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Abstract
The prerequisite for promptly locating electromagnetic interference sources (EMIS) is the identification of EMIS. This 
research provides a new method for EMIS identification based on Siamese-CNN. A new convolutional neural network (CNN) 
structure is developed to extract the features of the EMIS. The symmetrical Siamese is adopted to enhance the number of 
training samples. The similarity metric of Siamese and the CNN-based subnetwork are merged in order to increase the simi-
larity of samples from the same class and the differences between samples from different classes. A new loss function based 
on contrastive loss and cross-entropy loss is proposed to increase classification accuracy and discover unknown EMIS. The 
spectrums of EMIS are used as experimental datasets. The results show that the proposed method based on Siamese-CNN 
is resilient and has good generalization for training sets of various sizes. The identification accuracy for known EMIS can 
reach 100%, and the identification accuracy for unknown EMIS is more than 90%.

Keywords  Electromagnetic interference sources (EMIS) · Convolutional neural network (CNN) · Siamese structure · 
Feature extraction · Extraction of deep features · Loss function

1  Introduction

With the widespread application of radio technology, the 
electromagnetic environment has become more and more 
complex. Various electromagnetic radiation sources (EMRS) 
have appeared. When the working frequency of the EMRS is 
equal to or very close to the working frequency of the elec-
tronic device or system, and the amplitude reaches a certain 
value, it will affect its normal operation. Previous studies 
have shown that electronic devices can be interfered with 
by electromagnetic emission signals, causing equipment or 
system failure [10, 15]. Many electronic devices and systems 
have weak anti-interference abilities against high-power 
electromagnetic (HPEM) sources [2, 11]. Current position-
ing technology can only determine the approximate range 

of the electromagnetic interference sources (EMIS), and it 
often takes a long time to find it. The EMIS identification 
can narrow the range and improve the positioning efficiency.

One kind of EMIS identification method is based on a theo-
retical model. Axell et al. proposed an online classification 
method for identifying noise signals by establishing models 
of emission source signals and noise signals [1]. Paoletti pro-
posed an identification method based on modulation frequency 
analysis to identify broadband radiation sources by comparing 
the modulation frequency diagrams of the interfered device 
and the radiation source [22]. Aiming at the problem of dif-
ferent confidence levels of the radiation signals obtained by 
different sensors, the authors of [12] proposed an identification 
method based on the combination of Dempster-Shafer (DS) 
evidence theory and intuitionistic fuzzy sets. These identifi-
cation methods are based on theoretical models in which the 
form of the radiation signal is either known or proposed under 
particular conditions, which have limits.

Another kind of EMIS identification method is based on 
feature extraction and classification methods. The authors of 
[36] use the Hilbert transform and empirical mode decompo-
sition (EMD) to decompose the emission signal. They then 
use entropy, first-order moment, and second-order moment as 
feature vectors and support vector machine (SVM) to identify 
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the decomposed emission signal. The authors of [19] use 
time–frequency analysis to convert the radar radiation source 
signal into a two-dimensional grayscale image. The image's 
scale feature and location feature are then extracted, and the 
radar radiation source is identified using SVM. Satija et al. 
decomposed the emission signal using variational modal 
decomposition (VMD), calculated the entropy and moment 
as features, and used a K-NN classifier to identify the emit-
ter [25]. A basic linear classifier and the VMD method are 
also used to identify the radar radiation sources in [6]. Many 
scholars have studied EMRS identification methods based on 
artificial neural networks (ANN), such as the back propaga-
tion (BP) neural network [27, 37]. Some scholars combine 
multiple types of signal characteristics and multiple classifi-
cation methods to identify emitters [9, 28]. The accuracy of 
these methods is dependent on the feature or classification 
method. The feature extraction largely depends on people's 
experience and willingness, which is often time-consuming 
and results in some information loss.

With the development of machine learning in recent years, 
deep learning methods have promoted the research of EMIS 
identification methods. The authors of [16] proposed an end-
to-end deep neural network, which uses convolutional neural 
networks (CNN) to extract spectrum features and identify 
complex radio signals. However, the end-to-end network 
directly learning high-dimensional data features requires more 
training time. The traditional CNN-based EMIS identifica-
tion method extracts signal features using convolution and 
then classifies them using the Softmax classification layer 
[4, 30, 31]. To improve the classification ability of the Soft-
max classification layer, the loss function can be improved 
according to the characteristics of the interference source [23]. 
In addition, there have been radiation source identification 
methods based on AlexNet [18], generative adversarial net-
work (GAN) [7], and long-short-term memory (LSTM) [20, 
35]. The LSTM is used to process the time-domain signal of 
the radiation source. These identification methods based on 
deep learning require a large number of samples to get good 
identification accuracy. Although traditional CNN has good 
feature extraction capabilities, when the number of the train-
ing samples is small, a lot of network layers are needed and 
the convergence and timeliness are worse. The Siamese struc-
ture increases the number of training samples by constructing 
sample pairs. It can also be used to solve classification tasks 
where many classes or the number of classes is uncertain, 
but the number of training samples per class is small. The 
Siamese-CNN network is used for classification tasks and has 
shown promising results in other fields [5, 24, 29, 33, 34]. We 
have researched the CNN-based EMIS identification method 
[32]. However, it can only deal with all classes that are known 
ahead of time. When new classes are introduced, the network 
must be retrained.

