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Abstract—Detecting hard-to-detect faults has always been a
matter of concern and research in large and complex designs.
This is due to the exponential complexity of automatic test
pattern generation (ATPG) and the challenge of detecting faults
in near-linear complexity CPU time. Achieving this goal would
lead to near-zero backtracks. Many researchers have developed
new algorithms to achieve this goal, but detecting faults through
forward and backward circuit tracing has always involved human
intuition or hunches, i.e., heuristics. Testability measures are
employed to improve fault detection in reduced CPU time and
with higher fault coverage. However, this improvement has
been a never-ending process. A few decades ago, researchers
claimed that no single testability measure could be effective as
a heuristic, which led to the idea of amalgamating multiple
testability measures to achieve the maximum efficacy of heuristics
in ATPG. This opened up new venues, such as considering
reconvergent fanouts (with odd/even inversions), transitive fan-
in, and transitive fan-out, which have always been suspected of
causing test complexities but never incorporated in the ATPG.
The present work uses unsupervised learning, i.e., principal
component analysis (PCA) for amalgamating existing testability
measures and circuit topologies along with the aforementioned
new features to detect hard-to-detect faults and third-party tool-
reported aborted faults for large complex designs in reduced
CPU time. We report a backtrack reduction to zero for some
circuits or a substantial reduction for most circuits, with zero or
fewer aborted faults, increased fault coverage, and lower ATPG
CPU time. In a more focused study of 100 hard-to-detect or
ATPG-aborted faults obtained from a third-party ATPG tool,
we observed reduced backtracks, lower ATPG CPU time, fewer
aborted faults, and increased fault coverage.

Index Terms—ATPG, Aborted faults, Backtrace, Digital test-
ing, Hard-to-detect faults, Machine intelligence (MI), Machine
learning (ML), PODEM, Principal component analysis (PCA),
Reconvergence fanout, Testability measures, Unsupervised learn-
ing.

I. INTRODUCTION

Digital automatic test pattern generation (ATPG) has been
around for over half a century. Many algorithms and CAD
systems exists. So, what is new? Well, the ATPG is proven to
be NP-complete [1], implying that the worst-case complexity
of finding a test for a fault could be exponential in time in
terms of the circuit size. The circuit size has seen tremendous
growth in these years and shows no sign of slowing down. In
a practical scenario, that will disturb the cost versus quality
trade-off.

For a complex problem like ATPG, first we implement a
complete algorithm like D-algorithm, PODEM, or fan [2]–
[4]. Then, for practical reasons do two things, (1) set a per-
fault time limit, which would finish the job in reasonable time

though faults may remain undetected, and (2) use intuitive
heuristics to prioritize choices in the test algorithm to detect
more faults within the specified time limit.

Although a simple measure like logic distance to primary
inputs and outputs can provide simple heuristics, many testa-
bility measures [5]–[12] have been used in ATPG programs. To
be useful, they must be computationally efficient, ideally re-
quiring only linear-complexity. Research related to various as-
pects of testability measures, such as their interpretations [13],
applications [14], limitations, and improvements [15], has been
reported. Notably, due to specific approximations in each
measure, it is found that the ATPG benefits from different
testability measures for different faults [16], [17].

The above approach does get the test but the repeated ATPG
runs with different testability measures are time consuming.
The situation improves if multiple measures can be combined.
That is where the unsupervised learning technique of principal
component analysis (PCA) [18], [19] enters into the picture.
When three measures, distance (from original PODEM [3]
heuristic), COP [8], and SCOAP [20], were combined by PCA
and used for guiding the backtracks and D-drives in a PODEM
program, results were amazing [21]. We quote a typical
result: test for a hard-to-test fault in b07 circuit required 122,
720, 105 and 56 backtracks respectively with distance, COP,
SCOAP, and the PCA-combination. For several other faults,
the PCA-combination reduced backtracks to zero. Similarly,
identification of redundant faults used fewer backtracks.

The above observations point to the possibility of further
improvements in ATPG efficiency. If we continue to add
new linear-complexity measures, each carrying new pieces
of information about the circuit, then continuing reduction
of backtracks should be possible. Reconverging fanout paths,
especially those reconverging with odd and even number of
inversions, are being considered. The novelty of this paper lies
in adding more features (provides the algorithm for even/odd
parity of the number of inversions encountered in the reconver-
gence path, transitive-fan-in toward number of primary inputs
(PI) and transitive-fan-out toward number of primary outputs
(PO) that may account in better ATPG performance, once they
are included in the PCA measure for ATPG guidance.

