
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:447–463
https://doi.org/10.1007/s10836-023-06079-2

Threshold Analysis Using Probabilistic Xgboost Classifier for Hardware
Trojan Detection

Tapobrata Dhar1 · Ranit Das2 · Chandan Giri1 · Surajit Kumar Roy1

Received: 17 March 2023 / Accepted: 7 August 2023 / Published online: 7 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The fabless nature of integrated circuits manufacturing leaves them vulnerable to modifications by ill-intentioned third party.
There arises a necessity for security measures during their manufacturing to protect them from covert modifications known
as hardware Trojans. Static analysis of gate-level synthesized integrated circuits can prove helpful in detecting the presence
of unwanted circuitry within the host. This paper proposes a static analysis technique of gate-level integrated circuits using
supervised probabilistic classifier through effective threshold analysis. New and existing relevant features are extracted that
relates to hardware Trojan properties and normalised accordingly. Effective features are selected using their feature impor-
tance values. Variance threshold has been used to create a high entropy feature subset to train a supervised model using
XGBoost algorithm with relevant hyperparameters. Threshold values of the probabilistic classifier are determined through
analysis of threshold obtained using receiver operating characteristic and precision-recall curves. The chosen techniques
showcase hardware Trojan detection with high accuracy over gate-level synthesized circuits.

Keywords Hardware Trojan · XGBoost · Variance Threshold · Receiver operating characteristic curve

1 Introduction

With the recent developments of the High Performance Com-
puters, there has been a surge in Integrated Chip (IC) manu-
facture. The production of an IC is a lengthy and exhausting
process, which often requires collaboration with third-party
intellectual property (IP) core suppliers and foundries. Every

component in the supply chain of IC manufacture is suscepti-
ble to hardware attacks. At any stage of IC design and manu-
facturing, a Trojan may be inserted. The security of hardware
devices is often unnoticed. Any undesirable modification to
an existing circuit by the addition of malicious circuitry is
called a hardware Trojan (HT). It could be done by someone
in the foundry or 3rd party house. A hardware Trojan has
two components: A trigger and a payload. When the trigger
circuitry provides an activation signal, the payload performs
the main Trojan functionality. Traditional testing approaches
fail to detect the presence of an HT.

HTs can affect a batch of chips by manipulating the
design or fabrication of an IC. However, side-channel anal-
ysis and reverse engineering are not suitable for multiple
devices [14]. Therefore, it is necessary to have a detection
technique in the IC design step. The insertion of HTs into
an IC is possible in two ways. The lithographic masks can
be manipulated in the form of addition, deletion or modi-
fication of gates. Or there can be a malicious IP designed
where the attacker may be from the third-party design
house or in-house [17]. Yang et al. [22] divided HT detec-
tion algorithms in terms of (1) search-based, (2) threshold-
based, and (3) machine learning-based methods. Search-
based detection techniques directly search for nets that have

Responsible Editor: C. A. Papachristou

Ranit Das, Chandan Giri, and Surajit Kumar Roy have contributed
equally to this work.

 * Tapobrata Dhar
 tapobrata.dhar91@gmail.com

 Ranit Das
 ranit3.das@gmail.com

 Chandan Giri
 chandan@it.iiests.ac.in

 Surajit Kumar Roy
 suraroy@gmail.com

1 Indian Institute of Engineering Science and Technology,
Shibpur, Howrah, India

2 Samsung Research Institute, Noida, India

http://orcid.org/0000-0002-4848-5524
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06079-2&domain=pdf

448 Journal of Electronic Testing (2023) 39:447–463

1 3

particular Trojan features in the circuit. Threshold-based
detection techniques compare quantified parameters with
Trojan thresholds. Machine learning (ML) techniques also
have been a great utility in the field of HT detection.

ML-based techniques have become useful in reverse
engineering detection techniques, circuit feature analysis,
and side-channel analysis [13]. Reverse engineering (RE)
technique obtains images of each layer of the IC in order to
analyse them. However, it is a time-consuming and costly
process. In circuit features analysis, gate-level netlists are
used to extract functional or structural features and analysed
to potentially spot the presence of a suspicious net or a gate.
Side-channel analysis (SCA) analyses parametric changes
in side-channel information by modification due to HTs.
The disadvantage of SCA is that the parametric changes are
also vulnerable to noise. The HT-net features can be identi-
fied and classified automatically in circuit feature analysis.
Application of ML techniques has been found to enhance the
True Positive Rate (TPR) and efficiency of HT-detection.
One more advantage of this method is dimensionality reduc-
tion can be performed for the ML algorithms, thereby pro-
viding an option to judge the most important H-net features.
Li et al. [16] categorized the detection of hardware Trojans
into two stages: pre-silicon stage and post-silicon stage.

HTs inserted in the pre-silicon stage of IC manufacturing
can be detected through static analysis of gate-level circuit
features by machine learning algorithms, such as XGBoost.
XGBoost is a scalable and highly performant supervised
algorithm that comprises of gradient boosted decision trees.
The performance of the algorithm is attributed to efficient
parallelisation of computation in the distributed decision
trees. The flexibility of the model enables it to address the
class imbalance of the HT nets over normal nets in an IC. The
model is also capable of probabilistic classification, whose
threshold can be determined through performance analysis
[3]. Machine learning models generally rely on features with
low correlation selected through methods such as Pearson’s
correlation analysis for efficient performance. However,
in case of highly class imbalanced HT detection problem,
there arises a necessity to consider entropy over correlation
amongst features. This is done to select features that con-
tain more information while keeping the feature count low
through methods such as variance threshold analysis.

The contributions of this paper are as follows:

1. New and existing features relevant to the properties of
HT have been extracted from gate-level netlist.

2. Selection of high entropy features is conducted through
utilisation of feature importance paired with variance
threshold analysis.

3. Construction of supervised probabilistic classifier
through effective hyperparameter selection using ran-
domised search.

4. Determination of the most effective threshold for the
classifier in order to effectively detect the presence of
HTs by receiver operating curve and precision-recall
curve analysis.

5. Highlighting the effectiveness of high entropy feature sub-
set over low correlation feature subset for HT classification.

The outline of the paper is as follows: Section 2 describes
the various static analysis of HTs in literature and the moti-
vation behind the proposed work. Section 3 details the fea-
ture set extracted from the gate-level ICs. Section 4 describes
the selection of features using XGBoost’s feature importance
along with variance threshold. Section 5 contains the details
of the supervised algorithm utilised to train the model, its
hyperparameter selection procedure, and the threshold meas-
urement of the probabilistic classifier. Section 6 showcases
the results of the cross-validation and testing experiments
and comparison of the results with previous works. Section 7
ends the paper with concluding statements.

2 Motivation

HTs rely on the presence of nets IC that are significantly
less active than the rest of the nets in the IC. The lack in
activity in those nets during normal functioning of the IC
gives the HTs avenue for circumventing detection through
side-channels. However, the lack of activity in the IC and
HT nets makes them exhibit features that are attributed to
their covert nature. Supervised and unsupervised ML tech-
niques can be utilised to create classifier model using the
features attributed to the covertness of the nets. Recently,
state-of-the-art hardware security research has seen a great
utilization of machine learning algorithms. Hasegawa et al.
first proposed an approach applying ML to detect hardware
Trojans at gate-level netlist [9]. They extracted 5 Trojan fea-
tures based on various netlists known to be Trojan infected.
Several nets were trained in a binary support vector machine
(SVM) classifier and an unknown set of nets from a netlist
are tested in the classifier. The method turned out to be unfa-
vourable from viewpoint of True Negative Rate (TNR) in
the testing phase.

Hasegawa et al. [10] proposed a method where they
extracted 51 hardware Trojan features. 11 of them are
selected to be trained on a Random Forest classifier to
obtain the best F-measures for Trojan classification. Sev-
eral Trust-Hub benchmarks [19] were tested in the classi-
fier. However, performance degrades when the predictions
are carried on circuits with significantly larger class imbal-
ance. In [11], 11 gate-level Trojan-net feature values previ-
ously obtained from [10] were extracted for each net and
trained them using a multi-layer neural network. Finally, an
unknown set of nets from a netlist were put in the learned

449Journal of Electronic Testing (2023) 39:447–463

1 3

multi-layer neural network for classifying them into Trojan
class or normal class, producing an average TNR of 70% .
Hoque et al. [12] introduced functional features along with
structural features in supervised learning for HT detection
using gate-level netlists. Multiple machine learning algo-
rithms were incorporated using a Voting Ensemble in the
framework. Nevertheless, they created new Trojan data for
class balancing before training. Finally, the suspected IP is
verified by the framework.

