
Vol.:(0123456789)

Journal of Electronic Testing (2024) 40:139–158
https://doi.org/10.1007/s10836-024-06117-7

A Survey and Recent Advances: Machine Intelligence in Electronic Testing

Soham Roy1 · Spencer K. Millican2 · Vishwani D. Agrawal3

Received: 20 November 2023 / Accepted: 27 March 2024 / Published online: 15 April 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Integrated circuit (IC) testing presents complex problems that for large circuits are exceptionally difficult to solve by tradi-
tional computing techniques. To deal with unmanageable time complexity, engineers often rely on human “hunches" and
“heuristics" learned through experience. Training computers to adopt these human skills is referred to as machine intel-
ligence (MI) or machine learning (ML). This survey examines applications of such methods to test analog, radio frequency
(RF), digital, and memory circuits. It also summarizes ML applications to hardware security and emerging technologies,
highlighting challenges and potential research directions. The present work is an extension of a recent paper from IEEE VLSI
Test Symposium (VTS’21), and includes recent applications of artificial neural network (ANN) and principal component
analysis (PCA) to automatic test pattern generation (ATPG).

Keywords Machine intelligence (MI) · Machine learning (ML) · Analog testing · Digital testing · Memory test and repair ·
RF testing · Hardware security · Artificial neural network (ANN) · Principal component analysis (PCA).

1 Introduction

Integrated circuit (IC) defects behave differently depending
on the type of circuit, requiring separate test methodologies.
Analog and radio frequency (RF) tests are functional and
derived from high-level specifications [82], digital tests are
structural and target modeled faults [18], and memory tests
also target modeled faults but test them in a functional man-
ner [3]. For any circuit type, increasing integration reduces
cost, but testing must address the increased complexity and
test for nuanced faults not seen in previous generations of
circuit technology.

Problems like digital test pattern generation are compu-
tationally complex while those such as integrated circuit

(IC) yield enhancement are not easily addressable by sim-
ple algorithms. Human intuition often helps but the cost of
employing teams of experienced engineers to apply their
intuition can be nontrivial. In this situation, engineers can
apply machine learning (ML), also known as machine intel-
ligence (MI), to create novel solutions for test problems.
Besides, ML also makes programming easier and reduces
software development cycles and costs.

Previous surveys [119, 152] have discussed ML applica-
tions to testing. Our recent article at the VLSI Test Sympo-
sium (VTS’21) [128] explored additional areas absent from
the previous surveys. The present article provides some
details from previous publications. In addition, recent appli-
cations of ML to automatic test pattern generation (ATPG)
are summarized in Section 3.9. These are,

• Establish the feasibility of training artificial neural net-
work (ANN) to guide an ATPG algorithm [126].

• Optimize the training of ANN for ATPG [129].
• Use principal component analysis (PCA) [69, 117] to

combine multiple heuristics in ATPG [130].
• Impact of ML guidance on the performance of

ATPG [127].
• Use PCA to combine multiple heuristics for backtrac-

ing and D-drive [48] in a practical ATPG system (i.e.,
random patterns followed by algorithmic vectors) [131].

Responsible Editor: H.-G. Stratigopoulos

 * Soham Roy
 soham.roy@intel.com

 Spencer K. Millican
 spencer.k.millican@dynetics.com

 Vishwani D. Agrawal
 agrawvd@auburn.edu

1 Intel Corp., Santa Clara, CA 95054, USA
2 Dynetics Inc., Huntsville, AL 35806, USA
3 Auburn Univ., Auburn, AL 36849, USA

http://orcid.org/0009-0003-1602-2036
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-024-06117-7&domain=pdf

140 Journal of Electronic Testing (2024) 40:139–158

Section 3.9 is derived from authors’ recent research in
which they try to follow the elusive goal of zero backtracks in
ATPG [124]. The results show improvement from the past but
cannot claim ultimate optimality. Indeed, they point to a pos-
sible path for the future, and that is the purpose of this survey.

Rest of this article is organized as follows. Section 2 dis-
cusses ML applications in testing of analog and RF circuits.
Section 3 explores new ML techniques for digital circuits,
which is an additional contribution beyond the previous sur-
veys. Memory testing is the subject of Section 4. Section 5
concludes the survey by listing some open test-related chal-
lenges yet to be addressed by ML.

2 Analog and RF Testing

Analog and radio frequency (RF) components are inte-
gral parts of modern electronics, and testing them requires
sophisticated equipment and methods. Such devices demand
more time and indirectly increase manufacturing costs. A
common belief among engineers is that even though the
analog and mixed-signal parts may occupy around 10% of
the chip area, the rest being digital, they take 90% of the
testing effort. This is mainly because analog testing is spec-
ification-based while digital testing relies on fault models
permitting effective use of computer tools.

Efforts to reduce test time have led to alternate test strate-
gies: generating signatures that differentiate between faulty
and fault-free circuits [2, 144]; built-in test (BIT) or the
use of an on-chip tester [55, 134] that switches the device
under test (DUT) into test mode by fetching signals from
sensors [1, 31, 51, 73, 104, 169]; built-off test (BOT) or con-
verting RF signals to DC signals using an interface (placed
on a load board) between the DUT and tester [13, 40]; and
implicit test, i.e., statistical model-based test that can make
an off-line PASS/FAIL decision [5, 155, 170].

Complete automation in this area has been an elusive
goal, and that is where machine learning has begun to play
a role [37, 153].

2.1 Use of Machine Learning

Machine learning can play an important role in testing of
analog and radio frequency devices, because here the deci-
sion of a test passing or failing is not as straightforward
as in a digital test. We use built-in self-test (BIST) for an
RF device under test (DUT), such as a low noise ampli-
fier (LNA), for illustration. A proposed architecture [101]
consists of a stimulus generator, measurement acquisition
sensors, and an artificial neural network (ANN) to provide
PASS/FAIL decision. During the offline training or test
phase, ANN translates measured (test) data into a one-bit
output, indicating whether it is in compliance with the DUT

specification (see Fig. 1). The training phase selects a suit-
able ANN topology, e.g., number of hidden layers, num-
ber of neurons per hidden layer, etc., as well as the weights
assigned to the internal synapses. The weights are saved in
a local memory and downloaded during the test. Self-test is
applied by connecting the DUT with a test stimulus genera-
tor. On-chip sensors provide the ANN with relevant data
from the DUT. Analyzing the test data in relation to the
learned classification boundary is how the ANN classifies
the DUT. Beside training on fabricated chips, the technique
has also been further enhanced [156].

For an effective implementation of the BIST circuit
shown in Fig. 1, area and power consumption of the ANN
hardware should be low. An analog ANN on silicon densely
packs synapses and computing elements for superior paral-
lel processing ability, robustness, and fault tolerance. Com-
pared to a digital implementation it is faster, smaller, easy to
reconfigure and train, and consumes less power. However,
analog ANN design must consider 1) topology, 2) training
algorithm, and 3) weight/bias storage. Fabrication technol-
ogy makes implementing analog ANN on silicon difficult
since conventional CMOS technologies have significant
parameter variations [67, 99, 106, 110].

Fig. 1 Built-in self-test (BIST) of a radio frequency (RF) device
under test (DUT) [101]

Fig. 2 Reconfigurable ANN [101]

141Journal of Electronic Testing (2024) 40:139–158

Figure 2 illustrates an architecture of a reconfigurable,
single hidden layer ANN [101]. It comprises of synapses
(S), multiplexers, and neurons (N) in a matrix. Each syn-
apse is mixed-signal hardware that performs computa-
tion in analog mode while storing weights and biases in
a digital random access memory (RAM). The schematic
of a typical synapse circuit, shown in Fig. 3, illustrates
multiplication implemented through a digital-to-analog
converter (DAC) [86], a combination of differential input
voltages, and programmable tail currents. The upper half
of Fig. 3 is a differential pair “N10-N11" performing mul-
tiplication while switching transistors “P0-P3" controlled
by bit “B5", steer the current and define the sign of the
multiplication. In the lower half, five switching tran-
sistors digitally program the tail currents “N5-N9" and

binary-weighted current sources “N0-N4". Thus, the tail
current depends on the digital word “B0-B4". Since mul-
tiplication in analog circuitry is area-expensive, approxi-
mate multiplication is common but may be non-linear,
which can be mitigated by using customized backpropa-
gation algorithms [99]. Multiplexers select input sources
from previous layers, and the summation of synapses is fed
into a neural circuit, as illustrated in Fig. 4. This neuron
circuit converts synapse outputs, i.e., the differential cur-
rents, into differential voltages. The common-mode can-
cellation circuit produces a positive difference from “ I+

in
 "

and “ I−
in

 ." The next stage is a current–voltage converter
made up of two p-channel MOSFETs. The last stage, a
level shifter, is a source follower circuit that shifts the out-
put voltage from the previous stage upward to match the
high voltage requirement of synapses in the next layer(s).
This architecture has following advantages:

1. It is modular and can expand to any number of neurons
and inputs within the chip area.

2. Output multiplexer reduces the number of pins and
analog-to-digital converter (ADC) devices.

3. All signals are differential with broad input ranges thus
providing improved noise resiliency.

Conventional training algorithms (i.e., backpropagation
algorithms) for on-chip ANNs suffer from low precision
and high area overhead. A parallel stochastic weight per-
turbation technique [76] may be preferred since it does not
require on-chip support and provides a compact solution.
In this method, random vectors perturb all edge weights
of the ANN. The mean squared error (MSE) is calculated
over the entire training set to check the error status. If the
error decreases, the new random vector with weights is
accepted, otherwise it is discarded. This method is likely
to get trapped in local minima, which can be avoided by
using a simulated annealing technique, allowing the state
of the network to move “uphill."

Fig. 3 Schematic diagram of synapse [101]

Fig. 4 Schematic diagram of neuron [101]

142 Journal of Electronic Testing (2024) 40:139–158

In an experiment on low noise amplifier (LNA) cir-
cuits two RF amplitude detectors placed at the input and
output produced DC signals proportional to RF power at
detector inputs [101]. These DC signals were fed to an
analog ANN classifier, trained in different configurations
with 2, 4, and 8 neurons in a single hidden layer. This was
repeated five times to average out randomness of the train-
ing algorithm’s stochastic nature. Additional experiments
replaced the hardware classifier with a software classifier
using the Matlab neural network toolbox trained by a resil-
ient backpropagation algorithm. It was observed that the
software classifier training error outperforms the hardware
classifier, but the validation error was comparable in both
cases. However, for more neurons in the hidden layer the
hardware classifier’s validation error is substantial, com-
pared to the software classifier. Several future research
directions were reported by this study:

1. The accuracy of the hardware classifier is lower than
the software classifier due to non-linearity in synapse
multiplication, limited resolution and dynamic range of
weight values, and the training algorithm’s limitations.

2. The dynamic range of synapses can be improved using
adjustable gains, i.e., by changing gain when weights
become too low or saturated [66].

3. Weight resolution is problem-specific and depends on
network architecture. However, it can be increased in the
presence of high non-linearity for minimal size devices
but may lead to mismatch and parameter variation in the
manufacturing process [95].

4. The training algorithm demonstrates significant con-
vergence properties with minimal variance of the final
error, but this requires increased training time.

5. Weight storage is large since it is implemented as digi-
tal memory. However, in built-in self test (BIST), these
weights need to be stored permanently, which may
require memories using floating gate transistors [56,
59]. Nevertheless, using floating gate memories to store

weights of analog neural networks may further raise
issues like handling of high voltage, accurate program-
ming schemes, and weight updates.

6. Further investigation is needed on whether the ML-based
approach considers the effects of DUT degradation during
device lifetime, which includes the ANN as well.

2.2 Parametric Test Metrics Based on Machine Learning

Test engineers have procedures to estimate analog param-
eters related to test costs, yield loss, and test escapes. How-
ever, these metrics should be accurately estimated by simu-
lation ahead of silicon manufacturing. A test strategy [152,
154] that includes ML algorithms is shown in Fig. 5 and
illustrates the following points:

1. A trained ANN classifies circuits whose parametric met-
rics are estimated closer to the specification, known as
“extreme" instances.

2. Circuit netlists are synthesized using a process design
kit (PDK) [152] from intellectual property (IP) vendors.
The procedure simultaneously trains an ANN with pro-
cess metrics to classify “extreme" circuits. These rep-
resent rare occurrences identified by a special Monte
Carlo technique known as statistical blockade [147].

