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Abstract
Integrated circuit (IC) testing presents complex problems that for large circuits are exceptionally difficult to solve by tradi-
tional computing techniques. To deal with unmanageable time complexity, engineers often rely on human “hunches" and 
“heuristics" learned through experience. Training computers to adopt these human skills is referred to as machine intel-
ligence (MI) or machine learning (ML). This survey examines applications of such methods to test analog, radio frequency 
(RF), digital, and memory circuits. It also summarizes ML applications to hardware security and emerging technologies, 
highlighting challenges and potential research directions. The present work is an extension of a recent paper from IEEE VLSI 
Test Symposium (VTS’21), and includes recent applications of artificial neural network (ANN) and principal component 
analysis (PCA) to automatic test pattern generation (ATPG).

Keywords Machine intelligence (MI) · Machine learning (ML) · Analog testing · Digital testing · Memory test and repair · 
RF testing · Hardware security · Artificial neural network (ANN) · Principal component analysis (PCA).

1 Introduction

Integrated circuit (IC) defects behave differently depending 
on the type of circuit, requiring separate test methodologies. 
Analog and radio frequency (RF) tests are functional and 
derived from high-level specifications [82], digital tests are 
structural and target modeled faults [18], and memory tests 
also target modeled faults but test them in a functional man-
ner [3]. For any circuit type, increasing integration reduces 
cost, but testing must address the increased complexity and 
test for nuanced faults not seen in previous generations of 
circuit technology.

Problems like digital test pattern generation are compu-
tationally complex while those such as integrated circuit 

(IC) yield enhancement are not easily addressable by sim-
ple algorithms. Human intuition often helps but the cost of 
employing teams of experienced engineers to apply their 
intuition can be nontrivial. In this situation, engineers can 
apply machine learning (ML), also known as machine intel-
ligence (MI), to create novel solutions for test problems. 
Besides, ML also makes programming easier and reduces 
software development cycles and costs.

Previous surveys [119, 152] have discussed ML applica-
tions to testing. Our recent article at the VLSI Test Sympo-
sium (VTS’21) [128] explored additional areas absent from 
the previous surveys. The present article provides some 
details from previous publications. In addition, recent appli-
cations of ML to automatic test pattern generation (ATPG) 
are summarized in Section 3.9. These are,

• Establish the feasibility of training artificial neural net-
work (ANN) to guide an ATPG algorithm [126].

• Optimize the training of ANN for ATPG [129].
• Use principal component analysis (PCA) [69, 117] to 

combine multiple heuristics in ATPG [130].
• Impact of ML guidance on the performance of 

ATPG [127].
• Use PCA to combine multiple heuristics for backtrac-

ing and D-drive [48] in a practical ATPG system (i.e., 
random patterns followed by algorithmic vectors) [131].
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Section 3.9 is derived from authors’ recent research in 
which they try to follow the elusive goal of zero backtracks in 
ATPG [124]. The results show improvement from the past but 
cannot claim ultimate optimality. Indeed, they point to a pos-
sible path for the future, and that is the purpose of this survey.

Rest of this article is organized as follows. Section 2 dis-
cusses ML applications in testing of analog and RF circuits. 
Section 3 explores new ML techniques for digital circuits, 
which is an additional contribution beyond the previous sur-
veys. Memory testing is the subject of Section 4. Section 5 
concludes the survey by listing some open test-related chal-
lenges yet to be addressed by ML.

2  Analog and RF Testing

Analog and radio frequency (RF) components are inte-
gral parts of modern electronics, and testing them requires 
sophisticated equipment and methods. Such devices demand 
more time and indirectly increase manufacturing costs. A 
common belief among engineers is that even though the 
analog and mixed-signal parts may occupy around 10% of 
the chip area, the rest being digital, they take 90% of the 
testing effort. This is mainly because analog testing is spec-
ification-based while digital testing relies on fault models 
permitting effective use of computer tools.

Efforts to reduce test time have led to alternate test strate-
gies: generating signatures that differentiate between faulty 
and fault-free circuits [2, 144]; built-in test (BIT) or the 
use of an on-chip tester [55, 134] that switches the device 
under test (DUT) into test mode by fetching signals from 
sensors [1, 31, 51, 73, 104, 169]; built-off test (BOT) or con-
verting RF signals to DC signals using an interface (placed 
on a load board) between the DUT and tester [13, 40]; and 
implicit test, i.e., statistical model-based test that can make 
an off-line PASS/FAIL decision [5, 155, 170].

Complete automation in this area has been an elusive 
goal, and that is where machine learning has begun to play 
a role [37, 153].

2.1  Use of Machine Learning

Machine learning can play an important role in testing of 
analog and radio frequency devices, because here the deci-
sion of a test passing or failing is not as straightforward 
as in a digital test. We use built-in self-test (BIST) for an 
RF device under test (DUT), such as a low noise ampli-
fier (LNA), for illustration. A proposed architecture [101] 
consists of a stimulus generator, measurement acquisition 
sensors, and an artificial neural network (ANN) to provide 
PASS/FAIL decision. During the offline training or test 
phase, ANN translates measured (test) data into a one-bit 
output, indicating whether it is in compliance with the DUT 

specification (see Fig. 1). The training phase selects a suit-
able ANN topology, e.g., number of hidden layers, num-
ber of neurons per hidden layer, etc., as well as the weights 
assigned to the internal synapses. The weights are saved in 
a local memory and downloaded during the test. Self-test is 
applied by connecting the DUT with a test stimulus genera-
tor. On-chip sensors provide the ANN with relevant data 
from the DUT. Analyzing the test data in relation to the 
learned classification boundary is how the ANN classifies 
the DUT. Beside training on fabricated chips, the technique 
has also been further enhanced [156].

For an effective implementation of the BIST circuit 
shown in Fig. 1, area and power consumption of the ANN 
hardware should be low. An analog ANN on silicon densely 
packs synapses and computing elements for superior paral-
lel processing ability, robustness, and fault tolerance. Com-
pared to a digital implementation it is faster, smaller, easy to 
reconfigure and train, and consumes less power. However, 
analog ANN design must consider 1) topology, 2) training 
algorithm, and 3) weight/bias storage. Fabrication technol-
ogy makes implementing analog ANN on silicon difficult 
since conventional CMOS technologies have significant 
parameter variations [67, 99, 106, 110].