II. PRIOR WORK

Testability analysis typically refers to procedures that iden-
tify circuit test bottlenecks [13]. These procedures have a
linear or polynomial, but not exponential, complexity. They



determine numerical measures that represent the controllability
and observability of signals. The distance or logic depth
through the circuit is the most straightforward measure used
in an ATPG algorithm [3]. In this case, the distance of
a signal site in terms of logic gates between PI and the
site is considered the controllability measure, and PO is
the observability measure. Other testability measures include
TMEAS [6], Sandia Controllability/Observability Analysis
Program (SCOAP) [7], CAMELOT [12], and Controllability
and Observability Program (COP) [8]. The first four examine
the circuit topology, while the latter examines signal probabil-
ities. These measures have been used to improve digital circuit
design or select one out of multiple choices within complex
test generation programs.

Researchers have conducted both theoretical and experi-
mental studies on testability measures. Two commonly used
algorithms for measuring testability are SCOAP [7] and COP.
SCOAP measures the effort required to set a line to logic 0
or 1, while COP provides a single-pass probabilistic measure.
However, both algorithms have significant inaccuracies due to
their assumption that signals at reconvergent fanout stems are
independent, which makes them unreliable in predicting fault
detectability.

There are different methods for computing the accuracy of
signal probability. One of them is using an algebraic procedure
for line controllability as proposed by a higher accuracy sig-
nal probability computing algorithm [22]. Another procedure
called PREDICT [10], [11] suggests graph-partitioning of the
circuit into ”supergates” that include reconvergent fanouts.
However, this method comes with a higher computational cost.

The cutting algorithm [23] is another approach that involves
cutting selected fanout lines to make the circuit a tree structure.
It then initializes the cut lines to a controllability range of [0,1].
The resulting modified network has no reconvergent fanout,
making it easier to compute controllability bounds for all lines.

Fault detection probability can be computed by manifesting
it as 1-controllability of a signal. This means taking the
XOR of the good and faulty circuit outputs. The methods for
computing probabilistic controllability can also be used for
computing fault detection probabilities. However, this method
has the disadvantage of doubling the circuit size for which
controllability must be computed.

Some signals may need to have narrow enough bounds
to be helpful. To address this issue, COP [8] introduced a
probability-based testability measure that maintains computa-
tional efficiency by neglecting signal correlations. However,
an analysis of the error in detection probability calcula-
tion [24] concluded that probabilities of control and obser-
vation of a line cannot be multiplied since those are not
independent events. Another statistical fault analysis proce-
dure, STAFAN [9], defined 0-observability and 1-observability
of a line l as probabilities of the line being observed with
value 0 or 1, respectively. The observabilities are conditional
and can be multiplied by appropriate controllability to obtain
fault detection probabilities without error. Other authors [25],
[26] used conditional observabilities to obtain exact detection

probabilities. It is also worth mentioning a fast testability anal-
ysis program [15] and a high-level testability measure [27].
Additionally, machine intelligence has begun to be applied
in this area [28]–[30].signals these bounds may not be nar-
row enough to be helpful. To overcome this disadvantage,
COP [8] provided a probability-based testability measure that
maintains computational efficiency by neglecting signal cor-
relations. A later analysis of the error in detection probability
calculation [24] concluded that probabilities of control and
observation of a line cannot be multiplied since those are not
independent events. The statistical fault analysis procedure,
STAFAN [9], defined 0-observability and 1-observability of
a line l as probabilities of the line being observed with
value 0 or 1, respectively. The observabilities are conditional
and, therefore, can be multiplied by appropriate controllability
without error to obtain fault detection probabilities. Other
authors [25], [26] used conditional observabilities to obtain
exact detection probabilities. Also worth mentioning are a fast
testability analysis program [15] and a high-level testability
measure [27]. Machine intelligence applications in this area
have also begun [28], [31].

