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Abstract
With advanced technology, the latest Very Large Scale Integration (VLSI) circuit designs are manufactured. In advanced 
technology-centered circuits, new design-specific, as well as feature-sensitive failure mechanisms are on the rise; those fail-
ures are named faults. These faults could make the circuit behave abnormally and could be of any kind. Therefore, locating 
as well as detecting these faults becomes essential for the circuit’s analysis and enhancement. The challenges are not fully 
solved even though the prevailing models gave several ideas for detecting faults. A novel methodology for Fault Diagnosis 
(FD) with Fault Location Identification (FLI) and optimal VLSI circuit design recovery was proposed in this methodology 
to tackle these issues. The signals with the frequency response are collected initially in the proposed methodology. The 
proposed Kendall Ensemble Empirical Mode Decomposition (KEEMD) algorithm, which decomposes the signal, is utilized 
to pre-process the obtained signals. Subsequently, the features like mean, Standard Deviation (SD), kurtosis, skewness, 
Relative Entropy (RE), and minimum and maximum values are retrieved as of the decomposed signal. For the circuit FD, 
the extracted features are provided as input to the Exponential Deep Learning Neural Network (EDLNN). Next, the fault 
locations are identified as of the diagnosed fault. The Interpolated Aquila Optimizer (IAO) algorithm optimally recovered 
the fault circuit subsequent to the identification. Centered on performance measures, the proposed scheme’s performance 
is analyzed with existent models in experiential analysis. It is concluded that better results were attained by the proposed 
schemes than the prevailing models.

Keywords  Very Large Scale Integration (VLSI) · Kendall Ensemble Empirical Mode Decomposition (KEEMD) · 
Exponential Deep Learning Neural Network (EDLNN) · Interpolated Aquila Optimizer (IAO) · Optimal circuit recovery

1  Introduction

For elevating the reliability of diverse systems like aircraft 
apparatus, biomedical devices, and satellites operating in 
remote harsh environmental conditions, designing circuits 

with the ability to detect and correct faults is vital [31]. If 
any of these applications have faults, the entire system’s 
functionality could be destroyed. With the technology’s 
advancement, Integrated Circuits (IC) complexity is ele-
vated. The IC's size reduction is caused by technological 
innovation. By this, the design is made compact along with 
more susceptible to transient faults [12]. Hard faults and 
soft faults are the ‘2’ faults classifications. Analog circuits 
occasionally have hard defects that include open circuits and 
short circuits. Soft faults, which represent the deterioration 
of circuit component properties, triggered many analog 
circuit defects [19]. Open or short faults are classified as 
catastrophic faults. A parametric fault or soft fault is a devi-
ance of a circuit component values as of its nominal value 
[20]. Thus, the severely required strategy is fault detection. 
Typically, fault Feature Extraction (FE) and fault pattern 
classification are the two steps involved in the traditional 
data-driven FD. It is well understood that FE is a significant 
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step. By encompassing time-domain analysis methodologies, 
frequency-domain analysis methodologies, time–frequency 
analysis methodologies, along with information entropy 
approaches, numerous FE algorithms have been created [32]. 
A severe testing process is conducted in a few manufacturing 
units. For instance, to validate whether every chip is free of 
manufacturing defects, production tests are executed at the 
VLSI manufacturing procedure's end. Testing an IC exter-
nally utilizing Automatic Test Equipment (ATE) becomes 
highly complicated with the advancement of recent design 
along with packaging technologies in VLSI [9]. A highly 
efficient low-cost solution was provided by the Design for 
Testability (DFT) techniques [27]. However, the testing of 
fault condition detection needs an advanced approach. The 
circuit is recovered after that. The design's sensitive areas are 
essential to be detected before recovering the circuit as of the 
faulty condition using these techniques. It has a high proba-
bility of getting altered into an error along with affecting the 
circuit's normal operation if a fault is identified in a sensitive 
area. Unessential overheads like computational overheads 
together with costs will be eliminated during elevating the 
circuit's reliability by recognizing sensitive areas along with 
exploiting suitable fault-tolerant methodologies [4]. Market 
pressure of modern VLSI chips was generated by the eleva-
tion in logic density, speed, along with time, so it is neces-
sary for the manufacturers to raise the yields. A vital step 
in separating similar defective net locations is FD, therefore 
defect identification and elimination could be executed [33]. 
For instance, intelligence technologies encompassing expert 
system schemes, fuzzy theory, Artificial Neural Networks 
(ANN), as well as Support Vector Machines (SVM) were 
applied by experts to construct multi-classification models 
for FD [28]. But, the problems were not entirely solved yet. 
So, a novel approach centered on fault and fault location 
detection with optimal VLSI circuit design was proposed 
in this scheme. Some examples of fault types in digital and 
analog signals are given as follows,

Digital Faults

Stuck-at Fault: A digital signal line is stuck at a par-
ticular logic level (0 or 1).
Bridging Fault: Two or more signal lines are short-
circuited, causing unintended signal coupling.
Transition Fault: A fault that affects the timing of sig-
nal transitions, resulting in incorrect data propagation.
Gate-Level Fault: A fault that occurs within a logic 
gate, causing incorrect gate behavior or output.

Analog Faults

Gain Fault: A fault in an analog amplifier that causes 
an incorrect gain factor.

Offset Fault: A fault that introduces an unwanted DC 
offset in an analog circuit, resulting in biased outputs.
Nonlinearity Fault: A fault that causes the response of 
an analog circuit to deviate from its ideal linear behavior.
Frequency Response Fault: A fault that alters the fre-
quency response of an analog circuit, causing distor-
tion or attenuation.

1.1 � Problem Definition

Improvement is still needed to solve the FD and FLI issues 
even though many ideas were provided by the prevailing 
research methodologies. The prevailing scheme’s issues are 
enlisted as,

•	 Owing to the circuit structure’s complexity and variabil-
ity, there is a lack of reliable and practical fault modeling 
methods for circuits.

•	 The circuit component’s parameter values are unremitting.
•	 The tolerance and nonlinear nature issue’s impact cannot 

be negligible.
•	 The limitations for actual circuits were test points.
•	 Some discrete simulation data, that affect the system’s 

performance, were utilized for testing in most of the pre-
vailing research models.