Fig. 1  Built-in self-test (BIST) of a radio frequency (RF) device 
under test (DUT) [101]

Fig. 2  Reconfigurable ANN [101]
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Figure 2 illustrates an architecture of a reconfigurable, 
single hidden layer ANN [101]. It comprises of synapses 
(S), multiplexers, and neurons (N) in a matrix. Each syn-
apse is mixed-signal hardware that performs computa-
tion in analog mode while storing weights and biases in 
a digital random access memory (RAM). The schematic 
of a typical synapse circuit, shown in Fig. 3, illustrates 
multiplication implemented through a digital-to-analog 
converter (DAC) [86], a combination of differential input 
voltages, and programmable tail currents. The upper half 
of Fig. 3 is a differential pair “N10-N11" performing mul-
tiplication while switching transistors “P0-P3" controlled 
by bit “B5", steer the current and define the sign of the 
multiplication. In the lower half, five switching tran-
sistors digitally program the tail currents “N5-N9" and 

binary-weighted current sources “N0-N4". Thus, the tail 
current depends on the digital word “B0-B4". Since mul-
tiplication in analog circuitry is area-expensive, approxi-
mate multiplication is common but may be non-linear, 
which can be mitigated by using customized backpropa-
gation algorithms [99]. Multiplexers select input sources 
from previous layers, and the summation of synapses is fed 
into a neural circuit, as illustrated in Fig. 4. This neuron 
circuit converts synapse outputs, i.e., the differential cur-
rents, into differential voltages. The common-mode can-
cellation circuit produces a positive difference from “ I+

in
 " 

and “ I−
in

 ." The next stage is a current–voltage converter 
made up of two p-channel MOSFETs. The last stage, a 
level shifter, is a source follower circuit that shifts the out-
put voltage from the previous stage upward to match the 
high voltage requirement of synapses in the next layer(s). 
This architecture has following advantages: 

1. It is modular and can expand to any number of neurons 
and inputs within the chip area.

2. Output multiplexer reduces the number of pins and 
analog-to-digital converter (ADC) devices.

3. All signals are differential with broad input ranges thus 
providing improved noise resiliency.

Conventional training algorithms (i.e., backpropagation 
algorithms) for on-chip ANNs suffer from low precision 
and high area overhead. A parallel stochastic weight per-
turbation technique [76] may be preferred since it does not 
require on-chip support and provides a compact solution. 
In this method, random vectors perturb all edge weights 
of the ANN. The mean squared error (MSE) is calculated 
over the entire training set to check the error status. If the 
error decreases, the new random vector with weights is 
accepted, otherwise it is discarded. This method is likely 
to get trapped in local minima, which can be avoided by 
using a simulated annealing technique, allowing the state 
of the network to move “uphill."

Fig. 3  Schematic diagram of synapse [101]

Fig. 4  Schematic diagram of neuron [101]
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In an experiment on low noise amplifier (LNA) cir-
cuits two RF amplitude detectors placed at the input and 
output produced DC signals proportional to RF power at 
detector inputs [101]. These DC signals were fed to an 
analog ANN classifier, trained in different configurations 
with 2, 4, and 8 neurons in a single hidden layer. This was 
repeated five times to average out randomness of the train-
ing algorithm’s stochastic nature. Additional experiments 
replaced the hardware classifier with a software classifier 
using the Matlab neural network toolbox trained by a resil-
ient backpropagation algorithm. It was observed that the 
software classifier training error outperforms the hardware 
classifier, but the validation error was comparable in both 
cases. However, for more neurons in the hidden layer the 
hardware classifier’s validation error is substantial, com-
pared to the software classifier. Several future research 
directions were reported by this study: 

1. The accuracy of the hardware classifier is lower than 
the software classifier due to non-linearity in synapse 
multiplication, limited resolution and dynamic range of 
weight values, and the training algorithm’s limitations.

2. The dynamic range of synapses can be improved using 
adjustable gains, i.e., by changing gain when weights 
become too low or saturated [66].

3. Weight resolution is problem-specific and depends on 
network architecture. However, it can be increased in the 
presence of high non-linearity for minimal size devices 
but may lead to mismatch and parameter variation in the 
manufacturing process [95].

4. The training algorithm demonstrates significant con-
vergence properties with minimal variance of the final 
error, but this requires increased training time.

5. Weight storage is large since it is implemented as digi-
tal memory. However, in built-in self test (BIST), these 
weights need to be stored permanently, which may 
require memories using floating gate transistors [56, 
59]. Nevertheless, using floating gate memories to store 

weights of analog neural networks may further raise 
issues like handling of high voltage, accurate program-
ming schemes, and weight updates.

6. Further investigation is needed on whether the ML-based 
approach considers the effects of DUT degradation during 
device lifetime, which includes the ANN as well.

2.2  Parametric Test Metrics Based on Machine Learning

Test engineers have procedures to estimate analog param-
eters related to test costs, yield loss, and test escapes. How-
ever, these metrics should be accurately estimated by simu-
lation ahead of silicon manufacturing. A test strategy [152, 
154] that includes ML algorithms is shown in Fig. 5 and 
illustrates the following points: 

1. A trained ANN classifies circuits whose parametric met-
rics are estimated closer to the specification, known as 
“extreme" instances.

2. Circuit netlists are synthesized using a process design 
kit (PDK) [152] from intellectual property (IP) vendors. 
The procedure simultaneously trains an ANN with pro-
cess metrics to classify “extreme" circuits. These rep-
resent rare occurrences identified by a special Monte 
Carlo technique known as statistical blockade [147].

3. The ANN is re-trained with new simulated circuits to 
push the boundary such that performance of the extreme 
class of circuits matches even closer to the specification. 
This process continues with the re-trained boundary in 
the pursuit of collecting true “extreme" instances (cir-
cuits having performance values marginally satisfying 
to the specification), and push the training boundary to 
generate more such “extreme" circuits.

The “extreme" instances can serve as fault models 
based on parameters, that examine high-performance, 
and are obtained from an alternative test scheme [9, 157]. 
This method speeds up the Monte Carlo transistor-level 

Fig. 5  Simulation flow for 
parametric test metrics estima-
tion [152]
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simulation. Typically, fault models account for process 
parameters based on a joint distribution as given in their 
respective PDK [157]. Finally, the fault model is verifi-
able after performing transistor-level simulation. The algo-
rithm [154] outputs a refined parametric fault model com-
pared to the generalized fault models and helps estimate fault 
coverage and yield loss more precisely. This method was 
applied to a low noise amplifier (LNA) [157] and reduced 
simulation run-time by eliminating the redundant specifica-
tion tests and replacing them with the proposed ML-based 
parametric measurements. The technique was also applied 
to data-converters [9], but is yet to be explored for other 
analog ICs whose simulation run-time is high, such as 
phase-locked-loops (PLLs).

3  Digital Testing

In a modern electronic system, digital parts cover most area. 
Similarly, digital testing occupies most pages in a book on 
electronic test [18]. As chips become more complex, two 
types of problems emerge. One, whose complexity is beyond 
the economically available computing capability, and the 
other for which the problem itself is too ill-defined is to 
find an algorithmic solution. Some of these problems have 
benefited from machine learning.

3.1  Wafer Testing

In general, logic defects occur on wafers in physical clus-
ters [114]. Thus, clustering algorithms [158] can identify 
defect concentrations across the wafer. They work in two 
steps: 1) cluster containment and 2) learning. The first step 
identifies wafers with cluster patterns and screens out pass-
ing dies having no defect within these clusters. Those dies 
are marked for high risk of failure. This process repeats 
based on cluster size, cluster location on the wafer, and fail-
ure composition across multiple wafers to avoid additional 
yield loss and failure analysis. Recent work [176] proposes a 
similar cluster-detecting ML algorithm using support vector 
machine (SVM) [62, 136]. The SVM kernel is a radial basis 
function, generally a Gaussian function, for distance compu-
tation to identify the die from the defective clusters during 
classification. The corresponding process flow diagram is 
shown in Fig. 6.

3.2  Scan Chain Defects

Defective scan latches can fail with permanent faults (which 
are easy to model) or intermittent faults (which are difficult 
to model). A recent survey [72] points to Bayesian learn-
ing [168] for identifying faulty scan cells in the presence of 
intermittent faults using an unsupervised learning approach. 

