
Journal of Electronic Testing
https://doi.org/10.1007/s10836-020-05859-4

Improved Pseudo-Random Fault Coverage Through Inversions:

a Study on Test Point Architectures

Soham Roy1 · Brandon Stiene2 · Spencer K. Millican1 · Vishwani D. Agrawal1

Received: 31 August 2019 / Accepted: 14 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This article analyzes and rationalizes the capabilities of inversion test points (TPs) when implemented in lieu of traditional
test point architectures. With scaling transistor density, logic built-in self-test (LBIST) quality degrades and additional efforts
must keep LBIST quality high. Additionally, delay faults must be targeted by LBIST, but delay faults can be masked when
using control-0/1 (i.e., traditional) TP architectures. Although inversions as TPs have been proposed in literature, the effect
inversion TPs have on fault coverage compared to traditional alternatives has not been explored. This study extends work
previously presented in the North Atlantic Test Workshop (NATW’19) and finds both stuck-at and delay fault coverage
improves under pseudo-random tests using inversion TPs, and extended data collection finds noteworthy trends on the
effectiveness of TP architectures.

Keywords Design for test · Built-in self-test · Test points · Delay test

1 Introduction

Circuit test is a critical part of the integrated circuit
(IC) manufacturing process which prevents the release of
defective circuits: by applying stimulus to manufactured
ICs, defects created during silicon lithography are excited
and detected. The cost of testing circuits is a significant
portion of IC manufacturing costs [25], and as transistor
density continues to scale upwards, circuit test costs are
increasing and efforts continue to keep these costs down.
The challenge of circuit test is reducing test-related costs

Responsible Editor: T. Xia

� Spencer K. Millican
millican@auburn.edu

Soham Roy
szr0075@auburn.edu

Brandon Stiene
bstiene@nvidia.com

Vishwani D. Agrawal
agrawvd@auburn.edu

1 Auburn University, Auburn, AL 36849, USA

2 Nvidia, Madison, AL 35748, USA

while 1) preventing the release of defective circuits whilst
2) not discarding good devices. To obtain these goals, small
increases in fault coverage are worth investment to reduce
manufacturing defect levels.

Pseudo-random testing is an effective circuit testing
method, both during manufacturing and for post-delivery
reliability checks. Although pseudo-random tests detect
fewer defects per test compared to deterministic, circuit-
specific tests, i.e. those generated by automatic test pattern
generators (ATPGs), they require less computational effort
to generate and can be applied with minimal on-chip hard-
ware. Pseudo-random tests have several additional advan-
tages: 1) pseudo-random tests do not require expensive
automatic test equipment (ATE) since they can be applied
by logic built-in self-test (LBIST) hardware, 2) pseudo-
random tests can easily be applied “at-speed” to increase
delay test quality, and 3) pseudo-random tests can be applied
“in-the-field” to confirm circuit reliability.

The utility of pseudo-random tests degrades for modern
technologies due to random-pattern-resistant (RPR) faults,
and approaches can modify pseudo-random tests to detect
such faults. RPR faults naturally occur in complex
logic circuits, and since fulfilling consumer demands
requires ever-more complex circuits, RPR fault density will
continue to increase in new technologies. Many methods
improve RPR fault coverage and reduce test lengths of
pseudo-random test patterns, with a common technique

personal copy

J Electron Test

being test point (TP) insertion (TPI) [15]. Other methods
of improving pseudo-random test effectiveness include
changing the nature of random stimuli, such as deterministic
seeding [39] and pattern weighting [28], but modifying
circuit logic during test using control and observe TPs is still
widely used due to their ease-of-implementation on circuit
netlists.

This study analyzes the effectiveness of atypical inver-
sion TPs in lieu of traditional control and observe TPs [2]
by analyzing the stuck-at and delay fault coverages achieved
using these TP architectures, which has not been examined
by earlier studies on inversion TPs [3, 12, 29, 31]. Inversion
TPs are not the standard TP architecture in modern litera-
ture and industrial tools, and this study will motivate their
use by the electronic design automation (EDA) industry for
their design for test (DFT) tools. Although inversion TPs
have been introduced in previous literature [3, 12, 31], their
utility compared to conventional TP architectures was not
analyzed.

This article extends work presented at the North Atlantic
Test Workshop (NATW’19) [30]; it was the first article
to explore the effectiveness of inversion TPs at improving
stuck-at and delay fault coverages compared to conventional
TP architectures. The original article made the following
contributions, which are reiterated in this article.

– A rationale for the effectiveness of inversion TPs
compared to conventional control TPs is provided.

– Experiments empirically demonstrate inversion TPs
frequently improve stuck-at fault coverage compared to
conventional control TPs.

– Experiments demonstrate inversion TPs frequently
improve delay fault coverage compared to conventional
control TPs while not degrading stuck-at fault coverage.

Through significantly expanded data collection and a
wider exploration of TP architectures, this extended article
adds the following contributions:

– An environment more representative of the industrial
application of TPs is implemented: this demonstrates
inversion TPs remain superior under typical DFT
practices.

– The fault coverage impact of observation points
is explored, further supporting the fault coverage-
increasing qualities of inversion TPs.

The remainder of this article is organized as follows.
Motivation and a literary history for this study is described
in Section 2. Inversion TPs and their function are discussed
in Section 3. The experimental setup to evaluate a TP
architecture’s abilities is given in Section 4. Results and
discussions on these experiments are given in Section 5, and
conclusions and future research directions are expressed in
Section 6.

2Motivation

Pseudo-random tests are repeatable circuit stimuli generated
by a pseudo-random pattern generator (PRPG) in an LBIST
environment. The typical hardware schema for applying
pseudo-random tests is illustrated in Fig. 1. A PRPG is
typically implemented with a linear-feedback shift register
(LFSR) [4], although other architectures that generate
predictable stimuli can be used. To apply tests, the PRPG
is first loaded with a “seed” that determines future stimuli.
The circuit is then programmed to take inputs from the
PRPG as opposed to normal circuit inputs. With each
stimulus applied, circuit outputs are directly observed
or compressed into a “signature” generated by signal
compression hardware (e.g., a multiple-input signature
register (MISR) [10]). This signature is compared against
a simulated value, and if the hardware signature matches
the simulated signature, the circuit is considered defect-
free. Although a false defect-free signature is possible (i.e.,
“aliasing” [19]), this occurrence is practically impossible for
significantly-sized compactors.