•	 The test pattern generation procedure followed by the 
prevailing research methodologies requires a huge 
storage capacity for recording total test responses for 
all faults.

In order to resolve these shortcomings, the proposed 
method developed a novel approach based on fault and fault 
location detection with optimal VLSI circuit design. The 
main motive of the proposed methodology is to address both 
fault detection and fault diagnosis in VLSI circuits. The sig-
nals collected from the circuit undergo pre-processing using 
the KEEMD algorithm, and features are extracted from the 
decomposed signals. These features are then used as input 
for fault diagnosis, where an EDLNN is employed to deter-
mine the presence of faults, and then the locations, where the 
faults are present, are identified. Finally, the IAO algorithm 
is utilized to optimize the recovery of the faulty circuit based 
on the identified fault locations.

Thus, the efficient FD and FLI approach with an opti-
mal VLSI circuit recovery system was proposed with better 
accuracy and diminished complexity by pondering all the 
above-addressed drawbacks.

The presented research is structured as, in section 2, the 
related existing research methodologies are explained, the 
proposed research methodologies are illustrated in sec-
tion 3, in section 4, the experimental analysis is given, 
and in section 5, the paper is concluded along with future 
enhancement.
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2 � Related Work

Sanyal et al. [23] suggested a model that identified equivalent 
faults in analog circuits. Anamalgamation of Direct Current 
(DC) operating point analysis along with Alternating Current 
(AC) analysis of the Circuit Under Test (CUT) was utilized in 
this combination. In the course of post-silicon testing, the faults 
were detected by this approach. The approach’s effectiveness in 
identifying equivalent faults was exposed in this study. Higher 
fault coverage was attained in this approach with noticeably 
abated computation. High fault coverage was achieved by utiliz-
ing the Fault Classification (FC) along with input signal synthe-
sis. This classification significantly covered most of the detect-
able faults. However, more time was taken for bigger circuits.

Nirmalraj et al. [18] presented a technique to distinctively 
recognize any single stuck-at faults location along with fault 
type. When analogized with prevailing models, the number of 
test configurations was significantly diminished by the Walsh 
code methodology. A series of ISCAS’89 benchmark circuits 
implemented in distinct Field Programmable Gate Array 
(FPGA) families executed the method’s extensive testing. The 
simulation outcomes suggested that fault detection and diag-
nosis required a maximal number of configurations. It was 
noted that the total number of test configurations was abated 
by the methodology. Since the methodology was analyzed 
with less number of circuits, the approach was not reliable.

IshraqulHuq et al. [10] recommended ‘2’ Single-Ended 
Ring Oscillator (SERO)-centered Transistor Stuckon (TSON) 
FD models for Complimentary Metal–Oxide–Semiconductor 
(CMOS) circuits. In methods 1 and 2, the SERO was utilized as 
a current-controlled and voltage-controlled oscillator, respec-
tively; thereby abating the detection block’s circuit head. The 
outcomes exhibited that TSON faults in the CMOS circuit 
were successfully detected by both methods centered on the 
SERO’s oscillatory behavior. Performance issues were raised 
if the approach utilized the Built-In Current Sensors (BICS).

Gao et al. [6] implemented a Reed–Solomon Erasure Codes 
(RS-EC) decoder on an FPGA. Grounded on partial re-encoding 
for the faults in the RS-EC decoder’s user memory, a fault detec-
tion and location scheme was presented. The analysis exposed 
that most faults were detected by this scheme with tiny missing 
and false detection probability. The experiential outcomes sug-
gest that the decoder tolerated more than 90% of faults in user 
memory. Consequently, all the faults were accurately located by 
the fault location scheme.

Srimani et al. [29] presented a testing technique for 
identifyingparametric faults in analog circuits grounded on 
the 'Kolmogorov–Smirnov' (K–S) test. When the circuit’s 
input was a random analog signal, the time-domain signal 
processing approach was the method, which analogized 
statistical similarity regarding the 'Empirical Cumulative 
Distribution Function' (ECDF) of the circuit’s outputs. 

The functional metric’s tolerances were mapped to the 
CUT’s components by the Multivariate Adaptive Regres-
sion Splines’ (MARS) scheme. A good agreement with 
the simulated outcomes was exhibited by the experiential 
outcomes. The system’s performance was affected since 
the K-S test was more sensitive to deviations near the dis-
tribution center rather than at the tails.

Kuen-Jong Lee et al. [14] recommended a diagnosis pat-
tern generation procedure to identify equivalent Transition 
Faults (TF) efficiently. It also engendered a very compacted 
diagnosis pattern to differentiate non-equivalent TF. Two 
major methods were comprised in this procedure to obtain 
very compact diagnosis patterns. Owing to Automatic Test 
Pattern Generator (ATPG) backtracking limit, those two 
methods handled very few fault pairs. The experiential out-
comes suggest that this was the first work for differentiat-
ing all diverse TF along with identifying all equivalent TF 
for ISCAS’89 and IWLS’05 benchmark circuits. Grounded 
on the TF model, some inaccuracy was caused by the 
approach’s effect in any diagnosis model.

Vinod Kumar Khera et al. [11] recommended a heuristic 
approach to abate the test vector count. It was executed dur-
ing VLSI testing of standard ISCAS circuits. The test vec-
tor’s numbers requisite for testing were augmented with the 
dwindling die-space along with elevating circuitry on a single 
IC. The circuit’s total testing cost was directly affected by the 
number of test vectors. Here, retrieving child test vectors along 
with merging them diminished the test vectors. The test vec-
tor count was diminished by this scheme, which was tested by 
single stuck-at-fault models successfully. The scheme’s effec-
tiveness was illustrated by the obtained outcomes.

Takahashi et al. [30] suggested a magnetic field emitted 
as of Large Scale Integration (LSI) to assess the on-chip 
Power Supply Network (PSN) grounded on up-to-date esti-
mation. From the magnetic field measurement outcomes, 
the actual current flowing in the network was estimated in 
this method. It also facilitated us to detect design faults like 
VIA/wire disconnections and/or current concentration in a 
non-invasive and low-cost way. Utilizing an electromagnetic 
field simulator, the experiential outcomes suggest that the 
current flow in the supply network was accurately predicted 
by the model. Dedicated on-chip current sources for signal 
injection into the PSN were needed by the Design Under 
Test (DUT) in the presented scheme, which was the major 
drawback that may end in non-negligible hardware overhead.