Fig. 6  ML-based die inking process [176]
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The method analyzes a test set and the corresponding failure 
log of the scan chain [71]. The details of this algorithm are 
explained by assuming a chain fault expressed by a dataset. 
This dataset contains count of patterns for the respective 
scan cell that is “sensitive" to the fault (“sbits") and the count 
of patterns for which a sensitive bit failed (“fbits"). In case 
of perfectly modeled permanent fault, one would expect any 
upstream cells (scan cells between the scan chain input and a 
scan cell’s scan input terminal) will fail on sensitive patterns, 
and any downstream cell (scan cells between the scan chain 
output and a scan cell’s scan output terminal) to pass on 
all the sensitive patterns. However, if defects do not behave 
similar to the modeled faults, upstream defective cells are 
likely to have failure rate below 100% and downstream cells, 
a failure rate above 0%. This unsupervised learning-based 
approach has been applied to diagnose designs containing 
intermittent faults with positive results.

Another work [30] proposes a different ML-based scan 
chain diagnosis technique using supervised learning. This 
uses ANN to diagnose intermittent faults in a scan chain. 
Various multi-level ANNs with proper topologies (termed 
in this study as coarse global neural network (CGNN) 
and refined local neural network (RLNN)) provide 
high-resolution scan diagnosis. By evaluating in multi-
ple stages, the investigators were able to zoom into the 
faulty location with higher accuracy. They also incorpo-
rated comprehensive ANN training vectors to have lower 
chances for unseen data deviating from trained patterns 
and experimental results showed encouraging results. The 
ANN has the following input features: fault type, faulty 
cell’s identification number, and the probability of a test 
pattern activating the fault. The output layer represents 
scan cells of a particular scan chain. These input features 
are modeled in the form of binary response vectors, fur-
ther compressed into a single integer failure vector (IFV) 
computed by performing bit-wise addition of all binary 
response vectors. The number of scan latches in the scan 
chain determines the length of the IFV. The computation 
of the output node of CGNN indicates the candidate scan 
cell being faulty in the scan chain.

This work [30] also proposed a novel solution for com-
pressing binary response vectors into a single vector. An aff-
ine group comprises of scan cells whose euclidean distance 
between their IFV and candidate scan cell is minimal. The 
length of the modified IFV, known as “reduced cascaded 
vector (RCV)," can be reduced by removing bits at certain 
positions based on the affine group (a group of scan cells 
having similar characteristics). This updated CGNN com-
prises of two layers whose number of input nodes equals 
the length of RCV, and the number of nodes in the output 
layer equals the number of scan cells in the affine group. The 
resulting scan diagnosis procedure could achieve reasonably 
high accuracy.

3.3  Printed‑Circuit Board (PCB) Testing

Fault modeling and test methodology for a printed circuit 
board (PCB) differs from that of VLSI chips [18]. Modern 
PCBs consist of multilevel substrates with interconnects and 
mounted packages of digital and analog components. Typi-
cal tests are applied either from the edge connectors to check 
the board’s function, or to test components directly through 
in-circuit test (ICT) probes.

In-circuit testing (ICT) is a crucial aspect of identifying 
defects in electronic components [10]. Two primary methods 
of ICT are currently in use: analog and digital. Analog ICT 
entails measuring the electrical properties of components, 
such as resistance and capacitance, to identify subtle issues 
in passive components like resistors and capacitors. On the 
other hand, digital ICT employs digital signals to stimulate 
and monitor the performance of components and is suitable 
for digital components such as microcontrollers, memory 
chips, and other integrated circuits. By sending specific 
input signals and comparing the measured responses against 
expected values, digital ICT can quickly identify defects like 
incorrect logic states or malfunctioning components.

The choice of the most appropriate ICT method, analog 
or digital, depends on the nature of the PCB and its compo-
nents. Many modern ICT systems now offer a combination 
of both methods, which comprehensively evaluate all aspects 
of the PCB’s functionality.

Testing each component on a board is vital from the real-
time testing perspective. Even when an in-circuit test [10] of 
components using automatic test equipment (ATE) passes, 
the board-level functional test can fail. This phenomenon is 
foreboding and needs a structured way of testing to guar-
antee the reliability of the PCB (or SoC) and its continual 
maintenance. Typically, board-level functional fault diagno-
sis is based on the past root-cause analysis of faulty boards, 
which is also used as training data to predict defective com-
ponents on new boards. The syndromes for faulty boards 
serve as a set of features, and the diagnosed root-causes 
serve as labels for the training data set.

A reasoning-based approach [113] is effective in func-
tional debugging since it continuously learns during debug-
ging and development. However, it is difficult to fix the 
problem if reasoning-based learning incorrectly identifies 
the faulty component on the board. Replacement of the 
entire reasoning model is trivial, but could adversely affect 
the correct detection of an observed failure. The investiga-
tors [113] kept the fixing of their approach as an open prob-
lem for the future.

Another ML application [184] proposed a technique to 
debug and repair board-level functional failures. It exploits 
the connection between failure syndromes and repair actions 
to train an ANN not to infer from visual inspection of log 
files and data sets.
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An SVM-based technique [181, 185] diagnoses boards by 
learning incrementally to locate the root causes of failures. 
The learning tunes the SVM kernel to achieve high accuracy 
in diagnosis. The overall system training time improves with 
the continuous incremental learning of SVM.

ANNs and SVMs are combined to have a diagnosis sys-
tem using a meta learning technique called weighted-major-
ity voting (WMV) [96]. A proposed system combines the 
weights of different repair suggestions generated by respec-
tive machines to identify single pair of recommended repair 
suggestions. WMV using ANN or SVM can further optimize 
repair [162, 180]. There are three types of voting mecha-
nisms: 1) unanimous voting, i.e., all experts agree on the 
same output, 2) at least one or more than half of the experts 
agree on the same output, i.e., simple voting, and 3) certain 
experts are qualified and their votes are weighted to improve 
the overall performance, i.e., weighted-majority voting.

Limited access to training data on the history of board 
failures and the feature vector size for training the ML mod-
els to diagnose failures are major concerns. A syndrome 
merging technique has been proposed [163] to reduce feature 
vector size. However, some syndromes that are not easily 
computable do not allow merging. Another technique [80] 
can still diagnose a system with a non-computable or miss-
ing syndrome using label-imputation and the so-called two-
feature-selection methods.

3.4  Fault Diagnosis

Defective ICs can provide failure logs for fault diagnosis, but 
logging substantial data can be memory-expensive. Besides, 
the analysis of the entire dataset is time-consuming and may 
even be infeasible. ML can help decide when data collec-
tion can be stopped without sacrificing the efficiency of 
fault diagnosis [171]. The idea has been demonstrated by 
using different types of ML approaches, namely, k-nearest 
neighbor (kNN) [90], support-vector machine (SVM) [62, 
136], and decision trees [64]. Both, unsupervised and super-
vised learning methods can cooperate in identifying design 
bugs [109]. A survey [70] of diagnosis using machine learn-
ing examines the relevancy of failure log information for 
fault diagnosis, defect location in scan chain or functional 
logic block, and diagnosis time.

Fault diagnosis plays a vital role in physical failure anal-
ysis (PFA), also known as failure mode analysis (FMA), 
where too many candidate faults may diminish diagnostic 
efficacy leading to low diagnostic resolution. For a diag-
nostic procedure, the average size of group within which 
faults cannot be distinguished from each other is referred to 
as the diagnostic resolution (DR) [183]. The ideal resolu-
tion, DR = 1 , is often difficult to achieve. ML techniques 
try to meet specific objectives such as, 1) mapping of 

diagnosed faults onto corresponding defects based on the 
failure response of the circuit [47, 50], and 2) tuning the 
set of candidate faults to further improve the diagnostic 
resolution [178]. The ANN used in these studies get help 
from the layout and logic information of the circuit and 
failure response.