Any testability measure can provide heuristics for ATPG
and test point insertion (TPI) algorithms. Various noteworthy
theories [1] show that the ATPG and TPI for combinational
circuits belong to the class of NP-complete problems, which
means having greater than polynomial computation time com-
plexity. Heuristic search techniques are used in ATPG for
efficiency and in TPI for superior fault coverage in decent
ATPG CPU time. Single testability measures can assist in
providing heuristics for these algorithms. In ATPG, heuristic
search techniques are used for efficiency, while in TPI, they
are used to achieve superior test points (TPs) that result in
higher fault coverage and reduced TPI time. Recent research
has presented an ANN-based signal probability predictor for
VLSI circuits considering reconvergent fanouts. Test points
(TPs) indicated by higher fault coverage and reduced TPI
time [32]. Recent work [31] presented an ANN-based signal
probability predictor for VLSI circuits considering reconver-
gent fanouts. Some testability measures have been combined
into a composite measure using unsupervised learning [21].
Four testability measures have been defined for every signal
node: 0-controllability, 1-controllability, 0-observability, and
1-observability [33]. The last two measures are often replaced
by a single measure, observability, leading to three measures
per node.

The PCA combined testability measure has successfully
improved the performance of ATPG. However, its potential has
not yet been fully explored. In light of this, a new study has
been initiated to delve deeper into the amalgamation process
and explore how it can be further enhanced by adding more
circuit topological features. Additionally, the study investigates
how the amalgamated testability measure can detect hard-to-
detect faults and aborted faults that are not typically reported
due to excessive ATPG CPU time.

It is conjectured that the PCA-based ATPG method can
reduce the number of aborted faults for larger circuits and

2



increase confidence in fault coverage because it takes less time
than conventional ATPG methods. The study will attempt to
demonstrate this using the PCA-based method to detect as
many aborted faults as possible.

Furthermore, the study will also incorporate the reconver-
gent fanout feature into the amalgamation process. This feature
has not been considered by conventional testability measures
or the PCA-based ATPG method developed by the authors
of [21]. The aim is to prove the superior efficacy of the new
approach compared to the conventional testability measure-
based ATPG and the PCA-based ATPG method developed by
the authors of [21].

III. PRESENT WORK

Machine Intelligence (MI) is a process that involves two
key phases: learning from problem-specific data and utilizing
that knowledge to solve problems. These phases may be
called Artificial Neural Network (ANN) training and ANN
guidance in supervised learning. However, in unsupervised
learning, statistical tools such as Principal Component Analy-
sis (PCA) [18], [34] is used instead.

The MI tool analyzes the problem-specific data during the
first phase to extract relevant characteristics. These character-
istics are then leveraged in the second phase to solve problems
directly. In other words, the knowledge gained from the data
is used to devise solutions to the problems.

Using PCA as the statistical tool, we have applied unsu-
pervised learning to the Automatic Test Pattern Generation
(ATPG) problem. This technique extracts the most relevant
features from the data and uses them to generate test patterns
automatically. By utilizing this approach, we can efficiently
generate test patterns and achieve better results than traditional
methods.

A. Dimensionality Reduction

Data is a valuable resource in the digital era, but its
storage and computation pose challenges. PCA is a statistical
technique that can reduce data dimensionality by generating
new principal components. PCs hold the same information as
the original data and can be used to identify patterns and
trends. SVD is a technique used to obtain PCs based on
”explained variance.”

The explained variance of a subset of principal components
(PCs) depends on the number of PCs and the individual
variance of each PC. Adding up the individual variances of
the PCs in a subset gives the total variance, which can be
expressed as a percentage of the total explained variance.
Often, only the first few PCs are necessary, but in some
situations, the last few PCs may be of interest, such as in
outlier detection or image analysis.

1) Putting Together Testability Measures: In this subsec-
tion, we will provide a comprehensive guide on how to
create a composite measure using PCA [21] by combining
the testability measures listed in Section II. We strongly advise
that readers follow the amalgamation process illustrated in [21]
before adding additional features such as PI and PO width,

node reconvergence, and even/odd parity of reconvergent
fanouts.

For each signal node in a circuit, ten measures
and circuit topologies are defined: distance [3], COP-
controllability-1 (CC1) [8], COP-observability (CO) [8],
SCOAP-controllability-0 (SC0) [7], SCOAP-controllability-
1(SC1) [7], SCOAP-observability(SCO) [7], transitive-fan-in
affecting PIs (nPIs), transitive-fan-out affecting POs (nPOs),
node reconvergence (ReConvNode), and even/odd parity of
reconvergent fanouts (parity).

The following steps must be followed precisely to compute
relevant values for each signal node (N) in the circuit and
combine the features of a signal in the circuit. All calculations
should be a single-pass, linear time complexity process:

• Calculate the minimum distance of the node ”N,” i.e.
distance.