Gaber et al. [5] introduced a fault detection model for 
extracting features along with FD as of large-sized digital 
circuits grounded on Deep Learning (DL). Engendering 
Test patterns utilizing ATALANTA software, feature reduc-
tion employing Stacked Sparse Autoencoder (SSAE), and 
classification for FD were the ‘3’ phases comprised in this 
model. For the unsupervised learning phase, test vectors were 
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employed in SSAE as training data. By altering the SSAE 
network’s architecture along with sparsity constraint, the FE’s 
performance was tested. The experiential outcomes revealed 
that maximal fault coverage of 99.2% utilizing the ATAL-
ANTA tool was delivered by employing ISCAS'85. Better 
outcomes were provided by SSAE only if the data was bulky. 
Here, the outcome was not reliable as the system was trained 
by the research methodology with fewer data.

Rahaman et al. [21] presented a technique under the Miss-
ing Gate Fault (MGF) model for FD along with fault location 
in a reversible combinational circuit. Initially, a universal 
test set of length that detects whole Partial MGF (PMGF), 
all Single MGF (SMGF), and all detectable Repeated-Gate 
Faults (RGF) were derived in a reversible combinational cir-
cuit, which was with the Controlled-Not (k-CNOT) gates. 
Here, hardware overhead was elevated in this method, not 
requiring ATPG. A technique was presented under the 
SMGF scheme for locating the faulty gate.

Luo et al. [15] suggested an FPGA-centered analog FD sys-
tem by implementing 2D information fusion, two-port network 
analysis, together with interval math theory. Initially, Since the 
embedded algorithms were executed in parallel on FPGA, higher 
processing speed along with smart circuit size were provided by 
it. Secondly, good compatibility was exhibited by the hardware 
structure with other diagnostic algorithms. Finally, flexibility was 
enhanced by the equipped Ethernet interface for remote monitor-
ing as well as controlling. The experiential outcomes acquired 
as of ‘2’ realistic example circuits signified that the competitive 
performance in both diagnosis accuracy and time-effectiveness, 
with about 96% accuracy within 60 ms computational time, was 
attained by methodology. It was computationally complex.

Mondal et al. [17] developed FD along with a localization 
scheme for the prevailing MGF models in Reversible Circuits 
(RC). Here, Test vectors (T) were computed initially followed 
by engendering a unique test set (U) by executing an algorithm. 
The faults of any type prevailing in the circuit could be detected 
by applying them after engendering the test set (U). For all sorts 
of MGF namely SMGF, PMGF, and MMGF, this approach was 
successfully tested. The testing policies were executed over a 
wide spectrum of benchmarks to verify the functional correct-
ness of the scheme along with cross-checking the experiential 
findings. With the prevailing works, the attained outcomes were 
analogized and enhancements were reported.

Hari M. Gaur et al. [7] presented a redundant logic-
grounded framework for designing fault-tolerant RC. The 
scheme was grounded on the testable circuits’ development 
that generates an error signal in the course of any fault exist-
ence, which was further employed to realize fault-tolerant 
circuits. Corresponding double and tri-modular redundant 
fault-tolerant circuits were implemented to perform the 
experiments on benchmark circuit sets. With the efficient 
prevailing approaches, comparisons were provided. The 
presented approach elevated the test overheads.

Hari Mohan Gaur et  al. [8] propounded an effective 
design for a testability scheme for the stuck-at FD in RC by 
utilizing the Toffoli and Fredkin gates’ properties. When 
analogized to the prevailing work in the area that evidences 
its effectiveness towards the diminish in hardware cost with 
diminished degradation in speed, a set of benchmark cir-
cuits was acquired for experimentation where the presented 
framework attained a diminish of up to 25:0% in gate cost 
and 35:8% in quantum cost. For the presented approach, 
quantum delay, testing, and design complexity were high.

Arabi et  al. [3] recommended a multiclass Adaptive 
Neuro-Fuzzy Inference System (ANFIS) classifier for FC 
in analog IC. Analog circuits' FD suffering from inaccurate 
FC was assisted by this approach along with diminishing 
the computational burden. A high level of efficiency was 
revealed by the obtained outcomes with an accuracy aver-
age attaining a higher level. When analogized with both 
the ANN framework and the Fractional Fourier Transform 
(FRFT) methodology grounded on a statistical property, bet-
ter performance was exhibited by the approach regarding FC 
accuracy. Owing to the complex structure and gradient learn-
ing, the suggested ANFIS required a high computational cost.

3 � Proposed Fault and Fault Location 
Diagnosis with Optimal VLSI Circuit 
Recovery System

A fault is pondered as an error that causes unfavour-
able effects and is an abnormal state at the system level 
or device. If the system or device cannot resume a sta-
ble operational state, it is said to be faulty. FD system is 
therefore required. A novel method for fault FD was pro-
posed by this research scheme, which also pondered fault 
location identification to recover the mild and medium 
fault circuits. Frequency response collection with signal, 
pre-processing by KEEMD, FE, FD by EDLNN, FLI, and 
the ideal VLSI circuit recovery system by IAO are the 
proposed methodologies’ six phases. Figure 1 shows the 
proposed methodologies’ block diagram.

3.1 � Frequency Response Collection

Grounded on the circuit’s nature and operator frequen-
cies, the circuit’s frequency response is acquired in the 
first stage by sweeping a fixed input signal with a defined 
frequency range. Thus, the circuit’s signal is defined as,

(1)
Ss =

{
r1, r2, r3, ......, rn

}
, (or)

Ss = ri, i = 1, 2, 3, ......, n
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where, the circuit’s signal set with frequency level is defined 
by Ss , and the n-number of signals is indicated by rn.