Conventional diagnostic tools claim to be highly accurate, 
but fail to identify certain faults because they may not con-
sider layout information. Such faults occur due to systematic 
defects, and EDA tools and yield learning methods such as 
physical failure analysis (PFA) are incapable of handling 
them. This can be addressed by analyzing the fail-logs of 
multiple ICs, known as volume diagnosis. This involves 
analysis of large amount of data, and is time-consuming 
and expensive.

An ML-based technique [74] can be included in the yield-
learning process to identify systematic defects and distin-
guish them from random defects. Here, failure responses of 
defective ICs are clustered using a procedure known as the 
farthest-neighbor method [36]. Later work [173] extended 
this technique to identify defect locations in fanout-free 
regions by observing how systematic faults affect the same 
set of outputs. The circuit is first decomposed into fanout-
free regions for a specific kind of defect or defect class, 
which are then classified based on failure outputs using 
SVM. When many ICs fail due to a particular defect class, 
it is assumed that the ICs have systematic defects. Vol-
ume diagnosis also produces multiple failure features for 
an IC. At least two methods, namely, statistical-learning 
approach [166] and Bayesian network approach [29], can 
evaluate the failure feature probability.

An ML-based volume diagnosis technique  [173] has 
several advantages: 1) It relies on certain decision-based 
subroutines, and computation complexity is much lower 
than traditional volume diagnosis methods; 2) It provides 
high-resolution diagnosis and statistical data, which clas-
sifies defective chips based on the defect location; and 3) 
The ML-based technique also works for scan designs using 
test compression and locates defects in most faulty ICs. The 
diagnosis methodology has been compared with respect 
to run time to the traditional analysis. Basic assumptions 
made are that faults in fanout free regions can be activated, 
propagated through common paths, and observed at com-
mon scan latches. According to the available experimen-
tal results [173] the technique can detect more than 90% of 
defective chips in a 50X output compacted design, which 
is faster than the traditional diagnosis methods. Besides, it 
could also detect 86% of defective chips with 100X outputs 
compacted designs in a few milliseconds.

An ML-based method that assists PFA [142] provides 
high-resolution detection of defects. Defects are grouped 
in “defect modes". A statistical test, such as �2 independ-
ence test, is applied to the data obtained from layout-aware 
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scan diagnosis. This test evaluates the amount of correla-
tion between the defect and the “defect modes". The “defect 
modes" have corresponding p-values and rank the respective 
modes to capture the correct systematic defects and elimi-
nate the effects of random defects (also treated as noise in 
this context of statistical analysis).

3.5  Test Compression

Due to the continuing technology node shrinkage, the 
increasing testing cost of high-density ICs has become a 
primary concern. This cost includes test application time, 
which is proportional to test data volume, and the cost of 
generating test data. Traditionally, compressor/decompressor 
architecture, i.e., pseudo-random pattern generator (PRPG) 
along with decompressor reduces the test cost by loading 
scan chains through decompressors and compacting test 
responses in multiple input signature registers (MISRs) [18]. 
However, the length of a PRPG does impact the test time 
irrespective of various circuit parameters [94]. The problem 
of PRPG length may be resolved by using ATPG, but that 
too is time-consuming. A PRPG length selection method is 
shown in Fig. 7. It uses a predictor based on the support vec-
tor regression (SVR) model, which reduces test costs in the 
CODEC architecture. The authors of that work [94] give a 
correlation-based feature selection method applied to indus-
trial designs for reducing the test time with high prediction 
accuracy [120].

3.6  Testability Analysis

Testability analysis generally refers to linear, or at most pol-
ynomial but not exponential, complexity procedures that can 
identify test bottlenecks in a circuit [4]. The analysis deter-
mines numerical measures representing controllability and 
observability of signals. “Distance" or logic depth through 

the circuit has been the simplest measure that was used in 
an ATPG algorithm [48]. Here the distance of a signal site 
in terms of logic gates between PI and the site is considered 
the controllability measure, and that to PO as the observ-
ability measure. Some of the other testability measures are 
TMEAS [151], Sandia Controllability/Observability Analy-
sis Program (SCOAP) [49], CAMELOT [12], and control-
lability and observability program (COP) [16]. The first four 
examine the circuit topology and the last one, signal prob-
abilities. They have been used for improving digital circuit 
design or for selecting one out of multiple choices that occur 
within complex test generation programs. We discuss three 
areas where machine learning has been applied.

3.6.1  Combining Testability Measures

Several of the testability measures listed above have been 
combined into a composite measure using unsupervised 
learning [125]. The goal of the learning algorithm is to 
explore the data and find some structure or pattern within 
it. Popular learning models include k-means clustering [57], 
partitioning around medoids (PAMs) [81], ordering points 
to identify the clustering structure (OPTICS) [6], principal 
component analysis (PCA) [69, 117], minimum redundancy 
maximum relevance (mRMR) [118], and self-organizing 
maps (SOMs) [85]. These methods are typically used to 
segment text topics, classify items, and identify data outliers.

In our illustration, for every signal node, four testability 
measures have been defined, 0-controllability, 1-controlla-
bility, 0-observability, and 1-observability [77]. The last two 
measures are often replaced by a single measure, observ-
ability, leading to three measures per node. The combination 
process has the following steps:

• For testability measures, e.g., distances, SCOAP [49], 
etc., to be combined, compute relevant values corre-
sponding to each signal node in the circuit.

• Normalize all quantities to the range [0,1].
• Phase correction - Consider SCOAP, which is a meas-

ure of effort. Thus, low or closer to 0 0-controllability 
means that the node is easy to set to 0. On the other hand, 
COP [16] estimates probability and for the same node the 
0-controllability will be closer to 1. Assuming that the 
combined measure is to have the probability interpreta-
tion, the normalized SCOAP values should be subtracted 
from 1.0 in order to align with other measures.

• All measures are combined using the principal compo-
nent analysis (PCA). If n measures are being combined, 
then PCA computes n values for each node of the circuit. 
The largest of these is the principal component and is 
used as the combined measure. The analysis is repeated 
three times to generate the combined 0-controllability, 
1-controllability and observability for each node.Fig. 7  Pseudo-random pattern generation (PRPG) methodology [94]
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The PCA combined testability measure has been used to 
guide the ATPG with notable performance improvement as 
shown in Figs. 8 and 9, and discussed in Section 3.9. Other 
applications such as finding hard to detect (HTD) faults 
or test point insertion (TPI) candidate nodes are yet to be 
attempted. Also, the effects of combining larger number 
of measures may be explored in the future.

3.6.2  X‑Sensitivity

Don’t care or unknown signal state (denoted as X), when 
present in simulation, degrades the quality of fault detection. 
Their sources can be uninitialized memory cells, bus conten-
tions, anomalous analog-to-digital conversion, and manufac-
turing defects during post-silicon validation. X-sensitivity 
of a signal is a measure of degrading effect on fault cover-
age from X on that signal. The support vector procedure, a 
machine learning technique, has been shown [120] to predict 
the sensitivity of X’s in a digital circuit. The method ranks 

circuit nodes according to X-sensitivity, which is beneficial 
in the post-silicon validation phase.