There are many motivations for using pseudo-random
tests, the first being they do not require expensive ATE to
apply and can substantially reduce testing costs. ATE is
manufacturing equipment that applies stimuli and measures
responses. ATE requires expensive signal application and
measurement equipment that applies consistent stimuli
and takes accurate measurements, thus the purchase, use,
and maintenance of ATE significantly impacts circuit
manufacturing costs [33]. Alternatively, PRPGs can apply
tests with minimal on-circuit hardware and the cost of ATE

Fig. 1 The typical arrangement of pseudo-random testing hardware.
While under test, memories are accessed as scannable flip-flops
connected to one or more scan chains [4]. The scan chains receive
inputs from a PRPG and memory states feed into a response compactor

Author's personal copy

J Electron Test

can be eliminated (or minimal-cost ATE can be used during
manufacturing).

A second advantage of pseudo-random tests is they can
easily be applied “at-speed” to increase test quality. ATE
applies (and observes) tests at limited speeds due to the
latency of external circuit connections: this impacts test
quality since tests must be applied at a circuit’s designed-
speed (found through delay simulation or static timing
analysis) to detect delay-causing defects [21, 26]. Circuits
can be modified to apply tests at-speed using external ATE
[11], but these modifications degrade circuit performance
and increase circuit power consumption. Since PRPGs are
implemented on-circuit, they can more easily apply tests at-
speed and detect delay-causing defects [27]. However, the
use of PRPGs for at-speed test requires caution: PRPGs may
excite non-functional false timing paths, and if the circuit
runs faster than these non-functional paths allow, random
patterns may cause all functionally-good circuits to fail the
test [17].

A third advantage of using PRPGs for tests is since
they do not require external ATE, they can be used “in-
the-field” to check a circuit’s reliability. Post-manufacturing
degradation failures and temporary “soft errors” have
been observed for modern technologies [14, 34, 35],
which concerns life-critical applications (e.g., medical,
transport, etc.). Therefore, high-quality tests must be
applied periodically after manufacturing. Doing this with
ATE is impossible due to its size and cost, but pseudo-
random tests can be run in-the-field with ease: test hardware
is built into the circuit and can be activated by programming
the appropriate signals.

The effectiveness of pseudo-random tests is impaired
by the presence of RPR faults, which naturally occur
in complex logic circuits. RPR faults [13] are logical
representations of defects unlikely to be detected using
random stimuli, i.e., RPR faults are detected by a small
set of test vectors among all possible stimuli. Although
the probability of detecting RPR faults is improved by
applying more test vectors, the number of vectors required
may be infeasibly large. A typical example of such a fault
is illustrated in Fig. 2: exciting and observing the indicated

Fig. 2 An example of a fault requiring one specific vector to detect,
which is unlikely to be generated using random stimuli

fault requires 32 logic-0s to be applied to the OR gate and
32 logic-1s to be applied to the AND gate, and presuming all
inputs have an equal probability of being logic-0 or logic-1,
the probability of this occurring is 2−64 ≈ 5.4·10−20, which
is not feasible using random stimuli.

2.1 Test Point Insertion (TPI)

TPs are circuit modifications that increase fault detection
probabilities, and the process of inserting TPs is named
TPI. TPs modify circuits during test (but do not change
the circuit function outside of test) and make RPR faults
easier to excite and observe. Since TPs create undesirable
design overheads (added circuit area, power, and delay),
TPI methods attempt to select TP locations and TP types
to increase fault coverage as much as possible while
minimizing the number of TPs. This constraint can be
expressed as, “maximize fault coverage given TP limits,”
or “minimize TPs given fault coverage limits,” but an
algorithm which performs one can easily be converted to
perform the other. This study performs the former.

Many TPI algorithms have been proposed in literature,
and TPI is typically performed with the following steps.
First, fault simulation is performed on the circuit to identify
RPR faults. This simulation replicates a sub-set of vectors
to be applied to the circuit, but additional vectors will
be applied to the circuit with TPs enabled. Second, TPs
are iteratively selected for insertion using a TP evaluation
method (see below). Third, selected TPs are inserted in
the post-synthesis circuit netlist. Alternatively, TPs can be
inserted during or before logic synthesis at the expense of
synthesis complexity [37].

TPI algorithms targeting RPR faults can be divided into
two general categories, the first being methods using fault
simulation. After performing fault simulation, any faults
not yet detected can be labeled as RPR, and several TPI
algorithms take advantage of this to target such faults. These
algorithms use heuristics to target not-yet-detected faults
[18], with some generating and using additional statistics
during simulation, e.g. signal probabilities [7]. Although
such TPI methods were effective in previous generations
of technologies, these methods have fallen out of favor due
to the increasing complexity of fault simulation. However,
it is common practice to perform fault simulation before
TPI: TPI is not required if adequate fault coverage is
obtained, and other TPI methods should not target faults
easily detected through fault simulation.

A second category of TPI algorithms use circuit
testability calculations, e.g. COP [5], to choose TP locations
[32, 38, 41]. In lieu of performing time-consuming fault
simulation, these TPI algorithms “calculate” each TP’s
impact on fault coverage and iteratively insert the “best”
TP, i.e., the TP increasing fault coverage the most. Fault

Author's personal copy

J Electron Test

coverage calculations are known to be less accurate than
fault simulation, but performing these calculations requires
orders of magnitude less time, and therefore calculations
can be repeated for every candidate TP.

2.2 Conventional TP Architectures

Control TPs attempt to make the excitation and observation
of faults more likely under random stimulus by forcing logic
values during test. Signal-controlling TPs use an extra test
enable (TE) pin (or scannable register [40]) to force logic in
a circuit to a controlled value. While not under test, TE is
disabled, which leaves the function of the circuit unchanged.
When TE is asserted, hard-to-control signals are directly
forced to pre-determined values. Typical control TPs use
AND gates or OR gates (or other analogous logic-forcing
structures) to force circuit lines to logic-0/1 (respectively)
during test [28], as illustrated in Fig. 3a and b. The first input
to control TPs is the circuit line to be forced during test,
and the second input is the TE signal. TE may be partially
enabled (i.e., a subset of TPs may be active during a subset
of tests [28, 36]) in order to substantially reduce TP area
overhead [16], but architectures and selection methods for
controlling TE are outside the scope of this study.