3. The ANN is re-trained with new simulated circuits to
push the boundary such that performance of the extreme
class of circuits matches even closer to the specification.
This process continues with the re-trained boundary in
the pursuit of collecting true “extreme" instances (cir-
cuits having performance values marginally satisfying
to the specification), and push the training boundary to
generate more such “extreme" circuits.

The “extreme" instances can serve as fault models
based on parameters, that examine high-performance,
and are obtained from an alternative test scheme [9, 157].
This method speeds up the Monte Carlo transistor-level

Fig. 5 Simulation flow for
parametric test metrics estima-
tion [152]

143Journal of Electronic Testing (2024) 40:139–158

simulation. Typically, fault models account for process
parameters based on a joint distribution as given in their
respective PDK [157]. Finally, the fault model is verifi-
able after performing transistor-level simulation. The algo-
rithm [154] outputs a refined parametric fault model com-
pared to the generalized fault models and helps estimate fault
coverage and yield loss more precisely. This method was
applied to a low noise amplifier (LNA) [157] and reduced
simulation run-time by eliminating the redundant specifica-
tion tests and replacing them with the proposed ML-based
parametric measurements. The technique was also applied
to data-converters [9], but is yet to be explored for other
analog ICs whose simulation run-time is high, such as
phase-locked-loops (PLLs).

3 Digital Testing

In a modern electronic system, digital parts cover most area.
Similarly, digital testing occupies most pages in a book on
electronic test [18]. As chips become more complex, two
types of problems emerge. One, whose complexity is beyond
the economically available computing capability, and the
other for which the problem itself is too ill-defined is to
find an algorithmic solution. Some of these problems have
benefited from machine learning.

3.1 Wafer Testing

In general, logic defects occur on wafers in physical clus-
ters [114]. Thus, clustering algorithms [158] can identify
defect concentrations across the wafer. They work in two
steps: 1) cluster containment and 2) learning. The first step
identifies wafers with cluster patterns and screens out pass-
ing dies having no defect within these clusters. Those dies
are marked for high risk of failure. This process repeats
based on cluster size, cluster location on the wafer, and fail-
ure composition across multiple wafers to avoid additional
yield loss and failure analysis. Recent work [176] proposes a
similar cluster-detecting ML algorithm using support vector
machine (SVM) [62, 136]. The SVM kernel is a radial basis
function, generally a Gaussian function, for distance compu-
tation to identify the die from the defective clusters during
classification. The corresponding process flow diagram is
shown in Fig. 6.

3.2 Scan Chain Defects

Defective scan latches can fail with permanent faults (which
are easy to model) or intermittent faults (which are difficult
to model). A recent survey [72] points to Bayesian learn-
ing [168] for identifying faulty scan cells in the presence of
intermittent faults using an unsupervised learning approach.

Fig. 6 ML-based die inking process [176]

144 Journal of Electronic Testing (2024) 40:139–158

The method analyzes a test set and the corresponding failure
log of the scan chain [71]. The details of this algorithm are
explained by assuming a chain fault expressed by a dataset.
This dataset contains count of patterns for the respective
scan cell that is “sensitive" to the fault (“sbits") and the count
of patterns for which a sensitive bit failed (“fbits"). In case
of perfectly modeled permanent fault, one would expect any
upstream cells (scan cells between the scan chain input and a
scan cell’s scan input terminal) will fail on sensitive patterns,
and any downstream cell (scan cells between the scan chain
output and a scan cell’s scan output terminal) to pass on
all the sensitive patterns. However, if defects do not behave
similar to the modeled faults, upstream defective cells are
likely to have failure rate below 100% and downstream cells,
a failure rate above 0%. This unsupervised learning-based
approach has been applied to diagnose designs containing
intermittent faults with positive results.

Another work [30] proposes a different ML-based scan
chain diagnosis technique using supervised learning. This
uses ANN to diagnose intermittent faults in a scan chain.
Various multi-level ANNs with proper topologies (termed
in this study as coarse global neural network (CGNN)
and refined local neural network (RLNN)) provide
high-resolution scan diagnosis. By evaluating in multi-
ple stages, the investigators were able to zoom into the
faulty location with higher accuracy. They also incorpo-
rated comprehensive ANN training vectors to have lower
chances for unseen data deviating from trained patterns
and experimental results showed encouraging results. The
ANN has the following input features: fault type, faulty
cell’s identification number, and the probability of a test
pattern activating the fault. The output layer represents
scan cells of a particular scan chain. These input features
are modeled in the form of binary response vectors, fur-
ther compressed into a single integer failure vector (IFV)
computed by performing bit-wise addition of all binary
response vectors. The number of scan latches in the scan
chain determines the length of the IFV. The computation
of the output node of CGNN indicates the candidate scan
cell being faulty in the scan chain.

This work [30] also proposed a novel solution for com-
pressing binary response vectors into a single vector. An aff-
ine group comprises of scan cells whose euclidean distance
between their IFV and candidate scan cell is minimal. The
length of the modified IFV, known as “reduced cascaded
vector (RCV)," can be reduced by removing bits at certain
positions based on the affine group (a group of scan cells
having similar characteristics). This updated CGNN com-
prises of two layers whose number of input nodes equals
the length of RCV, and the number of nodes in the output
layer equals the number of scan cells in the affine group. The
resulting scan diagnosis procedure could achieve reasonably
high accuracy.

3.3 Printed‑Circuit Board (PCB) Testing

Fault modeling and test methodology for a printed circuit
board (PCB) differs from that of VLSI chips [18]. Modern
PCBs consist of multilevel substrates with interconnects and
mounted packages of digital and analog components. Typi-
cal tests are applied either from the edge connectors to check
the board’s function, or to test components directly through
in-circuit test (ICT) probes.

In-circuit testing (ICT) is a crucial aspect of identifying
defects in electronic components [10]. Two primary methods
of ICT are currently in use: analog and digital. Analog ICT
entails measuring the electrical properties of components,
such as resistance and capacitance, to identify subtle issues
in passive components like resistors and capacitors. On the
other hand, digital ICT employs digital signals to stimulate
and monitor the performance of components and is suitable
for digital components such as microcontrollers, memory
chips, and other integrated circuits. By sending specific
input signals and comparing the measured responses against
expected values, digital ICT can quickly identify defects like
incorrect logic states or malfunctioning components.

The choice of the most appropriate ICT method, analog
or digital, depends on the nature of the PCB and its compo-
nents. Many modern ICT systems now offer a combination
of both methods, which comprehensively evaluate all aspects
of the PCB’s functionality.

Testing each component on a board is vital from the real-
time testing perspective. Even when an in-circuit test [10] of
components using automatic test equipment (ATE) passes,
the board-level functional test can fail. This phenomenon is
foreboding and needs a structured way of testing to guar-
antee the reliability of the PCB (or SoC) and its continual
maintenance. Typically, board-level functional fault diagno-
sis is based on the past root-cause analysis of faulty boards,
which is also used as training data to predict defective com-
ponents on new boards. The syndromes for faulty boards
serve as a set of features, and the diagnosed root-causes
serve as labels for the training data set.

A reasoning-based approach [113] is effective in func-
tional debugging since it continuously learns during debug-
ging and development. However, it is difficult to fix the
problem if reasoning-based learning incorrectly identifies
the faulty component on the board. Replacement of the
entire reasoning model is trivial, but could adversely affect
the correct detection of an observed failure. The investiga-
tors [113] kept the fixing of their approach as an open prob-
lem for the future.

Another ML application [184] proposed a technique to
debug and repair board-level functional failures. It exploits
the connection between failure syndromes and repair actions
to train an ANN not to infer from visual inspection of log
files and data sets.

145Journal of Electronic Testing (2024) 40:139–158

An SVM-based technique [181, 185] diagnoses boards by
learning incrementally to locate the root causes of failures.
The learning tunes the SVM kernel to achieve high accuracy
in diagnosis. The overall system training time improves with
the continuous incremental learning of SVM.

ANNs and SVMs are combined to have a diagnosis sys-
tem using a meta learning technique called weighted-major-
ity voting (WMV) [96]. A proposed system combines the
weights of different repair suggestions generated by respec-
tive machines to identify single pair of recommended repair
suggestions. WMV using ANN or SVM can further optimize
repair [162, 180]. There are three types of voting mecha-
nisms: 1) unanimous voting, i.e., all experts agree on the
same output, 2) at least one or more than half of the experts
agree on the same output, i.e., simple voting, and 3) certain
experts are qualified and their votes are weighted to improve
the overall performance, i.e., weighted-majority voting.

Limited access to training data on the history of board
failures and the feature vector size for training the ML mod-
els to diagnose failures are major concerns. A syndrome
merging technique has been proposed [163] to reduce feature
vector size. However, some syndromes that are not easily
computable do not allow merging. Another technique [80]
can still diagnose a system with a non-computable or miss-
ing syndrome using label-imputation and the so-called two-
feature-selection methods.

3.4 Fault Diagnosis

Defective ICs can provide failure logs for fault diagnosis, but
logging substantial data can be memory-expensive. Besides,
the analysis of the entire dataset is time-consuming and may
even be infeasible. ML can help decide when data collec-
tion can be stopped without sacrificing the efficiency of
fault diagnosis [171]. The idea has been demonstrated by
using different types of ML approaches, namely, k-nearest
neighbor (kNN) [90], support-vector machine (SVM) [62,
136], and decision trees [64]. Both, unsupervised and super-
vised learning methods can cooperate in identifying design
bugs [109]. A survey [70] of diagnosis using machine learn-
ing examines the relevancy of failure log information for
fault diagnosis, defect location in scan chain or functional
logic block, and diagnosis time.

Fault diagnosis plays a vital role in physical failure anal-
ysis (PFA), also known as failure mode analysis (FMA),
where too many candidate faults may diminish diagnostic
efficacy leading to low diagnostic resolution. For a diag-
nostic procedure, the average size of group within which
faults cannot be distinguished from each other is referred to
as the diagnostic resolution (DR) [183]. The ideal resolu-
tion, DR = 1 , is often difficult to achieve. ML techniques
try to meet specific objectives such as, 1) mapping of

diagnosed faults onto corresponding defects based on the
failure response of the circuit [47, 50], and 2) tuning the
set of candidate faults to further improve the diagnostic
resolution [178]. The ANN used in these studies get help
from the layout and logic information of the circuit and
failure response.

Conventional diagnostic tools claim to be highly accurate,
but fail to identify certain faults because they may not con-
sider layout information. Such faults occur due to systematic
defects, and EDA tools and yield learning methods such as
physical failure analysis (PFA) are incapable of handling
them. This can be addressed by analyzing the fail-logs of
multiple ICs, known as volume diagnosis. This involves
analysis of large amount of data, and is time-consuming
and expensive.

An ML-based technique [74] can be included in the yield-
learning process to identify systematic defects and distin-
guish them from random defects. Here, failure responses of
defective ICs are clustered using a procedure known as the
farthest-neighbor method [36]. Later work [173] extended
this technique to identify defect locations in fanout-free
regions by observing how systematic faults affect the same
set of outputs. The circuit is first decomposed into fanout-
free regions for a specific kind of defect or defect class,
which are then classified based on failure outputs using
SVM. When many ICs fail due to a particular defect class,
it is assumed that the ICs have systematic defects. Vol-
ume diagnosis also produces multiple failure features for
an IC. At least two methods, namely, statistical-learning
approach [166] and Bayesian network approach [29], can
evaluate the failure feature probability.

An ML-based volume diagnosis technique [173] has
several advantages: 1) It relies on certain decision-based
subroutines, and computation complexity is much lower
than traditional volume diagnosis methods; 2) It provides
high-resolution diagnosis and statistical data, which clas-
sifies defective chips based on the defect location; and 3)
The ML-based technique also works for scan designs using
test compression and locates defects in most faulty ICs. The
diagnosis methodology has been compared with respect
to run time to the traditional analysis. Basic assumptions
made are that faults in fanout free regions can be activated,
propagated through common paths, and observed at com-
mon scan latches. According to the available experimen-
tal results [173] the technique can detect more than 90% of
defective chips in a 50X output compacted design, which
is faster than the traditional diagnosis methods. Besides, it
could also detect 86% of defective chips with 100X outputs
compacted designs in a few milliseconds.