3.6.3  Signal Probability

Savir [135] conjectured that it would be impossible to cal-
culate a simple testability measure based on signal con-
trollabilities and observabilities in a circuit containing 
re-convergent fanouts such that the measure will truly rep-
resent the probability of fault detection. This is because the 
reconvergence introduces signal correlations not accounted 
for in simple testability measures. The difficulty is that 
almost all industrial circuits contain re-convergent fanouts. 
Topological analyses [122, 140] can detect re-convergent 
fanouts, but they can be computationally burdensome. 
Toward application of ML, recent work [75] has used ANN 
to predict signal probabilities from minimal fanout infor-
mation, resulting in increased accuracy with reasonably 
small computation time.

Fig. 8  Total backtracks 
used while finding a test or 
proving redundancy for the 
checkpoint faults left after the 
random ATPG phase applied to 
ISCAS’85 [17] and ITC’99 [32] 
benchmark circuits [131]

Fig. 9  Total CPU times on 
Intel i7-8700 based worksta-
tion with 8-GB RAM to find 
a test or prove redundancy for 
the checkpoint faults left after 
random ATPG phase applied to 
ISCAS’85 [17] and ITC’99 [32] 
benchmark circuits. Four types 
of data points and trend curves 
are for PODEM ATPG pro-
grams guided, by respectively, 
logic distance (square dot, third 
curve from top), COP (diamond 
dot, second curve from top), 
SCOAP (triangular dot, third 
curve from top), and PCA-
combined measure (circular dot, 
bottom curve) [131]
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3.7  Built‑In Self‑Test (BIST) and Test Point Insertion 
(TPI)

Logic built-in self-test (LBIST) often relies on pseudo-ran-
dom patterns, which may be economically generated in hard-
ware by a linear feedback shift-register (LFSR)  [18]. How-
ever, an LFSR may not generate specific patterns to detect 
random pattern-resistant (RPR) faults. As an ML solution to 
this problem, an ANN can be used to generate test patterns to 
detect RPR faults as well as easy-to-detect faults.

The self-learning capability, suitable for a system-on-chip 
(SoC), also deals with aging-induced degradation. This pro-
posed flow uses existing LBIST and an ML-based software 
predictor to remedy the problems arising from the wear-out 
or aging of IC in the field [39]. An ANN is developed using 
LBIST patterns (converted from ATPG-generated tests for 
transition delay faults) that activate critical or near-critical 
paths. The results demonstrate that a gate-overlap and path 
delay-aware algorithm can select the optimum set of test 
vectors. This methodology is area and test-time efficient.

To improve the fault coverage of LBIST, designers insert 
test points (TPs) modifying the circuit’s internal signal val-
ues to detect random pattern resistant (RPR) faults. Test 
point insertion (TPI) [60] techniques find high-quality TPs 
to improve fault coverage or reduce test vector count. These 
techniques are classified based on the form of analysis used, 
namely, fault simulation, probabilistic testability measures, 
or multiple measurements [107, 161].

A deep learning technique to solve the TPI problem 
of logic circuits has been proposed [100]. It uses a graph 
convolutional network (GCN) to classify signal nodes as 
either easy-to-observe or difficult-to-observe. This ANN 
analyzes attributes of each node and its neighbors, based 
on a testability measure such as SCOAP [49]. Further 
work [132, 133, 159] used fully-connected neural net-
works to evaluate the impact of control-0, control-1, and 
observe test points on fault coverage and found that an 
iterative TPI process improved the fault coverage and sig-
nificantly reduced TPI time. In another extension [108], 
when randomly generated circuits were used for training, 
the ANN still yielded a performance comparable to that 
of ANN trained on benchmark circuits.

A more recent investigation [160] has shown that opti-
mizing the complexity of the neural network can improve the 
LBIST performance with higher fault coverage, fewer test 
points, and shorter test length, while reducing the computa-
tion time to find test points.

3.8  Power Supply Noise (PSN) and Signal Integrity

Reliability problems of integrated circuits center around 
operating conditions, such as, temperature, speed, voltage, 
and circuit aging. Many of these remain uncovered during 

the conventional testing and may be found during the burn-
in test [78]. Some related concerns are power supply noise 
(PSN), signal integrity, and timing failures.

IR drop is a significant concern in IC design and is often 
referred to as power supply noise (PSN) [143, 167]. Unre-
strained PSN can lead to performance glitches and impact tim-
ing [25, 79]. Also, excessive PSN during test can cause false 
failure if a test pattern induces PSN that substantially exceeds 
the functional mode behavior [46, 93, 172, 174]. Hence, PSN 
simulation, though a nontrivial effort, is important.

Timing analysis is vital because it determines the clock 
frequency for the IC. However, circuit timing depends on 
static and dynamic characteristics, because PSN impacts the 
supply voltage reaching individual gates, it affects propaga-
tion delays and slows down switching.

Applications of ML in this area include the use of sup-
port vector machine (SVM) [179] to predict voltage droop 
in field-programmable gate array (FPGA) and dynamically 
adjust the clock frequency of the circuit. However, without 
feature extraction, the method is applicable only to small 
ICs. Another ML-based technique [97] includes feature 
extraction methods, such as ANN [34], SVM [15, 179], and 
least-square boosting (LSBoost) [15]. Here, ANNs are found 
to be the best predictors of circuit timing for test patterns.

A recent paper [112] gives a machine learning (ML) solu-
tion for small delay fault (SDF) detection problem of resis-
tive opens. Such defects may not cause a failure of timing 
specification but still present a reliability challenge. The 
method uses tests at multiple voltages and frequencies to 
examine the latent faults considering three ML techniques: 
support vector machine [62, 136], k-nearest neighbors [90], 
and random decision forests [64]. The results show that the 
learning scheme based on random decision forest classifies 
the embedded faulty cells with higher accuracy.

3.9  Machine Intelligence Applied to ATPG

An ATPG algorithm searches for an input vector to detect 
a given fault. For a combinational circuit, the search space 
consists of 2#PI vectors, where #PI is the number of primary 
inputs (PIs). Thus, ATPG is a search algorithm whose size 
of search space increases exponentially with circuit size, in 
terms of #PI.

Roth’s D-algorithm [123] conceptualizes ATPG by defin-
ing D-algebra and giving a complete search algorithm. The 
symbol D represents a composite state of a signal in the 
fault-free and faulty circuits. Thus, D means 1 in fault-free 
circuit and 0 in faulty circuit. D is the opposite condition.

D-algorithm has high complexity as it manipulates all 
internal signals of the circuit. It can be particularly inef-
ficient for large circuits containing XOR gates and re-
convergent fanouts. The path oriented decision making 
(PODEM) [48] algorithm improves the search efficiency 
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by focusing on PIs. In general, ATPG implementations use 
heuristics to speed up the search. In summary, the relevant 
features of the PODEM algorithm are,

• The search space is reduced from 2n for D-algorithm, 
where n is the total number of signals (gates and PI) in 
the circuit, to 2#PI for PODEM.

• A concept of X-path-check is introduced, where X refers 
to an unknown or yet undetermined value of a signal. 
D-algorithm may try to find a test even when the entire 
D-frontier is blocked, but PODEM’s X-path-check veri-
fies that there is at least one D-frontier gate with access 
to a primary output. Otherwise, it will backtrack to the 
previous stage in the search process where an alternative 
signal choice is available. D-frontier is the set of all gates 
that have a D or D at their input but the output is still X, 
i.e., undetermined.