Kok et al. [15] extracted Testability features and per-
formed class balancing using the ADASYN algorithm.
They trained the dataset on four unsupervised classifiers
and compared the results. Evaluation results showed that
the best performance was obtained by the classifier based
on Bagged Trees. However, out of all synthetic data created
in the Trojan class, some of them tend to get similar to the
Trojan-free class. This produces small true positives/nega-
tives. Dong et al. proposed five new features by analysing
the traditional fifty-one features [6]. They extracted 49 effec-
tive out of the 56 features, using a scoring mechanism of the
XGBoost Algorithm. The framework provided an average
accuracy of 99.83% but requires too much computation due
to the high dimensionality of the model. Sharma et al. pro-
pose a new class-weighted XGBoost-based HT detection
technique which tackles the issue of the imbalance in classes
[20]. The minority Trojan class is assigned higher weights,
thereby removing the purpose of applying the creation of
synthetic data or oversampling.

Therefore, the problem statement can be established as
follows: Given a gate-level netlist of an IC with various
interconnections between nets, there arises a need for:

• extraction of relevant features that are relevant to the
properties of HTs,

• reducing the set of extracted features for performance
improvement of supervised algorithm,

• creating the supervised learning model with appropriate
choices of hyperparameters, and

• effective threshold measurement for the probabilistic
classifier that maximises accuracy while keeping high
rate of positive detection.

The proposed work theorised in the following sections
comprises of methodologies to address the issues put forth
by the problem statement. New and established HT features
have been extracted from gate-level netlists. The effective-
ness of the extracted features have been analysed through
evaluation of their importance values in the XGBoost
decision trees. Feature subset has been selected from the
extracted features by using feature importance paired with
variance threshold. Randomised cross validation has been
used to establish the most effective hyperparameters for
training the probabilistic classifier. Threshold analysis has

also been conducted with regards to the classifier to select
threshold which yields results of high accuracy.

The model detects covert, functional HTs that uses mali-
cious signals to introduce malfunction or information leak-
age upon trigger activation.

Probabilistic threshold based XGBoost classifier has been
utilised in [4] for HT detection. This paper expands on the
established work in the following ways:

• New features have been introduced and number of
extracted gate-level features have been expanded from
35 to 85.

• Feature importance has been used to select effective fea-
tures from feature groups.

• Variance threshold has been used to create high entropy
feature subset to train the supervised classifier.

3 Feature Extraction and Transformation

The covert nature of HTs are attributed to various gate-level
properties within the host IC that render them undetectable
during fault testing. The properties that render them unde-
tectable can be analysed to create a model based on the
nature of covertness. Therefore, effective consideration of
HT feature needs to be conducted for the model to accurately
detect the presence of purposefully hidden nets. In this work,
a total of 85 HT features have been extracted and normal-
ised, as shown in Table 1.

3.1 Features Extracted

The extracted feature set comprises of features that are both
established in recent literature and newly introduced. The
full list of extracted features have been listed in Table 1.
The Feature ID column specifies the ID used to refer to the
features throughout the paper. The entire feature set can be
broadly categorised as level specific and non-level specific
feature groups. Level specific feature groups are localised
features extracted from the immediate neighbourhood cones
of the target net. Non-level specific feature groups include
just one feature that is obtained by analysis of the entire IC.
Feature groups 1 − 10 and 30 − 33 include level specific fea-
tures, while 11 − 29 include non-level specific features. The
values of non-level specific features do not rely on a pre-
defined level. However, level specific features are directly
influenced by the specification of depth in logic levels of
the neighbourhood cones from the target net. The range of
considered levels have been depicted in the Levels column
for each level specific feature group.

For example, mux_fanin level specific feature group
denotes the number of MUXs in numerous fan-in cones of

450 Journal of Electronic Testing (2023) 39:447–463

1 3

the target net of various logical depths. For mux_fanin , the
range 1 − 5 in the Levels column of Table 1 denotes 5 sepa-
rate MUX counts extracted from 5 different levels of logical
depth in the fan-in cone. The 5 separate MUX counts are
treated as 5 separate features belonging to the mux_fanin
feature group. Level specific feature groups 1, 3 − 10 and
30 − 33 include neighbourhood cone logic level range 1 − 5 ,
and level specific group 2 include just 1 logic level of the
cone. There are 19 non-level specific feature groups contain-
ing 1 feature each. Thus, the total number of extracted fea-
tures have been evaluated as 13 × 5 + 1 + 19 = 85 features.

Fan-in and fan-out cones of 1 − 5 level depth range is
considered to be the immediate neighbourhood of a target
net. Feature components beyond 5 level differences have
not been considered to be part of the level specific feature
groups. This is because features that are farther than 5
levels away have been considered to not be related to the
target net [10]. Consideration of localised features over 5
levels leads to erroneous classification of normal nets as
infected by the model trained on such features. In contrast,
the non-level specific features do not rely on a pre-defined
level difference.

Table 1 Extracted features from gate-level netlists

Existing Features

No. Feature ID Description Levels

1 net_fanin No. of gates in the fan-in 1-5
2 net_fanout No. of gates in the fan-out 1
3 ff_fanin No. of flip-flops in the fan-in 1-5
4 ff_fanout No. of flip-flops in the fan-out 1-5
5 mux_fanin No. of MUXs in the fan-in 1-5
6 mux_fanout No. of MUXs in the fan-out 1-5
7 loop_fanin No. of loops in the fan-in 1-5
8 loop_fanout No. of loops in the fan-out 1-5
9 const_fanin No. of constants in the fan-in 1-5
10 const_fanout No. of constants in the fan-out 1-5
11 min_dff_fanin Min. levels from a DFF in the fan-in -
12 min_dff_fanout Min. levels from a DFF in the fan-out -
13 min_mux_fanin Min. levels from a MUX in the fan-in -
14 min_mux_fanout Min. levels from a MUX in the fan-out -
15 min_dif_pi Min. levels from a primary input -
16 min_dif_po Min. levels from a primary output -
17 pi No. of influential primary inputs -
18 po No. of influenced primary outputs -
19 ld Logical depth -
20 pfdep Fan-out Positively dependant gates -
21 nfdep Fan-out Negatively dependent gates -
22 pbdep Fan-in Positively dependant gates -
23 nbdep Fan-in Negatively dependent gates -
24 cc0 Combinational controllability of signal 0 -
25 cc1 Combinational controllability of signal 1 -
26 co Combinational observability -
27 sc0 Sequential controllability of signal 0 -
28 sc1 Sequential controllability of signal 1 -
29 so Sequential observability -

Introduced Features

No. Feature ID Description Levels

30 div_fanin No. of diverse gates in the fan-in 1-5
31 uni_fanin No. of uniform gates in the fan-in 1-5
32 div_fanout No. of diverse gates in the fan-out 1-5
33 uni_fanout No. of uniform gates in the fan-out 1-5

451Journal of Electronic Testing (2023) 39:447–463

1 3

Features 1 − 16 have been utilised in [7] and [11] for
training their unsupervised model and neural networks
respectively. Features 17 − 19 are derivatives of the estab-
lished features where pi is the number of primary inputs
(PIs) influencing a net, po is the number of primary out-
puts (POs) influenced by the net, and ld is the logical
depth of the net. Features 20 − 23 have been used in [5] for
determination of the vulnerability of nets for HT insertion.

Sandia Controllability and Observability (SCOAP)
measures [8] 24. − 29. have been utilised as features to
train unsupervised model in [21]. In general, HT nets
have the tendency to exhibit low toggling in signals. Such
low probabilities in signal transitions makes them exhibit
high testability values. High values of combinational and
sequential testability measures is a property of combi-
national and sequential HT nets respectively. Thus, the
testability measures serve as an effective indicator for the
presence of HTs within the host.