Forcing circuit lines during test has two effects: 1) RPR
faults can be easier to excite under random stimulus, and 2)
RPR faults can be propagated to circuit outputs by activating
circuit paths. Although control TPs increase circuit area and
delay with their extra gates, these overheads are worthwhile
given their positive impacts on fault coverage [37].

A second category of TPs, observe TPs, directly observe
circuit lines as opposed to controlling them. To make a
circuit line easier to observe, the line is diverted to circuit
outputs (or scannable latches [22]) made specifically for
test, as shown in Fig. 3c.

Observe TPs were not addressed by the authors’ original
article [30], but this extended article explores their impact
along with the proposed TP architecture. The detriments
described in the following section were initially limited
to control TPs, thus the presence of observe points were

viewed as a constant and their effect on fault coverage was
not explored. This choice to forgo exploring observe points
was also motivated by the lack of computational resources at
the time of the original study. Additionally, future research
directions will address other issues involving observe TPs
(see Section 5).

2.3 Conventional TP Detriments

Although control TPs can excite “stuck values” (i.e.,
“stuck-at faults”) in circuits, their use creates unintended
consequences. Since active control TPs force lines to a
single value, only one stuck-at value (stuck-at 0 or stuck-
at 1) can be excited when a control TP is active. Also,
active control TPs prevent logic on controlled signals from
passing through the TP. This latter effect prevents faulty
values on the controlled line from being observed. Although
control TPs intend to increase stuck-at fault coverage, these
qualities degrade their ability to excite and propagate such
faults.

Another disadvantage of control TPs is they prevent sig-
nal transitions: this blocks the transmission and excitation
of delay faults. In a circuit’s functional mode, delay-causing
defects can cause incorrect values to be observed/captured at
circuit outputs/latches, as illustrated in Fig. 4. Unlike stuck-
at faults, delay faults require two input vectors to detect:
one to activate faults and the other to launch slow transi-
tions. Control TPs prevent signal transitions when enabled
(since they force signals to a value), and therefore control
TPs block all delay faults from passing through the TP. They
also prevent delay faults on the output of the TP from being
excited, and they can make other delay faults driven by con-
trolled lines less likely to be excited. This latter detriment is
partially remedied by conditionally-active TPs [28, 36], but
such architectures are outside the scope of this study and
create other detriments (see Section 6).

Although observe TPs do not possess the fault-blocking
effects of control TPs (and in fact, using only observe TPs
can never decrease stuck-at fault coverage), observe TPs
cannot detect RPR faults that are difficult to excite and may

Fig. 3 Test points (TPs) force
signals to logic-0 (control-0),
force signals to “logic-1”
(control-1), observe signals
directly (observe), or invert
signals (inversion). All TPs
require an additional pin/latch
for a test enable (TE) or observe
signal. Circuit modifications are
shown in dashed lines

Author's personal copy

J Electron Test

Fig. 4 Here, the effect a control
TP has on the excitation and
observation of a delay fault is
illustrated. The output
waveforms of a normal circuit, a
faulty circuit, and a circuit with
an active control TP are labeled,
as is the point in time where an
observation occurs

not provide the best TP solution. Additionally, control TPs
placed at strategic locations can significantly increase fault
observability by “unblocking” logic (as illustrated in Fig. 5)
while simultaneously exciting hard-to-detect faults. Given
that control TPs can block logic while observe TPs may
fail to excite logic, a goal of the proposed architecture (see
Section 3) is to simultaneously perform both functions.

Although typical test procedures will apply tests with
TPs both enabled and disabled, removing disadvantages
from active TPs will make tests more effective. This is
needed when the time to apply random stimuli is limited
(such as for in-field tests) and when few “test modes” can
be applied.

3 Inversion-based TP Architecture

Unlike conventional control TP architectures discussed in
Section 2.2, inversion TPs change signal value probabili-
ties through inversions as opposed to forcing circuit lines
to pre-determined values. Conventional control TPs force
signal value probabilities by forcing constant values on
lines, i.e., when a control TP is enabled, the probability
of logic-0/1 on a line is 100% while the probability of the
opposite value occurring is 0%: this creates the detriments
discussed in Section 2.3. Alternatively, inversion TPs invert
signal probabilities. For example, if a circuit line has a 75%
chance of being logic-1 without a TP present, activating
an inversion TP on this line will change the probability of
logic-1 to 25%.

The implementation of inversion TPs is illustrated in
Fig. 3d. Inversion TPs are implemented using XOR gates

Fig. 5 In this example circuit, inversion TPs may not increase fault
coverage: if the best TP solution is to force the circuit input to logic-1
during test, an inversion TP will fail to do so

connected to TE with the other input connected to the
inverted signal. When the TP is disabled, the XOR gate
functions as a buffer, thus allowing the original circuit value
to pass unchanged. When the TP is enabled with TE, the
XOR functionally becomes an inverter. Like control TPs,
the source of TE signal can be a scanned register or a
circuit-level pin.

The advantages of inversion TPs over conventional
control TPs are 1) their ability to excite both stuck-at 0 and
stuck-at 1 faults when activated and 2) their ability to allow
stuck-at faults on inverted lines to propagate through TPs.
Since these TPs do not force logic to set values, it is possible
to excite both logic-0 and logic-1 when inversion TPs are
activated. Additionally, faulty values on the inverted line are
no longer forced to a given value but are instead allowed to
pass through the TP (albeit inverted), which in turn allows
faults to be observed.

An additional advantage of inversion TPs is they can
excite and propagate delay faults when active. Since
inversion TPs do not force circuit lines to set values, they
allow transitions on TP outputs, and these transitions can
excite delay faults on the TP output (or on logic driven by
the TP). Additionally, if transitions (from delay faults) occur
on the inverted line, these transitions can pass through the
inversion TP (albeit inverted) and can be observed.

Inversion TPs may falter when tests need to be “less
random”, but finding if such occurrences degrade inversion
TP performance requires empirical analysis (which was
first explored in [30] and is significantly expanded in this
article). To detect faults under random stimuli, relatively
random signals (i.e., signals which are logic-1 50% of
the time) may need to be forced to specific values. For
example, as illustrated in Fig. 5, an AND gate may prevent
faulty logic from passing based on another signal’s value:
forcing this signal to logic-1 allows values to pass through
the gate. If the controlled signal is normally random, this
cannot be accomplished with an inversion TP. Whether
such conditions are likely to occur will be explored though
empirical data (see Section 5).