• PODEM originally proposed a distance-based heuristic 
to identify easy or hard to control inputs of logic gates 
while backtracing to primary inputs, as opposed to 
D-algorithm that traditionally chose any gate input. Sev-
eral other heuristics based on the circuit topology have 
been used in the programmed implementations of both 
algorithms. Similarly, while propagating the fault effect 
to an observable primary output (PO), the gate closest to 
PO will be selected from the D-frontier.

Many other ATPG algorithms, e.g., FAN  [43], 
TOPS [84], SOCRATES [137–139], EST [19, 27, 28], 
recursive learning  [88], TRAN  [23], GRASP  [103], 
NEMESIS [92], TEGUS [150], and Boolean satisfiability 
(SAT) [11, 20, 22, 91, 92], have been reported. Although 
the search space size remains 2#PI , researchers [63, 164] 
attempt to find tests faster either by special subroutines to 
filter the search space, or through heuristics to select from 
available choices. It is this second aspect of the ATPG that 
the ML techniques focus on.

Before machine learning was applied to ATPG, artificial 
neural networks (ANN) were used to model digital circuits 
where a bidirectional binary neuron would represent the 
state of a signal [20, 22]. Each neuron has a threshold value 
and its interconnects to other neurons have weights, which 
together determine the energy of the ANN for any set of neu-
ron states. For any binary [0,1] states of primary input (PI) 
neurons, the minimum energy of the ANN is attained only 
when all neurons assume valid signal states corresponding 
to the digital circuit. Given a target fault, the ANN for the 
corresponding arbiter circuit is first constructed. The mini-
mum energy state of this ANN is then determined and the 
states of PI neurons provide a test vector. The ATPG requires 
either a physical neural network or a software model. In 
either case, the network energy function depends on a large 
number of variables (all signals) and may have many local 

minima, making the search for a test (minimum energy state) 
for some faults rather difficult. A program, TRAN [21, 23], 
makes this algorithm computable by using graph theoretic 
principle of transitive closure.

Applications of quantum computing, although not 
exactly considered machine intelligence, have also been 
reported [145, 146]. While we discuss recent developments 
in this section, one can find discussion of machine learning 
in the context of ATPG as far back as 1987 [87].

The application of ML is related to the heuristic part of 
the ATPG algorithm. All programmed algorithms have used 
heuristics to speed-up the search. Typical heuristics base 
decisions on distance, in terms of logic gates, from PIs or 
POs to signal sites, testability measures, voting on fanout 
stems depending on branches, learning techniques using 
implication graphs, etc. In 1985, Patel and associate [115, 
116] conducted experiments to study the effectiveness of 
various testability measures as heuristics in PODEM and 
proposed a strategy for test generation. They observed that 
instead of using a single testability measure with a high 
backtrack limit, it is more efficient to use multiple testability 
measures successively and with a low backtrack limit. Con-
sidering this a traditional approach, machine learning (ML) 
as discussed next will be quite different; multiple testability 
measures will be combined and used all together. The result 
will be even greater efficiency over the successive applica-
tion approach [115, 116].

Recent work [124] uses ANN and principal component 
analysis (PCA) [69, 117] as ML models, relies on the con-
ventional gate-level circuit description, and uses a search 
algorithm that, given unlimited computing resources, would 
guarantee a test in significantly reduced CPU time by mak-
ing fewer unproductive algorithmic decisions requiring 
backtracks. The ANN and PCA combine circuit topology 
information and testability measures to create a novel heu-
ristic to guide the search. Since several available heuristics 
are being applied together, we do not need a low backtrack 
limit as a stopping criterion to avoid unproductive decisions.

PODEM [48] offers an ideal ATPG environment to 
apply ML-based heuristic to choose a backtrace path to a 
primary input (PI) for justifying a desired signal value at 
an objective site. The ATPG benefits from the ML-based 
guidance, which is found to reduce backtracks. Three 
approaches have been reported to provide successively 
higher performances. All use a conventional PODEM pro-
gram with backtrace guidance provided either by a PCA-
combined testability measure [130, 131], as described in 
Section 3.6.1, or by a trained ANN [126, 127, 129]. The 
former is called unsupervised learning, while the latter is 
called supervised learning.

Considering the present context, the PCA can combine 
any number of data types relevant to the ATPG algorithm, 
such as input–output distance (logic depths), and testability 



150 Journal of Electronic Testing (2024) 40:139–158

measures from COP [16] and SCOAP [49] values into a 
set of principal components (PCs). Then the largest (major) 
PC would guide the PODEM ATPG backtraces [130], also 
known as “PCA-guidance" methodology. The next case 
we examine is a “optimally-trained-ANN" feature reduc-
tion methodology to improve the ANN complexity and 
guide decisions that otherwise would rely on heuristics, 
also known as “PCA-trained-ANN" [127]. The result, not 
surprisingly, is the best achieved among the aforesaid ML-
based ATPG options studied.

The preceding evaluation is based on a combined ATPG 
performance (number of backtracks and CPU time) for all or 
a target subset of faults. However, in practical ATPG imple-
mentation an important criteria is the performance with 
respect to the hardest-to-detect or even redundant faults. 
Thus, a fault-by-fault micro-evaluation of the ATPG guid-
ance techniques is recommended for the future, and what 
follows next offers a preview.

Statistical analysis of fault coverage for random and deter-
ministic vectors [141] can assess circuit testability from fault 
simulation, predict coverage from detection probabilities, 
estimate test length for required coverage, and help generate 
test vectors by fault sampling. On these lines, we discuss a 
practical ATPG system where easy-to-detect faults are cov-
ered by random vectors and hard-to-detect faults are left 
for a PODEM-based ATPG with backtrace guidance com-
ing from either MI [124, 126, 127, 129, 130], or distance 
(logic depth) heuristic [48], or controllability and observ-
ability program (COP) [16], or SCOAP [49]. We find that 
MI-guided ATPG shows significantly improved performance 
over others.

Unsupervised learning or PCA was applied only in the 
backtrace step [130] in the early work, while the D-drive used 
the conventional distance (logic depth) heuristic [48]. The 
ATPG system we will examine now [131] applies principal 
component (PC) to direct both backtrace and D-drive. In addi-
tion, this is a complete ATPG system with random and algo-
rithmic phases and a fault simulator. The ML based ATPG 
was applied only to faults left uncovered after the random 
pattern fault simulation phase. The results showed the effec-
tiveness of guidance provided by PCA to PODEM ATPG.

• In Figs. 8 and 9 circuits are arranged left to right in the 
order of increasing number of nodes. Figure 8 shows 
combined backtracks and Fig. 9 gives total CPU time 
for all stuck-at faults left over from the random phase. 
Number of backtracks (four bars in Fig. 8) and CPU mil-
liseconds (ms) (four data points in Fig. 9) for each circuit 
correspond to the four versions of PODEM. These are 
PODEM programs where backtraces and D-drives are 
directed, respectively, by distance (logic depth), COP, 
SCOAP, and the major principal component from PCA 
combining distance, COP and SCOAP measures. In 

Fig. 9, a trend curve is obtained by power-law fit to the 
experimental data from each PODEM version. Notably, 
shorter black bars and lower black curve indicate consist-
ent improvement provided by PCA guidance [131].

