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Abstract
The fabless nature of integrated circuits manufacturing leaves them vulnerable to modifications by ill-intentioned third party. 
There arises a necessity for security measures during their manufacturing to protect them from covert modifications known 
as hardware Trojans. Static analysis of gate-level synthesized integrated circuits can prove helpful in detecting the presence 
of unwanted circuitry within the host. This paper proposes a static analysis technique of gate-level integrated circuits using 
supervised probabilistic classifier through effective threshold analysis. New and existing relevant features are extracted that 
relates to hardware Trojan properties and normalised accordingly. Effective features are selected using their feature impor-
tance values. Variance threshold has been used to create a high entropy feature subset to train a supervised model using 
XGBoost algorithm with relevant hyperparameters. Threshold values of the probabilistic classifier are determined through 
analysis of threshold obtained using receiver operating characteristic and precision-recall curves. The chosen techniques 
showcase hardware Trojan detection with high accuracy over gate-level synthesized circuits.
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1 Introduction

With the recent developments of the High Performance Com-
puters, there has been a surge in Integrated Chip (IC) manu-
facture. The production of an IC is a lengthy and exhausting 
process, which often requires collaboration with third-party 
intellectual property (IP) core suppliers and foundries. Every 

component in the supply chain of IC manufacture is suscepti-
ble to hardware attacks. At any stage of IC design and manu-
facturing, a Trojan may be inserted. The security of hardware 
devices is often unnoticed. Any undesirable modification to 
an existing circuit by the addition of malicious circuitry is 
called a hardware Trojan (HT). It could be done by someone 
in the foundry or 3rd party house. A hardware Trojan has 
two components: A trigger and a payload. When the trigger 
circuitry provides an activation signal, the payload performs 
the main Trojan functionality. Traditional testing approaches 
fail to detect the presence of an HT.

HTs can affect a batch of chips by manipulating the 
design or fabrication of an IC. However, side-channel anal-
ysis and reverse engineering are not suitable for multiple 
devices [14]. Therefore, it is necessary to have a detection 
technique in the IC design step. The insertion of HTs into 
an IC is possible in two ways. The lithographic masks can 
be manipulated in the form of addition, deletion or modi-
fication of gates. Or there can be a malicious IP designed 
where the attacker may be from the third-party design 
house or in-house [17]. Yang et al. [22] divided HT detec-
tion algorithms in terms of (1) search-based, (2) threshold-
based, and (3) machine learning-based methods. Search-
based detection techniques directly search for nets that have 
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particular Trojan features in the circuit. Threshold-based 
detection techniques compare quantified parameters with 
Trojan thresholds. Machine learning (ML) techniques also 
have been a great utility in the field of HT detection.

ML-based techniques have become useful in reverse 
engineering detection techniques, circuit feature analysis, 
and side-channel analysis [13]. Reverse engineering (RE) 
technique obtains images of each layer of the IC in order to 
analyse them. However, it is a time-consuming and costly 
process. In circuit features analysis, gate-level netlists are 
used to extract functional or structural features and analysed 
to potentially spot the presence of a suspicious net or a gate. 
Side-channel analysis (SCA) analyses parametric changes 
in side-channel information by modification due to HTs. 
The disadvantage of SCA is that the parametric changes are 
also vulnerable to noise. The HT-net features can be identi-
fied and classified automatically in circuit feature analysis. 
Application of ML techniques has been found to enhance the 
True Positive Rate (TPR) and efficiency of HT-detection. 
One more advantage of this method is dimensionality reduc-
tion can be performed for the ML algorithms, thereby pro-
viding an option to judge the most important H-net features. 
Li et al. [16] categorized the detection of hardware Trojans 
into two stages: pre-silicon stage and post-silicon stage.

HTs inserted in the pre-silicon stage of IC manufacturing 
can be detected through static analysis of gate-level circuit 
features by machine learning algorithms, such as XGBoost. 
XGBoost is a scalable and highly performant supervised 
algorithm that comprises of gradient boosted decision trees. 
The performance of the algorithm is attributed to efficient 
parallelisation of computation in the distributed decision 
trees. The flexibility of the model enables it to address the 
class imbalance of the HT nets over normal nets in an IC. The 
model is also capable of probabilistic classification, whose 
threshold can be determined through performance analysis 
[3]. Machine learning models generally rely on features with 
low correlation selected through methods such as Pearson’s 
correlation analysis for efficient performance. However, 
in case of highly class imbalanced HT detection problem, 
there arises a necessity to consider entropy over correlation 
amongst features. This is done to select features that con-
tain more information while keeping the feature count low 
through methods such as variance threshold analysis.

The contributions of this paper are as follows: 

1. New and existing features relevant to the properties of 
HT have been extracted from gate-level netlist.

2. Selection of high entropy features is conducted through 
utilisation of feature importance paired with variance 
threshold analysis.

3. Construction of supervised probabilistic classifier 
through effective hyperparameter selection using ran-
domised search.

4. Determination of the most effective threshold for the 
classifier in order to effectively detect the presence of 
HTs by receiver operating curve and precision-recall 
curve analysis.

5. Highlighting the effectiveness of high entropy feature sub-
set over low correlation feature subset for HT classification.

The outline of the paper is as follows: Section 2 describes 
the various static analysis of HTs in literature and the moti-
vation behind the proposed work. Section 3 details the fea-
ture set extracted from the gate-level ICs. Section 4 describes 
the selection of features using XGBoost’s feature importance 
along with variance threshold. Section 5 contains the details 
of the supervised algorithm utilised to train the model, its 
hyperparameter selection procedure, and the threshold meas-
urement of the probabilistic classifier. Section 6 showcases 
the results of the cross-validation and testing experiments 
and comparison of the results with previous works. Section 7 
ends the paper with concluding statements.

2  Motivation

HTs rely on the presence of nets IC that are significantly 
less active than the rest of the nets in the IC. The lack in 
activity in those nets during normal functioning of the IC 
gives the HTs avenue for circumventing detection through 
side-channels. However, the lack of activity in the IC and 
HT nets makes them exhibit features that are attributed to 
their covert nature. Supervised and unsupervised ML tech-
niques can be utilised to create classifier model using the 
features attributed to the covertness of the nets. Recently, 
state-of-the-art hardware security research has seen a great 
utilization of machine learning algorithms. Hasegawa et al. 
first proposed an approach applying ML to detect hardware 
Trojans at gate-level netlist [9]. They extracted 5 Trojan fea-
tures based on various netlists known to be Trojan infected. 
Several nets were trained in a binary support vector machine 
(SVM) classifier and an unknown set of nets from a netlist 
are tested in the classifier. The method turned out to be unfa-
vourable from viewpoint of True Negative Rate (TNR) in 
the testing phase.