An ML-based method that assists PFA [142] provides
high-resolution detection of defects. Defects are grouped
in “defect modes". A statistical test, such as �2 independ-
ence test, is applied to the data obtained from layout-aware

146 Journal of Electronic Testing (2024) 40:139–158

scan diagnosis. This test evaluates the amount of correla-
tion between the defect and the “defect modes". The “defect
modes" have corresponding p-values and rank the respective
modes to capture the correct systematic defects and elimi-
nate the effects of random defects (also treated as noise in
this context of statistical analysis).

3.5 Test Compression

Due to the continuing technology node shrinkage, the
increasing testing cost of high-density ICs has become a
primary concern. This cost includes test application time,
which is proportional to test data volume, and the cost of
generating test data. Traditionally, compressor/decompressor
architecture, i.e., pseudo-random pattern generator (PRPG)
along with decompressor reduces the test cost by loading
scan chains through decompressors and compacting test
responses in multiple input signature registers (MISRs) [18].
However, the length of a PRPG does impact the test time
irrespective of various circuit parameters [94]. The problem
of PRPG length may be resolved by using ATPG, but that
too is time-consuming. A PRPG length selection method is
shown in Fig. 7. It uses a predictor based on the support vec-
tor regression (SVR) model, which reduces test costs in the
CODEC architecture. The authors of that work [94] give a
correlation-based feature selection method applied to indus-
trial designs for reducing the test time with high prediction
accuracy [120].

3.6 Testability Analysis

Testability analysis generally refers to linear, or at most pol-
ynomial but not exponential, complexity procedures that can
identify test bottlenecks in a circuit [4]. The analysis deter-
mines numerical measures representing controllability and
observability of signals. “Distance" or logic depth through

the circuit has been the simplest measure that was used in
an ATPG algorithm [48]. Here the distance of a signal site
in terms of logic gates between PI and the site is considered
the controllability measure, and that to PO as the observ-
ability measure. Some of the other testability measures are
TMEAS [151], Sandia Controllability/Observability Analy-
sis Program (SCOAP) [49], CAMELOT [12], and control-
lability and observability program (COP) [16]. The first four
examine the circuit topology and the last one, signal prob-
abilities. They have been used for improving digital circuit
design or for selecting one out of multiple choices that occur
within complex test generation programs. We discuss three
areas where machine learning has been applied.

3.6.1 Combining Testability Measures

Several of the testability measures listed above have been
combined into a composite measure using unsupervised
learning [125]. The goal of the learning algorithm is to
explore the data and find some structure or pattern within
it. Popular learning models include k-means clustering [57],
partitioning around medoids (PAMs) [81], ordering points
to identify the clustering structure (OPTICS) [6], principal
component analysis (PCA) [69, 117], minimum redundancy
maximum relevance (mRMR) [118], and self-organizing
maps (SOMs) [85]. These methods are typically used to
segment text topics, classify items, and identify data outliers.

In our illustration, for every signal node, four testability
measures have been defined, 0-controllability, 1-controlla-
bility, 0-observability, and 1-observability [77]. The last two
measures are often replaced by a single measure, observ-
ability, leading to three measures per node. The combination
process has the following steps:

• For testability measures, e.g., distances, SCOAP [49],
etc., to be combined, compute relevant values corre-
sponding to each signal node in the circuit.

• Normalize all quantities to the range [0,1].
• Phase correction - Consider SCOAP, which is a meas-

ure of effort. Thus, low or closer to 0 0-controllability
means that the node is easy to set to 0. On the other hand,
COP [16] estimates probability and for the same node the
0-controllability will be closer to 1. Assuming that the
combined measure is to have the probability interpreta-
tion, the normalized SCOAP values should be subtracted
from 1.0 in order to align with other measures.

• All measures are combined using the principal compo-
nent analysis (PCA). If n measures are being combined,
then PCA computes n values for each node of the circuit.
The largest of these is the principal component and is
used as the combined measure. The analysis is repeated
three times to generate the combined 0-controllability,
1-controllability and observability for each node.Fig. 7 Pseudo-random pattern generation (PRPG) methodology [94]

147Journal of Electronic Testing (2024) 40:139–158

The PCA combined testability measure has been used to
guide the ATPG with notable performance improvement as
shown in Figs. 8 and 9, and discussed in Section 3.9. Other
applications such as finding hard to detect (HTD) faults
or test point insertion (TPI) candidate nodes are yet to be
attempted. Also, the effects of combining larger number
of measures may be explored in the future.

3.6.2 X‑Sensitivity

Don’t care or unknown signal state (denoted as X), when
present in simulation, degrades the quality of fault detection.
Their sources can be uninitialized memory cells, bus conten-
tions, anomalous analog-to-digital conversion, and manufac-
turing defects during post-silicon validation. X-sensitivity
of a signal is a measure of degrading effect on fault cover-
age from X on that signal. The support vector procedure, a
machine learning technique, has been shown [120] to predict
the sensitivity of X’s in a digital circuit. The method ranks

circuit nodes according to X-sensitivity, which is beneficial
in the post-silicon validation phase.

3.6.3 Signal Probability

Savir [135] conjectured that it would be impossible to cal-
culate a simple testability measure based on signal con-
trollabilities and observabilities in a circuit containing
re-convergent fanouts such that the measure will truly rep-
resent the probability of fault detection. This is because the
reconvergence introduces signal correlations not accounted
for in simple testability measures. The difficulty is that
almost all industrial circuits contain re-convergent fanouts.
Topological analyses [122, 140] can detect re-convergent
fanouts, but they can be computationally burdensome.
Toward application of ML, recent work [75] has used ANN
to predict signal probabilities from minimal fanout infor-
mation, resulting in increased accuracy with reasonably
small computation time.

Fig. 8 Total backtracks
used while finding a test or
proving redundancy for the
checkpoint faults left after the
random ATPG phase applied to
ISCAS’85 [17] and ITC’99 [32]
benchmark circuits [131]

Fig. 9 Total CPU times on
Intel i7-8700 based worksta-
tion with 8-GB RAM to find
a test or prove redundancy for
the checkpoint faults left after
random ATPG phase applied to
ISCAS’85 [17] and ITC’99 [32]
benchmark circuits. Four types
of data points and trend curves
are for PODEM ATPG pro-
grams guided, by respectively,
logic distance (square dot, third
curve from top), COP (diamond
dot, second curve from top),
SCOAP (triangular dot, third
curve from top), and PCA-
combined measure (circular dot,
bottom curve) [131]

148 Journal of Electronic Testing (2024) 40:139–158

3.7 Built‑In Self‑Test (BIST) and Test Point Insertion
(TPI)

Logic built-in self-test (LBIST) often relies on pseudo-ran-
dom patterns, which may be economically generated in hard-
ware by a linear feedback shift-register (LFSR) [18]. How-
ever, an LFSR may not generate specific patterns to detect
random pattern-resistant (RPR) faults. As an ML solution to
this problem, an ANN can be used to generate test patterns to
detect RPR faults as well as easy-to-detect faults.

The self-learning capability, suitable for a system-on-chip
(SoC), also deals with aging-induced degradation. This pro-
posed flow uses existing LBIST and an ML-based software
predictor to remedy the problems arising from the wear-out
or aging of IC in the field [39]. An ANN is developed using
LBIST patterns (converted from ATPG-generated tests for
transition delay faults) that activate critical or near-critical
paths. The results demonstrate that a gate-overlap and path
delay-aware algorithm can select the optimum set of test
vectors. This methodology is area and test-time efficient.

To improve the fault coverage of LBIST, designers insert
test points (TPs) modifying the circuit’s internal signal val-
ues to detect random pattern resistant (RPR) faults. Test
point insertion (TPI) [60] techniques find high-quality TPs
to improve fault coverage or reduce test vector count. These
techniques are classified based on the form of analysis used,
namely, fault simulation, probabilistic testability measures,
or multiple measurements [107, 161].

A deep learning technique to solve the TPI problem
of logic circuits has been proposed [100]. It uses a graph
convolutional network (GCN) to classify signal nodes as
either easy-to-observe or difficult-to-observe. This ANN
analyzes attributes of each node and its neighbors, based
on a testability measure such as SCOAP [49]. Further
work [132, 133, 159] used fully-connected neural net-
works to evaluate the impact of control-0, control-1, and
observe test points on fault coverage and found that an
iterative TPI process improved the fault coverage and sig-
nificantly reduced TPI time. In another extension [108],
when randomly generated circuits were used for training,
the ANN still yielded a performance comparable to that
of ANN trained on benchmark circuits.

A more recent investigation [160] has shown that opti-
mizing the complexity of the neural network can improve the
LBIST performance with higher fault coverage, fewer test
points, and shorter test length, while reducing the computa-
tion time to find test points.

3.8 Power Supply Noise (PSN) and Signal Integrity

Reliability problems of integrated circuits center around
operating conditions, such as, temperature, speed, voltage,
and circuit aging. Many of these remain uncovered during

the conventional testing and may be found during the burn-
in test [78]. Some related concerns are power supply noise
(PSN), signal integrity, and timing failures.

IR drop is a significant concern in IC design and is often
referred to as power supply noise (PSN) [143, 167]. Unre-
strained PSN can lead to performance glitches and impact tim-
ing [25, 79]. Also, excessive PSN during test can cause false
failure if a test pattern induces PSN that substantially exceeds
the functional mode behavior [46, 93, 172, 174]. Hence, PSN
simulation, though a nontrivial effort, is important.

Timing analysis is vital because it determines the clock
frequency for the IC. However, circuit timing depends on
static and dynamic characteristics, because PSN impacts the
supply voltage reaching individual gates, it affects propaga-
tion delays and slows down switching.

Applications of ML in this area include the use of sup-
port vector machine (SVM) [179] to predict voltage droop
in field-programmable gate array (FPGA) and dynamically
adjust the clock frequency of the circuit. However, without
feature extraction, the method is applicable only to small
ICs. Another ML-based technique [97] includes feature
extraction methods, such as ANN [34], SVM [15, 179], and
least-square boosting (LSBoost) [15]. Here, ANNs are found
to be the best predictors of circuit timing for test patterns.

A recent paper [112] gives a machine learning (ML) solu-
tion for small delay fault (SDF) detection problem of resis-
tive opens. Such defects may not cause a failure of timing
specification but still present a reliability challenge. The
method uses tests at multiple voltages and frequencies to
examine the latent faults considering three ML techniques:
support vector machine [62, 136], k-nearest neighbors [90],
and random decision forests [64]. The results show that the
learning scheme based on random decision forest classifies
the embedded faulty cells with higher accuracy.

3.9 Machine Intelligence Applied to ATPG

An ATPG algorithm searches for an input vector to detect
a given fault. For a combinational circuit, the search space
consists of 2#PI vectors, where #PI is the number of primary
inputs (PIs). Thus, ATPG is a search algorithm whose size
of search space increases exponentially with circuit size, in
terms of #PI.

Roth’s D-algorithm [123] conceptualizes ATPG by defin-
ing D-algebra and giving a complete search algorithm. The
symbol D represents a composite state of a signal in the
fault-free and faulty circuits. Thus, D means 1 in fault-free
circuit and 0 in faulty circuit. D is the opposite condition.

D-algorithm has high complexity as it manipulates all
internal signals of the circuit. It can be particularly inef-
ficient for large circuits containing XOR gates and re-
convergent fanouts. The path oriented decision making
(PODEM) [48] algorithm improves the search efficiency

149Journal of Electronic Testing (2024) 40:139–158

by focusing on PIs. In general, ATPG implementations use
heuristics to speed up the search. In summary, the relevant
features of the PODEM algorithm are,

• The search space is reduced from 2n for D-algorithm,
where n is the total number of signals (gates and PI) in
the circuit, to 2#PI for PODEM.

• A concept of X-path-check is introduced, where X refers
to an unknown or yet undetermined value of a signal.
D-algorithm may try to find a test even when the entire
D-frontier is blocked, but PODEM’s X-path-check veri-
fies that there is at least one D-frontier gate with access
to a primary output. Otherwise, it will backtrack to the
previous stage in the search process where an alternative
signal choice is available. D-frontier is the set of all gates
that have a D or D at their input but the output is still X,
i.e., undetermined.

• PODEM originally proposed a distance-based heuristic
to identify easy or hard to control inputs of logic gates
while backtracing to primary inputs, as opposed to
D-algorithm that traditionally chose any gate input. Sev-
eral other heuristics based on the circuit topology have
been used in the programmed implementations of both
algorithms. Similarly, while propagating the fault effect
to an observable primary output (PO), the gate closest to
PO will be selected from the D-frontier.