3.2 � Pre‑Processing

The mode fusing issue of EMD was addressed by the Ensem-
ble Empirical Mode Decomposition (EEMD), which is an 
enhancement of EMD. To create the Intrinsic Mode Func-
tions (IMFs), the EMD’s ensembles are combined with the 
white noise of finite amplitude. The added noise dissipates 
equally in the entire time–frequency plane; thereby the prob-
lem of mode mixing is resolved. The EEMD algorithm is 
employed to decompose the input circuit signals into IMFs’ 
components. A better result was provided by the EEMD, but 
the random addition of the white noise's amplitude leading 
to additional trials is the issue, which exacerbates the mode 
mixing issue. The Kendall rank correlation between all the 
input signals is computed in this model to tackle this issue. 
Later, the better value is added as white noise. This sort of 
process minimizes the number of trials along with improv-
ing the EEMD algorithm’s performance. The modification 
is therefore known as the Kendall EEMD (KEEMD). The 
proposed algorithm’s steps are given as follows,

Step 1: Initially, the white noise time series, which is 
computed by the Kendall rank correlation �n(t) is uti-
lized for generating new time series that is given as an 
input signal ri(t),

where, n = 1, 2, ....,N with Nth ensemble number.
Step 2: By utilizing EMD,the acquired signal is decom-
posed into IMFs as:

(2)Tn(t) = ri(t) + �n(t)

where, the qth trial’s pth IMF is denoted as hpq , the residue 
of qth trial is notated as uLq , and qth the trial's IMFs num-
ber is denoted as Lq.
Step 3: For H trials, steps (2) and (1) are repeated. A 
distinct white noise series is summed in each trial to the 
input signal.
Step 4: By averaging the decomposition’s corresponding 
IMFs, the decomposed signal’s final outcome is com-
puted that is denoted as hp(t):

where, the minimum number of IMFs among all the trials 
is signified as K.

3.3 � Feature Extraction

The features are retrieved from the decomposed signals after 
pre-processing. Kurtosis, skewness, RE, mean, SD, mini-
mum, and maximum values are the features extracted here.

Relative Entropy (�1): The distance measured betwixt 
two probability distributions on a random variable is named 
RE. It is also known as the Kullback–Leibler divergence. 
The RE’s derivation is given as,

(3)Tn(t) =

Lq∑
p= 1

hpq + uLq

(4)
hp(t) =

�
H∑

q= 1

hpq

�

H
, p = 1, 2, .....,K

(5)�1 =
∑

l(x) log
l(x)

m(x)

Fig. 1   Block diagram for the 
proposed research methodology



426	 Journal of Electronic Testing (2023) 39:421–433

1 3

where, the RE value is defined as �1 , and the two probability 
distribution on the random variable is indicated as l(x) and m(x).

Mean (�2): The arithmetic average is the decomposed 
signal’s mean values. The mean calculation is given as,

where, the mean value is represented as �2 , and the total 
number of acquired decomposed values is defined as z.

Standard Deviation (�3): The SD for the IMF compo-
nents is defined as,

Skewness (�4): The symmetry or asymmetry in the Dis-
tribution Function (DF) is identified by a standard named 
Skewness. It is measured as zero if the DF is symmetrical. 
The skewness measure is positive for higher values along 
with negative for lower values if the DF is asymmetrical. 
This is defined as,

Kurtosis (�5): The curve’s sharpness at maximal value 
is recognized by a standard named Kurtosis, which defines 
the normal distribution as,

Min and Max: The minimum �6 and maximum values 
�7 are selected as of the decomposed values.

3.4 � Diagnosis of Fault

Using an EDLNN, the fault is identified in this section by the 
features gathered. A special type of Machine learning algo-
rithm is Artificial Neural Networks (ANNs). In order to iden-
tify a novel pattern, nonlinear statistical models called ANNs 
exhibit a complex relationship betwixt inputs and outputs. 
The Input Layer (IL), the Hidden Layer (HL), and the Output 
Layer (OL) are the three layers comprised in ANN. But, in a 
traditional neural network, the weights connecting the neu-
rons are initialized with random values. However, selecting 
the perfect random weight values can be time-consuming, and 
the selected values may not always be reliable. To address this 
issue, the research methodology proposes a weight adjustment 
approach using exponential values for the neurons. The expo-
nential values for the neurons are summed up, and the resulting 

(6)�2 =
1

z

∑
hp

(7)�3 =

�∑�
hp − �2

�2
z − 1

(8)�4 =
�2

�3

3

(9)�5 =
�2

�4

3

sum is divided by the total number of neurons in the hidden 
layer. This process helps calculate the weight values in a more 
systematic manner. Thus, the proposed EDLNN differs from 
the existing technique in terms of adding a weight adjustment 
approach. Figure 2 gives the proposed EDLNN structure.

The input features are primarily accepted by the input layer. 
Information as of the outside world is provided to the network 
by this layer. In this layer, no computation is executed, only 
the input features are forwarded to the subsequent layer. HL, 
which is also known as an intermediate layer, is the succeed-
ing layer where the computations are eventuated. It acts as an 
intermediate layer between the input and OL and its calcula-
tion is provided as,

where, bias refers to an additional parameter that is added to 
each neuron in the network. The bias term allows the neural 
network to shift the activation function's curve, enabling the 
network to learn and represent more complex patterns and 
relationships betwixt inputs and outputs. During the training 
process, the network adjusts both the weights and biases to 
minimize the error betwixt predicted outputs and the desired 
outputs. The biases, similar to weights, are updated through an 
optimization algorithm, such as gradient descent, to improve 
the network's performance. The HL is denoted as IDi, �i signi-
fies the input data, and the particular layer’s weight value is 
denoted as �i . The layer’s weight value is computed as follows,

where, the neuron’s exponential value is symbolized as eoni . 
By summing all the input values weights (n) , the output unit 
is computed to attain the neuron’s values in the OL.

where, the output unit is indicated as �i , and the loss functio 
(SS) is computed utilizing the Eq. (13),

where, the NN’s target output is signified as Gt . The thresh-
old that is set for the loss function is the minimum value. A 
further trial is executed if the loss function doesn't meet the 
threshold value. As the research methodology utilized the 
weight value by pondering the layer's neurons, more trials 
are not required. By utilizing the computed features as of the 
input signal collections, the circuit is diagnosed as the fault 
circuit (or) normal circuit by the proposed EDLNN.