Hasegawa et  al. [10] proposed a method where they 
extracted 51 hardware Trojan features. 11 of them are 
selected to be trained on a Random Forest classifier to 
obtain the best F-measures for Trojan classification. Sev-
eral Trust-Hub benchmarks [19] were tested in the classi-
fier. However, performance degrades when the predictions 
are carried on circuits with significantly larger class imbal-
ance. In [11], 11 gate-level Trojan-net feature values previ-
ously obtained from [10] were extracted for each net and 
trained them using a multi-layer neural network. Finally, an 
unknown set of nets from a netlist were put in the learned 
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multi-layer neural network for classifying them into Trojan 
class or normal class, producing an average TNR of 70% . 
Hoque et al. [12] introduced functional features along with 
structural features in supervised learning for HT detection 
using gate-level netlists. Multiple machine learning algo-
rithms were incorporated using a Voting Ensemble in the 
framework. Nevertheless, they created new Trojan data for 
class balancing before training. Finally, the suspected IP is 
verified by the framework.

Kok et al. [15] extracted Testability features and per-
formed class balancing using the ADASYN algorithm. 
They trained the dataset on four unsupervised classifiers 
and compared the results. Evaluation results showed that 
the best performance was obtained by the classifier based 
on Bagged Trees. However, out of all synthetic data created 
in the Trojan class, some of them tend to get similar to the 
Trojan-free class. This produces small true positives/nega-
tives. Dong et al. proposed five new features by analysing 
the traditional fifty-one features [6]. They extracted 49 effec-
tive out of the 56 features, using a scoring mechanism of the 
XGBoost Algorithm. The framework provided an average 
accuracy of 99.83% but requires too much computation due 
to the high dimensionality of the model. Sharma et al. pro-
pose a new class-weighted XGBoost-based HT detection 
technique which tackles the issue of the imbalance in classes 
[20]. The minority Trojan class is assigned higher weights, 
thereby removing the purpose of applying the creation of 
synthetic data or oversampling.

Therefore, the problem statement can be established as 
follows: Given a gate-level netlist of an IC with various 
interconnections between nets, there arises a need for:

• extraction of relevant features that are relevant to the 
properties of HTs,

• reducing the set of extracted features for performance 
improvement of supervised algorithm,

• creating the supervised learning model with appropriate 
choices of hyperparameters, and

• effective threshold measurement for the probabilistic 
classifier that maximises accuracy while keeping high 
rate of positive detection.

The proposed work theorised in the following sections 
comprises of methodologies to address the issues put forth 
by the problem statement. New and established HT features 
have been extracted from gate-level netlists. The effective-
ness of the extracted features have been analysed through 
evaluation of their importance values in the XGBoost 
decision trees. Feature subset has been selected from the 
extracted features by using feature importance paired with 
variance threshold. Randomised cross validation has been 
used to establish the most effective hyperparameters for 
training the probabilistic classifier. Threshold analysis has 

also been conducted with regards to the classifier to select 
threshold which yields results of high accuracy.

The model detects covert, functional HTs that uses mali-
cious signals to introduce malfunction or information leak-
age upon trigger activation.

Probabilistic threshold based XGBoost classifier has been 
utilised in [4] for HT detection. This paper expands on the 
established work in the following ways:

• New features have been introduced and number of 
extracted gate-level features have been expanded from 
35 to 85.

• Feature importance has been used to select effective fea-
tures from feature groups.

• Variance threshold has been used to create high entropy 
feature subset to train the supervised classifier.

3  Feature Extraction and Transformation

The covert nature of HTs are attributed to various gate-level 
properties within the host IC that render them undetectable 
during fault testing. The properties that render them unde-
tectable can be analysed to create a model based on the 
nature of covertness. Therefore, effective consideration of 
HT feature needs to be conducted for the model to accurately 
detect the presence of purposefully hidden nets. In this work, 
a total of 85 HT features have been extracted and normal-
ised, as shown in Table 1.

3.1  Features Extracted

The extracted feature set comprises of features that are both 
established in recent literature and newly introduced. The 
full list of extracted features have been listed in Table 1. 
The Feature ID column specifies the ID used to refer to the 
features throughout the paper. The entire feature set can be 
broadly categorised as level specific and non-level specific 
feature groups. Level specific feature groups are localised 
features extracted from the immediate neighbourhood cones 
of the target net. Non-level specific feature groups include 
just one feature that is obtained by analysis of the entire IC. 
Feature groups 1 − 10 and 30 − 33 include level specific fea-
tures, while 11 − 29 include non-level specific features. The 
values of non-level specific features do not rely on a pre-
defined level. However, level specific features are directly 
influenced by the specification of depth in logic levels of 
the neighbourhood cones from the target net. The range of 
considered levels have been depicted in the Levels column 
for each level specific feature group.

For example, mux_fanin level specific feature group 
denotes the number of MUXs in numerous fan-in cones of 
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the target net of various logical depths. For mux_fanin , the 
range 1 − 5 in the Levels column of Table 1 denotes 5 sepa-
rate MUX counts extracted from 5 different levels of logical 
depth in the fan-in cone. The 5 separate MUX counts are 
treated as 5 separate features belonging to the mux_fanin 
feature group. Level specific feature groups 1, 3 − 10 and 
30 − 33 include neighbourhood cone logic level range 1 − 5 , 
and level specific group 2 include just 1 logic level of the 
cone. There are 19 non-level specific feature groups contain-
ing 1 feature each. Thus, the total number of extracted fea-
tures have been evaluated as 13 × 5 + 1 + 19 = 85 features.

Fan-in and fan-out cones of 1 − 5 level depth range is 
considered to be the immediate neighbourhood of a target 
net. Feature components beyond 5 level differences have 
not been considered to be part of the level specific feature 
groups. This is because features that are farther than 5 
levels away have been considered to not be related to the 
target net [10]. Consideration of localised features over 5 
levels leads to erroneous classification of normal nets as 
infected by the model trained on such features. In contrast, 
the non-level specific features do not rely on a pre-defined 
level difference.