Using inversions as TPs has been noted in previous
studies [3, 12, 29, 31], but their advantages compared to
conventional TPs and their effect on delay fault coverage
have only been explored in the authors’ original article [30].

Author's personal copy

J Electron Test

The focus of [3] was broad and covered many topics in
weighted random pattern generation with a single section
devoted to TPI. [3] chose to implement control-0 and
control-1 TPs, but these TPs were implemented as XOR
gates assuming TP locations were almost always logic-0/1
under random stimuli. Beyond this assumption, the effect
of implementing control-0/1 TPs in this manner was not
explored, and neither was the effect this TP architecture had
on delay fault coverage. Also, this assumption contradicts
the observation made in the previous paragraph. Using
XORs as TPs was allowed in [12, 29, 31], but these
studies did not compare inversion TPs against conventional
control TPs, nor did they analyze TPs’ effect on delay fault
coverage.

A possible detriment of using inversion TPs is they can
add more delay compared to alternative TP architectures,
but balancing the delay-causing impacts of inversion TPs
with their fault coverage-increasing benefits is left to future
studies. Previous studies noted inversion TPs may not be
allowable if circuit performance is a concern to circuit
designers [29]: this is because the XOR gates which
implement inversions will add more delay compared to the
AND/OR gate counterparts of control-0/1 TPs. However,
the added delay of inversion (and control) TPs may be
irrelevant if TPs are not added to critical paths, which
TPI from literature account for [8]. The delay impact
of inversion TPs is not the immediate concern of this
article, but the authors intend to add inversion TPs while
not impacting delay performance in future studies (see
Section 6).

4 Experimental Setup

This section provides the experimental setup used to
evaluate different TP architectures. Experiments under this
setup will provide a fair comparison between architectures
and demonstrate their ability to detect faults under random
stimuli.

4.1 TPI for Architecture Comparison

This study does not propose a new TPI algorithm: instead,
an established TPI algorithm from literature will compare
TP architectures [38]. Tsai et al. [38] is chosen because it
can insert any TP type without favoring one architecture
over another: the algorithm does not require specific
information on the TPs used and instead only knows
the calculated effect a circuit modification will have on
fault coverage. In this algorithm, the controllability and
observability program (COP) [5] calculates fault coverage
using probabilistic metrics. Many TPI algorithms use COP
[29, 38, 40] to calculate the fault coverage of a circuit

(FC) by calculating the probability that stuck-at 0 (SA0) or
stuck-at 1 (SA1) faults will be detected (Pf):

Pf =
{

controllability × observability for SA0
(1 − controllability) × observability for SA1

FC = 1

|F |
∑

∀f ∈F

Pf

The implemented TPI algorithm starts by performing
testability analysis [5] on a given circuit, which assigns
“controllability” (the probability a circuit line will be
logic-1) and “observability” (the probability a circuit
line will be observed) values to all lines in a circuit.
These controllability and observability values are used
to predict the fault coverage of the circuit using the
above equations. It should be noted that this calculated
fault coverage is not the actual circuit fault coverage:
controllability and observability calculations are not precise
when re-convergent fan-outs are present in a circuit [5].
The TPI algorithm iteratively calculates the impact each
candidate TP will have on fault coverage by re-calculating
controllability and observability values when the TP is
active. The TPI program then inserts the TP with the
highest positive impact on the calculated fault coverage.
This process is repeated until a given TP hardware limit is
reached (expressed as a conservative TP limit, as correlating
the number of inserted TPs to hardware overhead is difficult
[16]), the predicted fault coverage is reached, no more TPs
which increase the fault coverage can be inserted, or a
computation time limit is reached.

Although other TPI from literature can insert inversion
TPs, it is presumed that the TPI algorithm used will not
impact this study’s conclusions if the TPI method does not
give an advantage to any TP architecture.

For this study, three separate categories of TPs are
considered (control-0/1, inversion, and observe), and the
impact of allowing most combinations of these TPs is
studied. This is an extension to the original article [30]
where only inversion-and-observe and control-and-observe
combinations were considered, and noteworthy results are
produced through this extension (see Section 5). Candidate
TPs include control-0, control-1, inversion, and observe TPs
on the input and output of every gate.

In this study, every TP has the same TE signal, but the use
of this signal is altered from the original study [30]. In the
original study [30], this signal was enabled for every vector
applied, but this does not accurately reflect an industrial
use of TPs: instead, this signal will be enabled for half
of all vectors applied. In literature, different TPs can have
different TE signals which are not uniformly on/off [28, 36],
but the impacts of such TE controls are not the scope of this
study.

Author's personal copy

J Electron Test

To model delay faults, this study uses the transition delay
fault (TDF) model and tests are applied using a launch-off-
shift methodology (i.e., both circuit inputs and scannable
latches are fed by a 64-bit LFSR). The TDF model is chosen
because of its ease of implementation and its known ability
to model circuit defects [20].

4.2 Execution

All programs (i.e., TPI and fault simulation) are executed on
high-performance workstations representative of industrial
development environments. Workstations are equipped with
Intel i7-8700 processors and 8GB of RAM. Software was
written in C++ and complied using the MSVC++14.15
compiler with maximum optimization parameters. Source
code for executables is provided by the authors through an
open-source license [24].

Original TPI and fault simulation programs were
written for this study. This choice was made in lieu
of industrial tools for ease-of-integration of different
parts of the TPI flow (circuit testability analysis, circuit
modification with TPs, fault simulation, etc.). Using
industrial tools was also infeasible since such tools are
not programmed to give optimal inversion TP placement
and would give favorable result towards conventional
TPs. This contrasts with the implementation of [38],
which does not have knowledge of TP types and instead
only predicts a circuit modification’s impact on fault
coverage

Table 1 gives benchmark circuit information, including
the number of logic gates (“Gates”) in the ISCAS’85 [6] and
ITC’99 [9] benchmarks. Benchmarks which achieved 100%
fault coverage without performing TPI after simulating
10,000 vectors (b01, b02, b06, and c17) are omitted.
Otherwise, the fault coverages given are after simulating
10,000 vectors, and TPs are active for half of these vectors.