In response to these problems, this paper proposes a new 
EMIS identification method based on Siamese structure and 
CNN, the main contributions are summarized as follows:

A new CNN-based subnetwork is proposed. A data pro-
cessing layer is added to the subnetwork structure to extract 
more separable feature vectors.

A new loss function based on contrastive loss and cross-
entropy loss is proposed to increase classification accuracy 
and detect unknown EMIS.

The remainder of the paper is organized as follows: Section 2 
briefly reviewed the related work of CNN and Siamese. The 
proposed method is described in Section 3. Section 4 shows 
experiment results, and conclusions are drawn in Section 5.

2 � Related Work

2.1 � CNN

In 1990, Yann LeCun and others who worked in the AT & T 
laboratory proposed the structure of modern CNN [17]. A CNN 
mainly consists of several convolutional (Conv) layers, acti-
vation layers, pooling layers, and fully connected (FC) layers. 
CNN has the advantages of parameter sharing and sparsity of 
connections. It can reduce computational complexity, suppress 
over-fitting, and effectively extract signal features.

The convolutional layer is the core of the CNN. It can 
realize dimension reduction and feature extraction through 
"local connection" and "parameter sharing". The kernel size 
and stride of the convolution operation are fixed. Various 
features can be extracted by adjusting the parameters of the 
kernel. The combined use of multiple different kernels can 
improve the feature extraction ability of the network. Let x 
be the input vector of the convolutional layer, and its dimen-
sion is Nx . Let vector k be the convolution kernel, and its 
dimension is Nk . The result of the i-th one-dimensional con-
volution operation [38] is,

In some cases, the kernel dimension cannot be divided 
by the dimension of the input data, and some boundary data 
will not be able to participate in the convolution operation. 
Padding can make the dimension of the input data exactly 
match the dimension of the kernel, and the most widely used 
is zero-padding. Assuming that the number of padding is p 
and the stride is s , the vector dimension after convolution is

(1)c(i) =

Nk∑

n=1

x(i + n) × k(n)

(2)Nc =

⌊
Nx + 2p − Nk

s

⌋
+ 1
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where ⌊⌋ means round down.
The activation layer performs nonlinear processing on the 

linear output of the previous layer. It enhances the charac-
terization ability of the network through the activation func-
tion. The Rectified-Linear Unit (ReLU) activation function 
is used widely in CNN. It sets the neurons in the inhibited 
state to 0 to make the network becomes sparse, which can 
effectively alleviate the problems of gradient vanishing and 
over-fitting, and make the network converge fast.

Pooling integrates small-scale features to obtain new fea-
tures, which is also called down-sampling. By reducing the vec-
tor dimension, the number of parameters is reduced, and the 
robustness of the neural network is greatly improved. Maximum 
pooling and average pooling are the most commonly used.

The FC layer is the final layer of CNN, which generally 
uses the Softmax activation function to achieve classifica-
tion. Assuming that the FC layer is the l-th layer of the CNN, 
its input A[l−1] is the output of the previous layer. Its output 
A[l] is

where W[l] is the weight matrix, B[l] is the bias matrix, ReLU 
is nonlinear activation function.

The loss is the difference between the output value and the 
expected value of the network. The layer-to-layer connection is 
called "forward propagation." Then calculate the derivative of 
the loss function concerning each parameter and feedback the 
error layer by layer. The process of updating network parame-
ters with optimization algorithms is called "back propagation." 
The network's training is finished after many forward and back 
propagation until the model's loss converges. In practical appli-
cations, CNNs with different structures are constructed accord-
ing to different task requirements.

2.2 � Siamese Network

The Siamese structure is a symmetrical structure com-
posed of two identical neural networks in parallel, and 
all parameters in the two networks are shared. It uses a 
similarity metric to narrow the loss between samples of 
the same class and enlarge the loss between samples of 
different classes [3]. Figure 1 shows the Siamese struc-
ture, 

(
x1, x2

)
 is the input sample pair, and y is the label. 