Table 1  Extracted features from gate-level netlists

Existing Features

No. Feature ID Description Levels

1 net_fanin No. of gates in the fan-in 1-5
2 net_fanout No. of gates in the fan-out 1
3 ff_fanin No. of flip-flops in the fan-in 1-5
4 ff_fanout No. of flip-flops in the fan-out 1-5
5 mux_fanin No. of MUXs in the fan-in 1-5
6 mux_fanout No. of MUXs in the fan-out 1-5
7 loop_fanin No. of loops in the fan-in 1-5
8 loop_fanout No. of loops in the fan-out 1-5
9 const_fanin No. of constants in the fan-in 1-5
10 const_fanout No. of constants in the fan-out 1-5
11 min_dff_fanin Min. levels from a DFF in the fan-in -
12 min_dff_fanout Min. levels from a DFF in the fan-out -
13 min_mux_fanin Min. levels from a MUX in the fan-in -
14 min_mux_fanout Min. levels from a MUX in the fan-out -
15 min_dif_pi Min. levels from a primary input -
16 min_dif_po Min. levels from a primary output -
17 pi No. of influential primary inputs -
18 po No. of influenced primary outputs -
19 ld Logical depth -
20 pfdep Fan-out Positively dependant gates -
21 nfdep Fan-out Negatively dependent gates -
22 pbdep Fan-in Positively dependant gates -
23 nbdep Fan-in Negatively dependent gates -
24 cc0 Combinational controllability of signal 0 -
25 cc1 Combinational controllability of signal 1 -
26 co Combinational observability -
27 sc0 Sequential controllability of signal 0 -
28 sc1 Sequential controllability of signal 1 -
29 so Sequential observability -

Introduced Features

No. Feature ID Description Levels

30 div_fanin No. of diverse gates in the fan-in 1-5
31 uni_fanin No. of uniform gates in the fan-in 1-5
32 div_fanout No. of diverse gates in the fan-out 1-5
33 uni_fanout No. of uniform gates in the fan-out 1-5
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Features 1 − 16 have been utilised in [7] and [11] for 
training their unsupervised model and neural networks 
respectively. Features 17 − 19 are derivatives of the estab-
lished features where pi is the number of primary inputs 
(PIs) influencing a net, po is the number of primary out-
puts (POs) influenced by the net, and ld is the logical 
depth of the net. Features 20 − 23 have been used in [5] for 
determination of the vulnerability of nets for HT insertion.

Sandia Controllability and Observability (SCOAP) 
measures [8] 24. − 29. have been utilised as features to 
train unsupervised model in [21]. In general, HT nets 
have the tendency to exhibit low toggling in signals. Such 
low probabilities in signal transitions makes them exhibit 
high testability values. High values of combinational and 
sequential testability measures is a property of combi-
national and sequential HT nets respectively. Thus, the 
testability measures serve as an effective indicator for the 
presence of HTs within the host.

Features 1 − 19 showcase various combinational and 
sequential structural properties of HT. Features 24 − 29 
showcase the ability of the tester to manipulate and 
observe the signals within the internal nets of the IC. How-
ever, the covert nature of HT is also attributed to the low 
switching of the signals within the nets of its triggers to a 
large degree. Features 20 − 23 address the low switching 
of the signals of a net, but the evaluation is conducted on 
a global level without restriction in logical depth. Local 
evaluation of the impact of neighbourhood gates on a tar-
get net also need to be considered to predict the degree of 
switching of signals effectively. Such evaluation need to 
be conducted in conjunction with the established feature, 
such that every possible situation that lead to low switch-
ing in signals is considered. Thus, there arises a necessity 
for effective evaluation on the impact of signal switching 
by the immediate neighbourhood gates. It is for the same 
reason that features 30 − 33 have also been introduced to 
be used to create the feature super-set to accompany the 
existing features.

These features are centred around the degree of uniform-
ity and the diversity of signals at the gate output. HTs are 
made covert by suppressing activities within the infected 
nets so they do not get highlighted in side-channel analysis. 
The suppression of activities is achieved by reduced switch-
ing within the signals of the gate output. Such suppression is 
more prevalently noticed in gates with a certain signal likeli-
hood. For example, AND and NOR gates have output signal 
likelihood of 0 and OR and NAND gates have likelihood of 
1. The logic gates with special likelihood of a specific signal 
in their outputs can be categorised into two sets:

Lk0 = {AND,NOR}

Lk1 = {OR,NAND}

The likelihood of the output signals is utilised to create 20 
new features. The newly introduced features are as follows: 

1. div_fanin : When the output of a gate has likelihood of a 
specific signal (0 or 1), the frequency in signal switching 
depends on its fan-in. Fan-in of a gate containing major-
ity of gates with the same signal likelihood would result 
in lack of diversity in signals in the output of the target 
net. Conversely, fan-in containing majority of nets hav-
ing the opposite signal likelihood increases the chance 
of toggling in signals in the output of the target net. 
Therefore, increased diverse nets in fan-in of a target 
gate would imply increased visibility during analysis. 
The number of gates in the fan-in of the target gate that 
exhibits likelihood for the opposite signal in its output is 
considered as a feature as div_fanin . In order to measure 
the degree of diversity in fan-in of a target gate X, the 
following set FIDiX is evaluated as follows: 

where FIDiX is the set for measure of diversity in nodes 
in the fan-in cone of the target gate X. div_fanin is evalu-
ated as the cardinality of FIDi set. The div_fanin meas-
ure is evaluated up to a maximum difference of 5 levels 
from the target gate for each gate.

2. div_fanout : Similar to div_fanin , the number of gates 
with likelihood for inverse signals than the target gate 
in its output is also considered. The lack of toggles of 
the HT nets impacts the toggling of the nets in its fan-
out as well. This is even exacerbated when the gates in 
the fan-out have the likelihood for the same signal as 
the target gate. However, when the majority of gates in 
the fan-out have net outputs with opposite signal likeli-
hood, it leads to increased toggles within the signals. 
Therefore, the count of nets with opposite signals from 
the target net in the fan-out also serves as an effective 
HT feature. The number of gates with the likelihood for 
the opposite signal is evaluated for each gates in the IC 
as div_fanout . The fan-out diversity set for target gate X 
can be formulated as: 

where FODiX is the set for measure of diversity in nodes 
in the fan-out cone of the target gate X. div_fanout is the 
cardinality of the set FODi. The feature is evaluated up 
to a maximum difference of 5 levels from the target gate.

3. uni_fanin : Uniformity in signals within the gate outputs 
in the fan-in of a target gate leads to decreased toggle 
in signal in its output. When the likelihood of the target 

FIDiX = {(X, Yj) ∈ Lk0 × Lk1 ∪ Lk1 × Lk0,

∀Yj ∈ fan-in of X up to level n}

FODiX = {(X, Yj) ∈ Lk0 × Lk1 ∪ Lk1 × Lk0,

∀Yj ∈ fan-out of X up to level n}
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gate towards a particular signal is shared by the majority 
of gates in its fan-in, the signal toggling is drastically 
reduced. The reduction in the toggling of signals in the 
output of a gate leaves it with more propensity to be used 
as trigger inputs of HTs. Therefore, the count of gates in 
fan-in that shares the same signal likelihood can serve 
as an effective HT feature, and such count is labelled 
uni_fanin . The fan-in uniformity set for a target gate X 
is as follows: 

uni_fanin is the cardinality of the set FIUn. This feature 
is evaluated up to a maximum level difference of 5 levels 
from the target gate.

4. uni_fanout : Similar to uni_fanin , uni_fanout contains the 
number of gates with similar likelihood of the target gate 
in its fan-out. For target gate X, its fan-out uniformity set 
is evaluated as: 

uni_fanout is the cardinality of the set FOUn. The meas-
urement is evaluated up to 5 levels from the target net.

