pattern genera-

tion of detecting both sa0 and sa1 of the same fault site, where one can simply insert two key

gates, an AND and OR gate each, in serial at the target locations. The goal of this approach is

to reduce the number of test patterns. Following the novel miter construction for faults in Sec-

tion 7.2.1, we transform n hard-to-detect faults into its equivalent locked circuit with n key bits.

We collect all the DIPs the SAT solver identifies and the key value from the SAT attack. When

faults are detectable, one or more input patterns always exist to differentiate the correct key

from the wrong one. It may be true that some faults could be situated at redundant lines, where

no test pattern can be generated since the circuit output does not depend on these faults. We

run the simulation with the target group of faults and the extracted patterns to know precisely

how many faults are detected through the SAT attack’s distinguishing pattern.
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Table 7.1: The SAT attack uses only 2 patterns to eliminate the incorrect keys from the search
space. If the output matches the correct output, we put ✓, else ✗.

4-bit key Pattern 1 Pattern 2
{k1, ..., k4} {1001100} {0001100}

0000 ✓ ✗

0001 ✓ ✗

0010 ✗ ✓

0011 ✓ ✗

0100 ✓ ✗

0101 ✓ ✗

0110 ✓ ✗

0111 ✓ ✗

1000 ✓ ✗

1001 ✓ ✗

1010 ✓ ✓

1011 ✓ ✗

1100 ✓ ✗

1101 ✓ ✗

1110 ✓ ✗

1111 ✓ ✗

We take the combinational circuit with 4 stuck-at faults, shown in Figure 7.7(a), as an

example. Both sa0s are turned to AND gates Gk1, Gk3 with keys k1, k3, and the sa1s are locked

with OR gates Gk2, Gk4 with keys k2, k4. Note that the input x3 branches to two lines, and

only the wire connected to the input of gate G3 has sa0, but not for the one at the input of gate

G2. So, we include one buffer for the conversion of this sa0, as described in Section 7.2.1.

With Approach 2, the SAT attack only uses 2 DIPs, P1 = {x0, x1, ...x6} = {1001100}, P2 =

{x0, x1, ...x6} = {0001100}, instead of 4 DIPs with Approach 1, to prune all 15 wrong key

combinations and correctly derive the key vector {k1, k2, k3, k4} = {1010}. For both patterns,

we show in Table 7.1 detailing whether the 16 possible keys produce the correct output y or

not, where ✓ indicates a match with the oracle output and ✗ for a mismatch, and the correct

key is highlighted in red. On the first iteration of the SAT attack, it finds the first distinguishing

pattern P1 = {1001100}, which removes key {k1, ..., k4} = {0010} from the key space. On

the second iteration, it returns another distinguishing pattern P2 = {0001100} that crosses out

another 14 keys, leaving only one key in the key space. On the third iteration, no more DIP can

be found to create differential output with the only remaining key {k1, ..., k4} = {1010} as the
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SAT attack already removed all the incorrect keys at the first two iterations. As it does not find

any satisfiable pattern in the third iteration, the SAT attack terminates and returns the correct

key {k1, ..., k4} = {1010}.

The proposed Approach 2 can significantly reduce the test pattern generation time com-

pared to Approach 1. As the miter construction in the SAT attack initialize the key inside the

locked circuit (e.g., instance A, see Figure 7.6) and is assigned with Boolean logic consistent

with the learned clauses of the previous rounds, it offers n locations potentially for reducing

the conflicts or backtracks for the SAT solver when n faults are grouped together. This can of-

fer much more efficiency to deduce the satisfiable assignment as the miter circuit of the single

fault has 1 initial starting point while the n-bit key provides n− 1 more pre-assigned locations.

This leads to further test time reduction compared with a single stuck-at fault per run. This

observation is verified in Table 7.5 in Section IV by comparing the ratio of Approach 2 to Ap-

proach 1 on the test time of hard-to-detect fault list DFP . The total time can be much smaller

than the time required to generate a single pattern in Approach 1 for b 19 benchmark circuit.

An increased test time gain can be obtained when more faults are transformed together in one

locked circuit.

Approach 2 can also identify redundant faults. If all the n-faults are redundant, the SAT-

attack tool will not return any DIPs and will identify them uniquely. However, if there exist

one or more detectable faults, we cannot identify them uniquely from the UNSAT conclusion.

One more step is necessary to identify the redundant faults using fault simulation. The patterns

obtained from the proposed Approach 2 need to be applied to the fault simulator and identify

the undetected faults. As no test pattern exists for any redundant faults, all these undetected

faults reported by the fault simulator must be redundant. In summary, Approach 2 can target

a group of redundant faults where the SAT attack can finish solving all keys in the first few

iterations, with the UNSAT conclusion at the very last round.

7.2.4 Test Pattern Generation and Redundant Fault Identification Algorithm

Algorithm 5 shows the identification of redundant faults and the test pattern generation process

for hard-to-detect faults. The algorithm has three steps, and it first performs traditional ATPG
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Algorithm 5: Proposed SAT-based test pattern generation for hard-to-detect faults
and identification of redundant faults.

Input : Combinational circuit in .bench format (CN ) and standard cell library
(stdlib)

Output: Redundant fault set (RF ), hard-to-detect fault set (DF ), test pattern set
(PA1 and PA2)

//——– Step-1: Generate undetected fault list L ——–
1 CIN ← fromBench(CN) ;
2 CDN ← toTechDependentNetlist(CIN , stdlib) ;
3 tp← write drc file(CDN , stdlib) ;
4 loadATPG(CDN , stdlib, tp) ;
5 addFaults(sa0, sa1, ‘all’) ;
6 setAbortLimit(max) ;
7 runATPG ;
8 L← reportFault(undetected) ;
9 [RFA1, DFA1, PA1]← Approach–1(CDN , CN , L) ;

10 [RFA2, DFA2, PA2]← Approach–2(CDN , CN , L) ;
11 return RFA1,A2, DFA1,A2, PA1,A2 ;

//——– Step-2: Approach 1 ——————————–
12 function Approach–1 (CDN , CN , L) is
13 [RFA1, DFA1, PA1]← ∅ ;
14 for i← 1 to |L| do
15 f ← L[i] ;
16 CLA1