Features 1 − 19 showcase various combinational and
sequential structural properties of HT. Features 24 − 29
showcase the ability of the tester to manipulate and
observe the signals within the internal nets of the IC. How-
ever, the covert nature of HT is also attributed to the low
switching of the signals within the nets of its triggers to a
large degree. Features 20 − 23 address the low switching
of the signals of a net, but the evaluation is conducted on
a global level without restriction in logical depth. Local
evaluation of the impact of neighbourhood gates on a tar-
get net also need to be considered to predict the degree of
switching of signals effectively. Such evaluation need to
be conducted in conjunction with the established feature,
such that every possible situation that lead to low switch-
ing in signals is considered. Thus, there arises a necessity
for effective evaluation on the impact of signal switching
by the immediate neighbourhood gates. It is for the same
reason that features 30 − 33 have also been introduced to
be used to create the feature super-set to accompany the
existing features.

These features are centred around the degree of uniform-
ity and the diversity of signals at the gate output. HTs are
made covert by suppressing activities within the infected
nets so they do not get highlighted in side-channel analysis.
The suppression of activities is achieved by reduced switch-
ing within the signals of the gate output. Such suppression is
more prevalently noticed in gates with a certain signal likeli-
hood. For example, AND and NOR gates have output signal
likelihood of 0 and OR and NAND gates have likelihood of
1. The logic gates with special likelihood of a specific signal
in their outputs can be categorised into two sets:

Lk0 = {AND,NOR}

Lk1 = {OR,NAND}

The likelihood of the output signals is utilised to create 20
new features. The newly introduced features are as follows:

1. div_fanin : When the output of a gate has likelihood of a
specific signal (0 or 1), the frequency in signal switching
depends on its fan-in. Fan-in of a gate containing major-
ity of gates with the same signal likelihood would result
in lack of diversity in signals in the output of the target
net. Conversely, fan-in containing majority of nets hav-
ing the opposite signal likelihood increases the chance
of toggling in signals in the output of the target net.
Therefore, increased diverse nets in fan-in of a target
gate would imply increased visibility during analysis.
The number of gates in the fan-in of the target gate that
exhibits likelihood for the opposite signal in its output is
considered as a feature as div_fanin . In order to measure
the degree of diversity in fan-in of a target gate X, the
following set FIDiX is evaluated as follows:

where FIDiX is the set for measure of diversity in nodes
in the fan-in cone of the target gate X. div_fanin is evalu-
ated as the cardinality of FIDi set. The div_fanin meas-
ure is evaluated up to a maximum difference of 5 levels
from the target gate for each gate.

2. div_fanout : Similar to div_fanin , the number of gates
with likelihood for inverse signals than the target gate
in its output is also considered. The lack of toggles of
the HT nets impacts the toggling of the nets in its fan-
out as well. This is even exacerbated when the gates in
the fan-out have the likelihood for the same signal as
the target gate. However, when the majority of gates in
the fan-out have net outputs with opposite signal likeli-
hood, it leads to increased toggles within the signals.
Therefore, the count of nets with opposite signals from
the target net in the fan-out also serves as an effective
HT feature. The number of gates with the likelihood for
the opposite signal is evaluated for each gates in the IC
as div_fanout . The fan-out diversity set for target gate X
can be formulated as:

where FODiX is the set for measure of diversity in nodes
in the fan-out cone of the target gate X. div_fanout is the
cardinality of the set FODi. The feature is evaluated up
to a maximum difference of 5 levels from the target gate.

3. uni_fanin : Uniformity in signals within the gate outputs
in the fan-in of a target gate leads to decreased toggle
in signal in its output. When the likelihood of the target

FIDiX = {(X, Yj) ∈ Lk0 × Lk1 ∪ Lk1 × Lk0,

∀Yj ∈ fan-in of X up to level n}

FODiX = {(X, Yj) ∈ Lk0 × Lk1 ∪ Lk1 × Lk0,

∀Yj ∈ fan-out of X up to level n}

452 Journal of Electronic Testing (2023) 39:447–463

1 3

gate towards a particular signal is shared by the majority
of gates in its fan-in, the signal toggling is drastically
reduced. The reduction in the toggling of signals in the
output of a gate leaves it with more propensity to be used
as trigger inputs of HTs. Therefore, the count of gates in
fan-in that shares the same signal likelihood can serve
as an effective HT feature, and such count is labelled
uni_fanin . The fan-in uniformity set for a target gate X
is as follows:

uni_fanin is the cardinality of the set FIUn. This feature
is evaluated up to a maximum level difference of 5 levels
from the target gate.

4. uni_fanout : Similar to uni_fanin , uni_fanout contains the
number of gates with similar likelihood of the target gate
in its fan-out. For target gate X, its fan-out uniformity set
is evaluated as:

uni_fanout is the cardinality of the set FOUn. The meas-
urement is evaluated up to 5 levels from the target net.

3.2 Normalisation of Features

The features of the HTs exhibits significant class imbal-
ance within the extracted feature super-set. One of the major
contributing factor is the small footprint the HT nets tend to
leave with regards to their numbers. Far lower HT net count
compared to the number of total nets in the host IC leads to
such imbalance. However, accurate analysis of the data by the
supervised algorithm requires a normally distributed dataset.
Thus, box-cox transformations [18] can be used to normalise
a dataset with severe class imbalance. Every extracted feature
has the propensity to be left or right skewed to various degree.
Box-cox transformations have thus been utilised with varied
lambda values to distribute the data for each feature normally.

Thus, various gate-level features have been extracted from
ICs. The extracted features pertain to the covert and malicious
nature of the HTs and have been normalised suitably for accu-
rate training of a supervised model.

4 Feature Importance Based Feature Selection

Training the supervised model on 85 features is a very
computationally intensive prospect. Many of the features
tend to exhibit correlation amongst each other. This makes
choosing of all features to train the model a superfluous
option. There arises a need to select a subset of features

FIUnX = {(X, Yj) ∈ Lk0 × Lk0 ∪ Lk1 × Lk1,

∀Yj ∈ fan-in of X up to level n}

FOUnX = {(X, Yj) ∈ Lk0 × Lk0 ∪ Lk1 × Lk1,

∀Yj ∈ fan-out of X up to level n}

from the extracted superset. This is done keeping in mind
that the effectiveness of the model is not hampered. There-
fore, careful choice in feature selection process needs to
be conducted that satisfies all the requirements. Feature
importance values of XGBoost along with variance thresh-
old measure helps to do just that.

4.1 Feature Importance

The feature importance of XGBoost [3] model is a value
assigned to each feature by the model. XGBoost algorithm
involves creation of multiple gradient boosted decision
trees. Each tree is constructed by introducing decision
splits by a particular feature. A feature is considered to be
more impactful to the algorithm if the feature is used to
create such decision splits within the trees more number
of times than the other features. The importance value of
a particular feature is evaluated by the number of times it
is used to split the dataset across all the trees. Higher the
number of times the feature is used to create a split, the
more impact it has on the decision-making process of the
classifier. Increased impact on the decision-making leads
to increased value of its importance in the algorithm. The
value generated by the model signifies the impact of a
feature during the construction of the model. Higher the
impact of a particular feature in the construction of the
model, higher is the value of its importance. Such impor-
tance value is utilised to select one feature amongst the
multi-level features extracted from the gate-level netlist.
Features that have been extracted up to multiple levels, for
example ff_fanin , tend to exhibit maximum correlation
amongst the different levels. Feature importance values
are used to select the level at which that feature has the
maximum importance value.

The feature importance measure is utilised to select
the logic depth of the neighbourhood cone for level spe-
cific feature groups that exhibits highest importance value
for that feature. For a level specific feature group X and
the logic level y of the neighbourhood cone that exhibits
highest feature importance in the group, the selected fea-
ture is denoted as X_y . For example, for the div_fanout
level specific feature group, the importance of its features
div_fanout_1 , div_fanout_2 , div_fanout_3 , div_fanout_4
and div_fanout_5 are 0.02152, 0.57268, 0.09958, 0.14090
and 0.58237 respectively. Feature div_fanout_5 is selected
from the div_fanout level specific feature group since it
exhibits the highest importance value in the XGBoost
algorithm for HT detection. Thus, the selected fea-
tures from the various level specific feature groups are:
const_fanin_2 , div_fanout_5 , uni_fanout_1 , ff_fanout_4 ,
mux_fanout_3 , ff_fanin_4 , const_fanout_5 , uni_fanin_3 ,
div_fanin_4 , mux_fanin_3 , net_fanin_1 , loop_fanout_4 ,

453Journal of Electronic Testing (2023) 39:447–463

1 3

loop_fanin_2 . This process whittles the 85 extracted fea-
tures to 33 features, which are then further reduced by
variance threshold.