3.2  Normalisation of Features

The features of the HTs exhibits significant class imbal-
ance within the extracted feature super-set. One of the major 
contributing factor is the small footprint the HT nets tend to 
leave with regards to their numbers. Far lower HT net count 
compared to the number of total nets in the host IC leads to 
such imbalance. However, accurate analysis of the data by the 
supervised algorithm requires a normally distributed dataset. 
Thus, box-cox transformations [18] can be used to normalise 
a dataset with severe class imbalance. Every extracted feature 
has the propensity to be left or right skewed to various degree. 
Box-cox transformations have thus been utilised with varied 
lambda values to distribute the data for each feature normally.

Thus, various gate-level features have been extracted from 
ICs. The extracted features pertain to the covert and malicious 
nature of the HTs and have been normalised suitably for accu-
rate training of a supervised model.

4  Feature Importance Based Feature Selection

Training the supervised model on 85 features is a very 
computationally intensive prospect. Many of the features 
tend to exhibit correlation amongst each other. This makes 
choosing of all features to train the model a superfluous 
option. There arises a need to select a subset of features 

FIUnX = {(X, Yj) ∈ Lk0 × Lk0 ∪ Lk1 × Lk1,

∀Yj ∈ fan-in of X up to level n}

FOUnX = {(X, Yj) ∈ Lk0 × Lk0 ∪ Lk1 × Lk1,

∀Yj ∈ fan-out of X up to level n}

from the extracted superset. This is done keeping in mind 
that the effectiveness of the model is not hampered. There-
fore, careful choice in feature selection process needs to 
be conducted that satisfies all the requirements. Feature 
importance values of XGBoost along with variance thresh-
old measure helps to do just that.

4.1  Feature Importance

The feature importance of XGBoost [3] model is a value 
assigned to each feature by the model. XGBoost algorithm 
involves creation of multiple gradient boosted decision 
trees. Each tree is constructed by introducing decision 
splits by a particular feature. A feature is considered to be 
more impactful to the algorithm if the feature is used to 
create such decision splits within the trees more number 
of times than the other features. The importance value of 
a particular feature is evaluated by the number of times it 
is used to split the dataset across all the trees. Higher the 
number of times the feature is used to create a split, the 
more impact it has on the decision-making process of the 
classifier. Increased impact on the decision-making leads 
to increased value of its importance in the algorithm. The 
value generated by the model signifies the impact of a 
feature during the construction of the model. Higher the 
impact of a particular feature in the construction of the 
model, higher is the value of its importance. Such impor-
tance value is utilised to select one feature amongst the 
multi-level features extracted from the gate-level netlist. 
Features that have been extracted up to multiple levels, for 
example ff_fanin , tend to exhibit maximum correlation 
amongst the different levels. Feature importance values 
are used to select the level at which that feature has the 
maximum importance value.

The feature importance measure is utilised to select 
the logic depth of the neighbourhood cone for level spe-
cific feature groups that exhibits highest importance value 
for that feature. For a level specific feature group X and 
the logic level y of the neighbourhood cone that exhibits 
highest feature importance in the group, the selected fea-
ture is denoted as X_y . For example, for the div_fanout 
level specific feature group, the importance of its features 
div_fanout_1 , div_fanout_2 , div_fanout_3 , div_fanout_4 
and div_fanout_5 are 0.02152, 0.57268, 0.09958, 0.14090 
and 0.58237 respectively. Feature div_fanout_5 is selected 
from the div_fanout level specific feature group since it 
exhibits the highest importance value in the XGBoost 
algorithm for HT detection. Thus, the selected fea-
tures from the various level specific feature groups are: 
const_fanin_2 , div_fanout_5 , uni_fanout_1 , ff_fanout_4 , 
mux_fanout_3 , ff_fanin_4 , const_fanout_5 , uni_fanin_3 , 
div_fanin_4 , mux_fanin_3 , net_fanin_1 , loop_fanout_4 , 
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loop_fanin_2 . This process whittles the 85 extracted fea-
tures to 33 features, which are then further reduced by 
variance threshold.

4.1.1  Variance Threshold

The measure of variance in a feature is an indicator of how 
much information it holds. Higher variance of a feature would 
mean it exhibits higher entropy. Features with higher variance 
tends to have a lot more impact on the accuracy of a model, 
compared to the ones with lower variance. In order to whit-
tle the feature list down to the features that contributes the 
most information, variance threshold is used. The mean of 
variance of all features have been collected, and this mean is 
considered as the threshold. Features that have variance values 
lower than this threshold are rejected. This process results in 
consideration of a total of 15 features from the 33 features.

The selected features are min_dff_fanin , ld, so, 
min_dif_pi , ff_fanin_4 , po, cc0, co, sc0, net_fanin_1 , cc1, 
min_dff_fanout , loop_fanout_4 , sc1 and loop_fanin_2 . The 
correlogram of the selected features using variance thresh-
old is shown in Fig. 1. The value in each cell of the figure 
represents the correlation coefficient of the two features. The 
correlation coefficient crx,y between feature x and feature y 
in dataset of size N is calculated as:

where x̄ and ȳ are averages of dataset x and y respectively. 
The feature pairs with light hue represent negative correla-
tion, while the feature pairs with dark hue represent positive 
correlation. The feature pairs with medium hue represent 
lack of correlation between the features. The diagonal matrix 

crx,y =

∑N

i=1
(xi − x̄)(yi − ȳ)

�

∑N

i=1
(xi − x̄)2

∑N

i=1
(yi − ȳ)2

always has correlation coefficient value of 1, since each of 
its cells includes correlation calculation with the same fea-
tures. Feature pairs co and so, and cc1 and sc1 are highlighted 
to exhibit the highest degree of correlation with value 0.95. 
However, the feature subset in Fig. 1 depicts features with 
high entropy, despite the existence of significant correlation.

4.1.2  Pearson’s Correlation

Pearson’s correlation is used in [4] to select features with low 
correlation from the extracted feature super-set. To compare 
the effectiveness of high entropy within features obtained 
from variance threshold over features with low correlation, a 
separate low correlation feature subset is obtained. The Pear-
son’s Correlation [1] is a measure that shows the degree of 
associations between the features. Higher correlation values 
indicate dependency between the features. When depend-
ency is detected amongst two or more features, that indicates 
superfluousness in the feature set. Therefore, Pearson’s cor-
relation coefficient is used to deduce the highly correlated 
features from the less correlated ones.

The modular average of the coefficients of all the features 
is evaluated. The features with coefficient values lesser than 
the calculated mean value is chosen to create Pearson’s cor-
relation feature set. A total of 19 features are chosen using 
this method. The correlogram of the selected feature sets is 
depicted in Fig. 2 It is observed that the highest correlation 
occurs between the features min_dif_po and min_dff_fanout 
with value 0.76. Thus, selection of features with Pearson’s 
correlation yields feature subset with relatively low correla-
tion amongst the features, even when the number of features 
selected is relatively high.