← locked–ckt(CDN , f, ‘Approach 1’) ;
17 CBA1

← toBench(CLA1
) ;

18 [p, k]← SAT-attack(CBA1
, CN) ;

19 if p = ∅ then
20 RF ← append(f) ;
21 else if p! = ∅ & k = kref then
22 DF ← append(f) ;
23 PA1 ← append(p)

24 end
25 end
26 return RFA1, DFA1, and PA1 ;
27 end

//——– Step-3: Approach 2 ——————————–
28 function Approach–2 (CDN , CN , L) is
29 [RFA2, DFA2, PA2]← ∅ ;
30 CLA2

← locked–ckt(CDN , L, ‘Approach 2’);
31 CBA2

← toBench(CLA2
) ;

32 [P,K]← SAT-attack(CBA2
, CN) ;

33 [DFA2, RFA2]← faultSim(CDN , L, P ) ;
34 PA2 ← P ;
35 return RFA2, DFA2, and PA2 ;
36 end
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using a commercial tool to generate test patterns and report undetected faults. As our objective

is to use the SAT attack to generate test patterns and identify redundant faults, we made a few

adjustments to the traditional approach of test pattern generation, which starts from synthesiz-

ing a circuit using a commercial tool (e.g., Synopsys Design Compiler). If we are given an RTL

code, we follow the traditional approach to obtain the technology-dependent gate-level netlist

from design synthesis with standard cell library stdlib. If the synthesized netlist is a sequen-

tial design, scan-chain insertion is required to convert the sequential design to a combinational

one so that ATPG can generate test patterns efficiently. On the other hand, if the benchmark

is already in the combinational bench format, e.g., the ‘ C’ circuits in the ITC’99 benchmark

suite (https://github.com/squillero/itc99-poli), we can directly convert the

bench file CN to a technology-independent gate-level netlist CIN , Algorithm 5, Line 1. Then,

this technology-independent netlist CIN can be mapped to a technology-dependent netlist CDN

with standard cell library stdlib, Line 2. This can be done without synthesizing the design

CIN , which may introduce potential line mismatch during optimization, and the synthesized

netlist may deviate from its original bench netlist CN . Any standard cell library can map the

technology-independent netlist to a technology-dependent one for commercial ATPG tools. As

we target only the stuck-at faults, they are independent of the parameters in the library, unlike

delay, bridging faults, or resistive opens that are dependent on the intrinsic properties of the

technology node. The ATPG tool also requires a test protocol tp in SPF format, which can be

either generated from netlist synthesis or directly written within the ATPG tool [244] by the

command write drc file, Line 3. After loading netlist CDN , library stdlib and test protocol

tp to ATPG tool, Line 4, stuck-at 0 (sa0) and stuck-at 1 (sa1) faults are assigned to all lines

in the circuit, including the primary input and output, Line 5. Since fault coverage can be im-

proved by increasing the allotted number of backtracks and remade decisions of the ATPG tool,

we set the abort limit to its maximum value, Line 6. ATPG is then invoked to run test pattern

generation and fault coverage analysis, Line 7, and report any undetected faults by the tool to a

list L, Line 8.

The algorithm identifies the redundant faults from the undetected fault list L (Lines 9,

12-27) in Step-2 using Approach 1. Three empty sets are initialized, hard-to-detect fault set
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DFA1, redundant fault set RFA1, and test pattern set PA1, Line 13. For each fault f in the

undetected list L (Line 15), the locked circuit CLA1
is modeled with a single key bit, Line

16. After converting the locked netlist CLA1
to bench format CBA1

, Line 17, the SAT attack is

executed with CBA1
and the oracle CN to obtain the DIP p and the key value k, Line 18. If the

SAT attack does not return a DIP from the miter circuit, p is empty, and the fault is redundant,

where it is added to the redundant list RFA1, Lines 19-20. However, if the SAT attack finds a

DIP and the correct key value compared to the reference key (kref = 1 for sa0 and kref = 0 for

sa1) for the targeted fault, this fault f is detected (Line 21). It is appended to the hard-to-detect

list DFA1 and its DIP p is added to test pattern set PA1, Lines 22-23. Note that fault f belongs

to either category, RFA1 or DFA1, and no fault skips the if-else-if statement, as analyzed in

Section 7.2.1, 7.2.2.

In Step-3, the algorithm optimizes the test pattern set for all undetected faults in list L,

Lines 10, 28-36, as the previous step reports either one test pattern or none per fault. The hard-

to-detect fault set DFA2, redundant fault set RFA2, test pattern set PA2 is initialized as an empty

set, Line 29. All faults in the undetected list L are converted to a locked circuit CLA2
with |L|

number of key gates, Line 30, as described in Section 7.2.3. The locked circuit CLA2
is then

mapped it to its equivalent bench file CBA2
, Line 31. Both CBA2

and CN are applied to the SAT

attack, and the returned |L|-bit key value K and the DIPs P are saved, Line 32. The key K

is validated by checking individual bits with the corresponding equivalent fault representation.

The fault simulation is performed to identify the detected and redundant faults, Line 33. As we

correctly determine the key (K), the test pattern must detect all the faults except the redundant

ones that do not impact the functionality. As a result, undetected faults from the fault simulation

must be redundant. These patterns in P are recorded in the set PA2, Line 34. Upon execution

of the algorithm, four sets of redundant faults RFA2, hard-to-detect fault DFA2, test patterns

PA1 and PA2 are reported, Line 35.

134



7.3 Result and Analysis

This section presents the experimental results of our proposed SAT-based test pattern gener-

ation and redundant fault identification. The proposed miter construction with the SAT at-

tack and test pattern generation are analyzed using ITC’99 benchmark circuits (https://

github.com/squillero/itc99-poli.). We use Synopsys 32nm SAED32 library to

map the benchmark circuits to technology-dependent netlists, which are read in with TetraMAX

II ATPG [244]. Any advanced technology nodes can also be applied to map the technology-

independent bench file with the standard cells in the library, as described in Section 7.2.4. We

first apply a commercial ATPG tool, Synopsys TetraMAX II, to generate test patterns for de-

tecting all the sa0 and sa1 faults in a circuit. The tool reports test patterns, fault coverage,

and undetected faults. We have not modified the existing test pattern generation process. To

determine the hard-to-detect faults that are previously undetected and find the corresponding

test vectors, we (i) replaced all undetected faults with their key-based equivalent gates, and

(ii) apply the proposed Approaches 1 and 2 to obtain additional test patterns. Note that our

proposed technique provides additional coverage to the test results from TetraMax II.