5 Results and Discussion

Table 1 presents the number of TPs inserted (“Inserted
TPs”) by the described TPI algorithm (see Section 4.1).
Columns “C,I,O”, “C/O”, “I/O”, and “C/I/O” give the
number of TPs inserted: the first column (“C,I,O”)
represents only a single TP type being allowed, while
other columns represent multiple TP types allowed. When
multiple TP types are allowed, the number of individual
types of TPs inserted are separated by ‘/’. It is noteworthy
that, with a single exception (c6288), when any TP type is
available (“C/I/O”), the number of inversion TPs inserted
is always greater than or equal to the number of control or
observe TPs inserted: this implies that inversion TPs were
more frequently calculated to increase fault coverage more

than alternatives, which supports the architecture’s qualities
discussed in Section 3.

Columns “Orig.”, “C”, “O”, “I”, “C/O”, I/O” and “CIO”
under the headings “SAF/TDF Coverage (%)” give the
stuck-at fault and transition delay fault coverage after
simulating 10,000 random vectors (or vector pairs for TDF
coverage) in the original circuit and with the corresponding
TPs inserted. TP combinations having the highest SAF/TDF
coverage are underlined. Half of applied vectors have TPs
enabled, and the other half have TPs disabled, as is typical
of industrial settings.

The first noteworthy result from Table 1 is inserting
solely inversion TPs (“I”) most frequently obtains the
highest stuck-at and delay fault coverage. For twelve out
of twenty-two benchmarks, inversion test points obtain the
highest stuck-at fault coverage, and inversion TPs obtain the
highest delay fault coverage for eleven out of twenty-two
benchmarks. These trends support the qualities of inversion
TPs expressed in Section 3.

A second observation from fault coverage results, which
complements results of the original study [30], is although
the delay fault coverage obtained by the various TPI
methods increases, inversion TPs most frequently increase
delay fault coverage the most. The original study [30]
concluded that delay fault coverage decreases when control
TPs are present: this was found by comparing the TP
combinations “I/O” and “C/O”. However, the original study
presumed TPs were active through the entire 10,000 vector
test, which is not representative of industrial environments.
When the original results [30] are combined with these
extended results, one can conclude that control TPs are
detrimental to delay fault coverage when active, which
supports the detriments of control TPs expressed in
Section 2.3. In fact, adding only control TPs decreases
stuck-at for one benchmark (b03) and decreases delay fault
coverage for two (b03 and c6288).

An unexpected third observation not made in the
original study [30] is the effects observation TPs have
on fault coverage. First, when observe TPs are allowed
by themselves (“O”), they rarely obtain the highest fault
coverage (only for c2670 and c7553, with the latter only
for delay fault coverage). Second, allowing observe TPs to
“complement” control/inversion TPs infrequently increases
fault coverage, but instead more frequently decreases it.
This is best illustrated by plotting the change in fault
coverage (� Stuck-at Fault Coverage) obtained when
observe points are allowed, which is illustrated in Fig. 6:
the plot of delay fault coverage is omitted since it follows
a nearly identical trend. Allowing more TPs to decrease
fault coverage is a counterintuitive result, but an explanation
exists: observe TPs can only increase observability, but
control and inversion TPs can increase both controllability
and observability.

Author's personal copy

J Electron Test

Ta
b
le
1

E
ff

ec
to

f
te

st
po

in
ts

on
PR

PG
pa

tte
rn

fa
ul

tc
ov

er
ag

e
in

be
nc

hm
ar

k
ci

rc
ui

ts

Fa
ul

tC
ov

er
ag

e

C
ir

cu
it

de
ta

ils
In

se
rt

ed
T

Ps
SA

F
C

ov
er

ag
e

(%
)

T
D

F
C

ov
er

ag
e

(%
)

B
en

ch
.

G
at

es
C

,I
,O

C
/O

I/
O

C
/I

/O
O

ri
g.