When x1 and x2 belong to the same class, it is called a 
positive sample pair, and the corresponding label y is 0. 
When x1 and x2 belong to different classes, it is called a 
negative sample pair, and the y is 1. N1 and N2 are two 
identical networks, and w is a shared parameter.  f 1 and 
f 2 are the feature vectors obtained by the nonlinear map-
ping of the two samples through the network. D() is the 
similarity function, which is used to measure the similarity 
between two feature vectors.

(3)A[l] = ReLU
(
A[l−1]

⋅W[l] + B[l]
)

The contrastive loss function was proposed by Chopra 
et al. [3], which is expressed as follows:

It can be seen that when the contrastive loss function is 
minimized, the LP is minimized, and the LN is maximized. 
That is to say, when two input samples are similar, the fea-
ture vectors are also similar; when the two input samples 
are different, the feature vectors are also different.

3 � The Proposed Work

3.1 � The General Framework

The CNN and Siamese structures served as inspiration for 
this design. We constructed a new Siamese-CNN structure to 
extract the features of EMIS and identify them. The general 
framework of the new Siamese-CNN is shown in Fig. 2. It is 
composed of four parts, which are data preprocessing, fea-
ture extraction, similarity metric, and EMIS identification.

(4)L(w) =

P∑

i=1

L
((

x1, x2, y
)i
,w

)

(5)
L

((
x1, x2, y

)i
,w

)
= (1 − y) ⋅ LP

(
D
(
f 1, f 2

)i)

+ y ⋅ LN

(
D
(
f 1, f 2

)i)

Fig. 1   Siamese architecture



600	 Journal of Electronic Testing (2023) 39:597–609

1 3

(
x1, x2

)
 is the input of network, and 

(
y, c1, c2

)
 is the output 

label. c1 and c2 are one-hot vectors whose dimension is the 
number of classes. Suppose x1 is sample vector of a known 
class, and x2 is sample vector of an unknown class. If out-
put y is 1, it means that x2 is different from x1 and is a new 
EMIS, that is, c1 ≠ c2 . If y is 0, then x2 and x1 are of the same 
class, that is, c1 = c2 . The relationship between output labels 
is shown in Table 1. Therefore, it is necessary to propose a 
new loss function to train the new network and obtain the best 
parameters. The details will be introduced in 3.4 and 3.5.

3.2 � Data Preprocessing

Take the spectrum of EMIS and background noise as sam-
ples, and input to the network. The data preprocessing 
denoises and normalizes the acquired spectral samples. To 
start, select any two samples from the same class as a posi-
tive sample pair and select any two samples from different 
classes as a negative sample pair. All the collected samples 
are generated into sample pairs. Divide them into training 
sets and test sets, where the training set accounts for 70% 
of the total and the test set accounts for 30%. The EMIS 
spectrum obtained by the actual test contains not only the 
components of the EMIS but also the components of other 
noises in the environment. A correlation operation can meas-
ure the similarity of two sequence signals. The correlation 
calculation results of different EMIS spectrums and the same 
background noise can highlight the difference between EMIS 
signals. An FC layer is used to achieve noise reduction and 
normalization of the test data. Let the background noise 

vector be the weight, then the output of the i-th sample pair 
after data preprocessing is

where, 1 ≤ j ≤ m , m is the length of each sample. The sam-
ple data is converted to a value between 0 and 1 through the 
Sigmoid activation function to complete the normalization 
process. The weight vector b is composed of background 
noise, which is not needed to be trained. The preprocessed 
samples take into account the background noise, which 
reduces the dependence of the EMIS sample data on the 
background noise.

3.3 � Feature Extraction

The feature extraction part is composed of two CNN-based sub-
networks. The structure of the two sub-networks is the same, and 
their parameters are shared. Each sub-network consists of six 
convolutional layers with ReLU, three maximum pooling layers, 
one flattening layer, one FC layer, one dropout layer, and one 
batch normalization (BN) layer. The convolutional layer includes 
a convolution operation and a nonlinear activation operation with 
an activation function of ReLU. The maximum value of the EMIS 
spectrum can better reflect the interference characteristics, so we 
adopt the maximum pooling. The maximum pooling can enhance 
the generalization processing ability of the network. The higher 
the dimension of the feature vector after the convolution opera-
tion, the more it will affect the classification effect. It makes the 
network easy to fall into over-fitting and reduces the generaliza-
tion ability. Therefore, dropout [14] is used in the FC layer to let 
neurons work randomly according to a certain probability (keep_
prob). The non-working neuron will not calculate its parameters 
during the training, nor will it be too sensitive to the neuron’s 
information when the model is learning. The model learns and 
extracts relevant features based on the information of other work-
ing neurons to prevent over-fitting. Because only some neurons 
work, the complexity of network calculation is reduced and the 
training speed of the model is improved.