Table 7.2 summarizes our findings with 25 combinational benchmarks from ITC’99. We

excluded simple benchmark circuits, where the TetraMAX II detects all stuck-at faults. Any

faults that have no pattern generated are labeled as undetected ones. All the undetected faults

reported by TetraMAX II have been evaluated with the proposed logic locking-based fault

representation and the SAT attack. We apply the proposed approaches for detecting these un-

detected faults. Column 2 shows the total gate count for each benchmark. The total number of

stuck-at faults, TF , for each benchmark is recorded in Column 3. For TetraMAX II [244], it in-

cludes faults under the following four categories, PT (Possibly Detected), UD (Undetectable),

AU (ATPG Untestable), and ND (Not Detected) and shown in Columns 4, 5, 6, and 7 respec-

tively. The total undetected fault count (UF = PT + UD + AU + ND) and fault coverage

(FC) obtained from TetraMAX II are listed in Columns 8 and 9. Our proposed approach iden-

tifies these undetected faults as either redundant faults (RFP ) or hard-to-detect faults (RFP ),

which are listed in Columns 10 and 11. Column 12 represents the total fault coverage (FCT )
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after applying our proposed SAT-based test pattern generation in addition to TetraMAX II. We

computed the total fault coverage for Column 12 using the following Equation:

FCT =
DFTMAX +DFP +RFP

TF
× 100,

where, DFTMAX is the number of detected faults from the TetraMAX II tool. For example, the

b20 C benchmark has 118298 faults, out of which 684 faults are not detected by TetraMAX

II. Our proposed approach detects 53 hard-to-detect faults and identifies the rest 631 faults as

redundant. Note that many of the small circuits do not have any hard-to-detect faults (e.g.,

b04 C, b05 C, etc.), and all the undetected faults are redundant. For bigger benchmark circuits

(e.g., b19 C), we observe an increased number of both the hard-to-detect and redundant faults.

Note that our approach can generate test patterns for all the hard-to-detect faults and identify

all the redundant faults resulting in a perfect fault coverage of 100%.

Table 7.3: Hard-to-Detect Faults summary in ITC’99 Benchmarks.

Benchmark Detected Fault by Category Total
D/PT D/UD D/AU D/ND DFP

b05 opt C 4/4 0/3 0/0 0/0 4
b11 C 0/0 0/161 0/0 5/5 5

b15 opt C 3/19 0/1054 0/38 8/187 11
b17 opt C 10/15 0/1153 0/300 16/1702 26

b17 C 0/0 0/3866 0/33 1/378 1
b20 C 35/35 0/631 18/18 0/0 53
b21 C 8/8 0/684 0/0 0/2 8
b22 C 32/33 0/795 29/29 0/0 61

b18 opt C 0/0 0/479 0/17 14/62 14
b18 C 0/0 0/3658 0/96 4/10 4
b19 C 4/6 0/8236 0/191 95/126 99

We identify these DFP s from the four undetected fault categories reported by TetraMAX.

Table 7.3 shows the number of hard-to-detect faults from PT, UD, AU , and ND categories.

The second column represents the additional detected faults (D) from PT and is presented as

D/PT . Similarly, Columns 3, 4, and 5 show additional detected faults from UD,AU , and

ND, respectively. We have detected a few faults from PT,AU , and ND categories, except
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UD categories. For example, 32 faults from PT and 29 faults from AU are detected for b22 -

C benchmark. Similarly, 95 out of 126 faults are detected from the ND category for b19 C

benchmark. However, we did not observe any detected faults from the UD category, and they

are all redundant. In summary, we found that some faults from all the other categories, except

UD, are hard-to-detect while others are redundant.

Table 7.4: Comparison on number of test patterns on SAT detected faults between Approach 1
and Approach 2.

Benchmark Approach 1 Approach 2 Reduction
b05 opt C 4 1 75.00%

b11 C 5 2 60.00%
b15 opt C 11 7 36.36%
b17 opt C 26 12 53.85%

b17 C 1 1 0%
b20 C 53 25 52.83%
b21 C 8 3 62.50%
b22 C 61 26 57.38%

b18 opt C 14 7 50.00%
b18 C 4 1 75.00%
b19 C 99 8 91.92%

For each benchmark, we combine all faults in the hard-to-detect fault set DFP to gen-

erate the optimized test set with the proposed Approach 2 and the SAT attack, presented in

Section 7.2.3. Table 7.4 compares the number of test patterns required for Approach 1 and Ap-

proach 2. Columns 2 and 3 record the total test pattern count for Approach 1 and Approach 2 on

DFP , respectively. Column 3 represents the percentage decrease in the number of test patterns

between Approach 2 and Approach 1. As shown in Table 7.4, we can see a significant reduction

in the number of test patterns required to identify the faults, with an average of 52.29% fewer

test vectors. For example, the 61 hard-to-detect faults in DFP in b22 C benchmark need 61

test patterns with Approach 1 but only 26 test vectors using the proposed Approach 2. The fault

simulation validated all the input vectors returned by the SAT attack. In addition, all the key

bits in each locked circuit have been validated with the proposed miter construction for stuck-at

faults, and they all match the expected key values.
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We run our proposed algorithms on a 20-core Intel Xeon CPU with 2.60 GHz and 64

GB RAM. The SAT program runs on a single thread in CentOS Linux 7 operating system.