O
C

I
C

/O
I/

O
C

/I
/O

O
ri

g.
O

C
I

C
/O

I/
O

C
/I

/O

b0
3

19
0

1
0/

1
0/

1
0/

1/
0

73
.1

0
73

.1
0

71
.4

3
81

.1
9

73
.1

0
73

.1
0

81
.1

9
77

.1
1

77
.1

1
75

.4
5

83
.5

8
77

.1
1

77
.1

1
83

.5
8

b0
4

80
3

8
4/

4
0/

8
0/

4/
4

48
.4

0
64

.9
0

56
.7

9
66

.5
0

69
.5

2
64

.9
0

70
.6

6
49

.7
1

66
.0

0
58

.1
5

67
.3

8
69

.9
3

66
.0

0
70

.9
1

b0
5

1,
03

2
10

7/
3

6/
4

4/
5/

1
41

.8
9

58
.1

5
55

.8
2

61
.4

5
63

.0
3

64
.2

6
53

.3
4

44
.2

2
61

.2
2

58
.1

2
64

.3
6

66
.3

6
67

.2
9

54
.5

4

b0
7

49
0

4
0/

4
0/

4
2/

2/
0

65
.9

6
70

.9
0

73
.0

2
77

.8
7

70
.9

0
70

.9
0

72
.3

1
70

.8
9

75
.3

7
76

.3
7

81
.2

6
75

.3
7

75
.3

7
75

.3
7

b0
8

20
4

2
0/

2
0/

2
0/

1/
1

42
.5

9
56

.7
9

50
.0

0
57

.6
1

56
.7

9
56

.7
9

59
.2

6
45

.0
3

58
.6

7
50

.7
7

60
.2

0
58

.6
7

58
.6

7
62

.3
7

b0
9

19
8

1
0/

1
0/

1
0/

1/
0

53
.0

5
56

.3
4

62
.9

1
62

.9
1

56
.3

4
56

.3
4

62
.9

1
53

.6
8

57
.6

5
62

.3
2

62
.3

2
57

.6
5

57
.6

5
62

.3
2

b1
0

22
3

2
0/

2
0/

2
0/

1/
1

75
.9

9
77

.7
8

77
.4

2
78

.1
4

77
.9

6
77

.7
8

79
.0

3
79

.8
2

81
.4

9
81

.4
9

81
.9

3
81

.6
0

81
.4

9
82

.9
3

b1
1

80
1

8
3/

5
3/

5
1/

4/
3

42
.7

8
57

.4
4

56
.0

6
71

.5
5

66
.9

8
62

.5
7

71
.0

6
45

.7
1

61
.6

7
59

.9
5

75
.8

1
71

.6
5

66
.9

9
74

.9
5

b1
2

1,
19

7
11

0/
11

0/
11

3/
5/

3
70

.4
6

73
.6

2
77

.8
2

77
.8

5
73

.6
2

73
.6

2
74

.6
3

73
.0

3
75

.8
8

79
.7

3
79

.6
3

75
.8

8
75

.8
8

76
.9

9

b1
3

41
5

4
0/

4
0/

4
2/

2/
0

69
.2

3
73

.9
8

77
.6

0
83

.2
6

73
.9

8
73

.9
8

74
.5

5
72

.4
4

76
.9

5
80

.1
0

84
.8

8
76

.9
5

76
.9

5
76

.6
8

b1
4

10
,3

43
2

1/
1

1/
1

1/
1/

0
17

.8
3

20
.2

7
42

.0
5

42
.0

5
37

.9
9

37
.9

9
42

.0
5

20
.1

3
22

.5
0

46
.8

0
46

.8
0

42
.8

2
42

.8
2

46
.8

0

b1
5

93
71

3
0/

3
0/

3
1/

2/
0

24
.6

1
26

.9
5

41
.3

4
41

.3
1

26
.9

5
26

.9
5

36
.3

9
27

.7
9

30
.3

5
45

.6
9

45
.6

6
30

.3
5

30
.3

5
40

.3
4

c4
32

20
3

2
0/

2
0/

2
1/

1/
0

91
.7

3
92

.1
0

92
.4

6
93

.0
1

91
.7

3
91

.7
3

92
.4

6
93

.2
9

93
.6

3
93

.8
7

94
.5

6
93

.2
9

93
.2

9
93

.8
7

c4
99

27
5

2
1/

1
1/

1
0/

1/
1

93
.9

4
95

.6
2

94
.6

1
95

.7
9

95
.6

2
95

.7
9

94
.9

5
95

.0
9

96
.2

9
95

.6
9

96
.6

9
96

.4
9

96
.4

9
95

.8
9

c8
80

46
9

4
0/

4
0/

4
0/

2/
2

58
.2

5
59

.3
6

60
.6

6
60

.8
7

59
.3

6
59

.3
6

60
.0

6
65

.7
4

66
.8

8
68

.0
7

68
.1

8
66

.8
8

66
.8

8
67

.5
6

c1
35

5
61

9
6

0/
6

0/
6

2/
3/

1
88

.7
5

90
.3

0
93

.1
4

95
.6

7
90

.3
0

90
.3

0
92

.5
8

90
.8

9
92

.1
8

94
.5

4
96

.6
1

92
.1

8
92

.1
8

94
.1

3

c1
90

8
93

8
9

0/
9

0/
9

0/
5/

4
69

.6
5

73
.1

5
86

.3
3

69
.5

5
73

.0
1

73
.1

0
72

.1
8

77
.5

2
80

.8
2

89
.5

4
77

.4
9

80
.7

4
80

.7
9

79
.9

5

c2
67

0
1,

56
6

15
0/

15
0/

15
0/

8/
7

66
.2

2
68

.9
2

66
.6

6
67

.2
6

68
.8

6
68

.8
9

67
.4

0
66

.8
9

70
.0

4
67

.3
2

68
.0

5
70

.0
4

70
.0

2
68

.3
9

c3
54

0
1,

74
1

17
1/

16
0/

17
2/

9/
6

46
.4

5
49

.4
4

50
.5

6
48

.7
7

50
.1

1
49

.3
6

52
.4

9
49

.4
4

52
.7

3
53

.5
5

51
.8

6
53

.3
5

52
.7

0
55

.5
9

c5
31

5
2,

60
8

26
21

/5
21

/5
2/

13
/1

1
63

.9
3

74
.5

2
71

.9
9

75
.6

2
76

.5
0

76
.5

0
77

.3
4

68
.4

9
79

.9
8

76
.1

8
80

.3
8

81
.1

4
81

.4
5

82
.3

1

c6
28

8
2,

48
0

7
4/

3
4/

3
7/

0/
0

69
.8

3
69

.8
3

69
.8

3
70

.7
8

69
.8

6
70

.5
6

69
.8

3
74

.1
9

74
.1

9
74

.1
6

74
.9

7
74

.1
9

74
.7

8
74

.1
6

c7
55

2
3,

82
7

13
0/

13
0/

13
0/

7/
6

77
.6

6
79

.6
2

79
.1

0
79

.0
1

79
.6

2
79

.6
2

79
.6

4
81

.5
2

83
.3

0
82

.8
7

82
.7

9
83

.3
0

83
.3

0
83

.2
7

Author's personal copy

J Electron Test

Fig. 6 When observe points are allowed with control (“C+O”) and
inversion (“I+O”) TPs, post-TPI fault coverage most frequently
decreases significantly. Although not plotted, delay fault coverage
follows a nearly identical trend

A final corollary result, plotted in Fig. 7, is the time to
perform TPI using the combinations of TPs. The original
study [30] concluded using inversion TPs significantly
decreases TPI time (regardless of the TPI algorithm used)
because there are fewer TPs to evaluate: each line in a circuit
has two possible control TPs to evaluate (control-0 and
control-1) while there is only one inversion TP to evaluate.
Showing the time required to perform TPI (normalized to
inversion-only TPI time, listed in Fig. 7) shows a similar
trend, except using only observe points is most frequently
the fastest method. The TPI time of observe TPs only (“O”)
being the fastest can be explained: inserting an observe
TPs will only change circuit observability values, so the
TPI algorithm does not need to recalculate controllabilities.

Fig. 7 When TPI time is normalized to inversion-only TPI time (“I”), inserting only observation points (“O”) is the only TP combination which
performs TPI faster

Given inversion TPs only (“I”) frequently obtain the highest
fault coverage while also inserting TPs in nearly the smallest
amount of time, this implies only using inversion TPs will
yield the most favorable fault coverage results with minimal
TPI effort.

6 Conclusion and Future Directions

This article presented the impacts of different TP architec-
tures on stuck-at and delay fault coverage, most notably inver-
sion TPs. Results showed inversion TPs frequently increase
stuck-at fault coverage more than conventional TP alterna-
tives while simultaneously increasing delay fault coverage.
Additionally, it was shown that the time required to insert
inversion TPs compared to alternative TP architectures is
significantly less, which further encourages their use.