Thus, feature importance values of XGBoost classifier 
has been used to reduce the number of level-specific features 

Fig. 1  Correlogram of features 
selected using Feature Impor-
tance and Variance Threshold
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from the extracted feature set. The feature dimension is 
further reduced through utilisation of variance threshold 
to extract a feature subset that exhibits high entropy. The 
impact of high entropy features with low correlation features 
on the effectiveness of the models is afterwards compared 
during cross-validation.

5  Machine Learning Model

The extracted feature sets need to be analysed through 
appropriate algorithm in order to create a model that can 
effectively detect the presence of HT. The proposed meth-
odology of extracting the appropriate threshold of probabil-
istic classifier trained with variance threshold features for 
HT nets detection is depicted in Fig. 3. Relevant gate-level 
HT features are extracted from the ICs. Hyperparameters 
of the XGBoost model are obtained by using randomised 
search over the XGBoost algorithm with the extracted fea-
tures. Feature importance values are evaluated for each level 
specific features, and is used to choose the most effective 
feature for a level specific feature group. Variance thresh-
old is used to find a feature subset with high entropy from 
the selected level specific and non-level specific features. 
Supervised probabilistic XGBoost classifier is trained with 
the selected feature subset with relevant hyperparameters. 
Receiver operating curve (ROC-AUC) curve analysis and 
precision-recall (PR) curve analysis is performed to obtain 
the respective thresholds for the classifier. The performance 
of the model over the thresholds is analysed to choose the 
most effective threshold analysis technique.

The chosen algorithm is required to operate effectively 
in the presence of high class imbalance within the datasets. 
Decision tree based supervised models such as XGBoost is 
utilised for this very purpose. XGBoost [3] is an optimized 

distributed gradient boosting algorithm. The algorithm 
exhibits increased performance and speed in tree-based 
(sequential decision trees) ML algorithms. It is known to 
be highly efficient, flexible and portable, where boosting 
plays a key part. Boosting is an ensemble technique where 
the training errors made by existing models are minimized 
by combining weak models. Models are added repeatedly 
as long as no noticeable improvements are observed.

Fig. 2  Correlogram of features 
selected using Feature Impor-
tance and Pearson’s Correlation

Fig. 3  Threshold analysis procedure using variance threshold feature 
subset for HT detection
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In the Gradient Boosting algorithm, new models are 
developed that predict the remnants of previous models. 
The models are then combined together to perform the 
final prediction. Loss function is minimized using the 
gradient descent algorithm when adding new models. 
Trees are built in a parallel fashion in XGBoost, unlike 
Gradient Boosting which follows the sequential build-
ing of trees. The algorithm follows a level-wise strategy, 
where it scans across gradient values. Whenever there is a 
split in the training set it uses these partial sums to gauge 
the status of splits. The scalability of the XGBoost algo-
rithm in all scenarios has been its most important advan-
tage. The XGBoost provides a mechanism to handle the 
class imbalance problem, without creating any synthetic 
data. The errors made by the model during training on the 
minority class can be scaled to a certain value. This pre-
vents the errors of the minority to go undetected thereby 
leading the model to over-correct them. The overall per-
formance of the model will now enhance while making 
predictions on the minority class.

5.1  Probabilistic Classifier

A classification model (or classifier) categorizes instances 
into one or more sets of classes. There are two types of 
outputs a classifier model can produce: discrete outputs, 
and continuous outputs. Discrete classifiers produce dis-
crete output values, and the instance is mapped directly 
to a discrete class label. In contrast, classifier models 
with a continuous output produce a probability estimate 
(score). The estimate denotes how likely an instance is to 
be classified to a particular class/label. Such classifiers 
are called Probabilistic Classifiers. Probability estimates 
can only be calculated when the estimator can make prob-
abilistic predictions. The estimations may appear only 
after fitting the model to training data. Probability esti-
mates are evaluated by its threshold calculation through 
analysis of receiver operating curve (ROC) or precision-
recall curve (PR). Comparison of results obtained using 
the two different threshold choices are conducted. The 
threshold that yields the results with higher accuracy and 
true positive rate is considered to be the more effective 
amongst the two.

5.2  Model Development

The HT infected ICs suffer from a class imbalance problem 
where the number of Trojan-infected nets is much less than 
the number of normal nets. Such an imbalance performs 
a very biased training, which in turn leads to overfitting. 
Hyperparameters of a supervised learning model are param-
eters that influence the learning process of the model. The 
Python implementation of XGBoost gives a hyperparameter 

designed to track the behaviour of the set of rules for imbal-
anced classification problems. This is the scale_pos_weight 
hyperparameter. It scales errors made by the model during 
training on the minority class, leading the model to over-
correct them and helping the model obtain higher overall 
performance while making predictions about the minority 
class. This parameter is set as the ratio between the normal 
nets and Trojan-infected nets.

Careful tuning of the model is required in order for it to 
perform with high efficiency. XGBoost has a large number 
of hyperparameters which makes the tuning very exhausting. 
Tuning can be done in a grid or randomised search. Grid 
search works well when there is less number of hyperpa-
rameters, and each hyperparameter has about the same mag-
nitude impact on the validation score. Randomised search 
is a better option when the magnitude impacts of hyperpa-
rameters are imbalanced. This paper uses the randomised 
search. Model performance is evaluated with respect to the 
accuracy score during the selection of the model. Various 
hyperparameters obtained from randomised search process 
in XGBoost model trained over gate-level datasets of ICs 
infected with HT are showcased in Table 2.

The detection of Trojan nets is carried out using the leave-
one-out cross-validation method from a set of HT infected 
netlists. Every time, one of the circuit infected with HT is 
considered for testing, while the rest of the circuits are used 
for the model training. Instead of classifying a net as a Tro-
jan or normal net, the probabilistic classifier model produces 
a continuous output. This continuous output is an estimation 
of the class membership for the instance. In other words, it 
represents how likely a net belongs to the Trojan class.

Thus, an optimised supervised probabilistic classifier has 
been chosen to train the gate-level dataset that addresses the 
class imbalance issue of HT detection problem. Randomised 
search has been utilised to select the most effective hyperpa-
rameters for the probabilistic classifier model.

Actual classifications are then produced using a thresh-
old. If the probability is more than the threshold, the net is 
classified as Trojan infected. The problem comes down to 
finding an optimal threshold for each test instance and finally 
producing actual classifications. For the proposed work, two 
techniques have been used for the best threshold calculations.