• Calculate CC1 for the ”N” that determines the proba-
bility of setting ”N” as 1. Since it is a probability, the
complement of this value can determine the probability
of setting ”N” as 0. Also, calculate CO to determine the
observability of ”N” in the circuit.

• Calculate SC0 and SC1, the effort of setting the node ”N”
as 0 and 1, respectively. Also, calculate SCO to determine
the effort required to observe the node ”N” on the PO of
the circuit.

• Evaluate the cone’s fan-in and fanout cones and bases
to determine the nPIs and nPOs, respectively. They are
further normalized by dividing them by their respective
number of PIs and number of POs.

• Determine if the node ”N” is a convergent node by eval-
uating all its fanouts to explore whether they reconvene
(ReConvNode). If they reconvene, the value is set to 1;
otherwise, it is kept to 0.

• Calculate the inversions of two fanout paths in combina-
tion, whether they are even or odd, and select the min-
imum offset bound reconvergence point. The minimum
offset is taken since the impact of backtracking in ATPG
is heavily on the minimum offset reconvergence path, and
this conflict further ripples toward PIs and POs, making
the backtracing and forward tracing more time-expensive
due to sky-rocketing undoing of decisions while choosing
backtrace path and D-Frontier in the circuit. If the parity
of inversion is odd, (parity) is set to 1; otherwise, it is
kept to 0. The details of this algorithm are discussed in
Section III-B.

Once the relevant values have been computed, they must
be normalized from 0 to 1, and a phase correction must be
applied as illustrated in [21]. This normalization enables the
values to be compared and combined meaningfully, avoiding
any bias or disproportionate influence of any particular value.

Finally, all measures must be combined using PCA, a
statistical technique that identifies patterns and correlations in
the data. If n measures are combined, then PCA computes n
values for each node in the circuit.

In this study, we have two amalgamation tables: a back-
tracing table (distance, CC1, SC0, SC1, nPIs, ReconvNode,
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parity) and a forward tracing table (distance, CO, SCO,
nPOs, ReconvNode, parity). The largest of these values is the
principal component, used as the combined measure for setting
the signal values to 0 and 1, respectively.

B. Algorithm for calculating even/odd parity of reconverging
fanout

Firstly, we will delve into reconverging fanouts in a circuit
node. These are the points where multiple signals converge
after branching out from a single source. Next, we will focus
on a node in the circuit with several reconverging fanouts.

For each combination of two signals, A and B, we will:
• Identify multiple reconverging points (represented by N

= n1, n2, n3,...N) where the two signals converge.
• Select a reconverging point closest to the node (repre-

sented by d = minimum distance between the node and
N).

• Calculate the parities (even/odd) for both reconverging
fanouts while traversing from the node to N.

• Evaluate the XOR of the two parity for the reconverging
fanouts (represented by X).

• Store the results in a look-up table that comprises d, X.
Finally, we will sort the look-up table in ascending order

and choose the parity for the minimum value of ”d.”
In the study, the author deliberated using the minimum

distance to calculate the even/odd parity of the reconvergence
fanout. This choice was made to account for the impact of odd
inversion that a signal may encounter within the reconverging
fanouts.

Odd inversion occurs when a signal is inverted an odd
number of times as it passes through a circuit. This can
cause the signal to change polarity, significantly impacting the
system’s performance. If the reconverging point is closest to
the reconverging fanout stem, this odd inversion has a more
catastrophic effect on the signal than an even inversion.

By using the minimum distance, the number of backtracks
is expected to reduce, improving the performance of test
generation about CPU time. Backtracks occur when a signal
has to retrace its steps to avoid conflicts within the circuit.
This can slow down the overall system performance; thus,
reducing the number of backtracks is highly desirable. Overall,
the choice of minimum distance helps optimize the system’s
performance by minimizing the impact of odd inversion and
reducing the number of backtracks.