Many other ATPG algorithms, e.g., FAN [43],
TOPS [84], SOCRATES [137–139], EST [19, 27, 28],
recursive learning [88], TRAN [23], GRASP [103],
NEMESIS [92], TEGUS [150], and Boolean satisfiability
(SAT) [11, 20, 22, 91, 92], have been reported. Although
the search space size remains 2#PI , researchers [63, 164]
attempt to find tests faster either by special subroutines to
filter the search space, or through heuristics to select from
available choices. It is this second aspect of the ATPG that
the ML techniques focus on.

Before machine learning was applied to ATPG, artificial
neural networks (ANN) were used to model digital circuits
where a bidirectional binary neuron would represent the
state of a signal [20, 22]. Each neuron has a threshold value
and its interconnects to other neurons have weights, which
together determine the energy of the ANN for any set of neu-
ron states. For any binary [0,1] states of primary input (PI)
neurons, the minimum energy of the ANN is attained only
when all neurons assume valid signal states corresponding
to the digital circuit. Given a target fault, the ANN for the
corresponding arbiter circuit is first constructed. The mini-
mum energy state of this ANN is then determined and the
states of PI neurons provide a test vector. The ATPG requires
either a physical neural network or a software model. In
either case, the network energy function depends on a large
number of variables (all signals) and may have many local

minima, making the search for a test (minimum energy state)
for some faults rather difficult. A program, TRAN [21, 23],
makes this algorithm computable by using graph theoretic
principle of transitive closure.

Applications of quantum computing, although not
exactly considered machine intelligence, have also been
reported [145, 146]. While we discuss recent developments
in this section, one can find discussion of machine learning
in the context of ATPG as far back as 1987 [87].

The application of ML is related to the heuristic part of
the ATPG algorithm. All programmed algorithms have used
heuristics to speed-up the search. Typical heuristics base
decisions on distance, in terms of logic gates, from PIs or
POs to signal sites, testability measures, voting on fanout
stems depending on branches, learning techniques using
implication graphs, etc. In 1985, Patel and associate [115,
116] conducted experiments to study the effectiveness of
various testability measures as heuristics in PODEM and
proposed a strategy for test generation. They observed that
instead of using a single testability measure with a high
backtrack limit, it is more efficient to use multiple testability
measures successively and with a low backtrack limit. Con-
sidering this a traditional approach, machine learning (ML)
as discussed next will be quite different; multiple testability
measures will be combined and used all together. The result
will be even greater efficiency over the successive applica-
tion approach [115, 116].

Recent work [124] uses ANN and principal component
analysis (PCA) [69, 117] as ML models, relies on the con-
ventional gate-level circuit description, and uses a search
algorithm that, given unlimited computing resources, would
guarantee a test in significantly reduced CPU time by mak-
ing fewer unproductive algorithmic decisions requiring
backtracks. The ANN and PCA combine circuit topology
information and testability measures to create a novel heu-
ristic to guide the search. Since several available heuristics
are being applied together, we do not need a low backtrack
limit as a stopping criterion to avoid unproductive decisions.

PODEM [48] offers an ideal ATPG environment to
apply ML-based heuristic to choose a backtrace path to a
primary input (PI) for justifying a desired signal value at
an objective site. The ATPG benefits from the ML-based
guidance, which is found to reduce backtracks. Three
approaches have been reported to provide successively
higher performances. All use a conventional PODEM pro-
gram with backtrace guidance provided either by a PCA-
combined testability measure [130, 131], as described in
Section 3.6.1, or by a trained ANN [126, 127, 129]. The
former is called unsupervised learning, while the latter is
called supervised learning.

Considering the present context, the PCA can combine
any number of data types relevant to the ATPG algorithm,
such as input–output distance (logic depths), and testability

150 Journal of Electronic Testing (2024) 40:139–158

measures from COP [16] and SCOAP [49] values into a
set of principal components (PCs). Then the largest (major)
PC would guide the PODEM ATPG backtraces [130], also
known as “PCA-guidance" methodology. The next case
we examine is a “optimally-trained-ANN" feature reduc-
tion methodology to improve the ANN complexity and
guide decisions that otherwise would rely on heuristics,
also known as “PCA-trained-ANN" [127]. The result, not
surprisingly, is the best achieved among the aforesaid ML-
based ATPG options studied.

The preceding evaluation is based on a combined ATPG
performance (number of backtracks and CPU time) for all or
a target subset of faults. However, in practical ATPG imple-
mentation an important criteria is the performance with
respect to the hardest-to-detect or even redundant faults.
Thus, a fault-by-fault micro-evaluation of the ATPG guid-
ance techniques is recommended for the future, and what
follows next offers a preview.

Statistical analysis of fault coverage for random and deter-
ministic vectors [141] can assess circuit testability from fault
simulation, predict coverage from detection probabilities,
estimate test length for required coverage, and help generate
test vectors by fault sampling. On these lines, we discuss a
practical ATPG system where easy-to-detect faults are cov-
ered by random vectors and hard-to-detect faults are left
for a PODEM-based ATPG with backtrace guidance com-
ing from either MI [124, 126, 127, 129, 130], or distance
(logic depth) heuristic [48], or controllability and observ-
ability program (COP) [16], or SCOAP [49]. We find that
MI-guided ATPG shows significantly improved performance
over others.

Unsupervised learning or PCA was applied only in the
backtrace step [130] in the early work, while the D-drive used
the conventional distance (logic depth) heuristic [48]. The
ATPG system we will examine now [131] applies principal
component (PC) to direct both backtrace and D-drive. In addi-
tion, this is a complete ATPG system with random and algo-
rithmic phases and a fault simulator. The ML based ATPG
was applied only to faults left uncovered after the random
pattern fault simulation phase. The results showed the effec-
tiveness of guidance provided by PCA to PODEM ATPG.

• In Figs. 8 and 9 circuits are arranged left to right in the
order of increasing number of nodes. Figure 8 shows
combined backtracks and Fig. 9 gives total CPU time
for all stuck-at faults left over from the random phase.
Number of backtracks (four bars in Fig. 8) and CPU mil-
liseconds (ms) (four data points in Fig. 9) for each circuit
correspond to the four versions of PODEM. These are
PODEM programs where backtraces and D-drives are
directed, respectively, by distance (logic depth), COP,
SCOAP, and the major principal component from PCA
combining distance, COP and SCOAP measures. In

Fig. 9, a trend curve is obtained by power-law fit to the
experimental data from each PODEM version. Notably,
shorter black bars and lower black curve indicate consist-
ent improvement provided by PCA guidance [131].

These results demonstrate that guidance from PCA-gen-
erated linear combination of multiple heuristics can reduce
ATPG backtracks and CPU times when compared with
conventional single heuristic guidance. Circuits b03, c432,
b10, b13, c880, b07, b05, b12, c5315, c7552, c1355, c2670,
c3540, b04, b11, b08, c499 and c6288 exhibit significant
reductions in backtracks and CPU times in Figs. 8 and 9.
PCA is most frequently the best guidance for ATPG, but
even when it is not, it is never the worst. There are no recon-
vergent fanouts in c17, b02, b01, and b06, and so there is no
scope for reducing backtracks as there would be none. An
example of zero backtracks by PCA-based PODEM ATPG
is circuit b09 in Fig. 8.

An obvious advantage of this procedure is its simplicity.
Besides, any number of testability measures can be com-
bined by PCA. For example, a measure that includes the
information on reconvergent fanouts may give additional
benefit to the ATPG. In general, all measures may have lin-
ear complexity approximations, each retaining a different
piece of information. Thus, adding more measures in PCA
should continue to increase the benefit.

Another form of ML application employs artificial neural
networks (ANN) and is referred to as supervised learning.
Here, models are trained with input data where the desired
outputs are known. Supervised learning uses patterns to
predict labels on unlabeled data and is used in applications
where the history of data predicts likely future events. A
supervised learning algorithm receives inputs along with
corresponding correct outputs; the algorithm learns by
comparing its outputs against and correct outputs to find
errors and modifies the learning model accordingly to
minimize errors. Some known learning models are support
vector machine (SVM) [62, 136], one-class SVM [62] or
one-class neural network [148], decision trees (DT) [121],
random forest (RF) [65], linear regression (LR) [111], mul-
tivariate adaptive regression splines (MARS) [182], logistic
regression [33], adaboosts [41], ANNs [61], convolutional
neural network (CNNs) [61], autoencoders [7], recurrent
neural network (RNNs) [61], long short-term memories
(LSTMs) [45], and half-space trees (HS-Trees) [165].

A recent study examined MI’s supervised learning ability
to enhance ATPG by reducing backtracks [126], also called
here as “basic training of ANN" methodology, by replac-
ing conventional heuristic to decide backtracing direction
using an ANN trained with PODEM data on hard-to-detect
faults. The training of ANN can be tuned for ATPG appli-
cation [129], which we will call “optimally trained ANN"
methodology. In this case, supervised ML uses sample

151Journal of Electronic Testing (2024) 40:139–158

ATPG data and circuit information to train an artificial neu-
ral network (ANN), which then provides the backtrace deci-
sions for ATPG. In contrast, unsupervised ML was more
direct as it used neither sample ATPG data nor the ANN.

Figure 10 [127] shows the ATPG results for the same
benchmark circuits (as in Figs. 8 and 9) now using super-
vised learning. As the fitted trend curves show, these
results are similar to the unsupervised learning results of
Fig. 9 [131], although they cannot be numerically compared.
In the unsupervised learning case the ATPG was applied
only to the checkpoint faults left undetected by random
vectors, whereas in the supervised learning experiment all
checkpoint faults were used. Another difference is that the
data are arranged, respectively, according to the number of
signal nodes in Fig. 9 and logic depth in Fig. 10. Noticeable
difference is seen, however, for several small and medium
size circuits in Fig. 10 where the ATPG CPU time with the
PCA trained ANN guidance is negligibly small.

4 Memory Test and Repair

4.1 ML‑Based Built‑In Self‑Repair of DRAM

Device and interconnect geometries of VLSI circuits are
decreasing rapidly. As a result, manufacturing yield contin-
ues to drop, owing to higher component density, complicated
fabrication process, and greater susceptibility of shrunk fea-
tures to defects. Some faulty parts on chips are rescued by
incorporating redundant components, and a reconfiguration
scheme that replaces the faulty component with a redundant
one. A dynamic random access memory (DRAM) is densely
packed, and redundant rows and columns are added to recon-
figure faulty cell rows and columns of memory sub-arrays
using electronically programmable latches. Optimal recon-
figuration and redundant component allocation is a classical

problem widely studied by researchers [42]. However, these
algorithms are not directly applied to memory sub-arrays as
they are neither controllable nor observable by external test-
ers. This problem is resolved by the introduction of built-in
self-test (BIST) that comprehensively tests memory arrays
and discards them if they fail. The scheme is further modi-
fied as “built-in self-repair (BISR)", and is used to salvage
faulty memory arrays.

Memory repair was first introduced in 64 kbit DRAM
to improve the chip yield using redundant rows and
columns [149]. With technology advances, increasing
memory size has made the search space too large and
the types of faults have also become complex. There-
fore, conventional repair algorithms, both greedy [38]
and exhaustive [35], became ineffective. Since memory
repair problem is NP-complete [54], heuristic algorithms
were introduced. These included branch and bound [89],
approximation [89], best-first search [58], and others [98,
175]. They have worst-case complexities that are nearly
exponential and are not easily implementable in the built-
in self-repair (BISR) mode. Focus next shifted [105] to: (1)
an efficient algorithm so that overall throughput improves
with the chip yield, and (2) hardware implementable algo-
rithms. A self-repair scheme using BISR [105] repairs
memory subarrays by reconfiguring redundant rows/
columns. As “Repair Most (RM)" is a simple and eas-
ily implementable hardware, the performance of ANN-
based memory repair algorithm has been compared against
RM [105].