(10)IDi = bias +

n∑
i=1

�i.�i

(11)�i =
∑ eoni

n

(12)�i = bias +

n∑
i=1

IDi .�i

(13)SS = (Gt − �i)
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3.5 � Fault Location Detection

Later, less frequency response is pondered as of the signal to 
detect the fault location if the circuit has a fault. The sensi-
tive area is computed as,

where, the fault location is signified as Fl , the number of 
fewer frequency responses is symbolized as Nlf  , and the 
total number of fewer frequency responses is signified as 
Olf  . Finally, the fault’s effectiveness is identified as of the 
probability of area. The fault is identified as severe if the 
probability of area is high. The fault is moderate if the prob-
ability is medium. If the probability is low then it is identi-
fied as mild.

3.6 � Optimal VLSI Circuit Recovery

A VLSI Circuit recovery system aims to detect and diagnose 
faults in both digital and analog circuits. By recovering the 
faulty VLSI circuit using an optimal design, the reliability of 
the circuit is significantly enhanced. The faults that caused 
the circuit to malfunction are rectified, leading to a more 
stable and reliable operation. Thus, the circuit is recovered 

(14)Fl =
Nlf

Olf

using the optimal design if the fault is moderate and mild; 
otherwise, the circuit is separated. Here, the Interpolated 
Aquila Optimizer (IAO) is employed to recover the circuit. 
Here, the VLSI circuit's recovery components are optimized; 
also, the reduction of delay, wire length, and area are deemed 
as fitness functions. The optimum global issues are solved by 
a swarm intelligence–centered approach named AO. Aquila's 
prey-hunting capability is the inspiration of a population-
centered optimization technique, which is named AO. Its 
local exploitation capabilities are inadequate even though 
it has significant global exploration capabilities. Therefore, 
the interpolation process is utilized by this methodology in 
the expanded exploitation updation process. Four hunting 
strategies were utilized by them. They also have the capacity 
to switch between them. The population (i.e., VLSI compo-
nents) (y) is initially initialized for the candidate solution, 
which is provided as follows,

Then, the population (Y) is generated randomly by uti-
lizing (16),

(15)Y =

⎡
⎢⎢⎢⎢⎣

y1,1 ... y1,D
.

.

yNp,1
... yNp,D

⎤⎥⎥⎥⎥⎦

Fig. 2   Structure of the EDLNN 
algorithm
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where, the random value is indicated as � , the upper bound 
value is represented as Ub , the lower bound value is mod-
elled as Lb , the total population size is signified as Np , and 
the number of decision variables is signified as D.

Expanded exploration: The prey’s location might be 
recognized by the Aquila, which also flies widely explor-
ing the prey:

where, the kth individual’s position is denoted by Yk(t + 1) 
at t + 1 iteration, the optimal location at the current itera-
tion is signified as Ye(t) , the random number in Gaussian 
distribution is denoted as � within an interval of 0 and 1, the 
maximal permitted iteration number is specified as Mt , and 
all individuals’ mean positions are notated as Ym(t) at the 
current iteration:

Narrowed Exploration: The prominent hunting 
method utilized for Aquila is this.Itattacks the prey by uti-
lizing the short gliding after descending within the chosen 
area along with flying around the prey. The formula for a 
position update is illustrated as:

Here, � is the random number, the Aquila’s random 
position is depicted as Yp(t) along with the levy flights are 
defined as � that could be computed as:

where, a constant parameter is expressed as c and � , random 
numbers between 0 and 1 are illustrated as m, n , and � is 
computed as follows:

The spiral shape in the search is presented by utilizing the 
qq and pp in the narrowed exploration, which is calculated as 
follows:

(16)
Yk,1 = �

(
Ub − Lb

)
+ Lb, k = 1, 2, ....,Np,1 = 1, 2, ....,D

(17)Yk(t + 1) = Ye(t) ×

(
1 −

t

Mt

)
+ Ym(t) − Ye(t) ∗ �

(18)Ym(t) =
1

Np

Np∑
k=1

Yk(t)

(19)Yk(t + 1) = Ye(t) × � + Yp(t) + (q − p) × �

(20)� = c ×
m × �

|n| 1

�

(21)� =

Γ(1 + �) × sin

(
��

2

)

Γ

(
1+�

2

)
× � × 2

�−1

2

(22)pp = � × sin(�)

(23)qq = � × cos(�)

where, the constant number is denoted as V  and the fixed 
constant number is notated as �.

Expanded exploitation: When they fail to identify the 
target during the exploitation process, Aquila might reinitial-
ize them. Then, they update their positions with the following 
equation:

Here, two fixed numbers are symbolized as � and, � the 
new best location is indicated as 

(
Ye(t)

)
nw

 , and another one 
best location is defined as 

(
Ye(t)

)
nw+1

 . Thus, the interpolation 
process is defined as the new location consideration phase.

Narrowed exploitation: It has walking and grabbing prey 
behavior. Here, the prey is chased by Aquila in the light of its 
escape trajectory along with attacking the prey on the ground. 
This behavior mathematical representation is given as follows:

where, the quality factor is specified as Qf  , which is com-
puted as,

The variations of motion are indicated as T1 and T2 , which 
are derived as follows,

The VLSI circuit was optimally recovered by utilizing 
this algorithm. Figure 3 depicts the proposed algorithm’s 
pseudo code. The algorithm's fitness function along with 
the updation procedure is provided here.

4 � Result and Discussion

The proposed FD and FLI’s performance is analyzed with 
the prevailing models. In the MATLAB Simulink platform, 
the proposed research methodology is implemented. By the 

(24)� = � + V × D1

(25)� = −� × D1 +
3�

2

(26)

Yi(t + 1) = � ×

[(
Ye(t)

)
nw

+

(
Ye(t)

)
nw+1

−
(
Ye(t)

)
nw(

Ym(t)
)
nw+1

−
(
Ym(t)

)
nw

]

+ � ×
[(
Ub − Lb

)
× � + Lb

]

(27)
Yi(t + 1) = Qf × Ye(t) −

(
T1 × Y(t) × �

)
− T2 × � + � × T1

(28)Qf = t
2�−1

(1−Mt)
2

(29)T1 = 2� − 1

(30)T2 = 2

(
1 −

t

Mt

)
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benchmark circuits like ITC'99, IWLS'05, etc., the system’s 
performance is analyzed.