We only consider the SAT attack time as the preprocessing, such as technology-dependent

netlists to technology-independent bench file conversion, processing of TetraMAX report, fault

simulation, etc., can be performed in parallel. Table 7.5 shows the runtime for detecting both

hard-to-detect faults DFP and the redundant faults RFP using our proposed Approaches 1 and

2. Note that we compare the time complexity for our proposed approaches only due to the –(i)

unavailability of programs for prior SAT-based approaches in the public domain, and (ii) many

optimizations performed over the years for commercial ATPG tools. As our server has 20 cores,

a total of 40 threads that target 40 faults can be run in parallel. We set 5 days as the timeout

for all undetected faults. Columns 2 and 3 are the fault count for DFP and total undetected

faults (UF ) from TetraMAX II, respectively. Note that UF = DFP +RFP as we either detect

all these faults or identify them as redundant. Columns 4 and 5 show the total test time for

DFP and DFP + RFP using our proposed Approach 1. The same is shown in Columns 6 and

7 for Approach 2. Columns 8 and 9 represent the test time improvement of Approach 2 over

Approach 1. Please note that #DFP fault count (Column 2) for b18 C and b19 C are computed

from fault simulation with the test patterns obtained from the SAT attack with DFP +RFP and

Approach 2 (Column 7), where a timeout of 5 days for a single fault is observed, marked as

timeout in Column 5. For example, Approach 1 takes 0.54s, whereas Approach 2 requires

only 0.10s to detect 5 hard-to-detect faults for the b11 C benchmark circuit. However, the

gain for Approach 2 becomes significant for larger benchmark circuits. For b19 C, Approach

1 takes 2,083,961.1s to detect 99 faults, which is much larger than Approach 2, 8728.8s. The

improvement in test time is 2, 083, 961.1/8, 728.8 = 238.7 times. This signifies the fact that

detecting 99 DFP s together is easier than detecting a single fault. Interestingly, generating

test patterns even for detecting and identifying 8559 faults as DFP and RFP takes less time

than detecting 99 DFP s. We observe that the overall gain becomes significant when there are

an increased number of faults to be grouped during test pattern generation, and the number of

conflicts typically increases with the benchmark size. The reason for this increase in the ratio is
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due to the reduction of conflicts from the initialization of the multiple key bits in the SAT-attack

tool.

7.4 Summary

In this chapter, we presented how the widely explored SAT attack on logic locking can be

used to identify redundant faults and generate test patterns for hard-to-detect stuck-at faults.

We first present the miter construction of stuck-at faults to a key-dependent locked circuit so

that the powerful SAT tool can be used. This ensures that the input patterns used to break our

logic locking technique can be applied to detect the stuck-at faults. Since the SAT-based attack

effectively breaks multiple logic locking schemes, we exploit it to generate test vectors for

stuck-at faults with the corresponding locked circuits. If faults are observable at the primary

output, the distinguishing input patterns returned from the SAT attack can expose them. On

the other hand, if any faults are redundant, no distinguishing input can be found from the SAT

attack, and the program finishes directly with the UNSAT conclusion from the SAT solver.

By applying our proposed approach, we were able to identify any redundant faults from the

undetected stuck-at faults reported by the ATPG tool or obtain the necessary test patterns for

those non-redundant hard-to-detect faults. Our test pattern generation approach can also be

optimized for a reduced pattern set by grouping multiple faults into a single locked circuit.
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Chapter 8

On-Demand Device Authentication using Zero-Knowledge Proofs for Smart Systems

Over the past decades, the world has experienced a booming Internet along with its wide range

of web applications. The success of the interconnected computer network fuels the emergence

of lightweight Internet of Things (IoTs), or edge devices. In turn, the advancement and adop-

tion of IoTs and cyber-physical systems (CPS) offer foundations for smart cities and offered

solutions to critical infrastructures such as transportation, public safety, health care, smart grid,

etc. With 14.4 billion IoT devices currently connected to the Internet [271], this number is

estimated to climb to 55.7 billion by 2025 [272]. These low-cost devices are deployed in the

field for better integrating computing, cyber, and physical spaces, often in which proprietary

information is included. However, this abundance of devices presents a severe challenge to en-

suring the overall security of the connected infrastructure, as a genuine device can be replaced

with a cloned one with a backdoor. Authenticating each device is a must to ensure the integrity

and security of the IoT network as a whole. The insider threat [273, 274] is a looming issue,

as it is challenging to monitor all edge devices while they are operational. An adversary can

replace an authentic device with its cloned version and can gain access to the entire infrastruc-

ture, bypassing all security measures [275–277]. It is essential to authenticate an edge device

regularly so the server can periodically evaluate and monitor its fidelity. The response received

from an edge device serves as an indicator of its true identity.

Device authentication mechanisms using physically unclonable functions (PUFs) have

been proposed over the years [278–283]. Unfortunately, PUFs can be modeled if an adver-

sary observes a set of challenge-response pairs (CRPs), and the responses can be predicted
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without accessing the physical device [284–288]. It is necessary to develop a novel commu-

nication protocol where an adversary cannot access PUF responses and thus cannot model the

PUF. In addition, the secrecy of the PUF response should be kept secure even after repeated

authentication. When deployed, the device must be checked regularly to detect the malicious

replacement with a cloned counterpart. The same level of trust for a device must be maintained

after post-deployment [289].

This chapter proposes an efficient, secure, and on-demand device authentication protocol

using zero-knowledge proofs (ZKPs) [31]. The signature from a physically unclonable function

(PUF) is used to create the proof, which can be verified by the central server acting as a verifier

without storing the actual PUF response. The edge device periodically generates proofs using

a self-generated random seed. The proof can then be made public for verification for anyone

with the common reference string (CRS). This allows repeated authentication by verifying the

identity of an edge device without access to the PUF secret.

This chapter is organized as follows. We introduce PUF and ZKP in Section 8.1. The

proposed IoT device authentication framework is described in Section 8.2. The experimental

result and performance analysis for the proposed approach are described in Section 8.3. Finally,

we conclude the paper in Section 8.4.

8.1 Background

This section presents an overview of physically unclonable functions (PUF), the PUF-based

secure communication protocols, and their challenges. We describe the prior work on ZKPs,

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARK), and elliptic

curve pairing-based zk-SNARK.

8.1.1 Physically Unclonable Functions

Throughout the years, the research community has proposed various architectures for phys-

ically unclonable functions (PUFs) and their implementations [278, 290–292]. PUFs derive

their behavior from the inherently uncontrollable and unpredictable variations in the semicon-

ductor manufacturing process. Therefore, its application involves security and privacy-related
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research for its ability to generate unclonable bits as a unique key for identification and authen-

tication. Over the years, different types of PUFs have been proposed, e.g., arbiter PUF [290],

ring oscillator PUF (ROPUF) [278, 293], SRAM PUF [291, 292], among others. These de-

signs leverage the unclonable characteristic in path delay and/or threshold voltage biases to

demonstrate the uniqueness of PUF.