4.1.1 Variance Threshold

The measure of variance in a feature is an indicator of how
much information it holds. Higher variance of a feature would
mean it exhibits higher entropy. Features with higher variance
tends to have a lot more impact on the accuracy of a model,
compared to the ones with lower variance. In order to whit-
tle the feature list down to the features that contributes the
most information, variance threshold is used. The mean of
variance of all features have been collected, and this mean is
considered as the threshold. Features that have variance values
lower than this threshold are rejected. This process results in
consideration of a total of 15 features from the 33 features.

The selected features are min_dff_fanin , ld, so,
min_dif_pi , ff_fanin_4 , po, cc0, co, sc0, net_fanin_1 , cc1,
min_dff_fanout , loop_fanout_4 , sc1 and loop_fanin_2 . The
correlogram of the selected features using variance thresh-
old is shown in Fig. 1. The value in each cell of the figure
represents the correlation coefficient of the two features. The
correlation coefficient crx,y between feature x and feature y
in dataset of size N is calculated as:

where x̄ and ȳ are averages of dataset x and y respectively.
The feature pairs with light hue represent negative correla-
tion, while the feature pairs with dark hue represent positive
correlation. The feature pairs with medium hue represent
lack of correlation between the features. The diagonal matrix

crx,y =

∑N

i=1
(xi − x̄)(yi − ȳ)

�

∑N

i=1
(xi − x̄)2

∑N

i=1
(yi − ȳ)2

always has correlation coefficient value of 1, since each of
its cells includes correlation calculation with the same fea-
tures. Feature pairs co and so, and cc1 and sc1 are highlighted
to exhibit the highest degree of correlation with value 0.95.
However, the feature subset in Fig. 1 depicts features with
high entropy, despite the existence of significant correlation.

4.1.2 Pearson’s Correlation

Pearson’s correlation is used in [4] to select features with low
correlation from the extracted feature super-set. To compare
the effectiveness of high entropy within features obtained
from variance threshold over features with low correlation, a
separate low correlation feature subset is obtained. The Pear-
son’s Correlation [1] is a measure that shows the degree of
associations between the features. Higher correlation values
indicate dependency between the features. When depend-
ency is detected amongst two or more features, that indicates
superfluousness in the feature set. Therefore, Pearson’s cor-
relation coefficient is used to deduce the highly correlated
features from the less correlated ones.

The modular average of the coefficients of all the features
is evaluated. The features with coefficient values lesser than
the calculated mean value is chosen to create Pearson’s cor-
relation feature set. A total of 19 features are chosen using
this method. The correlogram of the selected feature sets is
depicted in Fig. 2 It is observed that the highest correlation
occurs between the features min_dif_po and min_dff_fanout
with value 0.76. Thus, selection of features with Pearson’s
correlation yields feature subset with relatively low correla-
tion amongst the features, even when the number of features
selected is relatively high.

Thus, feature importance values of XGBoost classifier
has been used to reduce the number of level-specific features

Fig. 1 Correlogram of features
selected using Feature Impor-
tance and Variance Threshold

454 Journal of Electronic Testing (2023) 39:447–463

1 3

from the extracted feature set. The feature dimension is
further reduced through utilisation of variance threshold
to extract a feature subset that exhibits high entropy. The
impact of high entropy features with low correlation features
on the effectiveness of the models is afterwards compared
during cross-validation.

5 Machine Learning Model

The extracted feature sets need to be analysed through
appropriate algorithm in order to create a model that can
effectively detect the presence of HT. The proposed meth-
odology of extracting the appropriate threshold of probabil-
istic classifier trained with variance threshold features for
HT nets detection is depicted in Fig. 3. Relevant gate-level
HT features are extracted from the ICs. Hyperparameters
of the XGBoost model are obtained by using randomised
search over the XGBoost algorithm with the extracted fea-
tures. Feature importance values are evaluated for each level
specific features, and is used to choose the most effective
feature for a level specific feature group. Variance thresh-
old is used to find a feature subset with high entropy from
the selected level specific and non-level specific features.
Supervised probabilistic XGBoost classifier is trained with
the selected feature subset with relevant hyperparameters.
Receiver operating curve (ROC-AUC) curve analysis and
precision-recall (PR) curve analysis is performed to obtain
the respective thresholds for the classifier. The performance
of the model over the thresholds is analysed to choose the
most effective threshold analysis technique.

The chosen algorithm is required to operate effectively
in the presence of high class imbalance within the datasets.
Decision tree based supervised models such as XGBoost is
utilised for this very purpose. XGBoost [3] is an optimized

distributed gradient boosting algorithm. The algorithm
exhibits increased performance and speed in tree-based
(sequential decision trees) ML algorithms. It is known to
be highly efficient, flexible and portable, where boosting
plays a key part. Boosting is an ensemble technique where
the training errors made by existing models are minimized
by combining weak models. Models are added repeatedly
as long as no noticeable improvements are observed.

Fig. 2 Correlogram of features
selected using Feature Impor-
tance and Pearson’s Correlation

Fig. 3 Threshold analysis procedure using variance threshold feature
subset for HT detection

455Journal of Electronic Testing (2023) 39:447–463

1 3

In the Gradient Boosting algorithm, new models are
developed that predict the remnants of previous models.
The models are then combined together to perform the
final prediction. Loss function is minimized using the
gradient descent algorithm when adding new models.
Trees are built in a parallel fashion in XGBoost, unlike
Gradient Boosting which follows the sequential build-
ing of trees. The algorithm follows a level-wise strategy,
where it scans across gradient values. Whenever there is a
split in the training set it uses these partial sums to gauge
the status of splits. The scalability of the XGBoost algo-
rithm in all scenarios has been its most important advan-
tage. The XGBoost provides a mechanism to handle the
class imbalance problem, without creating any synthetic
data. The errors made by the model during training on the
minority class can be scaled to a certain value. This pre-
vents the errors of the minority to go undetected thereby
leading the model to over-correct them. The overall per-
formance of the model will now enhance while making
predictions on the minority class.

5.1 Probabilistic Classifier

A classification model (or classifier) categorizes instances
into one or more sets of classes. There are two types of
outputs a classifier model can produce: discrete outputs,
and continuous outputs. Discrete classifiers produce dis-
crete output values, and the instance is mapped directly
to a discrete class label. In contrast, classifier models
with a continuous output produce a probability estimate
(score). The estimate denotes how likely an instance is to
be classified to a particular class/label. Such classifiers
are called Probabilistic Classifiers. Probability estimates
can only be calculated when the estimator can make prob-
abilistic predictions. The estimations may appear only
after fitting the model to training data. Probability esti-
mates are evaluated by its threshold calculation through
analysis of receiver operating curve (ROC) or precision-
recall curve (PR). Comparison of results obtained using
the two different threshold choices are conducted. The
threshold that yields the results with higher accuracy and
true positive rate is considered to be the more effective
amongst the two.

5.2 Model Development

The HT infected ICs suffer from a class imbalance problem
where the number of Trojan-infected nets is much less than
the number of normal nets. Such an imbalance performs
a very biased training, which in turn leads to overfitting.
Hyperparameters of a supervised learning model are param-
eters that influence the learning process of the model. The
Python implementation of XGBoost gives a hyperparameter

designed to track the behaviour of the set of rules for imbal-
anced classification problems. This is the scale_pos_weight
hyperparameter. It scales errors made by the model during
training on the minority class, leading the model to over-
correct them and helping the model obtain higher overall
performance while making predictions about the minority
class. This parameter is set as the ratio between the normal
nets and Trojan-infected nets.

Careful tuning of the model is required in order for it to
perform with high efficiency. XGBoost has a large number
of hyperparameters which makes the tuning very exhausting.
Tuning can be done in a grid or randomised search. Grid
search works well when there is less number of hyperpa-
rameters, and each hyperparameter has about the same mag-
nitude impact on the validation score. Randomised search
is a better option when the magnitude impacts of hyperpa-
rameters are imbalanced. This paper uses the randomised
search. Model performance is evaluated with respect to the
accuracy score during the selection of the model. Various
hyperparameters obtained from randomised search process
in XGBoost model trained over gate-level datasets of ICs
infected with HT are showcased in Table 2.