Table 2  Selected XGBoost 
Hyperparameters through 
Randomised Search Process

Hyperparameter Value

colsample_bytree 0.3
gamma 0.2
learning_rate 0.3
max_depth 12
min_child_weight 1
n_estimators 100
scale_pos_weight 4
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5.2.1  Receiver Operating Curve (ROC)

The Receiver Operating Curve plots the True Positive Rate 
(TPR) vs False Positive Rate (FPR). For each test circuit, 
the ROC curve is plotted. Any point in the graph represents 
the performance of the classifier at some threshold value in 
the range [0, 1]. The cut-off threshold for best classifications 
can be determined by the Youden index. Youden’s index is 
defined as (sensitivity + [100% − specificity]) . Briefly speak-
ing, the point on the ROC curve at which Youden’s index 
defined as is maximal, is considered to be the optimal cut-
off threshold value. By using these optimal cut-off values, 
the performance metrics are calculated.

5.2.2  Precision Recall Curve (PR‑Curve)

The precision-recall (PR) curve is plotted by calculating 
the precision against the recall for a probabilistic classifier 
at different thresholds. The curve showcases the trade-off 
between the two parameters. It is a convenient metric of pre-
diction when the data suffers from a large class imbalance. 
When a system has high recall but low precision, it returns 
many positive results. However, most of the predicted labels 
end up as incorrect. Conversely, a system with high precision 
but low recall returns less number of positive results where 
most of its predicted labels are correctly predicted. A com-
bination of precision and recall into a single performance 
metric is brought by the F1 score. It is defined as the har-
monic mean between Precision and Recall. The probability 
threshold is chosen at the point in the PR curve that exhibits 
the highest F1 score.

Two different thresholds have been determined by using 
both the ROC-AUC curve and PR curve analysis for every 
IC separately for a model trained with certain features. The 
threshold extraction procedure that yields the most consist-
ent and effective results for HT detection is chosen as the 
more viable threshold determination procedure.

The performance of a trained probabilistic classifier 
model with a predetermined threshold is measured through 
numerous metrics. True positives (TP) are the number of 
nets correctly identified as HT nets by the trained model. 
True negatives (TN) are the number of nets correctly iden-
tified as normal nets by the trained model. False positives 
(FP) are the number of normal nets incorrectly labelled as 
HT nets. False negatives (FN) are the number of HT nets 
incorrectly labelled as normal nets in the tested IC. True 
positive rate (TPR), or recall is the proportion of correct 
HT net detections with respect to total HT nets in the IC 
and is formulated as:

TPR =
TP

TP + FN

True negative rate (TNR) is the proportion of correct 
normal net evaluations with respect to total normal nets in 
the tested IC and is formulated as:

Accuracy is the ratio of the correct predictions to total 
predictions, and is formulated as:

Precision is the measure of correctness of HT net pre-
diction by the model, and is formulated as:

F-measure combines the precision and recall metrics to 
create a harmonic mean of the two, and is formulated as:

Analysis of these metrics provide a detailed perspec-
tive of the efficiency of the trained model and selected 
threshold for HT detection.

6  Experimental Results

The supervised model has been trained using the feature 
sets and threshold measures and cross-validation and test 
results have been recorded. The experiments have been 
conducted in a machine with Intel i5-8250U 8-core proces-
sor with maximum clock speed of 3.4 GHz, 16 GB RAM, 
NVIDIA GTX 1050Ti GPU, running Ubuntu 22.04.2 OS. 
Gate-level netlists infected with HTs from Trust-Hub site 
[19] have been utilised as the source of datasets. The pro-
gram for dataset extraction has been written in C-language, 
and model training, cross-validation, and testing have been 
conducted using Python.

6.1  Feature Set and Threshold Measure Evaluation

Various threshold selection methods have been used for 
each IC under test to select the most effective threshold 
selection procedure. Feature importance measures have 
been used to select the most influential level for each level 
specific features. Variance threshold has been used over the 
selected level specific features along with non-level spe-
cific features to generate feature subset VT. The selected 
feature set exhibit high entropy and high correlation 
between the features. In contrast, Pearson’s Correlation 

TNR =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

F-measure = 2 ×
Precision × Recall

Precision + Recall
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procedure in [4] generated feature subset with low cor-
relation amongst the features. Therefore, a separate subset 
of features (PC) has been extracted by using the Pearson’s 
Correlation measure over the extracted features. This is 
done to highlight the effectiveness of feature set with high 
entropy and high correlation to train the model, as opposed 
to feature set with low correlation. Threshold measures 
for each IC under test have been extracted using the ROC-
AUC curve analysis and PR-curve analysis over the model 
trained with VT feature subset. The threshold extraction 
process is repeated with model trained with PC feature sub-
set. Therefore, 4 different sets of results are extracted from 
these parameters with varying performance. The models 
are used to evaluate cross-validation results conducted 
using the leave-one-out method. Figure 4 compares the 
TPR of the cross-validation result set. Figure 5 compares 
the TNR of the cross-validation result set.

Figure 4 compares the TPR results obtained from: 

1. model trained with feature set obtained through feature 
importance with Pearson’s correlation and probability 
threshold obtained through PR curve (PC-PR),

2. model trained with feature set obtained through feature 
importance with Pearson’s correlation and probability 
threshold obtained through ROC (PC-ROC),

3. model trained with feature set obtained through feature 
importance with variance threshold and probability 
threshold obtained through PR curve (VT-PR), and

4. model trained with feature set obtained through feature 
importance with variance threshold and probability 
threshold obtained through ROC (VT-ROC).

It is revealed in Fig. 4 that threshold measure obtained 
using ROC-AUC curve fares much better with regards to 
TPR than the threshold measure obtained using the PR 
curve. The higher TPR value if observed for both feature 
selection processes. The difference in performance is far 

Fig. 4  Comparison of TPR 
between the different models

Fig. 5  Comparison of TNR 
between the different models
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more stark in the ISCAS’89 [2] ICs. The threshold meas-
ure obtained using PR curve analysis exhibits far less TPR 
in the ISCAS’89 ICs, especially with s38584-T100 show-
casing 0 true positive. In contrast, the threshold measure 
obtained using ROC-AUC curve analysis exhibits fairly 
high TPR across all the tested ICs for both feature sets. 
Therefore, the ROC-AUC proves to be the better threshold 
measure to be chosen for test evaluation than the PR curve. 
Similar to Fig. 4, Fig. 5 showcases the TNR of the cross-
validated ICs. It is observed that the model trained with the 
feature set extracted using VT has higher TNR compared to 
the model using PC feature set. The improvement becomes 
more apparent when the threshold evaluations of ROC is 
solely considered, since that is the threshold measure that 
yields higher TPR.