ANNs have been used to tackle optimization problems,
e.g., the famous traveling salesman problem [44], for which
a solution was proposed by Hopfield [68]. Lyapunov’s
energy function can represent an optimization cost function,
and the convergence property of the ANN from a random
initial state to a local minimum state can reduce this cost
by using a gradient descent algorithm. However, this kind

Fig. 10 Total CPU times on
Intel 8700 processor based
workstation with 8-GB RAM to
find a test or prove redundancy
for all checkpoint faults in
ISCAS’85 [17] and ITC’99 [32]
benchmark circuits. Three types
of data points and trend curves
are for PODEM ATPG guided
by, respectively, basic-trained
ANN (round points, top curve),
optimally-trained ANN (tri-
angular points, middle curve),
and PCA-trained ANN (square
points, bottom curve) [127]

152 Journal of Electronic Testing (2024) 40:139–158

of ANN formulation has low-quality, and therefore another
proposed algorithm [105] modifies the existing gradient
descent to a hill-climbing algorithm. This improves the solu-
tion quality and raises the probability of finding a globally
optimal solution.

Also, it is found that conventional repair algorithms
run slow on digital computers, whereas ANN’s collective
computational property provides a faster solution. A gradient
descent algorithm [105] can be 2-to-4 times better than
conventional “RM" algorithms in repair schemes as gradient
descent minimizes the network’s cost function in the locality
of the starting energy value, and the hill-climbing algorithm
further bypasses the local minima traps. It was empirically
observed that the hill-climbing algorithm can repair
almost 98% of faults in a large memory array as opposed
to other conventional and gradient descent algorithms with
a certainty of approximately 20%. Both hill-climbing and
gradient descent algorithms using ANNs take minimal area
overhead of approximately 3%. It was also reported [105]
that the chip yield increased from 10% to 100% by improved
repair. Additionally, the ANN hardware is more fault-tolerant
and robust than conventional logic circuits and therefore is
the best candidate for a self-repair circuit. However, three
types of component failures have been identified in neural
networks, namely synapse-stuck-at fault, bias fluctuations,
and neuron stuck-faults to serve as fault model. For each
faulty synapse, either of synaptic weights can be assumed
as stuck, due to transistor-stuck faults or defective memory
cells that control the programmable synapses. Faulty bias
generators are modeled to fluctuate within one unit of the
pre-determined biases, and faulty neurons will have stuck-at
firing or stuck-at non-firing states. For unknown reasons, if
the ANN neurons are stuck-at firing or non-firing state, then
its ability to repair faulty memory cells degrades gracefully
and supports continual operation despite multiple faulty
neurons in the ANN.

4.2 Software‑Assisted Self‑Test of Flash Memory

Among the application domains of flash memory, automo-
bile industry is an important one. Embedded flash memory
cores occupy substantial portion in automotive SoCs with
significant impact on the final yield of devices. Automo-
tive IC testing must ensure correct chip function after
calibration, test, and repair of flash memories [102]. This
requires redundant memory cells, i.e., spare word lines
(WLs) and bit lines (BLs), and activation mechanism for
the redundant structures. Redundant component analysis
can be done on-line in software-assisted in-chip self-test
(SIST) [102], but a major bottleneck is efficient reconfigu-
ration of redundant components quickly and accurately. A
bitmap scheme was originally used to reconfigure faulty
memory cells by downloading the cell coordinates, but

later it proved to be ineffective and time-consuming, which
prevented it from becoming a regular industry practice.
The strategies that maintain a trade-off between test time
and memory costs with accurate reconfiguration to spare
components may lead to false-positive behavior and yield
loss such as, (1) identifying uncorrectable faulty memory
by a repair algorithm, which is not feasible or (2) discard-
ing the correctable faulty memory despite the availability
of suitable spare components owing to the repair algo-
rithm’s inability.

One must deal with false fail identifications and prevent
unnecessary repairs [102]. If a replacement algorithm is
heavily constrained with execution time it may classify a
repairable memory core as irreparable, known as false fail.
A vital step in using an ML-based predictor to identify
false fails is to extract training features. Training features
have been extracted using a coloring algorithm [53], where
every fault is assigned a unique color and its occurrence
is evaluated statistically. This algorithm combines different
faults with unique colors to provide a chunk of datasets to
the ANN.

A machine learning technique [102] works in two
steps: (1) in development phase, bitmaps are collected for
selected devices that compose training/test datasets, and (2)
in production phase, training features are extracted using
the coloring algorithm [53], and the discarded devices
are labeled as false failures. A detailed analysis is used
to extract training features and results are fed back to the
coloring algorithm designers. Supervised and unsupervised
training techniques are deployed to assess the false fails
and to determine whether or not they are correctly dis-
criminated against in training features. Artificial bitmaps
are added to original bitmaps to keep unaltered fail signa-
ture characteristics: bitwise AND, OR, XOR, noise, and
many more. These additional bitmaps provide more com-
prehensive training datasets including false fails, leading
to significantly better prediction accuracy.

It is also found [102] that the training data sets are highly
unbalanced and therefore a confusion matrix is used. This
is a table whose rows resemble predicted labels and col-
umns represent actual labels. The resultant square matrix
provides useful information, i.e., the correct prediction lies
on the diagonal and misclassifications, elsewhere. The best
ML-based predictor must be fast, reliable, easily hardware
implementable, and interpretable so that it does not affect
the overall test time of the IC production flow.

Experimental results [102] have shown that the ML-based
predictor of a model “decision tree" compared to other mod-
els such as “random forest" and “feed-forward" have a better
score and minimal variance with the fastest and easy-to-
implement subroutine. The overall approach is empirically
proven on real-time data and demonstrates that it is feasible
to predict a false fail device with better accuracy.

153Journal of Electronic Testing (2024) 40:139–158

4.3 SRAM Yield Improvement using Statistical Blockade

As transistor size shrinks, the statistical blockade tech-
nique [147], discussed in Section 2.2, is found to improve
the yield of SRAM ICs since they contain highly repeat-
able components. Statistical blockade is conceptually an
improvised Monte Carlo method, employs ideas from
non-traditional sources such as extreme value theory
(EVT) and machine learning. This novel technique,
proven to be more efficient than the conventional Monte
Carlo method, provides accuracy and speedup of approxi-
mately two orders of magnitude across circuits despite
parametric variation.

5 Conclusion and Future Work

This survey has highlighted key aspects of machine learn-
ing (ML)-based testing of analog, digital, memory, and
radio frequency (RF) devices. It motivates the integra-
tion of ML into the IC testing process of the future. It
is expected that the use of ML would become routine in
testing of the ICs of the future in the defense, healthcare,
space, and automotive industries:

• Recently, ML has been at the cutting-edge in the IC test
industry, but the accuracy in classifying test data after
training an ANN is not fully convincing (i.e., may not be
close to 100%). Moreover, 100% training and test accuracy
will not fetch the correct classification of data in a real-
time, which may lead to a catastrophe in critical systems.

• ML in counterfeiting detection can prove dangerous if
the attackers use ML-based model to attack either good
(false positive) or bad (false negative) ICs. The research
on defense techniques needs to stay ahead!

• Emerging technology designs and their testing is in
a nascent stage and hence full of imperfections and
ongoing variations. However, quick adoption of the
existing methods and tools to a new technology can be
effective [186, 187]. While any ML applications in the
existing tools are immediately adopted this way, future
investigations may lead to unconventional benefits.

ML applications fall in two categories, experimental
and algorithmic. The first category includes defect diag-
nosis, i.e., locating and identifying defects, which is a
part of manufacturing. Diagnosing defects, often differ-
ent from the modeled faults targeted by tests, is a prob-
lem that requires experience and skill. Section 2 discusses
analog and RF testing that does not rely on fault models
and signal parameter ranges must be interpreted during
test. This often requires human intervention, which ML
can automate. Section 3.4 and several other subsections

on digital circuit diagnosis and Section 4 on memory test
and repair bring out the ML potential.

The second category consists of algorithms that need to
be programmed. Algorithms for digital test generation are
complex and grow exponentially with the circuit size. A
typical program uses heuristics to select among multiple
choices to direct the execution toward a quick solution.
Several subsections around Section 3.4 point to some very
practical applications of ML in the supervised and unsu-
pervised learning modes.

We must mention items that our reader will find miss-
ing in this survey. The references in this paragraph are
nowhere comprehensive but are given to get the search
started. We believe there is ample research scope in new
areas like hardware security [14, 52], wafer map failure
pattern classification [26], test escape detection for digi-
tal circuits [83], intelligent lithographic hotspot detec-
tion [177], expediting device-level testing followed by
circuit and SoC-level testing using ML for some of the
emerging technologies such as carbon nanotube field-
effect-transistor (CNTFET) devices [8], monolithic 3D
(M3D) devices such as resistive RAM (ReRAM) [24] and
many more.

Data Availability Data sharing not applicable to this article as no data-
sets were generated or analyzed during the current study.

Declarations

Conflict of Interest We declare that we have no financial and personal
relationships with other people or organizations that can inappropri-
ately influence our work, there is no professional or other personal
interest of any nature or kind in any product, service and/or company
that could be construed as influencing the position presented in, or the
review of, the manuscript entitled. Also, one of our co-authors is an
editor of the journal.

References

 1. Abdallah L, Stratigopoulos H, Kelma C, Mir S (2010) Sensors
for built-in alternate RF test. In Proc. 15th IEEE European Test
Symposium (ETS), pp. 49–54

 2. Acar E, Ozev S (2008) Defect-oriented testing of RF cir-
cuits. IEEE Trans Comput Aided Des Integr Circuits Syst
27(5):920–931

 3. Adams RD (2003) High performance memory testing. Frontiers
in Electronic Testing Book Series, Springer

 4. Agrawal VD, Mercer MR (1985) Testability measures – what
do they tell us? In Proc. International Test Conf., (Philadelphia,
PA), pp. 391–396

 5. Akbay SS, Torres JL, Rumer JM, Chatterjee A, Amtsfield J
(2006) Alternate test of RF front ends with IP constraints: fre-
quency domain test generation and validation. In Proc. IEEE
International Test Conference, pp. 1–10

 6. Ankerst M, Breunig MM, Kriegel HP, Sander J (1999)
OPTICS: Order ing points to identify the cluster ing
structure. In Proceedings of the 1999 ACM SIGMOD

154 Journal of Electronic Testing (2024) 40:139–158

International Conference on Management of Data, SIG-
MOD ’99, (New York, NY, USA), Association for Comput-
ing Machinery, p. 49-60

 7. Baldi P (2012) Autoencoders, unsupervised learning, and deep
architectures. In Guyon I, Dror G, Lemaire V, Taylor G and
Silver D, editors, Proceedings of ICML Workshop on Unsu-
pervised and Transfer Learning, volume 27 of Proceedings of
Machine Learning Research, (Bellevue, Washington, USA),
PMLR, pp. 37–49

 8. Banerjee S, Chaudhuri A, Chakrabarty K (2020) Analysis of
the impact of process variations and manufacturing defects on
the performance of carbon-nanotube FETs. IEEE Trans Very
Large Scale Integr VLSI Syst 28(6):1513–1526

 9. Barragan MJ, Stratigopoulos H, Mir S, Le-Gall H, Bhargava N,
Bal A (2016) Practical simulation flow for evaluating analog/
mixed-signal test techniques. IEEE Des Test 33(6):46–54

 10. Bateson J (1985) In-circuit testing. Van Nostrand Reinhold
Company, New York

 11. Becker B, Drechsler R, Eggersgluess S, Sauer M (2014) Recent
advances in SAT-based ATPG: Non-standard fault models,
multi constraints and optimization. In Proc. 9th IEEE Inter-
national Conference on Design & Technology of Integrated
Systems in Nanoscale Era (DTIS), pp. 1–10

 12. Bennetts RG, Maunder CM, Robinson GD (1981) CAMELOT:
A computer-aided measure for logic testability. IEE Proceed-
ings E - Computers and Digital Techniques 128(5):177–189

 13. Bhattacharya S, Chatterjee A (2006) A DFT approach for test-
ing embedded systems using DC sensors. IEEE Des Test Com-
put 23(6):464–475

 14. Bhunia S, Tehranipoor M (2018) Hardware security: A hands-
on learning approach, 1st edn. Morgan Kaufmann

 15. Bishop C (2006) Pattern recognition and machine learning.
Springer Publishing Company, Incorporated

 16. Brglez F (1984) On testability analysis of combinational cir-
cuits. Proc International Symp Circuits and Systems 221–225

 17. Brglez F, Fujiwara H (1985) A neutral netlist of 10 combina-
tional benchmark circuits and a targeted translator in FOR-
TRAN. Proceedings of the IEEE Int. Symposium on Circuits
and Systems (ISCAS), pp. 677–692