The detection of Trojan nets is carried out using the leave-
one-out cross-validation method from a set of HT infected
netlists. Every time, one of the circuit infected with HT is
considered for testing, while the rest of the circuits are used
for the model training. Instead of classifying a net as a Tro-
jan or normal net, the probabilistic classifier model produces
a continuous output. This continuous output is an estimation
of the class membership for the instance. In other words, it
represents how likely a net belongs to the Trojan class.

Thus, an optimised supervised probabilistic classifier has
been chosen to train the gate-level dataset that addresses the
class imbalance issue of HT detection problem. Randomised
search has been utilised to select the most effective hyperpa-
rameters for the probabilistic classifier model.

Actual classifications are then produced using a thresh-
old. If the probability is more than the threshold, the net is
classified as Trojan infected. The problem comes down to
finding an optimal threshold for each test instance and finally
producing actual classifications. For the proposed work, two
techniques have been used for the best threshold calculations.

Table 2 Selected XGBoost
Hyperparameters through
Randomised Search Process

Hyperparameter Value

colsample_bytree 0.3
gamma 0.2
learning_rate 0.3
max_depth 12
min_child_weight 1
n_estimators 100
scale_pos_weight 4

456 Journal of Electronic Testing (2023) 39:447–463

1 3

5.2.1 Receiver Operating Curve (ROC)

The Receiver Operating Curve plots the True Positive Rate
(TPR) vs False Positive Rate (FPR). For each test circuit,
the ROC curve is plotted. Any point in the graph represents
the performance of the classifier at some threshold value in
the range [0, 1]. The cut-off threshold for best classifications
can be determined by the Youden index. Youden’s index is
defined as (sensitivity + [100% − specificity]) . Briefly speak-
ing, the point on the ROC curve at which Youden’s index
defined as is maximal, is considered to be the optimal cut-
off threshold value. By using these optimal cut-off values,
the performance metrics are calculated.

5.2.2 Precision Recall Curve (PR‑Curve)

The precision-recall (PR) curve is plotted by calculating
the precision against the recall for a probabilistic classifier
at different thresholds. The curve showcases the trade-off
between the two parameters. It is a convenient metric of pre-
diction when the data suffers from a large class imbalance.
When a system has high recall but low precision, it returns
many positive results. However, most of the predicted labels
end up as incorrect. Conversely, a system with high precision
but low recall returns less number of positive results where
most of its predicted labels are correctly predicted. A com-
bination of precision and recall into a single performance
metric is brought by the F1 score. It is defined as the har-
monic mean between Precision and Recall. The probability
threshold is chosen at the point in the PR curve that exhibits
the highest F1 score.

Two different thresholds have been determined by using
both the ROC-AUC curve and PR curve analysis for every
IC separately for a model trained with certain features. The
threshold extraction procedure that yields the most consist-
ent and effective results for HT detection is chosen as the
more viable threshold determination procedure.

The performance of a trained probabilistic classifier
model with a predetermined threshold is measured through
numerous metrics. True positives (TP) are the number of
nets correctly identified as HT nets by the trained model.
True negatives (TN) are the number of nets correctly iden-
tified as normal nets by the trained model. False positives
(FP) are the number of normal nets incorrectly labelled as
HT nets. False negatives (FN) are the number of HT nets
incorrectly labelled as normal nets in the tested IC. True
positive rate (TPR), or recall is the proportion of correct
HT net detections with respect to total HT nets in the IC
and is formulated as:

TPR =
TP

TP + FN

True negative rate (TNR) is the proportion of correct
normal net evaluations with respect to total normal nets in
the tested IC and is formulated as:

Accuracy is the ratio of the correct predictions to total
predictions, and is formulated as:

Precision is the measure of correctness of HT net pre-
diction by the model, and is formulated as:

F-measure combines the precision and recall metrics to
create a harmonic mean of the two, and is formulated as:

Analysis of these metrics provide a detailed perspec-
tive of the efficiency of the trained model and selected
threshold for HT detection.

6 Experimental Results

The supervised model has been trained using the feature
sets and threshold measures and cross-validation and test
results have been recorded. The experiments have been
conducted in a machine with Intel i5-8250U 8-core proces-
sor with maximum clock speed of 3.4 GHz, 16 GB RAM,
NVIDIA GTX 1050Ti GPU, running Ubuntu 22.04.2 OS.
Gate-level netlists infected with HTs from Trust-Hub site
[19] have been utilised as the source of datasets. The pro-
gram for dataset extraction has been written in C-language,
and model training, cross-validation, and testing have been
conducted using Python.

6.1 Feature Set and Threshold Measure Evaluation

Various threshold selection methods have been used for
each IC under test to select the most effective threshold
selection procedure. Feature importance measures have
been used to select the most influential level for each level
specific features. Variance threshold has been used over the
selected level specific features along with non-level spe-
cific features to generate feature subset VT. The selected
feature set exhibit high entropy and high correlation
between the features. In contrast, Pearson’s Correlation

TNR =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

F-measure = 2 ×
Precision × Recall

Precision + Recall

457Journal of Electronic Testing (2023) 39:447–463

1 3

procedure in [4] generated feature subset with low cor-
relation amongst the features. Therefore, a separate subset
of features (PC) has been extracted by using the Pearson’s
Correlation measure over the extracted features. This is
done to highlight the effectiveness of feature set with high
entropy and high correlation to train the model, as opposed
to feature set with low correlation. Threshold measures
for each IC under test have been extracted using the ROC-
AUC curve analysis and PR-curve analysis over the model
trained with VT feature subset. The threshold extraction
process is repeated with model trained with PC feature sub-
set. Therefore, 4 different sets of results are extracted from
these parameters with varying performance. The models
are used to evaluate cross-validation results conducted
using the leave-one-out method. Figure 4 compares the
TPR of the cross-validation result set. Figure 5 compares
the TNR of the cross-validation result set.

Figure 4 compares the TPR results obtained from:

1. model trained with feature set obtained through feature
importance with Pearson’s correlation and probability
threshold obtained through PR curve (PC-PR),

2. model trained with feature set obtained through feature
importance with Pearson’s correlation and probability
threshold obtained through ROC (PC-ROC),

3. model trained with feature set obtained through feature
importance with variance threshold and probability
threshold obtained through PR curve (VT-PR), and

4. model trained with feature set obtained through feature
importance with variance threshold and probability
threshold obtained through ROC (VT-ROC).

It is revealed in Fig. 4 that threshold measure obtained
using ROC-AUC curve fares much better with regards to
TPR than the threshold measure obtained using the PR
curve. The higher TPR value if observed for both feature
selection processes. The difference in performance is far

Fig. 4 Comparison of TPR
between the different models

Fig. 5 Comparison of TNR
between the different models

458 Journal of Electronic Testing (2023) 39:447–463

1 3

more stark in the ISCAS’89 [2] ICs. The threshold meas-
ure obtained using PR curve analysis exhibits far less TPR
in the ISCAS’89 ICs, especially with s38584-T100 show-
casing 0 true positive. In contrast, the threshold measure
obtained using ROC-AUC curve analysis exhibits fairly
high TPR across all the tested ICs for both feature sets.
Therefore, the ROC-AUC proves to be the better threshold
measure to be chosen for test evaluation than the PR curve.
Similar to Fig. 4, Fig. 5 showcases the TNR of the cross-
validated ICs. It is observed that the model trained with the
feature set extracted using VT has higher TNR compared to
the model using PC feature set. The improvement becomes
more apparent when the threshold evaluations of ROC is
solely considered, since that is the threshold measure that
yields higher TPR.

Statistical analysis of the extracted results have been
depicted in Table 3. The mean of TPR for all circuits are
observed to be considerably higher with threshold selec-
tion procedure using ROC-AUC curve. Large variance in
TPR is also observed in threshold measure using PR-curve
analysis compared to ROC-AUC curve analysis. Therefore,
it is inferred that threshold selection procedure using ROC-
AUC curve analysis is best for extracting results with high
TPR. Impact of different feature selection procedures is also
observed in the performance measures. With the ROC-AUC
threshold selection procedure, it is observed that the mean

of TNR for model trained with PC is comparatively similar
to the model trained with VT. However, the variance in TNR
is observed to be higher in the model trained with PC fea-
ture subset as opposed to the model trained with VT feature
subsets. Low variance in TNR with high mean value is an
indicator of a more consistent and effective performance
with the VT features. High TNR along with high TPR is an
indication of a better performing model. Therefore, feature
sets using the variance threshold method along with thresh-
old determination using ROC-AUC is considered as the best
choice for testing.