Multiple PUF-based device authentication protocols have been proposed in recent years [278–

283]. Arbiter PUFs and ROPUFs were first applied in device authentication [278], where the

server keeps a database of CRPs for each PUF instance. SRAM PUF-based authentication

protocols [279, 283] also explicitly store PUF responses on the server side for verification or

key derivation. Chatterjee et al. does not keep PUF responses in the verifier’s database, but

the offlined security credential generator has those copies from the enrollment phase [281].

Although security is guaranteed for the above-mentioned algorithms with unclonable PUFs,

machine learning attacks with a subset of given challenge-response pairs (CRPs) have been

demonstrated effective in accurately predicting responses [284–288]. Rührmair et al. first ex-

ploits logic regression for learning the features in CRPs to predict unseen Arbiter and XOR

Arbiter PUF responses with high probability [284]. Subsequently, different machine learning-

based attacks have surfaced to target the extrapolation of PUF responses from various PUF

architectures [285–288].

8.1.2 Zero-Knowledge Proofs

The overarching goal of ZKPs is to convince a verifier that a prover possesses an existing se-

cret without ever revealing the secret. These proofs were conceptualized initially in 1985 by

Goldwasser et al. [29]. This laid the foundation for the subsequent development of the Feige-

Fiat-Sharir protocol, one of the first identification schemes using interactive ZKPs [294]. In

interactive ZKPs, real-time communication between the prover and the verifier is necessary to

complete the protocol. Non-interactive ZKPs, on the other hand, relieve both parties from re-

peated communications. This concept is first explored through Fiat-Shamir heuristic [295] and

then developed by Blum et al. [296]. The non-interactive nature and the adopted random oracle
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model allow any entity to verify the validity of a proof, where the proof generation no longer re-

lies on the verifier-dependent random values. Succinct non-interactive zero-knowledge proofs

(zk-SNARKs), however, requires the verification time on the order of logarithmic time com-

plexity with respect to the circuit size. In other words, zk-SNARKs are non-interactive zero-

knowledge proofs efficient to be validated by the verifier. The popular cryptocurrency ZCash

uses the Zerocash framework [297] with zk-SNARK proof system to ensure the anonymity of

user identity [298]. Over the years, different zk-SNARKs protocols have been proposed and

quickly gained popularity in privacy-based blockchain applications, such as Pinocchio [299],

Groth’16 [31], Bulletproofs [32], Sonic [300], Marlin [301], etc.

8.1.3 Pairing-based zk-SNARKs

Despite various ZKPs having been proposed recently, the zk-SNARK proposed by Groth [31]

remains to be very efficient both for the shorter proof size and less computation complexity

for the verifier [31, 300]. Groth’16 operates on pairing-based cryptography, whose underlying

cryptographic hardness lies in the bilinear Diffie-Hellman problem on elliptic curves [302].

It constructs the rank-1 constraint system (R1CS) of a quadratic arithmetic program (QAP)

with ℓ public statement, where each gate represents a multiplication/exponentiation operation

on elliptic curve. Computations are performed under bilinear groups (G1,G2,GT ) that forms a

non-degenerate bilinear mapping G1×G2 → GT . The constant proof size contains 3 group ele-

ments, 2 in G1 and 1 in G2. Once a proof is received, the verifier will compute ℓ exponentiation

in G1, 3 pairing values, and check the quantitative equivalence of pairings in GT .

8.2 Proposed Approach

This section details our proposed zk-SNARK-based approach for IoT device authentication.

The zero-knowledge scheme provides security to PUF-based IoT verification methods with-

out revealing the secret asset in each edge device, e.g., PUF response. Figure 8.1 shows the

overview of the proposed method, which consists of two phases, the registration phase and the

operational phase. The first phase consists of PUF calibration and response extraction, and ini-

tialization of parameters necessary for the trusted setup of zk-SNARK. This phase is performed
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in a trusted environment right before the deployment of IoT devices. Once the device is in the

field, it can be periodically checked and verified by the trusted server by validating zk-SNARK

proofs it generated.

8.2.1 Threat Model

This chapter assumes the adversarial capability of replacing the authentic device with a coun-

terfeit, tampered, or cloned device. In addition, the threat model assumes that the device does

not provide direct access of the PUF challenge-response pairs. This is practical as the semi-

conductor industry typically disables the scan chain access after the manufacturing test [77].

Similar features of blocking scan access can be implemented here to prevent attackers from ob-

taining the PUF responses. The adversary simply cannot bypass the security mechanism while

the device is in the field.

8.2.2 Registration Phase

Registration of the edge device begins with creating a stable PUF response at a given challenge.

We follow the pairing-based zk-SNARK construction of Groth’16 [31] to authenticate and

verify IoT devices using each device’s inherent secret asset without revealing it to them. In the

registration phase, both the central server and the edge device need to build a mutually agreed

relationR and trusted setup σ, as shown in steps 1 and 2 in Figure 8.1. Additionally, a valid

hash for the PUF response and its error correction syndrome will be computed and made public

by the edge device, as shown in steps 3 and 4 in Figure 8.1. This initialization phase can be

completed in a secure environment as the central server is considered as trusted.

• Construct RelationR: Before constructing and validating proofs, both parties need to agree

on the public parameters, similar to Alice and Bob coordinating on the same prime and prim-

itive root for computations in the Diffie-Hellman protocol [303]. In the ZKP protocol, the

relation R is mutually communicated between both the prover and the verifier. Let R be a

relation of a given security parameter λ with prime field Fp, generators g1, g2 ∈ Fp of elliptic

curve groups G1,G2 of prime order q, bilinear mapping e : G1 × G2 → GT of prime order q
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Figure 8.1: The proposed device authentication scheme using ZKPs.

with generator gt = e(g1, g2), scalars m, ℓ, 3m polynomials {fAi
(X), fBi

(X), fCi
(X)}mi=1 of

degree n− 1, and polynomial fZ(X) of degree n,

R =

 p,G1,G2,GT , e, ℓ,

{fAi
(X), fBi

(X), fCi
(X)}mi=1, fZ(X)