ITC'99 dataset:The ITC'99 benchmark dataset 
includes various industrial-scale circuits used for test-
ing and evaluation purposes. It comprises a set of cir-
cuit designs from different application domains, such 
as microprocessors, memory circuits, and digital signal 
processors. These circuits are typically representatives of 
real-world VLSI designs [34].

IWLS'05 dataset:The IWLS'05 benchmark dataset is 
focused on logic synthesis and optimization problems. It con-
sists of a set of combinational logic circuits with different sizes 
and complexities. These circuits are primarily used for evaluat-
ing logic synthesis and optimization algorithms [35].

Both datasets provide circuit-wise information, includ-
ing circuit netlists, gate-level descriptions, and associated 
fault models. Additionally, they often come with pre-
defined sets of test patterns and fault coverage informa-
tion, which was used for evaluating the performance of 
FDandFLI techniques.

Implementation details  The proposed methodology for FD 
and FLI in VLSI circuits can be implemented using MAT-
LAB R2022a and Simulink. The implementation can lever-
age the processing capabilities of an Intel Core i5 processor 
running at a speed of 3.30 GHz. The operating system used 
for the implementation is Windows 10, and the system has 
8 GB of RAM.

4.1 � Performance Analysis of Fault Diagnosis

Here, the proposed EDLNN’s performance is analyzed with 
the prevailing DL Neural Network (DLNN) [24], Convolu-
tional Neural Network (CNN) [22], Recurrent Neural Net-
work (RNN) [2], and ANN [16].

Grounded on FD, Table 1 illustrates the proposed and pre-
vailing research model’s performance analysis. Precision, recall, 
F-measure, along with accuracy are the performance measures 
analyzed in this table. For any machine learning process, the 
vital metrics are accuracy and precision. A system is identi-
fied as a good system if those vital metrics' values are good. 
Grounded on the measures, superior performance was attained 
by the proposed methodology than the existent schemes. Con-
trarily, when analogized with the proposed and other existent 
algorithms, the worst performance was obtained by the ANN 
algorithm. Thus, the table concludes that the enhancements 

Fig. 3   Pseudocode for IAO 
algorithm

Table 1   Demonstrate the performance of the proposed and existing 
methodologies

Measures Proposed 
EDLNN

DLNN CNN RNN ANN

Precision 97.2 89.36 85 79.89 77.6
Recall 97.6 89 88.6 82 76.95
F-Measure 97.3 89.17 86.76 80.9 77.27
Accuracy 99.21 92 86.35 81 75.5
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centered on the proposed research attain superior performance 
than the prevailing schemes.

Figure 4 displays a pictorial representation of the pro-
posed EDLNN and the existing method's precision analysis. 
The ratio of precisely detected positive signals to the total 
predicted positive signals is named precision. A higher pre-
cision value of 97.2% was achieved by the proposed EDLNN 
than the prevailing methods. But, 89.36%, 85%, 79.89%, and 
77.6% were the precision values for DLNN, CNN, RNN, and 
ANN, respectively. Here, lower values were obtained by the 
prevailing models than the proposed scheme. The analysis 
concludes that the proposed EDLNN-centered FD is better 
than the prevailing methodologies.

The proposed EDLNN’s recall analysis with the exist-
ent DLNN, CNN, RNN, and ANN is displayed in Fig. 5. 
The measure of the number of positive classes correctly 
predicted by the classifier over all the positive classes in the 
data is named recall. A higher recall of 97.6% was achieved 
by the proposed system than the other models. A higher 
performance of 89% was attained by the DLNN, which is 
greater than the prevailing models but not higher than the 
proposed one because the proposed methodology attains 
9.66% higher than the prevailing DLNN. It is concluded 
from the analysis that higher outcomes than the prevailing 
models were attained by the proposed EDLNN-centered FD 
approach, which proves the enhancement’s goodness Fig. 6.

The F-measure analysis for the proposed EDLNN-based 
FD system’s graphical plot is analyzed with the prevailing 
algorithm-based FD. The harmonic mean of precision and 
recall corresponded with the F-measure. By this defini-
tion of the F-Measure metric centered on the precision 
as well as recall metric, high performance is achieved by 
the proposed EDLNN. So, this F-measure-based analysis 
doesn’t require any description. When contrasted with the 
prevailing algorithms, a higher F-measure value of 97.3% 
was attained by the proposed EDLNN. But, the prevailing 
algorithms show an F-measure value of 89.17%, 86.76%, 
80.9%, and 77.27%. Thus, a superior outcome was pro-
vided by the proposed methodology’s performance for FD.

Figure 7 displays the graphical plot for the analysis of 
the proposed EDLNN-based FD process with the prevail-
ing algorithm. The most intuitive performance measure 
named accuracy is the ratio of correctly predicted signals 
to the circuit’s total signals. The main metric for any kind 
of system is accuracy. The proposed scheme is signified 
as the best model for FD if the accuracy is high. The pro-
posed methodology attained an accuracy of 99.21%, which 
is higher than the prevailing schemes. Whereas the prevail-
ing schemes like DLNN, CNN, RNN, and ANN achieved 
92%, 86.35%, 81%, and 75.5% of accuracy, respectively. 

Fig. 4   Pictorial representation of precision analysis

Fig. 5   Recall Analysis

Fig. 6   Graphical analysis of the F-Measure measure of the proposed 
and existing methodologies

Fig. 7   Pictorial plot for the proposed EDLNN with the existing meth-
ods based fault diagnosis process
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Here, the proposed model is 7.83% more than the pre-
vailing DLNN algorithm. Finally, the accuracy’s pictorial 
representation proves that a better FD is obtained by the 
EDLNN algorithm.

4.2 � Performance Analysis of Optimal Circuit 
Recovery

Based on fitness vs iteration analysis, the proposed IAO’s 
performance is analyzed with the existent Aquila Optimizer 
(AO) [13], Whale Optimization (WO) [25], Sailfish Optimi-
zation (SO) [26], and Particle Swarm Optimization (PSO) 
algorithm [1] in this section.

The proposed IAO’s fitness vs iteration is analyzed with 
the prevailing algorithm-centered optimal VLSI circuit 
recovery design system and is displayed in Fig. 8. The vital 
fitness in the research methodology is minimization. The 
analysis suggests that a superior outcome was attained by the 
proposed scheme than the existent AO, WO, SFO, and PSO 
algorithms. As a result, the analysis shows that the proposed 
algorithm-based optimal VLSI circuit recovery is superior 
to the prevailing research technique.