Statistical analysis of the extracted results have been 
depicted in Table 3. The mean of TPR for all circuits are 
observed to be considerably higher with threshold selec-
tion procedure using ROC-AUC curve. Large variance in 
TPR is also observed in threshold measure using PR-curve 
analysis compared to ROC-AUC curve analysis. Therefore, 
it is inferred that threshold selection procedure using ROC-
AUC curve analysis is best for extracting results with high 
TPR. Impact of different feature selection procedures is also 
observed in the performance measures. With the ROC-AUC 
threshold selection procedure, it is observed that the mean 

of TNR for model trained with PC is comparatively similar 
to the model trained with VT. However, the variance in TNR 
is observed to be higher in the model trained with PC fea-
ture subset as opposed to the model trained with VT feature 
subsets. Low variance in TNR with high mean value is an 
indicator of a more consistent and effective performance 
with the VT features. High TNR along with high TPR is an 
indication of a better performing model. Therefore, feature 
sets using the variance threshold method along with thresh-
old determination using ROC-AUC is considered as the best 
choice for testing.

Feature importance plays a big part in the efficiency of 
the trained model. In order to compare the effect of impor-
tance evaluation of the features, a feature subset is obtained 
by not reducing the level specific group using feature impor-
tance. The model is trained with features selected solely 
using variance threshold and probability threshold evalu-
ated using ROC. The feature set selected using solely vari-
ance threshold contained a total of 23 features, compared 
to the 15 features selected with importance evaluation. The 
features selected by using just the variance threshold analy-
sis yields the selection of features net_fanin_1 , net_fanin_2 , 
net_fanin_3 ,  net_fanin_4  ,  net_fanin_5 ,  ff_fanin_3 , 
ff_fanin_4 , ff_fanin_5 , po, loop_fanin_2 , loop_fanin_3 , 
loop_fanin_4 , loop_fanin_5 , loop_fanout_4 , loop_fanout_5 , 
ld, min_dff_fanin , min_dff_fanout , min_dif_pi , cc0, cc1, co, 
sc0, and sc1. It is to be observed that the selected feature 
subset exhibit multiple features that belong to the same level 
specific feature group. Selection of features from the same 
level specific feature group reduces the amount of useful 
information contributed by the features, thus degrading the 
performance of the model. Results are extracted from the 
trained model and they are compared with the results of the 
model that included feature importance evaluation.

Figure 6 showcases the accuracy comparison between 
the two models. It is observed that the accuracy measure 

Table 3  Mean and variance evaluation of classifiers with selected 
thresholds

 PC-PR  PC-ROC  VT-PR  VT-ROC

TPR  Mean 53.21 86.08 45.80 83.95
 Variance 1715.90 57.65 1983.15 117.68

TNR  Mean 99.78 93.56 99.81 95.79
 Variance 0.05 125.90 0.06 49.50

Fig. 6  Accuracy comparison 
between models obtained with 
and without feature importance
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remain very similar for most circuits. Noticeable improve-
ments in accuracy is observed in RS232-T1200 and RS232-
T1900 circuits in the model that used the importance val-
ues to select its features. The comparison of mean and 
variance of accuracy measures of the models trained by 
variance threshold without feature importance features and 
variance threshold with feature importance features have 
been depicted in Table 4. It is observed in the table that 
the mean of the accuracy is higher in the model that relies 
on feature importance than the model that does not involve 
feature importance for feature selection. It is also observed 
that the model with feature importance evaluation exhibits 
lower variance, and in turn, higher consistency in accuracy 
compared to without feature importance. From the results it 
can thus be concluded that merely relying on entropy of the 
features is not sufficient for effective feature selection. The 
importance of features play a valuable role in conjunction 
with variance threshold analysis to select relevant features 
and ensure accurate and effective detection of HT nets. The 
model can be improved in terms of its efficiency when fea-
tures are selected using the importance values computed 
through XGBoost.

Figure 7 showcases the performance measure of the two 
models while conducting the classification process. Lower 
feature count in the trained model is helpful towards increas-
ing the performance of the model during classification. The 

exclusion of importance values while selecting features 
leads to a larger feature set. The larger size of the feature 
set contributed to the longer time that the model had taken 
to perform the classification process, as observed in Fig. 7.

The HTs exhibit diverse functional and structural prop-
erties depending on their nature and purpose. For example, 
sequential HTs involve the usage of flip-flops in their trigger 
nets that are in close proximity to nets exhibiting rare signal 
switching. Level specific features aid in localised analysis 
of such various functional and structural properties of HTs. 
The limit of 5 logical depth in neighbourhood cones of the 
target net serve as an efficient range to gather localised HT 
features. Higher logical depth of neighbourhood cone leads 
to the features to be increasingly unrelated to the target net. 
Unrelated feature evaluation leads to flagging more number 
of normal nets as HT nets that results in decreased accuracy 
in HT net classification. To showcase the importance of lim-
iting the range of the neighbourhood cone logical depth from 
1 to 5, the HT classification process has been conducted by 
increasing the range up to 6. Table 5 depicts the statistical 
comparison of accuracy in results obtained from Trust-Hub 
HT detection process. It is observed in the table that the 
model trained with level specific features up to logic level 6 
has lower mean and higher variance in accuracy compared to 
model trained with level specific features up to logic level 5. 
Lower mean of accuracy implies that considering level spe-
cific features up to 6 levels leads to more erroneous flagging 
of normal nets as HT nets. Higher value of variance also 
insinuates decreased consistency in accurately identifying 
HT nets within the host IC.

6.2  Results and Comparison

Table 6 showcases the detailed cross-validation results of var-
ious ISCAS’89 and RS Trust-Hub circuits. It is observed that 

Fig. 7  Comparison of time 
elapsed (in seconds) for 
each test

Table 4  Comparative analysis of impact on accuracy in importance 
based feature selection procedure over non-importance based

 Without Feature 
Importance

 With 
Feature 
Importance

Mean 94.50 95.49
Variance 58.22 47.77
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the threshold value of the ROC-AUC curve tends to remain 
towards 0, with only a handful of ICs having high threshold 
determination. The TNR and accuracy is also observed to be 
consistently high across all ICs. TPR values are observed to 
be fairly high, with the RS circuits performing better than 
the ISCAS’89 circuits. s35932-T300, RS232-T1400, RS232-
T1500 and RS232-T1000 have a TNR of 100% , which means 
all normal nets have been detected correctly by the trained 
model. 100% TNR value of the ICs leads to the precision 
scores to be 100% . It is observed that the F-measure is also 
100% for these ICs because of the high TPR paired with 
perfect TNR score. High precision and F-measure scores 
indicate high degree of correctness in predictions. The mini-
mum TPR is exhibited by s38584_T100 with a TPR value 
of 44.44% . The IC also exhibits a minimum TNR of 75.22% , 
making it the lowest performing tested Trust-Hub IC. How-
ever, a greater than 0% value of TPR indicates detection 
of at least one HT net for every tested IC. s35932_T300 is 
observed to be the most accurately predicted Trust-Hub IC 

with an accuracy measure of 99.98% . It is to be noted that 
the TNR and accuracy measure is consistently high across all 
the tested ICs with an average value of 95.79% and 95.49% , 
respectively. Consistently high TNR and accuracy measure 
indicates the effectiveness of the selected threshold for HT 
detection for all ICs. Overall, the best performance is seen 
with s35932-T300, RS232-T1400, RS232-T1500 and RS232-
T1000 circuits which all have 100% F-measure and preci-
sion scores. The results of the circuits that exhibit the high-
est performance by the model are emboldened in the table. 
The results obtained are compared with previous supervised 
works in literature and the comparison is depicted in Table 7.