 .
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Due to the process variations in chip manufacturing, the SRAM inside each IoT device

contains its own unique signature, i.e., the power-up state of the SRAM cells [291, 304]. It

is feasible to extract an SRAM PUF from the stable bits by calibrating and eliminating the

unstable bits from the power-up state. This is applicable to other types of PUFs also. A set

of challenges {c1, . . . , ch, . . .} can be constructed for a PUF. For a given challenge ch, one

can obtain a unique PUF response wh for each device and the corresponding error correction

syndrome yh to ensure consistency in wh. Due to the unclonable property of the PUF response,

the IoT device has secret witness wh, and the corresponding hash value as the public statement

sh = hash(wh). The concatenation of witness wh and statement sh is the solution to the

quadratic arithmetic circuit in R1CS defined over {fAi
(X), fBi

(X), fCi
(X)}mi=1 and fZ(X),

m∑
i=1

difAi
(X) ·

m∑
i=1

difBi
(X)−

m∑
i=1

difCi
(X) = fQ(X)fZ(X),

where fQ(X) is the quotient polynomial of degree n − 2, sh = (d1, . . . , dℓ) ∈ Fℓ
p, wh =

(dl+1, . . . , dm) ∈ Fm−ℓ
p , and d = (d1, . . . , dm) = (sh, wh) ∈ Fm

p . As it involves the secret

witness wh, the quotient polynomial fQ(X) is computed by the edge device and is not shared

with the central server.

• Initialize Trusted Setup σ: During the trusted setup, the IoT device and the central server

compute the common reference string (CRS), which is essentially the basis for both proof

generation and validation. It applies the polynomials derived from the relation R with R1CS

arithmetic circuit to construct the public elliptic curve points in G1,G2. It is called a trusted

setup due to the fact that the creation of CRS σ needs the uniform sampling of 5 random

values α, β, γ, δ, x from the prime field Fp, denoted as α, β, γ, δ, x
$←− Fp. Note that, in the

registration phase, we consider both the edge device and the servers as trusted. One can select

these variables at random and from the uniform distribution. Once these values are determined,

elements in both cyclic groups G1,G2 are generated to construct the CRS σ,
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gα1 , g
β
1 , g

δ
1,
{
gx

i

1

}n−1

i=0
,
{
g
δ−1xifZ(x)
1

}n−2

i=1{
g
γ−1·

(
βfAi

(x)+αfBi
(x)+fCi

(x)
)

1

}ℓ

i=1{
g
δ−1·

(
βfAi

(x)+αfBi
(x)+fCi

(x)
)

1

}m

i=ℓ+1

gβ2 , g
γ
2 , g

δ
2,
{
gx

i

2

}n−1

i=0
, gαβT


.

The pairing gαβT = e(gα1 , g
β
2 ) is also evaluated to improve further the computational succinctness

for the verifier (server). Note that this device-specific CRS is stored on both parties and can

be made public. As for the server, it is required to distinguish the CRS from one edge device

to another, where a unique set of parameters in σ is constructed from each IoT device with its

secret witness.

• Generate and Publicize Syndrome yh and Statement sh: Although error correction syn-

drome is required for computing the stable PUF response, each edge device can further opti-

mize its resource utilization without saving them on the device itself. The syndromes for all

challenges in set {c1, . . . , ch, . . .} can be sent to the server instead. Syndrome yh is computed

over the PUF response wh given the challenge ch, where the server will transmit it back to the

device before proof generation. Proving the knowledge of a secret witness, i.e., PUF response,

involves statements in non-deterministic polynomial time complexity (NP) [29]. It can be per-

formed by proving to the verifier the knowledge of the preimage of a hash generated from

collision-resistant and preimage-resistant hash algorithm [305]. This requires the server to be

able to check the statement of a valid confirmed response against a newly generated one. Thus,

during the trusted phase, the statement sh = hash(wh) is computed at the IoT node and is then

made public by the corresponding node. The device can simply broadcast its sh value in the

IoT network. Steps 3 and 4 of Figure 8.1 show the transmission and acceptance of sh from

the device to the server. Note that the adversary cannot obtain the PUF response from its hash

sh due to the preimage resistance of the secure hash algorithm. In case of updating the PUF

response with another challenge ch′ , new statement and syndrome can be generated and made

public based on the updated response wh′ .
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8.2.3 Operational Phase

Once the IoT device is deployed in the field, the central server needs to ensure that adversaries

cannot masquerade a malicious device as the genuine one, nor can they replace an authentic

device with a clone/counterfeit one. Therefore, it is important to guarantee the authenticity of

the device, where the server needs to query the device for a response and evaluate or certify the

legitimacy of the device. To counter the attacker from the malicious substitution of edge de-

vices, we propose the periodic authentication of devices, where proofs are generated from IoT

nodes and are delivered to the server for verification. For each device, we denote its jth proof

πj and the corresponding verification vj with subscript j, where j = 1, 2, 3, ... The proposed

on-demand authentication allows the prover to initiate the proof generation, independent from

the verifier, the server. In case of the required error correction syndrome needs to be retrieved

online, the server can then initiates the proof-verification process by sending the corresponding

syndrome yh to the edge device for error correction in PUF extraction, as in step 5 in Fig-

ure 8.1. Proof generation begins in an IoT device after it obtains the witness wh with challenge

ch and syndrome yh.

• Proof Generation πj: To prevent an adversary’s malicious replacement of the edge device

while deployed in the field, we secure the device authentication with proof generation and

validation from the zk-SNARK protocol. The authentic device is trying to prove to the server

that it knows the preimage of the hash value sh without disclosing it to the server. The proofs

in the zk-SNARK reveal nothing about the secret witness itself, i.e., perfect zero-knowledge,

due to the fact that it incorporates additional random values. In order to generate multiple

proofs for the same device at different time intervals, it can be done for the jth proof πj by

randomly selecting a different set of (u, r), sampled from Fp with uniform distribution, e.g.,

a random oracle, denoted as uj, rj
$←− Fp. Both the secret witness wh = (dl+1, . . . , dm)

and the public statement sh = (d1, . . . , dℓ) are used during the proof construction. The proof

πj = Π (σ, sh, wh, uj, rj,R) = (πA, πB, πC) consists of three elliptic curve points (πA, πB, πC)
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with πA, πC ∈ G1 and πB ∈ G2,