The layer details of the proposed EDLNN are given in 
Table 2.

Discussion: The proposed method used an enhanced 
preprocessing step that improved the quality of the input 
data and consequently led to more accurate FD and FLI. 
Likewise, the extraction of important features provides 
the informative characteristics of the faults present in the 

VLSI circuits. These extracted features contributed to 
improved accuracy in fault diagnosis. The EDLNN is used 
as the fault diagnosis model. The EDLNN efficiently cap-
tured complex fault dependencies, resulting in improved 
performance in FLI. Finally, the IAO algorithm effectively 
restored the fault circuit to its optimal state, leading to 
improved circuit behavior and overall performance.

5 � Conclusion

In any form, a fault in the circuit could be present. Cross-
ing or leaving a net disconnected during manufacture can 
result in a defective circuit. In this study, the proposed 
EDLNN method is utilized to diagnose the fault along with 
identifying the fault location. The IAO algorithm is then 
utilized to restore the circuit with the aid of identified 
location. The proposed scheme’s performance is analyzed 
with the benchmark circuits here. Regarding accuracy, 
precision, F-measure, along with recall, the proposed 
EDLNN’s performance is analyzed with existent DLNN, 
CNN, DLNN, RNN, and ANN algorithms in the perfor-
mance analysis. The proposed EDLNN attains an accu-
racy, precision, recall, as well as F-measure of 99.21%, 
97.2%, 97.6%, as well as 97.3%, respectively, which is 
higher than the existent schemes. Therefore, superior out-
comes were attained by the proposed methodology-based 
fault detection and location identification, which is also 
well suited for VLSI circuits. The proposed scheme could 
be enhanced in the future by recovering the severe fault 
circuits and also with advanced models.
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Fig. 8   Fitness Vs iteration analysis

Table 2   The layer details and its values considered for the proposed 
EDLNN

1 Learning Rate 0.001
2 Number of Input Layers 4
3 Number of Hidden layers 8
4 Number of Output layers: 2
5 Number of Neurons per Layer: 120
6 Batch Size: 10



432	 Journal of Electronic Testing (2023) 39:421–433

1 3

References

	 1.	 Ahmed G (2022) Particle swarm optimization algorithm and its 
applications: a systematic review. Arch Comput Methods Eng 
29:2531–2561

	 2.	 Alex S (2021) Fundamentals of Recurrent Neural Network 
(RNN) and Long Short-Term Memory (LSTM) Network. Arxiv 
1–43. https://​arxiv.​org/​pdf/​1808.​03314.​pdf

	 3.	 Arabi A, Bourouba N, Belaout A, Ayad M (2018) An accurate 
classifier based on adaptive neuro-fuzzy and features selection 
techniques for fault classification in analog circuits. Integration, 
the VLSI J 64:50–59. https://​doi.​org/​10.​1016/j.​vlsi.​2018.​08.​001

	 4.	 Eslami M, Ghavami B, Raji M, Mahani A (2020) A survey on 
fault injection methods of digital integrated circuits. Integr VLSI 
J 71:154–163. https://​doi.​org/​10.​1016/j.​vlsi.​2019.​11.​006

	 5.	 Gaber L, Hussein AI, Moness M (2021) Fault detection based 
on deep learning for digital VLSI circuits. Procedia Comp Sci 
194:122–131. https://​doi.​org/​10.​1016/j.​procs.​2021.​10.​065

	 6.	 Gao Z, Zhang L, Cheng Y, Guo K, Ullah A, Reviriego P (2021) 
Design of FPGA-implemented reed–solomon erasure code (RS-
EC) decoders with fault detection and location on user mem-
ory. EEE Trans Very Large Scale Integr (VLSI) Syst 29(6):1073–
1082. https://​doi.​org/​10.​1109/​ICASSP.​2005.​14159​05

	 7.	 Gaur HM, Singh AK, Mohan A, Fujita M, Pradhan DK (2020) 
Design of single bit fault tolerant reversible circuits. IEEE Des 
Test 38(2):89–96. https://​doi.​org/​10.​1109/​MDAT.​2020.​30068​08

	 8.	 Gaur HM, Singh AK, Ghanekar U (2020) Design for stuck-at 
fault testability in toffoli–fredkin reversible circuits.Natl Acad 
Sci Lett 44(6):215–220. https://​doi.​org/​10.​14429/​dsj.​68.​11328

	 9.	 Govindaraj V, Manoharan K, Prabha KL, Dhanasekarp S, Sreekanth 
K (2022) Minimum power test pattern generator for testing VLSI 
circuits. 6th International Conference on Devices, Circuits and Sys-
tems (ICDCS), 21–22 April, Coimbatore, India. https://​doi.​org/​10.​
1109/​ICDCS​54290.​2022.​97807​73

	10.	 IshraqulHuq SM, Roy A, Ahmed M, Mahin AU (2020) Efficient 
detection of transistor stuck-on faults in CMOS circuits using 
low-overhead single-ended ring oscillators. J Comput Electron 
19(4):1685–1694. https://​doi.​org/​10.​1007/​s10825-​020-​01555-w

	11.	 Khera VK, Sharma RK, Gupta AK (2017) A heuristic fault based 
optimization approach to reduce test vectors count in VLSI test-
ing. J King Saud Univ Comput Inf 31(2):229–234. https://​doi.​org/​
10.​1016/j.​jksuci.​2017.​02.​001

	12.	 Kumar P, Sharma RK (2016) Real-time fault tolerant full adder 
design for critical applications. Eng Sci Technol Int J 19(3):1465–
1472. https://​doi.​org/​10.​1049/​iet-​cds.​2017.​0505

	13.	 Laith A, Dalia Y, Mohamed A, Ahmed A, Mohammed A, Amir H 
(2021) Aquila optimizer: a novel meta-heuristic optimization algo-
rithm. Comp Ind Eng 157:1–37. https://​doi.​org/​10.​1016/j.​cie.​2021.​
107250

	14.	 Lee KJ, Wu CH, Hou TY (2021) An efficient procedure to gener-
ate highly compact diagnosis patterns for transition faults. IEEE 
Trans Comput Aided Des Integr 41(3):737–749. https://​doi.​org/​
10.​1109/​TCAD.​2021.​30615​14