(6)

{
hi
1
(j) = Sigmoid

(
xi
1
(j) ⋅ b(j)

)

hi
2
(j) = Sigmoid

(
xi
2
(j) ⋅ b(j)

)

Fig. 2   The general framework of Siamese-CNN

Table 1   The relationship 
between output labels

(x1, x2) y (c1, c2)

x1 and x2 are 
of different 
classes

1 c
1
≠ c

2

x1 and x2 are 
of the same 
class

0 c
1
= c

2
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As the network layers increase, the input distribution of 
the hidden layer gradually deviates. Standardizing the features 
can avoid the problem of the neuron node gradient vanishing 
during back propagation. BN [8] can speed up the training pro-
cess, avoid excessive reliance on initial values, and suppress 
over-fitting, especially for small datasets. The output of the FC 
layer is the feature vector. The t-distribution stochastic neigh-
bor embedding (t-SNE) algorithm [21] can visualize features.

3.4 � Similarity Metric

The network training is to continuously update the network 
parameters so that the loss reaches the expected minimum 
value more smoothly and quickly and obtains the distinguish-
able feature vector. Therefore, it requires reducing the loss 
between samples of the same class and enlarging the loss 
between samples of different classes. The similarity metric 
of two feature vectors can be expressed by the contrastive loss 
function, which can be defined as

where N  is the number of sample pairs. LP is the loss 
between the feature vectors f 1 and f 2 from the same class. 
LN is the loss between feature vectors f 1 and f 2 from two 
different classes. LP and LN are defined as

where P is the dimension of the feature vector. The network 
is trained to make the LP and LN as small as possible. The 
LP is trained to be close to 0, that is, two feature vectors are 
very similar. � is a threshold. If D

(
f 1, f 2

)
 is less than � , the 

network is trained to make the value of D
(
f 1, f 2

)
 increase 

to � , thus increasing the difference between the two feature 
vectors. If � is set too small, the difference between negative 
samples is not obvious, and if � is too large, the minimiza-
tion process of LN takes more time. We proposed a method 
to determine the � . The � defined as the maximum distance 
between all class centers, i.e.

where �i and �j are the class centers of the two feature 
vector.

When the two input samples are of the same class, the 
derivative of the contrastive loss function concerning the 
weight w is

(7)L
((
x1, x2, y

)
,w

)
=

1

2N

N∑

n=1

(1 − y) ⋅ LP + y ⋅ LN

(8)LP = D
(
f 1, f 2

)2
=
(‖‖f 1 − f 2

‖‖2
)2

=

P∑

i=1

(
f i
1
− f i

2

)2

(9)LN = max
[(
� − D

(
f 1, f 2

))
, 0
]2

(10)� = max
1≤i,j≤K,i≠j

‖‖‖�i − �j
‖‖‖2

When the two input samples belong to different classes, 
the derivative of the contrastive loss function concerning 
the weight w is

where �D(f 1,f 2)
�w

 is

After the derivative of the contrastive loss function with 
respect to each parameter is calculated, the optimization 
algorithm can be used to update the parameters until the 
comparison loss function converges. It can be seen that when 
the contrastive loss function converges to 0, the features of 
the same class are more compact, and the features between 
different classes are more dispersed, so that the feature dis-
tribution is optimal.

3.5 � EMIS Identification

As shown in Fig. 2, the input of the EMIS identification part 
is the feature vector, and the output is the vector composed 
of the probability distribution of the feature vector on each 
class and the similarity between f 1 and f 2 , which can be 
expressed as

where C is the number of classes. The output label of the 
network is

c is the vector after one-hot transformation, belonging 
to {0, 1} . Take the N1 network in Fig. 2 as an example to 
illustrate the process of softmax classification. Assuming 
that the weight and bias vector of this layer are w1 and b1 , 
respectively, the result after linear calculation is

Let ĉ1 represent the output of the softmax classification 
layer of N1 , then the i-th data in vector ĉ1 is

(11)�L

�w
=

1

N

N∑

n=1

D
(
f 1, f 2

)
⋅

�D
(
f 1, f 2

)

�w

(12)�L

�w
= −2

[
� − D

(
f 1, f 2

)]
⋅

�D
(
f 1, f 2

)

�w

(13)
�D

�
f 1, f 2

�

�w
=

�
P∑
i=1

�
f i
1
− f i

2

�
⋅

�
�f i

1

�w
−

�f i
2

�w

��

�
P∑
i=1

�
f i
1
− f i

2

�2

(14)
ĉ =

[
ĉ11, ĉ12 ⋅ ⋅⋅, ĉ1i ⋅ ⋅⋅, ĉ1C, ŷ, ⋅ ⋅ ⋅, ĉ21, ĉ22 ⋅ ⋅⋅, ĉ2i ⋅ ⋅⋅, ĉ2C

]

(15)
c =

[
c11, c12 ⋅ ⋅⋅, c1i ⋅ ⋅⋅, c1C, y, ⋅ ⋅ ⋅, c21, c22 ⋅ ⋅⋅, c2i ⋅ ⋅⋅, c2C

]

(16)z1 = w1 ⋅ f 1 + b1
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where z1i represents the i-th data in vector z1.Through the 
activation function of (17), the maximum value in ĉ1 is high-
lighted, and the other values are significantly suppressed. 
The same method can be used to compute the output vector 
ĉ1 of N2 . ŷ is the similarity of two feature vectors, expressed 
by Euclidean distance, i.e.