Random forest model is used in [10], neural networks are 
utilised to train the model in [11], and supervised model using 
SVM [9] have been used to extract results from Trust-Hub 
circuits. [4] utilised XGBoost with feature set obtained using 
Pearson’s correlation. It is observed in Table 7 that both the 
TPR and TNR values of the proposed model have improved 
over the previous works in varying degree. Unlike the previous 
works, the TPR and TNR values are also observed to be much 
more consistent as well. Such consistency speaks to the reli-
ability of the proposed model compared to the previous works.

6.3  Test Results of Custom HT

Custom HTs that are designed to exhibit low toggle within 
their nets have been inserted in ISCAS’89 circuits s386 and 

Table 5  Accuracy comparison of model trained over level specific 
features extracted up to 5 logic levels against features extracted up to 
6 logic levels in neighbourhood cone of target nets

5 Logic Levels 6 Logic Levels

Mean 95.49 94.16
Variance 47.77 58.27

Table 6  Cross validation results using variance threshold feature sets and ROC-AUC threshold

Certain results in Table 6 have been emboldened to highlight the performance metrics of the circuits that exhibit significantly higher perfor-
mance than the rest of the circuits

CircuitName Threshold TNR% TPR% Accuracy% F-measure% Precision%

s15850_T100 0.00 91.93 80.77 91.81 18.19 10.10
s35932_T100 0.00 99.71 80.00 99.66 57.10 40.00
s35932_T200 0.00 99.54 91.67 99.52 43.09 27.50
s35932_T300 0.02 100.00 91.67 99.98 100.00 100.00
s38417_T100 0.00 87.75 83.33 87.74 2.80 1.42
s38417_T200 0.00 91.82 86.67 91.80 5.30 2.73
s38417_T300 0.00 84.15 81.82 84.15 1.95 0.99
s38584_T100 0.00 75.22 44.44 75.19 0.45 0.23
RS232-T1100 0.95 99.65 91.67 99.33 95.49 91.67
RS232-T1200 0.00 96.48 78.57 95.44 72.36 57.89
RS232-T1300 0.28 99.65 88.89 99.32 93.96 88.89
RS232-T1400 1.00 100.00 84.62 99.32 100.00 100.00
RS232-T1500 0.44 100.00 92.31 99.66 100.00 100.00
RS232-T1600 0.55 99.64 88.89 99.31 93.96 88.89
RS232-T1700 1.00 99.65 85.71 99.31 92.16 85.71
RS232-T1900 0.00 99.30 86.67 98.67 92.55 86.67
RS232-T2000 0.00 99.65 81.82 98.98 94.58 90.00
RS232-T1000 1.00 100.00 91.67 99.66 100.00 100.00
Average 95.79 83.95 95.49 64.66 59.59
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s38584. The various HTs inserted within the host ICs are 
shown in Fig. 8. The insertion of the HTs have been con-
ducted so as to make them be a part of the IC that has mini-
mal toggling within their nets. The trigger inputs (Tin) are 
nets of the host IC that exhibit low toggle in their signals 
during normal functioning of the IC. Upon full activation, 
the HTs inject the malicious signal in the host IC through 
the payload signal (P). s386-HT1 is obtained using HT1 
nets in s386 circuit, s386-HT2 is obtained using HT2 nets 
in s386, s386-HT3 and s38584-HT3 is obtained using HT3 
nets in s386 and s38584 circuits respectively. The super-
vised model trained with feature importance and variance 

threshold features are used to examine the datasets of the 
ISCAS’89 ICs infected by the custom HTs. The results of 
the analysis is depicted in Table 8.

It is observed in Table 8 that majority of the HT nets have 
been detected by the trained model. In addition to consistent 
detection of infected nets, the TNR, and thus the accuracy of 
s38584-HT3 is also observed to be relatively high. There-
fore, it is observed that the trained model is sufficiently 
capable of detecting covert nets within the IC even when 
the tested HTs exhibit different design from the training set. 
They are able to detect them even when they are designed 
to bypass standard fault testing techniques.

Table 7  Comparison of 
obtained results with previous 
supervised works

True Positive Rate True Negative Rate

Circuit [10] [11] [9] [4] VT-ROC [10] [11] [9] [4] VT-ROC

RS232-T1000 100 100 53 93.18 91.67 98.90 24 31 95.54 100
RS232-T1100 50 78 58 95.35 91.67 98.20 25 27 97.05 99.65
RS232-T1200 88.20 91 80 88.37 78.57 100 55 26 96.70 96.48
RS232-T1300 100 86 89 96.77 88.89 100 65 26 97.47 99.65
RS232-T1400 97.80 100 83 95.92 84.62 100 15 22 96.58 100
RS232-T1500 94.90 82 83 95.74 92.31 99.60 47 24 97.03 100
RS232-T1600 93.10 97 89 90.62 88.89 99 28 26 97.83 99.64
s35932_T100 73 80 93 79.41 80 100 99 60 91.91 99.71
s35932_T200 8.30 67 100 65.85 91.67 100 88 59 93.90 99.54
s35932_T300 81.10 100 27 88.14 91.67 100 97 58 98.28 100
s38417_T100 33.30 83 100 71.43 83.33 100 98 76 78.76 87.75
s38417_T200 46.70 93 73 62.86 86.67 100 74 76 84.44 91.82
s38417_T300 75 100 100 87.10 81.82 100 94 72 63.96 84.15

Fig. 8  Custom HTs inserted 
in ICs
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7  Conclusion

The covertness of the HTs tend to make them difficult to 
detect using standard testing procedures during IC manu-
facturing. This paper analyses effective threshold calculation 
procedure in probabilistic XGBoost classifier to facilitate 
their detection. Relevant HT features have been considered 
from gate-level netlists. The impact of the extracted features 
on decision tree classifier models is analysed by evaluat-
ing their importance values. Feature subset exhibiting high 
entropy has been obtained using the XGBoost feature impor-
tance along with variance threshold. The feature subset is 
used to create probabilistic classifier models using XGBoost 
trained with effective hyperparameters whose threshold is 
analysed using ROC-AUC curve and PR curve. The impact 
of the resultant classifier exhibits high TNR and moderate to 
high TPR values in the tested circuits. Effectiveness of high 
entropy in features over low correlation for HT detection is 
also compared by using Pearson’s correlation to select low 
correlated feature subset.
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