These results demonstrate that guidance from PCA-gen-
erated linear combination of multiple heuristics can reduce 
ATPG backtracks and CPU times when compared with 
conventional single heuristic guidance. Circuits b03, c432, 
b10, b13, c880, b07, b05, b12, c5315, c7552, c1355, c2670, 
c3540, b04, b11, b08, c499 and c6288 exhibit significant 
reductions in backtracks and CPU times in Figs. 8 and 9. 
PCA is most frequently the best guidance for ATPG, but 
even when it is not, it is never the worst. There are no recon-
vergent fanouts in c17, b02, b01, and b06, and so there is no 
scope for reducing backtracks as there would be none. An 
example of zero backtracks by PCA-based PODEM ATPG 
is circuit b09 in Fig. 8.

An obvious advantage of this procedure is its simplicity. 
Besides, any number of testability measures can be com-
bined by PCA. For example, a measure that includes the 
information on reconvergent fanouts may give additional 
benefit to the ATPG. In general, all measures may have lin-
ear complexity approximations, each retaining a different 
piece of information. Thus, adding more measures in PCA 
should continue to increase the benefit.

Another form of ML application employs artificial neural 
networks (ANN) and is referred to as supervised learning. 
Here, models are trained with input data where the desired 
outputs are known. Supervised learning uses patterns to 
predict labels on unlabeled data and is used in applications 
where the history of data predicts likely future events. A 
supervised learning algorithm receives inputs along with 
corresponding correct outputs; the algorithm learns by 
comparing its outputs against and correct outputs to find 
errors and modifies the learning model accordingly to 
minimize errors. Some known learning models are support 
vector machine (SVM) [62, 136], one-class SVM [62] or 
one-class neural network [148], decision trees (DT) [121], 
random forest (RF) [65], linear regression (LR) [111], mul-
tivariate adaptive regression splines (MARS) [182], logistic 
regression [33], adaboosts [41], ANNs [61], convolutional 
neural network (CNNs) [61], autoencoders [7], recurrent 
neural network (RNNs) [61], long short-term memories 
(LSTMs) [45], and half-space trees (HS-Trees) [165].

A recent study examined MI’s supervised learning ability 
to enhance ATPG by reducing backtracks [126], also called 
here as “basic training of ANN" methodology, by replac-
ing conventional heuristic to decide backtracing direction 
using an ANN trained with PODEM data on hard-to-detect 
faults. The training of ANN can be tuned for ATPG appli-
cation [129], which we will call “optimally trained ANN" 
methodology. In this case, supervised ML uses sample 
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ATPG data and circuit information to train an artificial neu-
ral network (ANN), which then provides the backtrace deci-
sions for ATPG. In contrast, unsupervised ML was more 
direct as it used neither sample ATPG data nor the ANN.

Figure 10 [127] shows the ATPG results for the same 
benchmark circuits (as in Figs. 8 and 9) now using super-
vised learning. As the fitted trend curves show, these 
results are similar to the unsupervised learning results of 
Fig. 9 [131], although they cannot be numerically compared. 
In the unsupervised learning case the ATPG was applied 
only to the checkpoint faults left undetected by random 
vectors, whereas in the supervised learning experiment all 
checkpoint faults were used. Another difference is that the 
data are arranged, respectively, according to the number of 
signal nodes in Fig. 9 and logic depth in Fig. 10. Noticeable 
difference is seen, however, for several small and medium 
size circuits in Fig. 10 where the ATPG CPU time with the 
PCA trained ANN guidance is negligibly small.

4  Memory Test and Repair

4.1  ML‑Based Built‑In Self‑Repair of DRAM

Device and interconnect geometries of VLSI circuits are 
decreasing rapidly. As a result, manufacturing yield contin-
ues to drop, owing to higher component density, complicated 
fabrication process, and greater susceptibility of shrunk fea-
tures to defects. Some faulty parts on chips are rescued by 
incorporating redundant components, and a reconfiguration 
scheme that replaces the faulty component with a redundant 
one. A dynamic random access memory (DRAM) is densely 
packed, and redundant rows and columns are added to recon-
figure faulty cell rows and columns of memory sub-arrays 
using electronically programmable latches. Optimal recon-
figuration and redundant component allocation is a classical 

problem widely studied by researchers [42]. However, these 
algorithms are not directly applied to memory sub-arrays as 
they are neither controllable nor observable by external test-
ers. This problem is resolved by the introduction of built-in 
self-test (BIST) that comprehensively tests memory arrays 
and discards them if they fail. The scheme is further modi-
fied as “built-in self-repair (BISR)", and is used to salvage 
faulty memory arrays.

Memory repair was first introduced in 64 kbit DRAM 
to improve the chip yield using redundant rows and 
columns  [149]. With technology advances, increasing 
memory size has made the search space too large and 
the types of faults have also become complex. There-
fore, conventional repair algorithms, both greedy  [38] 
and exhaustive [35], became ineffective. Since memory 
repair problem is NP-complete [54], heuristic algorithms 
were introduced. These included branch and bound [89], 
approximation [89], best-first search [58], and others [98, 
175]. They have worst-case complexities that are nearly 
exponential and are not easily implementable in the built-
in self-repair (BISR) mode. Focus next shifted [105] to: (1) 
an efficient algorithm so that overall throughput improves 
with the chip yield, and (2) hardware implementable algo-
rithms. A self-repair scheme using BISR [105] repairs 
memory subarrays by reconfiguring redundant rows/
columns. As “Repair Most (RM)" is a simple and eas-
ily implementable hardware, the performance of ANN-
based memory repair algorithm has been compared against 
RM [105].

ANNs have been used to tackle optimization problems, 
e.g., the famous traveling salesman problem [44], for which 
a solution was proposed by Hopfield  [68]. Lyapunov’s 
energy function can represent an optimization cost function, 
and the convergence property of the ANN from a random 
initial state to a local minimum state can reduce this cost 
by using a gradient descent algorithm. However, this kind 

Fig. 10  Total CPU times on 
Intel 8700 processor based 
workstation with 8-GB RAM to 
find a test or prove redundancy 
for all checkpoint faults in 
ISCAS’85 [17] and ITC’99 [32] 
benchmark circuits. Three types 
of data points and trend curves 
are for PODEM ATPG guided 
by, respectively, basic-trained 
ANN (round points, top curve), 
optimally-trained ANN (tri-
angular points, middle curve), 
and PCA-trained ANN (square 
points, bottom curve) [127]
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of ANN formulation has low-quality, and therefore another 
proposed algorithm [105] modifies the existing gradient 
descent to a hill-climbing algorithm. This improves the solu-
tion quality and raises the probability of finding a globally 
optimal solution.