Although inversion TPs performed admirably in this
study, some data points motivate the authors to further quan-
tify circuit qualities to improve TP selection. This is best
shown through the benchmark c1908: control TPs only
(“C”) provided delay and stuck-at fault coverage signifi-
cantly higher than any other TP architecture. Although this
can be viewed as an anomaly, quantifying this anomaly and
using this measurement in TPI algorithms may significantly
increase TP quality.

Observe and control TPs must be a focus of future
studies, as their true impact on delay fault detection is not
yet known. Observe TPs shorten circuit timing paths and
will not capture small delay defects requiring full circuit
paths to be observed. Likewise, control TPs with controlled
TE signals [28, 36] (as opposed to always-active TE signals)
will excite delay faults before typical signal arrivals times.
In this study, delay faults were modeled as TDFs due to their
ease of implementation and their ability to model known

Author's personal copy

J Electron Test

defects (i.e., stuck-open faults) [20], but if the fault model
includes the magnitude of a delay (as is the case of small
delay defects [23]), the presence of observe and control
TPs may decrease delay fault coverage. Future endeavors
will explore the impact conventional TP architectures have
on these defects and will explore architectures which can
remedy their detriments.

As was noted in Section 3, the use of inversion TPs
may unfavorably impact circuit timing performance, and
the trade-off between increased fault coverage and degraded
performance must be explored. It may be possible to insert
inversion TPs outside of critical timing paths while still
obtaining favorable fault coverage, but this will be explored
with future empirical data. Additionally, TPI algorithms that
consider delay impacts [8] will be implemented to observe
if the benefit of inversion TPs hold under timing constraints.

Another future avenue of research is the impact TPs have
on detecting redundant faults and producing false failures.
In this study, fault simulation did not remove redundant
faults [1], and therefore some undetected faults are truly
undetectable. However, the addition of TPs may make faults
which are normally impossible to detect (and therefore
have no impact on the function of the circuit) detectable.
If such faults are detected when TPs are active, this will
create a “false failure”, which in turn unnecessarily reduces
circuit manufacturing yield. An avenue of future studies is
to select TP locations which increase fault coverage while
simultaneously not detecting redundant faults.

References

1. Abramovici M, Breuer MA (1979) On redundancy and fault
detection in sequential circuits. IEEE Transactions on Computers
C-28(11):864–865

2. Acero C, Feltham D, Liu Y, Moghaddam E, Mukherjee N, Patyra
M, Rajski J, Reddy SM, Tyszer J, Zawada J (2017) Embedded
deterministic test points. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 25(10):2949–2961

3. Bakshi D (2012) Techniques for seed computation and testability
enhancement for logic built-in self test. Master’s thesis, Virginia
Tech

4. Bardell PH, McAnney WH, Savir J (1987) Built-in test for VLSI:
pseudorandom techniques. Wiley-Interscience, New York

5. Brglez F (1984) On testability analysis of combinational networks.
In: Proceedings of the international symposium on circuits and
systems (ISCAS), vol 1, pp 221–225

6. Brglez F, Fujiwara H (1985) A neutral netlist of 10 combinational
benchmark circuits and a targeted translator in fortran. In:
Proceedings of the IEEE Int. symposium on circuits and systems
(ISCAS), pp 677–692

7. Briers AJ, Totton KAE (1986) Random pattern testability by
fast fault simulation. In: Proceedings of IEEE international test
conference (ITC)

8. Cheng K-T, Lin C-J (1995) Timing-driven test point insertion
for full-scan and partial-scan BIST. In: Proceedings of the IEEE
international test conference (ITC), pp 506–514

9. Corno F, Reorda MS, Squillero G (2000) RT-level ITC’99
benchmarks and first ATPG results. IEEE Design & Test of
Computers 17(3):44–53

10. David R (1986) Signature analysis for multiple-output circuits.
IEEE Trans Comput 35(9):830–837

11. Dervisoglu BI, Stong GE (1991) Design for testability using
scanpath techniques for path-delay test and measurement. In: Proc
IEEE International Test Conference, pp 365–374

12. Fang Y, Albicki A (1995) Efficient testability enhancement for
combinational circuit. In: Proceedings of international conference
on computer design (ICCD), pp 168–172

13. Geuzebroek MJ, van der Linden JT, van de Goor AJ (2002) Test
point insertion that facilitates ATPG in reducing test time and data
volume. In: Proceedings of the IEEE international test conference,
Washington, DC, USA, pp 138–147

14. Ghani T, Mistry K, Packan P, Thompson S, Stettler M, Tyagi S,
Bohr M (2000) Scaling challenges and device design requirements
for high performance sub-50 nm gate length planar CMOS
transistors. In: Proc Symposium on VLSI Technology, pp 174–175

15. Hayes JP, Friedman AD (1974) Test point placement to simplify
fault detection. IEEE Trans Comput C-23(7):727–735

16. He M, Gustavo K, Contreas, Tran D, Winemberg L, Tehranipoor
M (2017) Test-point insertion efficiency analysis for LBIST in
high-assurance applications. IEEE Transactions on Very Large
Scale Integration 25(9)

17. Higgins FP, Srinivasan R (2000) BSM2: Next generation
boundary-scan master. In: Proc 18th IEEE VLSI Test Symposium
(VTS), pp 67–72

18. Iyengar VS, Brand D (1989) Synthesis of pseudo-random
pattern testable designs. In: Proceedings of the international test
conference, pp 501–508

19. Karpovsky MG, Gupta SK, Pradhan DK (1991) Aliasing and
diagnosis probability in misr and stumps using a general error
model. In: Proceedings of the international test conference,
Nashville, TN, pp 828–839

20. Mahmod J, Millican SK, Guin U, Agrawal VD (2019) Special
session: delay fault testing - present and future. Proceedings of the
37th VLSI Test Symposium (VTS), Monterey, CA

21. Majhi AK, Agrawal VD (1998) Delay fault models and coverage.
In: Proc 11th international conference on VLSI Design, Chennai,
India, pp 364–369

22. Makar SR, McCluskey EJ (1995) Functional tests for scan chain
latches. In: Proceedings of international test conference (ITC),
pp 606–615