In order to identify the classes of EMIS represented 
by f 1 and f 2 , the loss functions of N1 and N2 are obtained 
according to the cross entropy loss function, which can be 
expressed as

In order to determine whether f 1 and f 2 belong to the 
same class, the contrast loss function for unknown EMIS 
can be expressed as

For the sample pair 
(
x1, x2

)
 of the test set, if x1 is the 

sample vector of the known EMIS, x2 is the sample vector 
of the EMIS to be identified. x2 can also be the sample vec-
tor of the unknown EMIS. The network is trained to make 
ŷ = 𝜂 , which means that the EMIS to be identified is not the 
class of x1 . Otherwise, the network is trained to make ŷ = 0 , 
which means that the EMIS to be identified is the class of x1.

Therefore, the total loss function of the new Siamese-
CNN network is defined as

where 
(
LCE−N1

− LCE−N2

)
 is the loss difference between the 

N1 and the N2. When y is 0, the smaller the difference, the 
better. When y is 1, the greater the difference, the better, and 
make the difference close to the threshold � . �1 and �2 are 
scalars that measure the contrastive loss and the difference 
between the two cross-entropy losses. The gradients of the 
new loss function concerning each parameter are calculated. 
The Adam optimization algorithm [13] is used to update 
the network parameters so that the total loss converged to a 

(17)
ĉ1i =

ez1i

C∑
i=1

ez1i

(18)ŷ = D
(
f 1, f 2

)

(19)LCE−N1
= −

C∑

i=1

c1i logĉ1i

(20)LCE−N2
= −

C∑

i=1

c2i logĉ2i

(21)LSM =
1

2N

N∑

n=1

(
(1 − y) ⋅ ŷ2 + y ⋅

2
max

[
(𝜂 − ŷ), 0

])

(22)

Loss = �1 ⋅ LSM + �2

{
(1 − y)

(
LCE−N1

− LCE−N2

)

+y ⋅max
[(
� −

(
LCE−N1

− LCE−N2

))
, 0
]2

}

minimum value close to 0. The trained network can classify 
the trained EMIS and identify unknown EMIS.

4 � Experiments

Figure 3 depicts the overall process of the new EMIS iden-
tification method suggested in this work. Network train-
ing and testing are included in the method. The simulation 
experiments are based on the actual spectrum of five EMIS 
and background noise.

We verify the comprehensive performance of the new 
method on various datasets and compare it with some exist-
ing methods. All experiments were carried out on a lap-
top equipped with an 11th Generation Intel (R) Core (TM) 
i5-1135G7 @ 2.40 GHz processor and an NVIDIA GeForce 
MX450 graphics card. The laptop has 16 GB of memory. 
The training and testing work was implemented using the 
open-source software framework TensorFlow.

4.1 � Description of Datasets

We collected three classes of aging power supplies (aging 
power supply for civil lighting, aging power supply for air-
port lighting, and aging power supply for airport runway 
lighting) and two classes of signal jammers (PBQ2X and 
PBQ6X) as EMIS. Taking the electromagnetic environment 
of one airport in China as an example, the working frequency 
of the airport's communication and navigation equipment is 
mainly concentrated in the 108–2000 MHz range. We have 
conducted multiple tests on the emission signal of each 
EMIS in six frequency bands (108-148 MHz, 108-350 MHz, 

Fig. 3   The process of the new EMIS identification method
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310-350 MHz, 962-2000 MHz, 1010-1050 MHz, and 1070-
1110 MHz). The test methods and experimental equipment 
are strictly implemented following the requirements of the 
standard CISPR 16–1 [26], and the test distance is 10 m. 
Test equipment includes a spectrum analyzer (N9010B 
EXA), a cable, and a corresponding receiving antenna, etc. 
Figure 4 is the schematic diagram of the test.