πj =

(
πA = gz11 , πB = gz22 , πC = g

rjz1+ujz2+z3−ujrjδ
1

)
,

where z1, z2, z3 are computed as follows.

z1 = α +
m∑
i=1

difAi
(x) + ujδ; z2 = β +

m∑
i=1

difBi
(x) + rjδ;

z3 = δ−1

m∑
i=ℓ+1

di
(
βfAi

(x) + αfBi
(x) + fCi

(x)
)
+fQ(x)fZ(x)

• Proof Verification vj: Once proof πj has been received, the verifier can check the validity of

the device by evaluating πj with the public statement sh. The server performs computations in

GT due to the bilinear property of e(ga1 , g
b
2) = e(g1, g2)

ab in G1 × G2 → GT . The verification

vj = V(σ, πj, sh,R) check whether the following equality holds,

e(πA, πB) = gαβt · e(g
ϕ
1 , g

γ
2 ) · e(πC , g

δ
2)

with ϕ defined as:

ϕ = γ−1
( ℓ∑

i=1

di
(
βfAi

(x) + αfBi
(x) + fCi

(x)
))

.

The pairing equality is satisfied only when the prover, the IoT node, has full knowledge of the

input wh that matches sh = hash(wh). This is due to the negligible probability of the adversary

succeeding in convincing the verifier of a false statement or finding the preimage of hash sh,

e.g., the soundness property of zero-knowledge argument. If the device verification passes

(vj = 1), the device is considered trusted at present, and communications and interactions can

proceed as normal. If the server cannot validate the proof (vj = 0), the device authentication

fails, and that IoT node is marked as untrusted. The server can then terminate its connection to
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the specific edge device, followed by additional countermeasures if possible.

vj =

{
1, e(πA, πB) = gαβt · e(g

ϕ
1 , g

γ
2 ) · e(πC , g

δ
2)

0, e(πA, πB) ̸= gαβt · e(g
ϕ
1 , g

γ
2 ) · e(πC , g

δ
2)

With a predefined interval set between the server and each edge device, the IoT node can

periodically send proofs to server and get it verified. For example, step 6 of Figure 8.1 shows

device generates its first proof π1 with random values (u1, r1)
$←− Fp. The server verifies proof

π1 in step 7 , and it would issue termination of connection if proof verification failed (v1 = 0).

Similarly, the device generates the jth proof πj at the appointed time interval with syndrome yh

(step j ) after all prior (j− 1) proofs are validated, shown in step j+1 of Figure 8.1. The server

would perform the same verification as before to determine the authenticity of the device.

8.2.4 Security Analysis

The zk-SNARK protocol offers the proposed device authentication framework with additional

security strength over the conventional counterparts. We analyze and provide proof sketch for

the security strength of the proposed framework under three fundamental properties of ZKP,

completeness, soundness, and zero-knowledge [29].

•Machine Learning Attack Resistance Analysis: As the device fingerprint is proved to the

verifier without transmitting it or revealing it through the communication channel, the adversary

will not find the secret fingerprint when monitoring the data packets between the device and

server. The zero-knowledge property guarantees the proof πj reveals nothing about the secret

witness itself or the PUF response wh. Moreover, due to the preimage resistance of the hash

algorithm, the probability of the attacker’s success in finding the preimage wh from its hash

value sh is low and generally less likely than the probability of hash collision. For the widely

adopted MiMC hash construction [306], it has a 256-bits preimage security and a 128-bits

collision security. This means the adversary cannot determine the PUF response of a device

from its hash. As no response is ever leaked to the attacker during the IoT device authentication,

it is not practical to construct a set of known CRPs for training the machine learning algorithm
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nor the subsequent attack to predict the unseen PUF response. Thus, it is infeasible for a

malicious actor to launch machine learning-based attacks to model the PUF, as no training

dataset can be extracted.

• Proof Verification with Trusted Delegates: Conventional device authentication schemes

have a designated machine (i.e., server) for validating the IoT device. This is due to the fact that

the challenge-response pairs of edge devices, along with the public error correction syndromes,

are stored in the secure server. Recall that the CRS σ and statement sh are treated as public

parameters, the server can essentially outsource the verification to some trusted parties for

performing the necessary computation instead. With the soundness property, a non-polynomial

time adversary would be impossible to use randomly generated proofs to convince the trusted

delegates (or the server) of the validity of fake proof [31]. For honest prover, the completeness

property ensures that its proof can be validated by verification protocol. Therefore, having

trusted delegates, it is possible to ease the workload of the central server in response to huge

verification queries.

• Replay Attack Prevention: The proof validation relies on matching pairing-based com-

putation of hash value and proof. However, considering these proofs are made public after

generation, an adversary that passively observes the communication channel could save these

valid proofs and reuse them if the edge device was compromised. To prevent this, an extra layer

of security must be added to save and check if a proof has been used before, as newly generated

proofs will be unique. Therefore, the server may need to save each proof for later comparison

to check for proof uniqueness.

8.3 Experimental Results

We have implemented our proposed IoT device authentication protocol with the Raspberry

Pi 4 Model B. This device is commonly used in IoT applications today and is one of the most

flexible microcontrollers on the market. Proof verification is done on a Ubuntu laptop, acting as

the central server. Our proposed authentication protocol is built on top of the ZPiE library [307,

308] with Groth’16 zk-SNARK [31]. Figure 8.2 shows the setup of our implementation, where
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Figure 8.2: Implementation setup with Raspberry Pi 4 Model B as edge devices and laptop as the
central server.

edge devices and the central server communicate through a wireless network. The edge device

creates a proof once it periodically receives the server’s request for its authentication.

8.3.1 Performance Analysis

Although zk-SNARK proof generation has a relatively high computational workload than proof

verification, it only needs to be performed sparingly to be used effectively. Note that the zk-

SNARK is designed to allow the prover to convince the verifier of the knowledge of its secret

in a single proof, due to the negligible success of a dishonest prover cheating with a false state-

ment under a sound zk-SNARK protocol [31]. For edge devices already deployed in the field,

monitoring with regular authentication is needed to ensure the integrity of the device. In our

proposed authentication scheme, the proof generation is performed on device startup to simu-

late a periodic yet moderately frequent device verification schedule. As the device would likely

be powered off during any form of replacement, this schedule would check at each possible

window while not using extremely high amounts of computational power. Figure 8.3 shows

the distributions of both proof generation and verification with box plots. Over 60 tests on the

Raspberry Pi 4 Model B using ZPiE’s single-threaded setting, the average proof generation time
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Figure 8.3: Box plots of (a) proof generation time by Raspberry Pi as IoT devices, (b) proof verification
time by a laptop as a server.

is 232.7 ms. Similarly, the average verification time of Groth’16 proofs on the server is 1.54

ms. This advantage of fast proof verification allows the server to compute them frequently with-

out noticeable delays in simultaneously fulfilling verification requests from multiple devices.