Feature importance plays a big part in the efficiency of
the trained model. In order to compare the effect of impor-
tance evaluation of the features, a feature subset is obtained
by not reducing the level specific group using feature impor-
tance. The model is trained with features selected solely
using variance threshold and probability threshold evalu-
ated using ROC. The feature set selected using solely vari-
ance threshold contained a total of 23 features, compared
to the 15 features selected with importance evaluation. The
features selected by using just the variance threshold analy-
sis yields the selection of features net_fanin_1 , net_fanin_2 ,
net_fanin_3 , net_fanin_4 , net_fanin_5 , ff_fanin_3 ,
ff_fanin_4 , ff_fanin_5 , po, loop_fanin_2 , loop_fanin_3 ,
loop_fanin_4 , loop_fanin_5 , loop_fanout_4 , loop_fanout_5 ,
ld, min_dff_fanin , min_dff_fanout , min_dif_pi , cc0, cc1, co,
sc0, and sc1. It is to be observed that the selected feature
subset exhibit multiple features that belong to the same level
specific feature group. Selection of features from the same
level specific feature group reduces the amount of useful
information contributed by the features, thus degrading the
performance of the model. Results are extracted from the
trained model and they are compared with the results of the
model that included feature importance evaluation.

Figure 6 showcases the accuracy comparison between
the two models. It is observed that the accuracy measure

Table 3 Mean and variance evaluation of classifiers with selected
thresholds

 PC-PR PC-ROC VT-PR VT-ROC

TPR Mean 53.21 86.08 45.80 83.95
 Variance 1715.90 57.65 1983.15 117.68

TNR Mean 99.78 93.56 99.81 95.79
 Variance 0.05 125.90 0.06 49.50

Fig. 6 Accuracy comparison
between models obtained with
and without feature importance

459Journal of Electronic Testing (2023) 39:447–463

1 3

remain very similar for most circuits. Noticeable improve-
ments in accuracy is observed in RS232-T1200 and RS232-
T1900 circuits in the model that used the importance val-
ues to select its features. The comparison of mean and
variance of accuracy measures of the models trained by
variance threshold without feature importance features and
variance threshold with feature importance features have
been depicted in Table 4. It is observed in the table that
the mean of the accuracy is higher in the model that relies
on feature importance than the model that does not involve
feature importance for feature selection. It is also observed
that the model with feature importance evaluation exhibits
lower variance, and in turn, higher consistency in accuracy
compared to without feature importance. From the results it
can thus be concluded that merely relying on entropy of the
features is not sufficient for effective feature selection. The
importance of features play a valuable role in conjunction
with variance threshold analysis to select relevant features
and ensure accurate and effective detection of HT nets. The
model can be improved in terms of its efficiency when fea-
tures are selected using the importance values computed
through XGBoost.

Figure 7 showcases the performance measure of the two
models while conducting the classification process. Lower
feature count in the trained model is helpful towards increas-
ing the performance of the model during classification. The

exclusion of importance values while selecting features
leads to a larger feature set. The larger size of the feature
set contributed to the longer time that the model had taken
to perform the classification process, as observed in Fig. 7.

The HTs exhibit diverse functional and structural prop-
erties depending on their nature and purpose. For example,
sequential HTs involve the usage of flip-flops in their trigger
nets that are in close proximity to nets exhibiting rare signal
switching. Level specific features aid in localised analysis
of such various functional and structural properties of HTs.
The limit of 5 logical depth in neighbourhood cones of the
target net serve as an efficient range to gather localised HT
features. Higher logical depth of neighbourhood cone leads
to the features to be increasingly unrelated to the target net.
Unrelated feature evaluation leads to flagging more number
of normal nets as HT nets that results in decreased accuracy
in HT net classification. To showcase the importance of lim-
iting the range of the neighbourhood cone logical depth from
1 to 5, the HT classification process has been conducted by
increasing the range up to 6. Table 5 depicts the statistical
comparison of accuracy in results obtained from Trust-Hub
HT detection process. It is observed in the table that the
model trained with level specific features up to logic level 6
has lower mean and higher variance in accuracy compared to
model trained with level specific features up to logic level 5.
Lower mean of accuracy implies that considering level spe-
cific features up to 6 levels leads to more erroneous flagging
of normal nets as HT nets. Higher value of variance also
insinuates decreased consistency in accurately identifying
HT nets within the host IC.

6.2 Results and Comparison

Table 6 showcases the detailed cross-validation results of var-
ious ISCAS’89 and RS Trust-Hub circuits. It is observed that

Fig. 7 Comparison of time
elapsed (in seconds) for
each test

Table 4 Comparative analysis of impact on accuracy in importance
based feature selection procedure over non-importance based

 Without Feature
Importance

 With
Feature
Importance

Mean 94.50 95.49
Variance 58.22 47.77

460 Journal of Electronic Testing (2023) 39:447–463

1 3

the threshold value of the ROC-AUC curve tends to remain
towards 0, with only a handful of ICs having high threshold
determination. The TNR and accuracy is also observed to be
consistently high across all ICs. TPR values are observed to
be fairly high, with the RS circuits performing better than
the ISCAS’89 circuits. s35932-T300, RS232-T1400, RS232-
T1500 and RS232-T1000 have a TNR of 100% , which means
all normal nets have been detected correctly by the trained
model. 100% TNR value of the ICs leads to the precision
scores to be 100% . It is observed that the F-measure is also
100% for these ICs because of the high TPR paired with
perfect TNR score. High precision and F-measure scores
indicate high degree of correctness in predictions. The mini-
mum TPR is exhibited by s38584_T100 with a TPR value
of 44.44% . The IC also exhibits a minimum TNR of 75.22% ,
making it the lowest performing tested Trust-Hub IC. How-
ever, a greater than 0% value of TPR indicates detection
of at least one HT net for every tested IC. s35932_T300 is
observed to be the most accurately predicted Trust-Hub IC

with an accuracy measure of 99.98% . It is to be noted that
the TNR and accuracy measure is consistently high across all
the tested ICs with an average value of 95.79% and 95.49% ,
respectively. Consistently high TNR and accuracy measure
indicates the effectiveness of the selected threshold for HT
detection for all ICs. Overall, the best performance is seen
with s35932-T300, RS232-T1400, RS232-T1500 and RS232-
T1000 circuits which all have 100% F-measure and preci-
sion scores. The results of the circuits that exhibit the high-
est performance by the model are emboldened in the table.
The results obtained are compared with previous supervised
works in literature and the comparison is depicted in Table 7.

Random forest model is used in [10], neural networks are
utilised to train the model in [11], and supervised model using
SVM [9] have been used to extract results from Trust-Hub
circuits. [4] utilised XGBoost with feature set obtained using
Pearson’s correlation. It is observed in Table 7 that both the
TPR and TNR values of the proposed model have improved
over the previous works in varying degree. Unlike the previous
works, the TPR and TNR values are also observed to be much
more consistent as well. Such consistency speaks to the reli-
ability of the proposed model compared to the previous works.