Also, it is found that conventional repair algorithms 
run slow on digital computers, whereas ANN’s collective 
computational property provides a faster solution. A gradient 
descent algorithm [105] can be 2-to-4 times better than 
conventional “RM" algorithms in repair schemes as gradient 
descent minimizes the network’s cost function in the locality 
of the starting energy value, and the hill-climbing algorithm 
further bypasses the local minima traps. It was empirically 
observed that the hill-climbing algorithm can repair 
almost 98% of faults in a large memory array as opposed 
to other conventional and gradient descent algorithms with 
a certainty of approximately 20%. Both hill-climbing and 
gradient descent algorithms using ANNs take minimal area 
overhead of approximately 3%. It was also reported [105] 
that the chip yield increased from 10% to 100% by improved 
repair. Additionally, the ANN hardware is more fault-tolerant 
and robust than conventional logic circuits and therefore is 
the best candidate for a self-repair circuit. However, three 
types of component failures have been identified in neural 
networks, namely synapse-stuck-at fault, bias fluctuations, 
and neuron stuck-faults to serve as fault model. For each 
faulty synapse, either of synaptic weights can be assumed 
as stuck, due to transistor-stuck faults or defective memory 
cells that control the programmable synapses. Faulty bias 
generators are modeled to fluctuate within one unit of the 
pre-determined biases, and faulty neurons will have stuck-at 
firing or stuck-at non-firing states. For unknown reasons, if 
the ANN neurons are stuck-at firing or non-firing state, then 
its ability to repair faulty memory cells degrades gracefully 
and supports continual operation despite multiple faulty 
neurons in the ANN.

4.2  Software‑Assisted Self‑Test of Flash Memory

Among the application domains of flash memory, automo-
bile industry is an important one. Embedded flash memory 
cores occupy substantial portion in automotive SoCs with 
significant impact on the final yield of devices. Automo-
tive IC testing must ensure correct chip function after 
calibration, test, and repair of flash memories [102]. This 
requires redundant memory cells, i.e., spare word lines 
(WLs) and bit lines (BLs), and activation mechanism for 
the redundant structures. Redundant component analysis 
can be done on-line in software-assisted in-chip self-test 
(SIST) [102], but a major bottleneck is efficient reconfigu-
ration of redundant components quickly and accurately. A 
bitmap scheme was originally used to reconfigure faulty 
memory cells by downloading the cell coordinates, but 

later it proved to be ineffective and time-consuming, which 
prevented it from becoming a regular industry practice. 
The strategies that maintain a trade-off between test time 
and memory costs with accurate reconfiguration to spare 
components may lead to false-positive behavior and yield 
loss such as, (1) identifying uncorrectable faulty memory 
by a repair algorithm, which is not feasible or (2) discard-
ing the correctable faulty memory despite the availability 
of suitable spare components owing to the repair algo-
rithm’s inability.

One must deal with false fail identifications and prevent 
unnecessary repairs [102]. If a replacement algorithm is 
heavily constrained with execution time it may classify a 
repairable memory core as irreparable, known as false fail. 
A vital step in using an ML-based predictor to identify 
false fails is to extract training features. Training features 
have been extracted using a coloring algorithm [53], where 
every fault is assigned a unique color and its occurrence 
is evaluated statistically. This algorithm combines different 
faults with unique colors to provide a chunk of datasets to 
the ANN.

A machine learning technique  [102] works in two 
steps: (1) in development phase, bitmaps are collected for 
selected devices that compose training/test datasets, and (2) 
in production phase, training features are extracted using 
the coloring algorithm [53], and the discarded devices 
are labeled as false failures. A detailed analysis is used 
to extract training features and results are fed back to the 
coloring algorithm designers. Supervised and unsupervised 
training techniques are deployed to assess the false fails 
and to determine whether or not they are correctly dis-
criminated against in training features. Artificial bitmaps 
are added to original bitmaps to keep unaltered fail signa-
ture characteristics: bitwise AND, OR, XOR, noise, and 
many more. These additional bitmaps provide more com-
prehensive training datasets including false fails, leading 
to significantly better prediction accuracy.

It is also found [102] that the training data sets are highly 
unbalanced and therefore a confusion matrix is used. This 
is a table whose rows resemble predicted labels and col-
umns represent actual labels. The resultant square matrix 
provides useful information, i.e., the correct prediction lies 
on the diagonal and misclassifications, elsewhere. The best 
ML-based predictor must be fast, reliable, easily hardware 
implementable, and interpretable so that it does not affect 
the overall test time of the IC production flow.

Experimental results [102] have shown that the ML-based 
predictor of a model “decision tree" compared to other mod-
els such as “random forest" and “feed-forward" have a better 
score and minimal variance with the fastest and easy-to-
implement subroutine. The overall approach is empirically 
proven on real-time data and demonstrates that it is feasible 
to predict a false fail device with better accuracy.
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4.3  SRAM Yield Improvement using Statistical Blockade

As transistor size shrinks, the statistical blockade tech-
nique [147], discussed in Section 2.2, is found to improve 
the yield of SRAM ICs since they contain highly repeat-
able components. Statistical blockade is conceptually an 
improvised Monte Carlo method, employs ideas from 
non-traditional sources such as extreme value theory 
(EVT) and machine learning. This novel technique, 
proven to be more efficient than the conventional Monte 
Carlo method, provides accuracy and speedup of approxi-
mately two orders of magnitude across circuits despite 
parametric variation.

5  Conclusion and Future Work

This survey has highlighted key aspects of machine learn-
ing (ML)-based testing of analog, digital, memory, and 
radio frequency (RF) devices. It motivates the integra-
tion of ML into the IC testing process of the future. It 
is expected that the use of ML would become routine in 
testing of the ICs of the future in the defense, healthcare, 
space, and automotive industries:

• Recently, ML has been at the cutting-edge in the IC test 
industry, but the accuracy in classifying test data after 
training an ANN is not fully convincing (i.e., may not be 
close to 100%). Moreover, 100% training and test accuracy 
will not fetch the correct classification of data in a real-
time, which may lead to a catastrophe in critical systems.

• ML in counterfeiting detection can prove dangerous if 
the attackers use ML-based model to attack either good 
(false positive) or bad (false negative) ICs. The research 
on defense techniques needs to stay ahead!

• Emerging technology designs and their testing is in 
a nascent stage and hence full of imperfections and 
ongoing variations. However, quick adoption of the 
existing methods and tools to a new technology can be 
effective [186, 187]. While any ML applications in the 
existing tools are immediately adopted this way, future 
investigations may lead to unconventional benefits.

ML applications fall in two categories, experimental 
and algorithmic. The first category includes defect diag-
nosis, i.e., locating and identifying defects, which is a 
part of manufacturing. Diagnosing defects, often differ-
ent from the modeled faults targeted by tests, is a prob-
lem that requires experience and skill. Section 2 discusses 
analog and RF testing that does not rely on fault models 
and signal parameter ranges must be interpreted during 
test. This often requires human intervention, which ML 
can automate. Section 3.4 and several other subsections 

on digital circuit diagnosis and Section 4 on memory test 
and repair bring out the ML potential.

The second category consists of algorithms that need to 
be programmed. Algorithms for digital test generation are 
complex and grow exponentially with the circuit size. A 
typical program uses heuristics to select among multiple 
choices to direct the execution toward a quick solution. 
Several subsections around Section 3.4 point to some very 
practical applications of ML in the supervised and unsu-
pervised learning modes.

We must mention items that our reader will find miss-
ing in this survey. The references in this paragraph are 
nowhere comprehensive but are given to get the search 
started. We believe there is ample research scope in new 
areas like hardware security [14, 52], wafer map failure 
pattern classification [26], test escape detection for digi-
tal circuits [83], intelligent lithographic hotspot detec-
tion [177], expediting device-level testing followed by 
circuit and SoC-level testing using ML for some of the 
emerging technologies such as carbon nanotube field-
effect-transistor (CNTFET) devices [8], monolithic 3D 
(M3D) devices such as resistive RAM (ReRAM) [24] and 
many more.
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