 18. Bushnell ML, Agrawal VD (2013) Essentials of electronic
testing for digital, memory and mixed-signal VLSI circuits.
Springer Publishing Company, Incorporated

 19. Bushnell ML, Giraldi J (1997) A functional decomposition
method for redundancy identification and test generation. J
Electronic Testing 10:175–195

 20. Chakradhar ST (1991) Neural network models and opti-
mization methods for digital testing. PhD thesis, Rutgers
University, USA

 21. Chakradhar ST, Agrawal VD (1991) A transitive closure based
algorithm for test generation. In Proceedings of the 28th ACM/
IEEE Design Automation Conference, DAC ’91, pp. 353–358

 22. Chakradhar ST, Agrawal VD, Bushnell ML (1991) Neural
models and algorithms for digital testing. Springer

 23. Chakradhar ST, Agrawal VD, Rothweiler SG (1993) A transi-
tive closure algorithm for test generation. IEEE Trans Comput
Aided Des Integr Circuits Syst 12(7):1015–1028

 24. Chaudhuri A, Banerjee S, Park H, Kim J, Murali G, Lee E,
Kim D, Lim SK, Mukhopadhyay S, Chakrabarty K (2020)
Advances in design and test of monolithic 3-D ICs. IEEE Des
Test 37(4):92–100

 25. Chen HH, Ling DD (1997) Power supply noise analysis meth-
odology for deep-submicron VLSI chip design. In Proceedings
of the 34th Annual Design Automation Conference, p. 638-643

 26. Chen S, Zhang Y, Hou X, Shang Y, Yang P (2022) Wafer map
failure pattern recognition based on deep convolutional neural
network. Expert Syst Appl 209:118254

 27. Cheng KT (1991) On removing redundancy in sequential cir-
cuits. In Proceedings of the 28th ACM/IEEE Design Automa-
tion Conference (DAC), 1991, pp. 164–169

 28. Cheng KT, Agrawal VD (1989) Unified methods for VLSI
simulation and test generation. Springer

 29. Cheng W, Tian Y, Reddy SM (2017) Volume diagnosis data
mining. in Proc. 22nd IEEE European Test Symposium (ETS),
pp. 1–10

 30. Chern M, Lee SW, Huang SY, Huang Y, Veda G, Tsai KHH,
Cheng WT (2019) Improving scan chain diagnostic accuracy
using multi-stage artificial neural networks. In Proceedings of
the 24th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pp. 341–346

 31. Cimino M, Lapuyade H, De Matos M, Taris T, Deval Y,
Begueret JB (2006) A robust 130nm-CMOS built-in current
sensor dedicated to RF applications. In Proc. Eleventh IEEE
European Test Symposium (ETS’06), pp. 151–158

 32. Corno F, Reorda MS, Squillero G (2000) RT-level ITC’99
benchmarks and first ATPG results. IEEE Des Test Comput
17:44–53

 33. Cox DR (1958) The regression analysis of binary sequences. J R
Stat Soc B Methodol 20(2):215–242

 34. Daasch WR, Madge R (2005) Data-driven models for statistical
testing: measurements, estimates and residuals. In Proc. IEEE
International Test Conference, pp. 10 pp.–322

 35. Day JR (1985) A fault-driven, comprehensive redundancy algo-
rithm. IEEE Des Test Comput 2(3):35–44

 36. Dillon WR, Goldstein M (1984) Multivariate analysis: Methods
and applications. Wiley Publishing Company, Incorporated

 37. Ellouz S, Gamand P, Kelma C, Vandewiele B, Allard B, Com-
bining internal probing with artificial neural networks for opti-
mal RFIC testing. In Proc. IEEE International Test Conference,
pp. 1–9

 38. Evans RC (1981) Testing repairable RAMs and mostly good
memories. In Proceedings International Test Conference, pp.
49–55

 39. Fagot C, Girard P, Landrault C (1997) On using machine learning
for logic BIST. In Proc. IEEE International Test Conference, pp.
338–346

 40. Ferrario J, Wolf R, Moss S, Slamani M (2003) A low-cost
test solution for wireless phone RFICs. IEEE Commun Mag
41(9):82–88

 41. Freund Y, Schapire RE (1997) A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. J Comput
Syst Sci 55(1):119–139

 42. Fuchs WK, Chang MF (1989) Diagnosis and repair of large
memories: a critical review and recent results, pp. 213–225.
Boston, MA: Springer US

 43. Fujiwara H, Shimono T (1983) On the acceleration of test genera-
tion algorithms. IEEE Trans Comput C–32(12):1137–1144

 44. Garey MR, Johnson DS (1990) Computers and intractability. A
guide to the theory of NP-completeness. W. H, Freeman and Co

 45. Gers FA, Schraudolph NN, Schmidhuber J (2003) Learning pre-
cise timing with LSTM recurrent networks. J Mach Learn Res
3(null)115-143

 46. Girard P, Nicolici N, Wen X, editors (2010) Power-aware testing
and test strategies for low power devices. Springer

 47. Gómez LR, Wunderlich H (2016) A neural-network-based fault
classifier. In Proc. IEEE 25th Asian Test Symposium (ATS), pp.
144–149

 48. Goel P (1981) An implicit enumeration algorithm to gener-
ate tests for combinational logic circuits. IEEE Trans Comput
C–30(3):215–222

 49. Goldstein L (1979) Controllability/observability analysis of
digital circuits. IEEE Transactions on Circuits and Systems,
vol. CAS-26, no. 9, pp. 685–693, Sept. 1979

155Journal of Electronic Testing (2024) 40:139–158

 50. Gómez LR, Cook A, Indlekofer T, Hellebrand S, Wunderlich
HJ (2014) Adaptive bayesian diagnosis of intermittent faults. J
Electron Test 30(5):527–540

 51. Gopalan A, Margala M, Mukund PR (2005) A current based
self-test methodology for RF front-end circuits. Microelectron J
36(12):1091–1102

 52. Guin U, DiMase D, Tehranipoor M (2014) Counterfeit integrated
circuits: Detection, avoidance, and the challenges ahead. J Elec-
tron Test Theory Appl 30(1):9–23

 53. Guyon I, Elisseeff A (2003) An introduction to variable and fea-
ture selection. J Mach Learn Res 3(null)1157-1182

 54. Haddad RW, Dahbura AT, Sharma AB (1991) Increased through-
put for the testing and repair of RAMs with redundancy. IEEE
Trans Comput 40(2):154–166

 55. Hafed MM, Abaskharoun N, Roberts GW (2002) A 4-GHz effec-
tive sample rate integrated test core for analog and mixed-signal
circuits. IEEE J Solid-State Circuits 37(4):499–514

 56. Harrison RR, Bragg JA, Hasler P, Minch BA, Deweerth SP
(2001) A CMOS programmable analog memory-cell array using
floating-gate circuits. IEEE Trans Circuits Syst II Analog Digit
Signal Process 48(1):4–11

 57. Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-means
clustering algorithm. J Roy Stat Soc 28:100–108

 58. Hasan N, Liu CL (1988) Minimum fault coverage in reconfigur-
able arrays. In Digest of Papers 18th International Symposium
on Fault-Tolerant Computing, pp. 348–353

 59. Hasler P, Lande TS (2001) Overview of floating-gate devices,
circuits, and systems. IEEE Trans Circuits Syst II Analog Digit
Signal Process 48(1):1–3

 60. Hayes JP, Friedman AD (1974) Test point placement to simplify
fault detection. IEEE Trans Comput C–23(7):727–735

 61. Haykin SS (2009) Neural networks and learning machines.
Pearson Education, third edition, Upper Saddle River, NJ

 62. Hearst MA, Dumais ST, Osuna E, Platt J, Schölkopf B (1998)
Support vector machines. 13:18–28

 63. Henftling M, Wittmann H, Antreich KJ (1995) A formal non-
heuristic ATPG approach. Proceedings of the Conference on
European Design Automation, pp. 248–253

 64. Ho TK (1995) Random decision forests. in Proc International
Conference on Document Analysis and Recognition (ICDAR),
pp. 278–282

 65. Ho TK (1995) Random decision forests. In Proceedings of 3rd
International Conference on Document Analysis and Recogni-
tion, volume 1, pp. 278–282 vol. 1

 66. Hoehfeld M, Fahlman SE (1992) Probabilistic rounding in neu-
ral network learning with limited precision. Neurocomputing
4(6):291–299

 67. Holler MA, Tam SM, Castro HA, Benson R (1989) An electri-
cally trainable artificial neural network (ETANN) with 10240
’floating gate’ synapses. In Proc. International Joint Conference
on Neural Networks, pp. 191–196

 68. Hopfield J, Tank D (2004) Neural computation of decisions in
optimization problems. Biol Cybern 52:141–152

 69. Hotelling H (1933) Analysis of a complex of statistical variables
into principal components. J Educ Psychol 24(6):417–441

 70. Huang Q, Fang C, Mittal S, Blanton RD (2018) Improving diag-
nosis efficiency via machine learning. In Proc. IEEE Interna-
tional Test Conference (ITC), pp. 1–10

 71. Huang Y, Benware B, Klingenberg R, Tang H, Dsouza J, Cheng
WT (2017) Scan chain diagnosis based on unsupervised machine
learning. In 2017 IEEE 26th Asian Test Symposium (ATS), pp.
225–230

 72. Huang Y, Guo R, Cheng W, Li JC (2008) Survey of scan chain
diagnosis. IEEE Design Test Comput 25(3):240–248

 73. Huang Y, Hsieh H, Lu L (2007) A low-noise amplifier with inte-
grated current and power sensors for RF BIST applications. In
Proc. 25th IEEE VLSI Test Symposium (VTS’07), pp. 401–408

 74. Huisman LM, Kassab M, Pastel L (2004) Data mining integrated
circuit fails with fail commonalities. In Proc. International Test
Conference, pp. 661–668

 75. Immanuel J, Millican SK (2020) Calculating signal controllabil-
ity using neural networks: improvements to testability analysis
and test point insertion. In Proc. IEEE 29th North Atlantic Test
Workshop (NATW), pp. 1–6

 76. Jabri M, Flower B (1991) Weight perturbation: An optimal archi-
tecture and learning technique for analog VLSI feedforward and
recurrent multilayer networks. Neural Comput 3(4):546–565

 77. Jain SK, Agrawal VD (1985) Statistical fault analysis. IEEE
Design Test Comput 2:38–44

 78. Jensen F, Petersen NE (1982) Burn-in. John Wiley & Sons Inc,
Chichester, UK

 79. Jiang YM, Cheng KT (1999) Analysis of performance impact
caused by power supply noise in deep submicron devices. In
Proceedings Design Automation Conference, pp. 760–765

 80. Jin S, Ye F, Zhang Z, Chakrabarty K, Gu X (2016) Efficient
board-level functional fault diagnosis with missing syn-
dromes. IEEE Trans Comput Aided Des Integr Circuits Syst
35(6):985–998

 81. Kaufman L, Rousseeuw PJ (2008) Partitioning around medoids
(Program PAM), pp. 68–125. John Wiley & Sons, Inc

 82. Kelly J, Engelhardt M (2007) Advanced production testing of
RF, SoC, and SiP devices. Artech House Inc, Boston

 83. Butler KM, Carulli Jr JM, Saxena J, Vasavada AP (2011) System
and method for estimating test escapes in integrated circuits. U.S.
Patent 7865849B2

 84. Kirkland T, Mercer MR (1987) A topological search algorithm
for ATPG. Proceedings of the 24th ACM/IEEE Design Automa-
tion Conference, pp. 502–508

 85. Kohonen T (2002) The self-organizing map. Proc IEEE
78(9):1464–1480

 86. Koosh VF, Goodman RM (2002) Analog VLSI neural network
with digital perturbative learning. IEEE Trans Circuits Syst II
Analog Digit Signal Process 49(5):359–368

 87. Krishnamurthy B (1987) Hierarchical test generation: Can AI
help? In Proc, International Test Conf

 88. Kunz W, Pradhan DK (1992) Recursive learning: An attractive
alternative to the decision tree for test generation in digital cir-
cuits. In Proceedings of the IEEE International Test Conference,
pp. 816–825

 89. Kuo S, Fuchs WK (1987) Efficient spare allocation for recon-
figurable arrays. IEEE Des Test Comput 4(1):24–31

 90. Laaksonen J, Oja E (1996) Classification with learning
k-nearest neighbors. In Proc. International Conference on
Neural Networks (ICNN) 3:1480–1483