23. Mattiuzzo R, Appello D, Allsup C (2009) Small-delay-defect
testing. EDN (Electrical Design News) 54(13):28

24. Millican SK (2019) OpenEDA. Online. Available: https://github.
com/vlsi-test-lab/OpenEDA

25. Nag PK, Gattiker A, Wei S, Blanton RD, Maly W (2002)
Modeling the economics of testing: a DFT perspective. IEEE
Design & Test of Computers 19(1):29–41

26. Nigh P, Needham W, Butler K, Maxwell P, Aitken R (1997)
An experimental study comparing the relative effectiveness of
functional, scan, IDDq and delay-fault testing. In: Proc 15th IEEE
VLSI Test Symposium, pp 459–464

27. Pateras S (2003) Achieving at-speed structural test. IEEE Design
and Test of Computers 20(5):26–33

28. Rajski J, Tyszer J (1998) Arithmetic built-in self-test for
embedded systems. Prentice-Hall Inc., Upper Saddle River

Author's personal copy

J Electron Test

29. Ren H, Kusko M, Kravets V, Yaari R (2009) Low cost test
point insertion without using extra registers for high performance
design. In: Proceedings of the International Test Conference
(ITC), Austin, TX

30. Roy S, Stiene B, Millican SK, Agrawal VD (2019) Improved
random pattern delay fault coverage using inversion test points. In:
IEEE 28th North Atlantic Test Workshop (NATW), pp 206–211

31. Rudnick EM, Chickermane V, Patel JH (1994) An observability
enhancement approach for improved testability and at-speed test.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 13(8):1051–1056

32. Savaria Y, Youssef M, Kaminska B, Koudil M (1991) Automatic
test point insertion for pseudo-random testing. In: Proceedings
of the IEEE international sympoisum on circuits and systems
(ISCAS), vol 4, pp 1960–1963

33. Sayil S (2018) Conventional test methods. In: Contactless VLSI
measurement and testing techniques. Springer, pp 1–7

34. Sootkaneung W, Howimanporn S, Chookaew S (2018) Temper-
ature effects on BTI and soft errors in modern logic circuits.
Microelectronics Reliability 87:259–270

35. Takeda E, Suzuki N (1983) An empirical model for device
degradation due to hot-carrier injection. IEEE Electron Device
Letters 4(4):111–113

36. Tamarapalli N, Rajski J (1996) Constructive multi-phase test point
insertion for scan-based bist. In: Proceedings of the International
Test Conference (ITC), pp 649–658

37. Touba NA, McCluskey EJ (1994) Automated logic synthesis of
random pattern testable circuits. In: Proceedings of the IEEE
international test conference (ITC), pp 174–183

38. Tsai HC, Cheng K-T, Lin CJ, Bhawmik S (1997) A hybrid
algorithm for test point selection for scan-based BIST. In:
Proceedings of the 34th design automation conference (DAC),
pp 478–483

39. Xiang D, Wen X, Wang L (2017) Low-power scan-based built-in
self-test based on weighted pseudorandom test pattern generation
and reseeding. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25(3):942–953

40. Yang J, Touba NA, Nadeau-Dostie B (2012) Test point insertion
with control points driven by existing functional flip-flops. IEEE
Trans Comput 61(10):1473–1483

41. Youssef M, Savaria Y, Kaminska B (1993) Methodology
for efficiently inserting and condensing test points (cmos ics
testing). IEE Proceedings-E (Computers and Digital Techniques)
140(3):154–160

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Soham Roy received his B.Tech. degree in Electronics and
Instrumentation from West Bengal University of Technology, Kolkata,
India, in 2011. He was with Wipro Ltd., VLSI Division, Bangalore,
India, as a design for test engineer from 2011–2015. He received

his MS degree from the Department of Electrical and Computer
Engineering, Technical University of Dresden, Dresden, Germany, in
2018. He is currently a PhD candidate at Auburn University, and his
research interest includes VLSI design and test, artificial intelligence,
and quantum computing.

Brandon Stiene received his BS degree from Auburn University
in 2018 in Electrical and Computer Engineering. He is currently a
Verification Engineering with Nvidia in Madison, AL, USA.

Spencer Millican received his PhD, MS, and BS degrees from
the University of Wisconsin - Madison in 2015, 2013, and 2011,
respectively. He was with IBM in Rochester, MN, USA as a design
for test engineer for 2 years and is currently an assistant professor
at Auburn University. He has published several articles, received
a best paper award at the 2014 IEEE International Conference on
VLSI Design, and has received patents in the field of encrypted
circuit simulation. His research interests include logic built-in self-
test for modern technologies and encrypted circuit implementation and
simulation.

Vishwani Agrawal is an Emeritus Professor in the Department of
Electrical and Computer Engineering at Auburn University, Alabama,
USA. Prior to retirement in 2016, he was the James J. Danaher
Professor in the same department. He has over 45 years of industry
and university experience, working at Auburn University, Bell Labs,
Murray Hill, NJ, USA; Rutgers University, New Brunswick, NJ, USA;
TRW, Redondo Beach, CA, USA; Indian Institute of Technology
Delhi (IITD), New Delhi, India; EG&G, Albuquerque, NM, USA;
and ATI, Champaign, IL, USA. His areas of expertise include VLSI
testing, low-power design, and microwave antennas. He obtained a BE
(1964) degree from the Indian Institute of Technology Roorkee (IITR),
Roorkee, India; ME (1966) from the Indian Institute of Science,
Bangalore, India; and PhD (1971) from the University of Illinois
at Urbana-Champaign (UIUC), IL, USA. He has coauthored over
400 papers and 5 books. He holds 13 United States patents. He is
the Editor-in-Chief of the Journal of Electronic Testing: Theory and
Applications, and a past Editor-in-Chief (1985–87) of the IEEE Design
& Test of Computers magazine. His many invited talks include the
plenary (1998) at the International Test Conference, Washington, DC,
USA and the keynote (2012) at the 25th International Conference on
VLSI Design, Hyderabad, India. He served on the Board of Governors
(1989–90) of the IEEE Computer Society, and in 1994 chaired the
Fellow Selection Committee of that Society. He has received ten
Best Paper Awards, two Lifetime Achievement Awards, and two
Distinguished Alumnus Awards. Agrawal is a Fellow of the ACM,
IEEE and IETE-India. He has served on the Advisory Boards of
the ECE Departments at UIUC, New Jersey Institute of Technology
(NJIT), and the City College of the City University of New York
(CCNY). See his website: http://www.eng.auburn.edu/vagrawal.

Author's personal copy