Through the test, it is found that the emission signal 
of the EMIS in the high frequency range is very weak, 
and its magnitude is almost the same as the background 
noise. The emission signals of EMIS are mainly concen-
trated at 108–350 MHz. Therefore, we repeated the test 
20 times for the background noise and the emission sig-
nal of EMIS in this frequency band. That is, 20 samples 

were obtained for each class of signal, and the sample 
length of each sample was 1001. We label background 
noise, signal jammer-PBQ2X, signal jammer-PBQ6X, the 
aging power supply for civil lighting, the aging power 
supply for airport lighting, and the aging power supply 
for airport runway lighting as Class 0, Class 1, Class 2, 
Class 3, Class 4, and Class 5, respectively. One sample of 
background noise and each of the five classes of EMIS are 
shown in Fig. 5. It can be seen that the signal amplitudes 
of various EMIS are larger than the background noise, 
and the spectrum of some EMIS is relatively similar, so 
the characteristics are not obvious.

Take out 14 samples of Class 0, Class 1, Class 2, Class 3, 
Class 4 as the training set, and 6 samples as the test set. Class 
5 is regarded as an unknown EMIS, and all of its 20 samples 
are used as the test set. Therefore, 5 × C2

14
= 455 positive 

sample pairs and C2
5
× 14 × 14 = 1960 negative sample pairs 

can be generated in training set, 5 × C2
6
+C2

20
= 265 positive 

sample pairs and C2
5
× 6 × 6+C1

5
× C1

6
× C1

20
= 960 negative 

sample pairs can be generated in test set. To test the perfor-
mance of the proposed method on various sized datasets 
as well as the identification performance of the unknown 
EMIS, we generated three datasets, as shown in Table 2. 
The number of negative sample pair is three times that of 
positive sample pair. Both dataset 1 and dataset 2 contain 
the unknown EMIS Class 5, but the number of their sample 
pairs is different. Dataset 3 is composed of the five classes 
of samples and does not contain the unknown EMIS Class 5.

Fig. 4   Schematic diagram of test

Fig. 5   One sample of background noise and five classes of EMIS
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4.2 � Network Parameters

The new network is trained based on the training set and the 
parameters are updated so that the network achieves the best 
performance and finally obtains all the parameters. The param-
eters of the CNN-based sub-network are showed in Table 3.

The initialization method of all parameters is Xavier 
method, and the learning rate is set to 0.001. The batch size 
of the BN layer is set to 64, momentum is 0.99, and epsilon 
is 0.001. The number of neurons in the FC layer is set to 200, 
and the number of neurons in the Softmax classification layer 
is 5. The keep-prob of the Dropout layer is set to 0.5 during 
training and 1 during testing. The Adam optimization method 
is used, and �1=0.9 , �2=0.999 . The � and � in the loss function 
are set to 2.5, and both �1 and �2 are set to 1. The sub-network 
has a total of 491,045 parameters, including 490,645 trainable 
parameters and 400 non-trainable parameters. When epochs 
are set to 200, the loss reaches a stable minimum value and we 
obtain the optimal parameters of the network.

4.3 � Experimental Results

We use dataset 1 with the smallest number of samples to 
train and test the proposed EMIS identification method to 
verify its performance. In addition, the new Siamese-CNN in 
this paper is compared with some recent EMIS identification 
methods, and the evaluation indicators of various methods 
are obtained on three datasets.

4.3.1 � Verification Experiment Results

Dataset 1 is used to train and test the new Siamese-CNN. 
Figure 6 shows the curve of training and test loss with 
epochs. At the end of training and testing, the stability 
of the loss curve is good, and there is no over-fitting or 
under-fitting.

The training and test accuracy of Siamese-CNN are 
shown in Fig. 7. It can be seen that as the number of train-
ing steps increases, the network is gradually optimized, and 
the training accuracy and test accuracy can reach 100% in 
the later stages.

To observe the feature vector more intuitively, we take 
out the output of the FC layer of the two sub-networks and 
use the t-SNE algorithm for visualization. Figure 8 shows 
the two-dimensional (2D) feature distribution of the sample 
pair formed by Siamese-CNN. It can be seen that the intra-
class distance is much smaller than the inter-class distance, 
and the various classes are very different. This shows that 
the similarity metric of the new Siamese-CNN reduces the 
difference between similar samples, increases the difference 
between different classes of samples, and provides a basis 
for good classification.