 91. Larrabee T (1989) Efficient generation of test patterns using
Boolean difference. In Proceedings International Test Confer-
ence, pp. 795–801

 92. Larrabee T (1992) Test pattern generation using boolean sat-
isfiability. IEEE Trans CAD 11(1):4–15

 93. Li YH, Lien WC, Lin IC, Lee KJ (2014) Capture-power-safe
test pattern determination for at-speed scan-based testing. IEEE
Trans Comput Aided Des Integr Circuits Syst 33(1):127–138

 94. Li Z, Colburn JE, Pagalone V, Narayanun K, Chakrabarty K
(2017) Test-cost optimization in a scan-compression architec-
ture using support-vector regression. In Proc. IEEE 35th VLSI
Test Symposium (VTS), pp. 1–6

 95. Linares-Barranco B, Serrano-Gotarredona T, Serrano-
Gotarredona R (2003) Compact low-power calibration

156 Journal of Electronic Testing (2024) 40:139–158

mini-DACs for neural arrays with programmable weights.
IEEE Trans Neural Netw 14(5):1207–1216

 96. Littlestone N, Warmuth MK (1989) The weighted majority
algorithm. In Proc. 30th Annual Symposium on Foundations
of Computer Science, pp. 256–261

 97. Liu Y, Han C, Lin S, Li JC (2017) PSN-aware circuit test tim-
ing prediction using machine learning. IET Comput Digit Tech
11(2):60–67

 98. Lombardi F, Huang WK (1988) Approaches for the repair
of VLSI/WSI RRAMs by row/column deletion. In Digest of
Papers, 18th International Symposium on Fault-Tolerant Com-
puting, pp. 342–347

 99. Lont JB, Guggenbuhl W (1992) Analog CMOS implementation
of a multilayer perceptron with nonlinear synapses. IEEE Trans
Neural Netw 3(3):457–465

 100. Ma Y, Ren H, Khailany B, Sikka H, Luo L, Natarajan K, Yu B
(2019) High performance graph convolutional networks with
applications in testability analysis. In Proc. 56th ACM/IEEE
Design Automation Conference (DAC), pp. 1–6

 101. Maliuk D, Stratigopoulos HG, Huang H, Makris Y (2010)
Analog neural network design for RF built-in self-test. In Proc.
International Test Conference (ITC), pp. 23.2.1–23.2.10

 102. Manzini A, Inglese P, Caldi L, Cantero R, Carnevale G,
Coppetta M, Giltrelli M, Mautone N, Irrera F, Ullmann R,
Bernardi P (2019) A machine learning-based approach to
optimize repair and increase yield of embedded flash memories
in automotive systems-on-chip. In Proc. IEEE European Test
Symposium (ETS), pp. 1–6

 103. Marques Silva JP, Sakallah KA (1996) GRASP - a new search
algorithm for satisfiability. In Proceedings of International
Conference on Computer Aided Design, pp. 220–227

 104. Mateo D, Altet J, Aldrete-Vidrio E (2007) Electrical charac-
terization of analogue and RF integrated circuits by thermal
measurements. Microelectron J 38(2):151–156

 105. Mazumder P, Jih YS (1993) A new built-in self-repair approach
to VLSI memory yield enhancement by using neural-type cir-
cuits. IEEE Trans Comput Aided Des Integr Circuits Syst
12(1):124–136

 106. Milev M, Hristov M (2003) Analog implementation of ANN
with inherent quadratic nonlinearity of the synapses. IEEE
Trans Neural Netw 14(5):1187–1200

 107. Millican S, Sun Y, Roy S, Agrawal V (2021) System and
method for optimizing fault coverage based on optimized test
point insertion determinations for logical circuits. U.S. Patent
17226950

 108. Millican SK, Sun Y, Roy S, Agrawal VD (2019) Applying neu-
ral networks to delay fault testing: test point insertion and ran-
dom circuit training. In Proc. IEEE 28th Asian Test Symposium
(ATS), pp. 13–18

 109. Moness M, Gabor L, Hussein AI, Ali HM (2022) Automated
design error debugging of digital VLSI circuits. J Electron Test
Theory Appl 38(4):395–417

 110. Montalvo AJ, Gyurcsik RS, Paulos JJ (1997) Toward a general-
purpose analog VLSI neural network with on-chip learning.
IEEE Trans Neural Netw 8(2):413–423

 111. Montgomery DC, Peck EA, Vining GG (2012) Introduc-
tion to linear regression analysis. Wiley Publishing Company,
Incorporated

 112. Najafi-Haghi ZP, Wunderlich H (2023) Identifying resistive
open defects in embedded cells under variations. J Electron Test
Theory Appl 39(1):27–40

 113. O’Farrill C, Moakil-Chbany M, Eklow B (2005) Optimized rea-
soning-based diagnosis for non-random, board-level, production
defects. in Proc. IEEE International Test Conference, pp. 1–7
(Paper 8.2)

 114. Ooi MP, Kwang Joo Sim E, Kuang YC, Kleeman L, Chan C,
Demidenko S (2010) Automatic defect cluster extraction for
semiconductor wafers. In Proc. IEEE Instrumentation Measure-
ment Technology Conference Proceedings, pp. 1024–1029

 115. Patel J, Patel S (1985) What heuristics are best for PODEM?. In
Proc. First International Workshop on VLSI Design, pp. 1–20

 116. Patel S, Patel J (1986) Effectiveness of heuristics measures for
automatic test pattern generation. In Proc. 23rd ACM/IEEE
Design Automation Conference (DAC), pp. 547–552

 117. Pearson K (1901) On lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophi-
cal Magazine and Journal of Science 2(11):559–572

 118. Peng H, Long F, Ding C (2005) Feature selection based on
mutual information criteria of max-dependency, max-relevance,
and min-redundancy. IEEE Trans Pattern Anal Mach Intell
27(8):1226–1238

 119. Pradhan M, Bhattacharya BB (2020) A survey of digital circuit
testing in the light of machine learning. WIREs Data Mining
Knowl Discov 1–18

 120. Pradhan M, Bhattacharya BB, Chakrabarty K, Bhattacharya BB
(2019) Predicting X-sensitivity of circuit-inputs on test-coverage:
A machine-learning approach. IEEE Trans Comput Aided Des
Integr Circuits Syst 38(12):2343–2356

 121. Quinlan JR (1986) Induction of decision trees. Mach Learn
1(1):81–106

 122. Roberts MW, Lala PK (1987) Algorithm to detect reconvergent
fanouts in logic circuits. IEE Proceedings E - Computers and
Digital Techniques 134(2):105–111

 123. Roth JP, Bouricius WG, Schneider PR (1967) Programmed algo-
rithms to compute tests to detect and distinguish between failures
in logic circuits. IEEE Transactions on Electronic Computers
EC–16(5):567–580

 124. Roy S (2021) Toward zero backtracks in test pattern search algo-
rithms with machine learning. PhD thesis, Auburn University, USA

 125. Roy S, Agrawal VD (2024) An amalgamated testability meas-
ure derived from machine intelligence. in Proceedings of 37th
International Conference on VLSI Design & 23rd International
Conference on Embedded Systems

 126. Roy S, Millican SK, Agrawal VD (2020) Machine intelligence
for efficient test pattern generation. In Proceedings of the IEEE
International Test Conference, (Washington D.C), pp. 1–5

 127. Roy S, Millican SK, Agrawal VD (2021) Principal component
analysis in machine intelligence-based test generation. In Proc.
IEEE Microelectronics Design and Test Symp. (MDTS’21),
(USA), pp. 1–6

 128. Roy S, Millican SK, Agrawal VD (2021) Special session -
machine learning in test: A survey of analog, digital, memory,
and RF integrated circuits. In Proc. IEEE VLSI Test Symp.
(VTS’21), (USA), Apr. 2021, pp. 1–10

 129. Roy S, Millican SK, Agrawal VD (2021) Training neural network
for machine intelligence in automatic test pattern generator. In
Proceedings of 34th International Conference on VLSI Design
& 20th International Conference on Embedded Systems, pp.
316–321

 130. Roy S, Millican SK, Agrawal VD (2021) Unsupervised learning
in test generation for digital integrated circuits. In Proceedings
of the IEEE European Test Symposium, pp. 1–4

 131. Roy S, Millican SK, Agrawal VD (2022) Multi-heuristic
machine intelligence guidance in automatic test pattern genera-
tion. In Proc. 31st Microelectronics Design and Test Symposium
(MDTS), pp. 1–6

 132. Roy S, Stiene B, Millican SK, Agrawal VD (2019) Improved
random pattern delay fault coverage using inversion test points.
In Proc. IEEE 28th North Atlantic Test Workshop (NATW), pp.
206–211

157Journal of Electronic Testing (2024) 40:139–158

 133. Roy S, Stiene B, Millican SK, Agrawal VD (2020) Improved
pseudo-random fault coverage through inversions: A study
on test point architectures. J Electron Testing Theory Applic
36(1):123–133

 134. Ryu JY, Kim BC (2005) Low-cost testing of 5 GHz low noise
amplifiers using new RF BIST circuit. J Electron Test Theory
Appl 21(6):571–581

 135. Savir (1983) Good controllability and observability do not guaran-
tee good testability. IEEE Transactions on Computers C-32(12)

 136. Schölkopf B, Smola AJ, editors (2001) Learning with kernels:
support vector machines, regularization, optimization, and
beyond. MIT Press

 137. Schulz MH, Auth E (1988) Advanced automatic test pattern gen-
eration and redundancy identification techniques. In Digest of
Papers, 18th International Symposium on Fault-Tolerant Com-
puting, pp. 30–35

 138. Schulz MH, Auth E (1989) Improved deterministic test pattern
generation with applications to redundancy identification. IEEE
Trans Comput Aided Des Integr Circuits Syst 8(7):811–816

 139. Schulz MH, Trischler E, Sarfert TM (1988) SOCRATES: A
highly efficient automatic test pattern generation system. IEEE
Trans Comput Aided Des Integr Circuits Syst 7(1):126–137

 140. Seth SC, Agrawal VD (1989) A new model for computation of prob-
abilistic testability in combinational circuits. Integr VLSI J 7:49–75

 141. Seth SC, Agrawal VD, Farhat H (1990) A statistical theory of
digital circuit testability. IEEE Trans Comput 39(4):582–586

 142. Shan C, Babighian P, Pan Y, Carulli J, Wang L (2017) System-
atic defect detection methodology for volume diagnosis: A data
mining perspective. In Proc. IEEE International Test Conference
(ITC), pp. 1–10

 143. Shepard KL, Narayanan V (1996) Noise in deep submicron
digital design. In Proceedings of International Conference on
Computer Aided Design, pp. 524–531

 144. Silva E, Pineda de Gyvez J, Gronthoud G (2005) Functional vs.
multi-VDD testing of RF circuits. In Proc. IEEE International
Test Conference, pp. 9–420

 145. Singh A, Bharadwaj LM, Harpreet S (2005) DNA and quantum
based algorithms for VLSI circuits testing. Nat Comput 4:53–72

 146. Singh S, Singh A (2003) Applying quantum search to automated
test pattern generation for VLSI circuits. In Proc. 4th Interna-
tional Conf. on Parallel and Distributed Computing, Applications
and Technologies, (Chengdu, China), pp. 648–651

 147. Singhee A, Rutenbar RA (2009) Statistical blockade: Very fast
statistical simulation and modeling of rare circuit events and its
application to memory design. IEEE Trans Comput Aided Des
Integr Circuits Syst 28(8):1176–1189

 148. Skabar A (2003) Single-class classifier learning using neural
networks: An application to the prediction of mineral deposits.
In Proceedings of the 2003 International Conference on Machine
Learning and Cybernetics, volume 4, pp. 2127–2132 Vol.4

 149. Stapper CH, McLaren AN, Dreckmann M (1980) Yield model
for productivity optimization of VLSI memory chips with redun-
dancy and partially good product. IBM J Res Dev 24(3):398–409

 150. Stephan P, Brayton RK, Sangiovanni-Vincentelli AL (1996)
Combinational test generation using satisfiability. IEEE Trans
Comput Aided Des Integr Circuits Syst 15:1167–1176

 151. Stephenson JE, Grason J (1976) A testability measure for regis-
ter transfer level digital circuits. In Proc. 6th International Fault
Tolerant Computing Symp, pp. 101–107