6.3 Test Results of Custom HT

Custom HTs that are designed to exhibit low toggle within
their nets have been inserted in ISCAS’89 circuits s386 and

Table 5 Accuracy comparison of model trained over level specific
features extracted up to 5 logic levels against features extracted up to
6 logic levels in neighbourhood cone of target nets

5 Logic Levels 6 Logic Levels

Mean 95.49 94.16
Variance 47.77 58.27

Table 6 Cross validation results using variance threshold feature sets and ROC-AUC threshold

Certain results in Table 6 have been emboldened to highlight the performance metrics of the circuits that exhibit significantly higher perfor-
mance than the rest of the circuits

CircuitName Threshold TNR% TPR% Accuracy% F-measure% Precision%

s15850_T100 0.00 91.93 80.77 91.81 18.19 10.10
s35932_T100 0.00 99.71 80.00 99.66 57.10 40.00
s35932_T200 0.00 99.54 91.67 99.52 43.09 27.50
s35932_T300 0.02 100.00 91.67 99.98 100.00 100.00
s38417_T100 0.00 87.75 83.33 87.74 2.80 1.42
s38417_T200 0.00 91.82 86.67 91.80 5.30 2.73
s38417_T300 0.00 84.15 81.82 84.15 1.95 0.99
s38584_T100 0.00 75.22 44.44 75.19 0.45 0.23
RS232-T1100 0.95 99.65 91.67 99.33 95.49 91.67
RS232-T1200 0.00 96.48 78.57 95.44 72.36 57.89
RS232-T1300 0.28 99.65 88.89 99.32 93.96 88.89
RS232-T1400 1.00 100.00 84.62 99.32 100.00 100.00
RS232-T1500 0.44 100.00 92.31 99.66 100.00 100.00
RS232-T1600 0.55 99.64 88.89 99.31 93.96 88.89
RS232-T1700 1.00 99.65 85.71 99.31 92.16 85.71
RS232-T1900 0.00 99.30 86.67 98.67 92.55 86.67
RS232-T2000 0.00 99.65 81.82 98.98 94.58 90.00
RS232-T1000 1.00 100.00 91.67 99.66 100.00 100.00
Average 95.79 83.95 95.49 64.66 59.59

461Journal of Electronic Testing (2023) 39:447–463

1 3

s38584. The various HTs inserted within the host ICs are
shown in Fig. 8. The insertion of the HTs have been con-
ducted so as to make them be a part of the IC that has mini-
mal toggling within their nets. The trigger inputs (Tin) are
nets of the host IC that exhibit low toggle in their signals
during normal functioning of the IC. Upon full activation,
the HTs inject the malicious signal in the host IC through
the payload signal (P). s386-HT1 is obtained using HT1
nets in s386 circuit, s386-HT2 is obtained using HT2 nets
in s386, s386-HT3 and s38584-HT3 is obtained using HT3
nets in s386 and s38584 circuits respectively. The super-
vised model trained with feature importance and variance

threshold features are used to examine the datasets of the
ISCAS’89 ICs infected by the custom HTs. The results of
the analysis is depicted in Table 8.

It is observed in Table 8 that majority of the HT nets have
been detected by the trained model. In addition to consistent
detection of infected nets, the TNR, and thus the accuracy of
s38584-HT3 is also observed to be relatively high. There-
fore, it is observed that the trained model is sufficiently
capable of detecting covert nets within the IC even when
the tested HTs exhibit different design from the training set.
They are able to detect them even when they are designed
to bypass standard fault testing techniques.

Table 7 Comparison of
obtained results with previous
supervised works

True Positive Rate True Negative Rate

Circuit [10] [11] [9] [4] VT-ROC [10] [11] [9] [4] VT-ROC

RS232-T1000 100 100 53 93.18 91.67 98.90 24 31 95.54 100
RS232-T1100 50 78 58 95.35 91.67 98.20 25 27 97.05 99.65
RS232-T1200 88.20 91 80 88.37 78.57 100 55 26 96.70 96.48
RS232-T1300 100 86 89 96.77 88.89 100 65 26 97.47 99.65
RS232-T1400 97.80 100 83 95.92 84.62 100 15 22 96.58 100
RS232-T1500 94.90 82 83 95.74 92.31 99.60 47 24 97.03 100
RS232-T1600 93.10 97 89 90.62 88.89 99 28 26 97.83 99.64
s35932_T100 73 80 93 79.41 80 100 99 60 91.91 99.71
s35932_T200 8.30 67 100 65.85 91.67 100 88 59 93.90 99.54
s35932_T300 81.10 100 27 88.14 91.67 100 97 58 98.28 100
s38417_T100 33.30 83 100 71.43 83.33 100 98 76 78.76 87.75
s38417_T200 46.70 93 73 62.86 86.67 100 74 76 84.44 91.82
s38417_T300 75 100 100 87.10 81.82 100 94 72 63.96 84.15

Fig. 8 Custom HTs inserted
in ICs

462 Journal of Electronic Testing (2023) 39:447–463

1 3

7 Conclusion

The covertness of the HTs tend to make them difficult to
detect using standard testing procedures during IC manu-
facturing. This paper analyses effective threshold calculation
procedure in probabilistic XGBoost classifier to facilitate
their detection. Relevant HT features have been considered
from gate-level netlists. The impact of the extracted features
on decision tree classifier models is analysed by evaluat-
ing their importance values. Feature subset exhibiting high
entropy has been obtained using the XGBoost feature impor-
tance along with variance threshold. The feature subset is
used to create probabilistic classifier models using XGBoost
trained with effective hyperparameters whose threshold is
analysed using ROC-AUC curve and PR curve. The impact
of the resultant classifier exhibits high TNR and moderate to
high TPR values in the tested circuits. Effectiveness of high
entropy in features over low correlation for HT detection is
also compared by using Pearson’s correlation to select low
correlated feature subset.

Data Availability Raw data has been generated from the gate level Trust-
Hub benchmark circuits available in https:// trust- hub. org/#/ bench marks/
chip- level- trojan. Derived data supporting the findings of this study are
available from the corresponding author upon request.

Declarations

Conflicts of Interests The authors have no conflicts of interests to de-
clare that are relevant to the content of this article.

References

 1. Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correla-
tion coefficient. In: Proc. Noise Reduction in Speech Processing.
Springer Topics in Signal Processing, pp. 1–4. Springer, Berlin,
Heidelberg. https:// doi. org/ 10. 1007/ 978-3- 642- 00296-0_5

 2. Brglez F, Bryan D, Kozminski K (1989) Combinational profiles of
sequential benchmark circuits. In: Proc. 1989 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1929–19343.
https:// doi. org/ 10. 1109/ ISCAS. 1989. 100747

 3. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting
system. In: Proc. Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining.
KDD ’16, pp. 785–794. Association for Computing Machinery,
New York, NY, USA. https:// doi. org/ 10. 1145/ 29396 72. 29397 85

 4. Das R, Dhar T, Roy SK (2022) A threshold based hardware trojan
detection technique using xgboost algorithm. In: Proc. 2022 IEEE
International Test Conference India (ITC India), pp. 1–6. https://
doi. org/ 10. 1109/ ITCIn dia20 22551 92. 2022. 98547 35

 5. Dhar T, Roy SK, Giri C (2021) Hardware Trojan Horse Detection
through Improved Switching of Dormant Nets. ACM J Emerg Tech-
nol Comput Syst 17(3):33–13322. https:// doi. org/ 10. 1145/ 34399 51

 6. Dong C, Chen J, Guo W, Zou J (2019) A machine-learning-based
hardware-Trojan detection approach for chips in the Internet of
Things. Int J Distrib Sens Netw 15(12):1550147719888098

 7. Dong C, Liu Y, Chen J, Liu X, Guo W, Chen Y (2020) An unsu-
pervised detection approach for hardware trojans. IEEE Access:
Practical Innovations, Open Solutions 8:158169–158183. https://
doi. org/ 10. 1109/ ACCESS. 2020. 30012 39

 8. Goldstein LH, Thigpen EL (1980) SCOAP: Sandia Controllability/
Observability analysis program. In: Proc. 17th Design Automation
Conference, pp. 190–196. https:// doi. org/ 10. 1109/ DAC. 1980. 15852 45

 9. Hasegawa K, Oya M, Yanagisawa M, Togawa N (2016) Hard-
ware trojans classification for gate-level netlists based on machine
learning. In: Proc. 2016 IEEE 22nd International Symposium on
On-Line Testing and Robust System Design (IOLTS), pp. 203–
206. https:// doi. org/ 10. 1109/ IOLTS. 2016. 76047 00

 10. Hasegawa K, Yanagisawa M, Togawa N (2017) Trojan-feature
extraction at gate-level netlists and its application to hardware-
Trojan detection using random forest classifier. In: Proc. 2017
IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–4. https:// doi. org/ 10. 1109/ ISCAS. 2017. 80508 27

 11. Hasegawa K, Yanagisawa M, Togawa N (2017) Hardware Trojans
classification for gate-level netlists using multi-layer neural net-
works. In: Proc. 2017 IEEE 23rd International Symposium on On-
Line Testing and Robust System Design (IOLTS), pp. 227–232.
https:// doi. org/ 10. 1109/ IOLTS. 2017. 80462 27