Table 2   Details of datasets

Dataset The Number of 
positive sample 
pairs

The Number of 
negative sample 
pairs

Total

Dataset 1 Training set 1 120 360 480
Test set 1 30 90 120

Dataset 2 Training set 2 455 1365 1820
Test set 2 265 797 1062

Dataset 3 Training set 3 175 525 700
Test set 3 75 225 300

Table 3   Feature extraction sub-
network parameters

Layer Related parameters Output Shape Parameters#

Conv1 filters = 16;size = 3;strides = 1 (996, 16) 64
Conv2 filters = 16;size = 3;strides = 1 (997, 16) 784
Max_Pooling3 filters = 16;size = 3;strides = 3 (332, 16) 0
Conv4 filters = 64;size = 3;strides = 1 (330, 64) 3136
Conv5 filters = 64;size = 3;strides = 1 (328, 64) 12352
Max_Pooling6 filters = 64;size = 3;strides = 3 (109, 64) 0
Conv7 filters = 64;size = 3;strides = 1 (107, 64) 12352
Conv8 filters = 64;size = 3;strides = 1 (105, 64) 12352
Max_Pooling9 filters = 64;size = 3;strides = 3 (35, 64) 0
Flatten10 None 2240 0
FC11 200 200 460900
Dropout12 keep-prob = 0.5 200 0
Batch Normalization13 batch size = 64 200 800
Softmax14 5 5 1005
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The test set 1 is used to test the trained Siamese-CNN. 
For the test sample pair 

(
X1,X2

)
 , the possible class of X1 

is Class 0, Class 1, Class 2, Class 3, or Class 4, and X1 has 
been trained. X2 could, however, be a sample vector from an 
untrained unknown Class 5. The confusion matrix shown 
in Fig. 9 visually shows the identification result of the new 
Siamese-CNN on the test set 1. It can be seen that the classi-
fication accuracy of the new Siamese-CNN for known EMIS 
can reach 100%, the identification accuracy for unknown 
EMIS Class 5 is 90%, and the average identification accu-
racy is about 98.33%.

4.3.2 � Comparative Experimental Results

First of all, the fully connected neural network (FC-
NN), AlexNet, CNN, and unimproved Siamese-CNN are 

Fig. 6   The training and test loss of Siamese-CNN on the dataset 1

Fig. 7   The training and test accuracy of Siamese-CNN on the dataset 1

Fig. 8   2D feature distribution of the new Siamese-CNN on training 
set 1: a 2D features obtained by N1 network, b 2D features obtained 
by N2 network

Fig. 9   The confusion matrix of the new Siamese-CNN on the test set 1
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constructed. These methods do not require manual feature 
extraction and are currently popular identification methods.

FC-NN is a 5-layer network including three hidden lay-
ers. The number of neurons in each hidden layer is 25, 12, 
and 5, respectively. The activation function of the hidden 
layer is ReLU, and the activation function of the output layer 
is Sigmod. The cross-entropy loss function and the Adam 
optimization algorithm are used to update the parameters.

The AlexNet network includes five convolutional layers, 
five maximum pooling layers, five normalization layers, two 
FC layers, and one dropout layer. Each convolutional layer is 
followed by a maximum pooling layer and a normalization 
layer. Xavier is used as the initialization method, and Adam 
is used as the optimization method. This method replicates 
the classic AlexNet as much as possible.

CNN is the feature extraction sub-network based on CNN 
constructed in this paper. Unimproved Siamese-CNN con-
sists of two CNNs and unimproved contrastive loss function.

Five networks are trained and tested on three datasets. 
The identification results (value ± deviation) of the four 
methods on the three test sets are shown in Tables 4, 5 and 6, 
respectively. In Tables 4 and 5, Class5 is unknown EMIS. As 
can be observed, FC-NN, AlexNet, and CNN cannot identify 
the class5 that has not been trained. The class5 is mistak-
enly identified as one of Class 0 ~ Class 4, resulting in poor 
average accuracy for these networks. New and unimproved 
Siamese -CNN are able to identify unknown EMIS. Because 
of the improved loss function, the new Siamese-CNN has 
improved the accuracy of unimproved Siamese-CNN for 
unknown EMIS in two data sets by 17.65% and 13.63%.

Table 6 shows that AlexNet, CNN, unimproved Siamese-
CNN, and new Siamese-CNN have pretty high identification 
accuracy for known EMIS. The FC-NN is unable to extract 
the features of the original data effectively. Its identification 

accuracy is low. To improve its identification accuracy, 
its network depth and training set must be expanded, but 
there will be a large number of parameters to be trained. 
Although the classic AlexNet has good classification 
capabilities, the new CNN subnetwork is more suitable for 
the identification task of this article. From the identification 
results of the five methods on the three datasets, it can 
be seen that the more training samples, the higher the 
identification accuracy of each network. The identification 
accuracy of the new Siamese-CNN is higher than that of 
other methods, especially on the small dataset. The new 
Siamese-CNN has an identification accuracy of 100% for 
known EMIS, which increases the average identification 
accuracy of FC-NN, AlexNet, and CNN by 9.09%, 2.04%, 
and 1.52%, respectively. The new Siamese-CNN also has 
an identification accuracy of over 90% for unknown EMIS.