 152. Stratigopoulos H (2018) Machine learning applications in IC test-
ing. In Proc. IEEE 23rd European Test Symposium (ETS), pp. 1–10

 153. Stratigopoulos H, Makris Y (2008) Error moderation in low-cost
machine-learning-based analog/RF testing. IEEE Trans Comput
Aided Des Integr Circuits Syst 27(2):339–351

 154. Stratigopoulos H, Mir S (2012) Adaptive alternate analog test.
IEEE Des Test Comput 29(4):71–79

 155. Stratigopoulos H, Mir S, Acar E, Ozev S (2009) Defect filter for
alternate RF test. In Proc. 14th IEEE European Test Symposium,
pp. 101–106

 156. Stratigopoulos H, Mir S, Makris Y (2009) Enrichment of limited
training sets in machine-learning-based analog/RF test. In Proc.
Design, Automation & Test in Europe Conference & Exhibition,
pp. 1668–1673

 157. Stratigopoulos H, Sunter S (2014) Fast Monte Carlo-based esti-
mation of analog parametric test metrics. IEEE Trans Comput
Aided Des Integr Circuits Syst 33(12):1977–1990

 158. Sumikawa N, Nero M, Wang L (2017) Kernel based clustering
for quality improvement and excursion detection. In Proc. IEEE
International Test Conference (ITC), pp. 1–10

 159. Sun Y, Millican SK (2019) Test point insertion using artificial
neural networks. In Proc. IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), pp. 253–258

 160. Sun Y, Millican SK (2022) Applying artificial neural networks to
logic built-in self-test: Improving test point insertion. J Electron
Test Theory Appl 38(4):339–352

 161. Sun Y, Millican SK, Agrawal VD (2020) Special session: Survey
of test point insertion for logic built-in self-test. In Proc. IEEE
38th VLSI Test Symposium (VTS), pp. 1–6

 162. Sun Z, Jiang L, Xu Q, Zhang Z, Wang Z, Gu X (2013) Agent-
Diag: An agent-assisted diagnostic framework for board-level
functional failures. In Proc. IEEE International Test Conference
(ITC), pp. 1–8

 163. Sun Z, Jiang L, Xu Q, Zhang Z, Wang Z, Gu X (2015) On test
syndrome merging for reasoning-based board-level functional
fault diagnosis. In Proc. 20th Asia and South Pacific Design
Automation Conference, pp. 737–742

 164. Tafertshofer P, Ganz A, Henftling M (1997) A SAT-based impli-
cation engine for efficient ATPG, equivalence checking, and
optimization of netlists. 1997 Proceedings of IEEE International
Conference on Computer Aided Design (ICCAD), pp. 648–655

 165. Tan SC, Ting KM, Liu TF (2011) Fast anomaly detection for
streaming data. IJCAI’11, AAAI Press, p. 1511-1516

 166. Tang H, Manish S, Rajski J, Keim M, Benware B (2007) Analyz-
ing volume diagnosis results with statistical learning for yield
improvement. In Proc. 12th IEEE European Test Symposium
(ETS’07), pp. 145–150

 167. Tehranipoor M, Butler KM (2010) Power supply noise: A survey
on effects and research. IEEE Des Test Comput 27(2):51–67

 168. Tipping ME (2004) Bayesian inference: An introduction to prin-
ciples and practice in machine learning, pp. 41–62. Berlin, Hei-
delberg: Springer Berlin Heidelberg

 169. Valdes-Garcia A, Venkatasubramanian R, Silva-Martinez J,
Sanchez-Sinencio E (2008) A broadband CMOS amplitude detec-
tor for on-chip RF measurements. IEEE Trans Instrum Meas
57(7):1470–1477

 170. Voorakaranam R, Akbay SS, Bhattacharya S, Cherubal S,
Chatterjee A (2007) Signature testing of analog and RF circuits:
Algorithms and methodology. IEEE Trans Circuits Syst I Regul
Pap 54(5):1018–1031

 171. Wang H, Poku O, Yu X, Liu S, Komara I, Blanton RD (2012) Test-
data volume optimization for diagnosis. In Proc. Design Automa-
tion Conference, pp. 567–572

 172. Wang J, Walker DMH, Majhi A, Kruseman B, Gronthoud G, Villagra
LE, van de Wiel P, Eichenberger S (2006) Power supply noise in delay
testing. In Proc. IEEE International Test Conference, pp. 1–10

 173. Wang S, Wei W (2009) Machine learning-based volume diagno-
sis. In Proc. Design, Automation & Test in Europe Conference &
Exhibition, pp. 902–905

158 Journal of Electronic Testing (2024) 40:139–158

 174. Wen X, Yamashita Y, Kajihara S, Wang LT, Saluja KK, Kinoshita
K (2005) On low-capture-power test generation for scan testing. In
Proc. 23rd IEEE VLSI Test Symposium (VTS), pp. 265–270

 175. Wey CL, Lombardi F (1987) On the repair of redundant RAM’s.
IEEE Trans Comput Aided Des Integr Circuits Syst 6(2):222–231

 176. Xanthopoulos C, Sarson P, Reiter H, Makris Y (2017) Automated
die inking: A pattern recognition-based approach. In Proc. IEEE
International Test Conference (ITC), pp. 1–6

 177. Xiao Y, Huang X, Liu K (2021) Model transferability from ima-
genet to lithography hotspot detection. J Electronic Testing Theory
Applications 37(1):141–149

 178. Xue Y, Poku O, Li X, Blanton RD (2013) PADRE: Physically-
aware diagnostic resolution enhancement. In Proc. IEEE Interna-
tional Test Conference (ITC), pp. 1–10

 179. Ye F, Firouzi F, Yang Y, Chakrabarty K, Tahoori MB (2014) On-
chip voltage-droop prediction using support-vector machines. In
Proc. IEEE 32nd VLSI Test Symposium (VTS), pp. 1–6

 180. Ye F, Zhang Z, Chakrabarty K, Gu X (2013) Board-level functional
fault diagnosis using artificial neural networks, support-vector
machines, and weighted-majority voting. IEEE Trans Comput
Aided Des Integr Circuits Syst 32(5):723–736

 181. Ye F, Zhang Z, Chakrabarty K, Gu X (2014) Board-level func-
tional fault diagnosis using multikernel support vector machines
and incremental learning. IEEE Trans Comput Aided Des Integr
Circuits Syst 33(2):279–290

 182. Zhang W, Goh AT (2016) Multivariate adaptive regression splines
and neural network models for prediction of pile drivability. Geo-
science Frontiers 7(1)45–52. Special Issue: Progress of Machine
Learning in Geosciences

 183. Zhang Y, Agrawal VD (2010) A diagnostic test generation sys-
tem. In Proc. IEEE International Test Conference (ITC), pp.
12.3.1–12.3.9

 184. Zhang Z, Chakrabarty K, Wang Z, Wang Z, Gu X (2011) Smart
diagnosis: Efficient board-level diagnosis and repair using artificial
neural networks. In Proc. International Test Conference, pp. 1–9

 185. Zhang Z, Gu X, Xie Y, Wang Z, Wang Z, Chakrabarty K (2012)
Diagnostic system based on support-vector machines for board-
level functional diagnosis. In Proc. 17th IEEE European Test Sym-
posium (ETS), pp. 1–6

 186. Zhou Z, Guin U, Li P, Agrawal VD (2021) Defect characterization
and testing of skyrmion-based logic circuits. In Proc. IEEE VLSI
Test Symp. (VTS’21), (USA), pp. 1–7

 187. Zhou Z, Guin U, Li P, Agrawal VD (2022) Fault modeling and
test generation for technology-specific defects of skyrmion logic
circuits. In Proc. IEEE VLSI Test Symp. (VTS’22), (USA), pp. 1–7

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Soham Roy is a DFT CAD Engineer in the department of Design for
Test Engineering Group at Intel Corporation, Santa Clara, CA, USA.
He received his Bachelor of Technology (BTech) Degree in Electronics

and Instrumentation from West Bengal University of Technology,
Kolkata, India, in 2011. He was with Wipro Ltd., VLSI Division,
Bangalore, India, as a design for test engineer from 2011-2015. He
received his Master of Science (MS) degree from the Department
of Electrical and Computer Engineering, Technical University of
Dresden, Dresden, Germany, in 2018. He received his Doctor of
Philosophy (PhD) in Electrical and Computer Engineering from the
Auburn University, USA, in 2021. He has published several articles and
has filed patents in applying machine learning in test point insertion
(TPI) and automatic test pattern generation (ATPG). He worked as
Technology Development Module and Integration Yield Engineer at
Intel Corporation, Hillsboro, OR, USA. His research interest includes
VLSI design and test and artificial intelligence.

Spencer K. Millican received his PhD, MS, and BS degrees from the
University of Wisconsin - Madison in 2015, 2013, and 2011, respec-
tively. He was with IBM in Rochester, MN, USA, as a design for test
engineer for two years, and afterwards was an assistant professor at
Auburn University. He is currently a Chief Microelectronics Hard-
ware Engineer at Dynetics, Inc. where he applies his knowledge of
circuit testing to the defense of safety-critical circuits. He has published
several articles, including receiving the best paper award at the 2014
IEEE International Conference on VLSI Design, and he has received
patents in the field of encrypted circuit simulation. His research inter-
ests include logic built-in self-test, obfuscated circuits, and secure
microelectronics.

Vishwani D. Agrawal is an Emeritus Professor in the Department of
Electrical and Computer Engineering at Auburn University, Alabama,
USA. Prior to retirement in 2016, he was the James J. Danaher
Professor in the same department. He has over 45 years of industry
and university experience, working at Auburn University, Bell Labs,
Murray Hill, NJ, USA; Rutgers University, New Brunswick, NJ, USA;
TRW, Redondo Beach, CA, USA; Indian Institute of Technology
Delhi (IITD), New Delhi, India; EG &G, Albuquerque, NM, USA;
and ATI, Champaign, IL, USA. His areas of expertise include VLSI
testing, low-power design, and microwave antennas. He obtained a
BE (1964) degree from the Indian Institute of Technology Roorkee
(IITR), Roorkee, India; ME (1966) from the Indian Institute of Science,
Bangalore, India; and PhD (1971) from the University of Illinois at
Urbana-Champaign (UIUC), IL, USA. He has coauthored over 400
papers and 5 books, and holds 13 United States patents. He is the
Editor-in-Chief of the Journal of Electronic Testing: Theory and
Applications, and a past Editor-in-Chief (1985-87) of the IEEE Design
& Test of Computers magazine. His invited talks include the plenary
(1998) at the International Test Conference, Washington, DC, USA
and the keynote (2012) at the 25th International Conference on VLSI
Design, Hyderabad, India. He served on the Board of Governors (1989-
90) of the IEEE Computer Society, and in 1994 chaired the Fellow
Selection Committee of that Society. He has received ten Best Paper
Awards, two Lifetime Achievement Awards, and two Distinguished
Alumnus Awards. Agrawal is a Fellow of the ACM, IEEE and IETE-
India. He has served on the Advisory Boards of the ECE Departments
at UIUC, New Jersey Institute of Technology (NJIT), and the City
College of the City University of New York (CCNY). See his website:
http:// www. eng. auburn. edu/ ~vagra wal.

http://www.eng.auburn.edu/%7evagrawal

	A Survey and Recent Advances: Machine Intelligence in Electronic Testing
	Abstract
	1 Introduction
	2 Analog and RF Testing
	2.1 Use of Machine Learning
	2.2 Parametric Test Metrics Based on Machine Learning

	3 Digital Testing
	3.1 Wafer Testing
	3.2 Scan Chain Defects
	3.3 Printed-Circuit Board (PCB) Testing
	3.4 Fault Diagnosis
	3.5 Test Compression
	3.6 Testability Analysis
	3.6.1 Combining Testability Measures
	3.6.2 X-Sensitivity
	3.6.3 Signal Probability

	3.7 Built-In Self-Test (BIST) and Test Point Insertion (TPI)
	3.8 Power Supply Noise (PSN) and Signal Integrity
	3.9 Machine Intelligence Applied to ATPG

	4 Memory Test and Repair
	4.1 ML-Based Built-In Self-Repair of DRAM
	4.2 Software-Assisted Self-Test of Flash Memory
	4.3 SRAM Yield Improvement using Statistical Blockade

	5 Conclusion and Future Work
	References