 12. Hoque T, Cruz J, Chakraborty P, Bhunia S (2018) Hardware IP
Trust Validation: Learn (the Untrustworthy), and Verify. In: Proc.
2018 IEEE International Test Conference (ITC), pp. 1–10. https://
doi. org/ 10. 1109/ TEST. 2018. 86247 27

 13. Huang Z, Wang Q, Chen Y, Jiang X (2020) A survey on machine
learning against Hardware trojan attacks: Recent advances and
challenges. IEEE Access 8:10796–10826. https:// doi. org/ 10. 1109/
ACCESS. 2020. 29650 16

 14. Jacob N, Merli D, Heyszl J, Sigl G (2014) Hardware Trojans Cur-
rent challenges and approaches. IET Comput Digit Tech 8(6):264–
273. https:// doi. org/ 10. 1049/ iet- cdt. 2014. 0039

 15. Kok CH, Ooi CY, Moghbel M, Ismail N, Choo HS, Inoue M
(2019) Classification of trojan nets based on SCOAP values using
supervised learning. In: Proc. 2019 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pp. 1–5. https:// doi. org/
10. 1109/ ISCAS. 2019. 87024 62

 16. Li H, Liu Q, Zhang J, Lyu Y (2015) A survey of hardware trojan
detection, diagnosis and prevention. In: Proc. 2015 14th Inter-
national Conference on Computer-Aided Design and Computer
Graphics (CAD/Graphics), pp. 173–180. https:// doi. org/ 10. 1109/
CADGR APHICS. 2015. 41

Table 8 Test results of the ICs infected with custom HT

CircuitName Threshold TNR% TPR% Accuracy% F-measure% Precision%

s386-HT1 0.00 53.85 66.67 54.07 4.78 2.50
s386-HT2 0.00 51.48 80.00 52.30 8.53 4.65
s386-HT3 0.00 47.93 81.82 50.00 15.55 9.28
s38584-HT3 0.00 93.04 54.55 93.02 0.83 0.42

https://trust-hub.org/#/benchmarks/chip-level-trojan
https://trust-hub.org/#/benchmarks/chip-level-trojan
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1109/ISCAS.1989.100747
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/ITCIndia202255192.2022.9854735
https://doi.org/10.1109/ITCIndia202255192.2022.9854735
https://doi.org/10.1145/3439951
https://doi.org/10.1109/ACCESS.2020.3001239
https://doi.org/10.1109/ACCESS.2020.3001239
https://doi.org/10.1109/DAC.1980.1585245
https://doi.org/10.1109/IOLTS.2016.7604700
https://doi.org/10.1109/ISCAS.2017.8050827
https://doi.org/10.1109/IOLTS.2017.8046227
https://doi.org/10.1109/TEST.2018.8624727
https://doi.org/10.1109/TEST.2018.8624727
https://doi.org/10.1109/ACCESS.2020.2965016
https://doi.org/10.1109/ACCESS.2020.2965016
https://doi.org/10.1049/iet-cdt.2014.0039
https://doi.org/10.1109/ISCAS.2019.8702462
https://doi.org/10.1109/ISCAS.2019.8702462
https://doi.org/10.1109/CADGRAPHICS.2015.41
https://doi.org/10.1109/CADGRAPHICS.2015.41

463Journal of Electronic Testing (2023) 39:447–463

1 3

 17. Rostami M, Koushanfar F, Karri R (2014) A primer on hardware
security: Models, methods, and metrics. Proc IEEE 102(8):1283–
1295. https:// doi. org/ 10. 1109/ JPROC. 2014. 23351 55

 18. Sakia RM (1992) The box-cox transformation technique: A
review. J R Stat Soc Ser A Stat Soc Series D 41(2):169–178

 19. Salmani H, Tehranipoor M (2023) Trust-Hub.Org. https:// trust-
hub. org/#/ home

 20. Sharma R, Valivati NK, Sharma GK, Pattanaik M (2020) A
new hardware trojan detection technique using class weighted
XGBoost classifier. In: Proc. 2020 24th International Symposium
on VLSI Design and Test (VDAT), pp. 1–6. https:// doi. org/ 10.
1109/ VDAT5 0263. 2020. 91906 03

 21. Tebyanian M, Mokhtarpour A, Shafieinejad A (2021) SC-COTD:
Hardware trojan detection based on sequential/combinational
testability features using ensemble classifier. J Electron Test
37(4):473–487. https:// doi. org/ 10. 1007/ s10836- 021- 05960-2

 22. Yang Y, Ye J, Cao Y, Zhang J, Li X, Li H, Hu Y (2020) Survey:
Hardware trojan detection for netlist. In: Proc. 2020 IEEE 29th
Asian Test Symposium (ATS), pp. 1–6. https:// doi. org/ 10. 1109/
ATS49 688. 2020. 93016 14

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Tapobrata Dhar received his Bachelor of Technology (B.Tech.) degree
in Information Technology from National Institute of Technology, Dur-
gapur, India, in 2013. He received his Master of Engineering (M.E.)
degree in Software Engineering from Jadavpur University, India, in
2017. He is currently a research scholar in the Indian Institute of Engi-
neering, Science and Technology, Shibpur, India, pursuing doctorate

degree. His main research interests include hardware security, machine
learning and cryptography.

Ranit Das received his Bachelor of Technology (B. Tech.) degree from
RCC Institute of Information Technology, Kolkata, India, in 2015. He
received his Master of Technology (M.Tech.) in Information Tech-
nology from Indian Institute of Engineering Science and Technology
(IIEST), Shibpur, India, in 2022. He is currently employed as an engi-
neer at Samsung Research Institute, Noida, India, working with video
codes in Samsung mobile devices, under Visual Solutions team.

Chandan Giri has been at Indian Institute of Engineering Science
and Technology, Shibpur since 2008 as Associate Professor, Dept. of
Information Technology. His current research is focused on testing and
design-for-testability of integrated circuits (especially 3D and multi-
core chips) and Wireless Sensor Network. His research project has
included 3D multi-core IC testing. Research support is provided by
the University Grant Commission, Govt. of India. C. Giri received his
Bachelor of Technology (B.Tech) in Computer Science & Engineering
from Calcutta University, India in 2000 and subsequently Master of
Engineering (ME) in Computer Science & Engineering from Jadavpur
University, Kolkata, India in 2002. He was awarded PhD degree from
Dept. of Electronics and Electrical Communication Engineering of
Indian Institute of Technology, Kharagpur in 2008. He also presented
his research papers in several International Conferences. He is a mem-
ber of IEEE and ACM.

Surajit Kumar Roy received the BSc (Hons. in Physics) from Calcutta
University, India. He also received Bachelor of Technology in com-
puter science and engineering and subsequently Master of Technol-
ogy in computer science and engineering from Calcutta University,
India in 2002 and 2004. He was awarded PhD degree from Indian
Institute of Engineering Science and Technology (IIEST), Shibpur in
2016. Currently he is working at Indian Institute of Engineering Sci-
ence and Technology, India as Associate Professor, in the department
of Information Technology. His research interest includes VLSI testing,
embedded Systems, hardware security.

https://doi.org/10.1109/JPROC.2014.2335155
https://trust-hub.org/#/home
https://trust-hub.org/#/home
https://doi.org/10.1109/VDAT50263.2020.9190603
https://doi.org/10.1109/VDAT50263.2020.9190603
https://doi.org/10.1007/s10836-021-05960-2
https://doi.org/10.1109/ATS49688.2020.9301614
https://doi.org/10.1109/ATS49688.2020.9301614

	Threshold Analysis Using Probabilistic Xgboost Classifier for Hardware Trojan Detection
	Abstract
	1 Introduction
	2 Motivation
	3 Feature Extraction and Transformation
	3.1 Features Extracted
	3.2 Normalisation of Features

	4 Feature Importance Based Feature Selection
	4.1 Feature Importance
	4.1.1 Variance Threshold
	4.1.2 Pearson’s Correlation

	5 Machine Learning Model
	5.1 Probabilistic Classifier
	5.2 Model Development
	5.2.1 Receiver Operating Curve (ROC)
	5.2.2 Precision Recall Curve (PR-Curve)

	6 Experimental Results
	6.1 Feature Set and Threshold Measure Evaluation
	6.2 Results and Comparison
	6.3 Test Results of Custom HT

	7 Conclusion
	References