Ten experiments were performed on the test set and the 
average identification accuracy was calculated. The ROC 
curves for each method on dataset 1 are reported in Fig. 10. 
The AUC of our new Siamese-CNN is 1 on the smaller test 
set 1, which is 0.08, 0.02, 0.02, and 0.02 larger than that 
of FC-CNN, AlexNet, CNN, unimproved Siamese-CNN, 
respectively. The larger AUC of the new Siamese-CNN 
represents the better network performance.

Figure 11 shows the F1 scores of different methods on 
different sized data sets. From Fig. 11, the F1 scores increase 
with the increase of training samples for each class. The 
proposed new Siamese-CNN has larger F1 scores on data 
sets of different sizes. This shows that in the case of a limited 
number of training samples, the new Siamese-CNN can bet-
ter identify the EMIS.

In addition, the number of parameters that the new 
Siamese-CNN needs to train is similar to that of CNN, about 
490,645. To show the efficiency of the new Siamese-CNN, the 

Table 4   Identification results 
of the four methods on the test 
set 1

Class 0 1 2 3 4 5

FC-NN (80 ± 10)% (85 ± 10)% (90 ± 5)% (90 ± 5)% (90 ± 5)% (0 ± 0)%
AlexNet (90 ± 5)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (95 ± 5)% (0 ± 0)%
CNN (95 ± 5)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (0 ± 0)%
Unimproved Siamese-CNN (95 ± 5)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (85 ± 5)%
New Siamese-CNN (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (95 ± 5)%

Table 5   Identification results of the four methods on the test set 2

Class 0 1 2 3 4 5

FC-NN (91.53 ± 0.56)% (96.04 ± 1.13)% (96.61 ± 1.69)% (95.48 ± 2.26)% (92.66 ± 0.56)% (0 ± 0)%
AlexNet (97.74 ± 0.56)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (98.31 ± 0.56)% (0 ± 0)%
CNN (98.87 ± 1.13)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (0 ± 0)%
Unimproved Siamese-CNN (98.93 ± 0.3)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (87.01 ± 0.66)%
New Siamese-CNN (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (98.87 ± 1.13)%
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training time of different methods for each sample are show 
in Table 7. The average running time of the new Siamese-
CNN for each sample is about 0.01 s, including the time for 
data preprocessing, feature extraction, backward propagation, 
and final classification. It can be seen that the training time 
of CNN, unimproved Siamese-CNN, and new Siamese-
CNN is similar and the shortest. However, the identification 
accuracy of new Siamese-CNN is the highest. Therefore, the 
performance of the new Siamese-CNN is the best.

5 � Conclusion and Outlook

In this paper, we proposed a new Siamese-CNN for 
EMIS identification. The Siamese structure augments the 
training set samples with asymmetric network structure. 
The similarity metric and the CNN-based subnetwork 
make the sample features of the same class more similar, 
and the sample features of different classes more discrete. 
Their combination makes the feature distribution better 
and provides a basis for accurate identification. The new 
Siamese-CNN combines the contrastive loss function 
and the cross-entropy loss function to improve the 
classification ability and detect the unknown EMIS. The 
comprehensive performance of the new Siamese-CNN is 
verified through verification experiments and comparative 
experiments on three datasets. It is also possible to train 
a well-performing Siamese-CNN with small datasets. 
The classification accuracy of the new Siamese-CNN 
for known EMIS can reach 100%, and the identification 
accuracy for unknown EMIS can reach more than 90%.

The proposed new Siamese-CNN performs well in iden-
tifying single EMIS, but is unable to identify multiple EMIS 
simultaneously. Although it needs to be further developed, 
we hope that our method can provide some inspiration for 
research in other classification and recognition fields. The 
dataset in this paper is a single type of EMIS spectrum. In 
future work, we will collect more types of information about 
the EMIS, further improve and verify our algorithm, and 
investigate methods to identify multiple EMIS.

Table 6   Identification results of the four methods on the test set 3

Class 0 1 2 3 4

FC-NN (90 ± 1.67)% (95 ± 3.33)% (95 ± 1.67)% (95 ± 3.33)% (91.67 ± 3.33)%
AlexNet (96.67 ± 1.67)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (98.33 ± 1.67)%
CNN (98.33 ± 1.67)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)%
Unimproved Siamese-CNN (98.51 ± 1.05)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)%
New Siamese-CNN (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)% (100 ± 0)%

Fig. 10   The ROC curves for each method on dataset 1

Fig. 11   F1 scores of different methods (L is the number of test sam-
ples for each class)

Table 7   The training time of different methods for each sample

Networks Training time for 
each sample (s)

FC-NN 0.041
AlexNet 0.015
CNN 0.009
Unimproved Siamese-CNN 0.011
New Siamese-CNN 0.010
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