IV. EXPERIMENTS ON TEST GENERATION: RESULTS AND
DISCUSSION

The present study endeavored to demonstrate the potential
of machine intelligence (MI) in enhancing the performance
of electronic design automation (EDA) tools. However, the
absence of access to the internal details of commercial soft-
ware necessitated the use of in-house EDA tools to compare
algorithmic improvements. Experiments were performed on an
Intel-i7-10610U processor and 16 GB RAM. The EDA soft-
ware was implemented in C++ using MSVC++14.15 compiler

with due emphasis on optimizing performance. The PCA algo-
rithm was executed using the Python programming language,
whereas PODEM ATPG [3] was implemented with an event-
driven simulator [37] using the C++ programming language.
In this regard, the PODEM algorithm was programmed to
enable the application of any testability measure, including
but not limited to distance [3], COP [8], SCOAP [7], or
PCA, to various benchmark circuits [35], [36]. As the ATPG
process is computationally expensive, some faults may be
aborted. Nonetheless, it was observed that a comparable fault
coverage could be accomplished with each testability measure
by suitably configuring the per-fault time limit. The proposed
ATPG system employed in the present study can identify
all checkpoint single stuck-at faults. Furthermore, the system
initiates a random pattern detection (RPD) phase to elimi-
nate faults that can be detected using random patterns. The
remaining faults are then tested using PODEM ATPG, guided
successively by a single testability measure, such as distance,
COP, SCOAP, or by a combined measure of PCA. Also, a
suitable per-fault time limit produces fault coverage similar
to all heuristics. The effectiveness of the PCA algorithm was
tested in three sets of experiments, which have been elaborated
in subsequent subsections.

A. Test Generation with zero aborted faults

The experiment aimed to evaluate the performance of the
PODEM ATPG method using various testability measures such
as “Distance”, “COP”, “SCOAP”, “PCA [21]”, and “new
PCA”. The ATPG was performed on nine circuits from the
ISCAS’85 [36] and ITC’99 [35] benchmarks (b06, b03, b09,
b08, b10, b13, c880, b11, b12 based on the ascending order
of their number of nodes as illustrated in the figures) to test
checkpoint stuck-at faults, keeping the similar fault coverage
since the per-fault time limit was kept the same across all the
testability measures under consideration in this study..

The study’s results regarding ATPG CPU time and the
number of backtracks were analyzed, as shown in Figures 1
and 2. It was observed that circuit b06 had no backtracks
for all testability measures. Moreover, the new PCA-based
ATPG outperformed other testability-measure-based methods
regarding quality. This was evidenced by the new PCA-
based ATPG method reduced the backtracks to zero compared
to other testability measure-based methods and substantially
reduced the ATPG CPU time.

The study also found that the new PCA-based ATPG of this
study reduced the ATPG CPU time across circuits, namely
b09, b08, b10, b13, c880, b11, and b12, with a substantial
reduction in backtracks except for b09, b10, b11, b12, and
b13 where the reduction in backtracks was not substantial but
still lower compared to other testability measure-based ATPG
methods.

The study demonstrated that the PCA-based ATPG method
is an effective and efficient way to perform ATPG and improve
the quality of backtracing. The results are precise: this method
significantly reduces the time taken to perform ATPG for zero
backtracks and improves the quality of backtracing. This is a
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Fig. 1. Total ATPG CPU time for finding a test or proving redundancy for all checkpoint faults left undetected by the random ATPG phase applied to
ITC’99 [35] and ISCAS’85 [36] benchmark circuits.
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Fig. 2. Total backtracks used while finding a test or proving redundancy for all checkpoint faults left after the random ATPG phase applied to ITC’99 [35]
and ISCAS’85 [36] benchmark circuits.

significant breakthrough in testing methodology, as it ensures
that all faults can be detected without any aborted faults or
backtracks for specific circuits.

It is important to note that the improvement in backtracing
quality is a significant achievement in itself. Other testability-
measure-based ATPG methods can lead to backtracks for
faults, even in circuits with no redundant faults. However, this
study’s PCA-based ATPG method ensures that all faults can
be detected with no aborted and redundant faults and zero
backtracks for specific circuits, making it an essential method

for any testing methodology.