The computationally lightweight proof verification by the server permits the rapid expansion

of enrolled devices in the IoT network as the verification time is scalable to a larger IoT device

count. Overall, the verification time is extremely short, and the proving time is also short when

considering the scale and frequency with which this protocol would be performed.

8.4 Summary

This chapter presents a novel authentication protocol for IoT devices using the state-of-the-art

zk-SNARK algorithm with SRAM PUF as the device fingerprint. Our proposed ZKP-based

approach can guarantee the secrecy of the PUF response even if the central server gets compro-

mised. It resists machine learning-based attacks and the attacker’s attempts to extrapolate the

PUF responses, as the adversary can never observe any challenge-response pair from analyz-

ing the entire communication between the server and a particular edge device. Our proposed

scheme can further prevent the potential replay attack or impersonation if the adversary moni-

tors the communication channel. In addition, delegating the verification work to trusted parties

is possible when the server is busy with different verification requests. We demonstrated our

proposed framework by implementing it on Raspberry Pi 4 Model B boards as edge devices
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with ZPiE open-source library. Proofs generated by the IoT devices are sent to the server via a

wireless network, and the server can verify them very efficiently within a few milliseconds.
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Chapter 9

Conclusions and Future Work

This dissertation focuses on hardware-based attacks and/or solutions in cryptography, hardware

security and VLSI testing.

In Chapter 3, we focused on attacking the GIFT-COFB, a NIST Lightweight Cryptog-

raphy finalist. Due to the similar SPN structure it has with AES, we proposed an attack to

extract the keys from GIFT-COFB in O(24) key-search complexity. Our attack thwarts the

interdependencies of 4-bit key cells in the partial-unrolled structure of GIFT-COFB.

In addition, we proposed novel fault injection attacks on Advanced Encryption Standard

(AES). For fault injection attack of AES in Chapter 4, a single fault injected in the completion-

indicator register allows a O(28) key-search complexity to determine the correct key. The

interdependencies of key bytes are fully decoupled in this attack. This attack offers insights

into fault injection-based attack combined with algebraic cryptanalysis.

In hardware assurance, we examined secure logic locking techniques, one of the primary

methods to prevent IP piracy and IC overproduction. The obfuscation of the inner details of a

circuit with secret key and key gates are the primary elements in logic locking. However, SAT

attack proposed by Subramanyan et al. [100] effectively breaks the keys of these locked circuits

with minutes or even a tiny fraction of a second. The theoretical and analytical justifications

behind the efficiency of the SAT attack were explored in this dissertation for the first time

(Chapter 5). By examining the conjunctive normal forms (CNFs) stored in the SAT solver,

the iterative implicit pruning of incorrect keys is revealed. We demonstrated the average linear

iteration complexity in the SAT attack against secure locking schemes, ranging from pre-SAT

techniques to post-SAT solutions. In secure logic locking, ATPG-guided fault injection attack
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was proposed in Chapter 6, where the average number of faults required to break full key

length is linear with respect to the total key length, with worst-case complexity being K2. For

the SAT-resistance SFLL schemes, our proposed attack can break with K·(K−1)
2

faults in total.

Although the SAT attack is devastating to logic locking solutions in the pre-SAT era, the

constructive use of the SAT attack can further boost the fault coverage in VLSI test pattern

generation. We demonstrated in Chapter 7 that the SAT attack-based miter construction and

fault modeling can identify redundant faults and generate test patterns for hard-to-detect stuck-

at faults. Further optimized test pattern sets can be obtained when converting multiple faults

inside a single locked circuit.

Finally, we explored the application side of privacy-enhancing technologies (PETs) and

how it can benefit the IoT device authentication. In this dissertation, we took a novel perspective

to apply PETs, specifically Zero-Knowledge Succinct Non-Interactive Argument of Knowl-

edge (zk-SNARK), for protecting on-device PUF secret even in the worst-case scenario of a

devastating hack at the central server. The adversary could not learn PUF’s unique challenge-

response pairs using machine learning-based attacks due to the completeness, soundness, and

zero-knowledge properties of zk-SNARK.

9.1 Future Work and Possible Directions

Multiple directions are possible as future research. With the blooming field of 3D integration,

solutions providing assurance in the 3D chips’ supply chain will certainly be welcomed by

the research community and the broader industrial partners. This can range from modular

blockchain-based proof-of-concepts and solutions [11] to secure obfuscation designs of chiplets

with passive and active defense against malicious adversaries.

Boolean Satisfiability (SAT) is one of the NP problems with interesting applications rang-

ing from mixed integer linear programming, hardware security, model counting, and more. The

recent advancement of SAT solvers offers more capabilities to solver complex problems, once

proper CNF conversion is done. It is possible to explore test pattern generation with better

test compaction by SAT solver alone, without invoking any commercial ATPG tool. As test

time per chip plays an important role in manufacturing tests after chip fabrication, keeping a
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low number of test patterns, or reduce test time, becomes one of the prime objectives for VLSI

testing in addition to achieving the desired fault coverage. We plan to apply random patterns

to the fault simulator to detect a majority of the easy-to-detect faults and combining multiple

faults in a single locked circuit with SAT-based approach.

Last but not the least, future studies can also be focused on achieving security assur-

ance with the latest development in privacy-enhancing technologies, where the adversaries can

corrupt some parties and maliciously obtain partial information, however, the overall system

remains secure and they still cannot gain control over the entire digital system. This will be

particularly useful even if the attackers possess more sophisticated capability than previous

published assumptions, i.e., where some of the adversaries will try to collude together to try to

break the hardware assurance. Novel solutions tailored for various stronger adversarial models

would likely be desired in the near future.
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