B. Test Generation with aborted faults

The third-party tool usually does not target aborted faults by
default. However, it retargets them and uses dynamic learning
during retargeting. Note that using this setting can sometimes
result in significantly higher run times. This experiment aimed
to evaluate the performance of the PODEM ATPG method
using various testability measures such as “Distance”, “COP”,
“SCOAP”, “PCA [21]”, and “new PCA” to observe the impact
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Fig. 3. Total aborted faults after the random and deterministic ATPG phase applied to ISCAS’85 [36] and ITC’99 [35] benchmark circuits.
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Fig. 4. Total backtracks used while finding a test or proving redundancy for all checkpoint faults left after the random ATPG phase applied to ISCAS’85 [36]
and ITC’99 [35] benchmark circuits.

on the detection of aborted faults, ATPG CPU time, and
number of backtracks, and most importantly impact on fault
coverages as illustrated in Figures 3, 4, 5 and 6, respectively.
The ATPG was performed on fourteen circuits (arranged
from left to right based on the number of nodes) from the
ISCAS’85 [36] and ITC’99 [35] benchmarks (c432, c499, b07,
c1355, b04, c1908, b05, c2670, c3540, c6288, c5315, c7552,
b15, b14 based on the ascending order of their number of
nodes as illustrated in the figures) to test checkpoint stuck-at
faults.

We observed that there had been a constant reduction in
ATPG CPU time and a substantial reduction in the number of
backtracks and aborted faults, as well as a substantial increase
in faut coverages, with few exceptions. More prominence can
be found in circuits comprising more nodes illustrated to the

extreme right. In a circuit like b07, the new PCA can reduce
the number of aborted faults to zero but at the cost of many
backtracks and ATPG CPU with a lesser impact on the tool
efficiency and within the decent ballpark. Also, in a circuit like
b04, fault coverage can be seen as unimproved; however, it
has reduced backtracks and CPU time (not visually promising
reduction).

C. Test Generation with 100 hard-to-detect faults on few
larger benchmarks

This experiment aimed to test the effectiveness of a new
PCA method in detecting difficult-to-detect faults in more
complex and extensive circuits. We ran a third-party ATPG
tool on the circuits namely, b20, b21, and b22 and reported
the list of aborted faults and extracted 100 hard-to-detect
faults based on COP values using our internal EDA tool and
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performed PODEM ATPG method using various testability
measures such as “Distance”, “COP”, “SCOAP”, “PCA [21]”,
and “new PCA” to observe the impact on the detection of
aborted faults, ATPG CPU time, and number of backtracks,
and most importantly impact on fault coverages as illustrated
in Figures 7, 8, 9, and 10, respectively. The study found
that reduced backtracks, ATPG CPU time, and aborted faults
increased circuit fault coverage. This indicates that the method
discussed in this study can detect much harder faults of larger
circuits that third-party tools cannot detect within the decent
bound constrained abort limit set by default.

V. CONCLUSION AND FUTURE DIRECTIONS

This study aimed to investigate whether a PCA-based
combination of testability measures and circuit topological
features can enhance the efficiency of ATPG methods. The

results of this study are clear - this approach can signifi-
cantly improve the number of backtracks, reduce the ATPG
CPU time, and enhance the detection of hard-to-detect faults.
This method increases the fault coverages required for the
ISCAS’85 and ITC’99 benchmarks and provides more robust
detection of aborted faults than traditional heuristic-based
ATPG. The researchers are confident that their new method
can be applied to other fault models, detect user-defined fault
models and transition/stuck-at/cell-aware fault models more
efficiently, and provide greater fault coverage with less ATPG
CPU time.

This research can be the driving force behind developing
silent data error detection and can be an incremental upgrade
to the current third-party ATPG tool. Although EDA vendors
have restrictions on divulging information, the authors of this
study are confident that their method can be an excellent
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addition to the current third-party ATPG tool while improving
its quality.

The study has demonstrated that the PCA-based ATPG
method is a reliable and efficient way to improve the quality
of backtracing followed by a reduction in ATPG CPU time,
detecting more aborted faults, and providing a good number
of fault coverage. These results are a significant step forward
in testing various NP-hard methodologies that can help create
more robust and efficient testing methods for electronic sys-
tems. The researchers are confident that this research can be
the foundation for future testing methodologies and provide a
more reliable and efficient way to ensure the quality of various
electronic systems.
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Fig. 7. Total aborted faults after the deterministic ATPG phase applied to 100 hard-to-detect faults of ITC’99 [35] benchmark circuits.
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Fig. 8. Total ATPG CPU time consumed while finding a test or proving redundancy for 100 hard-to-detect faults of ITC’99 [35] benchmark circuits.
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Fig. 9. Total backtracks used while finding a test or proving redundancy for 100 hard-to-detect faults of ITC’99 [35] benchmark circuits.
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Fig. 10. Total fault coverages while finding a test or proving redundancy for 100 hard-to-detect faults of ITC’99 [35] benchmark circuits.
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