	15.	 Luo Q, He Y, Sun Y (2018) Time-efficient fault detection and 
diagnosis system for analog circuits. Automatika 59(3–4):302–
310. https://​doi.​org/​10.​1080/​00051​144.​2018.​15416​44

	16.	 Manogaran M, Mohamed L (2022) Analysis of artificial neural 
network: architecture, types, and forecasting applications. J Elec-
tric Comp Eng 1–23. https://​downl​oads.​hinda​wi.​com/​journ​als/​
jece/​2022/​54167​22.​pdf

	17.	 Mondal B, Bandyopadhyay C, Bhattacharjee A, Roy D, Parekh S, 
Rahaman H (2020) An approach for detection and localization of 
missing gate faults in reversible circuit. IETE J Res. https://​doi.​
org/​10.​1080/​03772​063.​2020.​17721​27

	18.	 Nirmalraj T, Radhakrishnan S, Pandiyan SK (2021) Automatic 
diagnosis of single fault in inter connect testing of SRAM‐based 
FPGA. IET Comput Digit Tech 15(1):362–371. https://​doi.​org/​10.​
1049/​cdt2.​12028

	19.	 Pandaram K, Rathnapriya S, Manikandan V (2021) Fault diag-
nosis of linear analog electronic circuit based on natural response 
specification using K-NN algorithm. J Electron Test 37(1):83–
96. https://​doi.​org/​10.​1007/​s10836-​020-​05922-0

	20.	 Parai M, Ghosh K, Rahaman H (2020) Fusion of information for 
fault diagnosis in analog circuits. IEEE 17th India Council Inter-
national Conference (INDICON), 10–13 December 2020, New 
Delhi, India. https://​doi.​org/​10.​1016/j.​aeue.​2017.​01.​002

	21.	 Rahaman H, Kole DK, Das DK, Bhattacharya BB (2011) Fault 
diagnosis in reversible circuits under missing-gate fault model. 
Comp Electric Eng 37(4):475–485. https://​doi.​org/​10.​1016/j.​
compe​leceng.​2011.​05.​005

	22.	 Rikiya MN, Richard K, Kaori T (2018) Convolutional neural net-
works: an overview and application in radiology. Insights Imaging 
9:611–629

	23.	 Sanyal S, Garapati SPPK, Patra A, Dasgupta P, Bhattacharya M 
(2019) Fault classification and coverage of analog circuits using 
DC operating point and frequency response analysis. Great Lakes 
Symposium on VLSI, 9–11 May, Tysons Corner VA USA. https://​
doi.​org/​10.​1145/​32998​74.​33179​76

	24.	 Sarat KS (2015) Deep Learning in Neural Networks: The science 
behind an Artificial Brain. https://​www.​acade​mia.​edu/​35881​239/​
Deep_​Learn​ing_​in_​Neural_​Netwo​rks_​The_​scien​ce_​behind_​an_​
Artif​icial_​Brain

	25.	 Seyedali M, Andrew L (2016) The whale optimization algorithm. 
Adv Eng Softw 95:51–67

	26.	 Shadravan S, Naji H, Bardsiri V (2019) The Sailfish Optimizer: 
A novel nature-inspired metaheuristic algorithm for solving con-
strained engineering optimization problems Engineering Applica-
tions of Artificial Intelligence. Eng Appl Artif Intell 80:20–34

	27.	 Somanathan GR, Bhakthavathchalu R, Krishnakumar M (2021) 
Balanced scan chain analysis to improve fault coverage in VLSI 
circuits. Sixth International Conference on Inventive Computation 
Technologies [ICICT], 20–22 January, Coimbatore, India. https://​
doi.​org/​10.​1109/​ICICT​50816.​2021.​93586​33

	28.	 Sun P, Yang Z, Jiang Y, Jia S, Peng X (2021) A fault diagno-
sis method of modular analog circuit based on SVDD and D–S 
evidence theory. Sensors 21(20):1–19. https://​doi.​org/​10.​1016/j.​
patrec.​2005.​08.​025

	29.	 Srimani S, Parai M, Ghosh K, Rahaman H (2020) A statistical 
approach of analog circuit fault detection utilizing kolmogorov–
smirnov test method. Circuits, Systems and Signal Processing 
40(5):2091–2113. https://​doi.​org/​10.​1007/​s00034-​020-​01572-x

	30.	 Takahashi D, Iizuka T, Khanh NNM, Nakura T, Asada K (2018) 
Fault detection of VLSI power supply network based on current 
estimation from surface magnetic field. IEEE Trans Instrum Meas 
68(7):2519–2530. https://​doi.​org/​10.​1109/​TIM.​2018.​28663​00

	31.	 Tavakkolai H, Ardeshir G, Baleghi Y (2021) Fast adder with the 
ability of multiple faults detection and correction. Int J Nonlinear 
Anal Appl 12:937–950. https://​doi.​org/​10.​22075/​ijnaa.​2021.​5526

	32.	 Yang Y, Wang L, Chen H, Wang C (2021) An end-to-end 
denoisingautoencoder-based deep neural network approach 
for fault diagnosis of analog circuit.  Analog Integr Circuits 
Signal Process  107(3):605–616.  https://​doi.​org/​10.​1007/​
s10470-​021-​01835-w

	33.	 Zhang Y, Zhang B, Agrawal VD (2014) Diagnostic test generation for 
transition delay faults using stuck-at fault detection tools. J Electron 
Test 30(6):763–780. https://​doi.​org/​10.​1109/​TEST.​2009.​53556​81

	34.	 https://​github.​com/​cad-​polito-​it/​I99T
	35.	 https://​iwls.​org/​iwls2​005/​bench​marks.​html

https://arxiv.org/pdf/1808.03314.pdf
https://doi.org/10.1016/j.vlsi.2018.08.001
https://doi.org/10.1016/j.vlsi.2019.11.006
https://doi.org/10.1016/j.procs.2021.10.065
https://doi.org/10.1109/ICASSP.2005.1415905
https://doi.org/10.1109/MDAT.2020.3006808
https://doi.org/10.14429/dsj.68.11328
https://doi.org/10.1109/ICDCS54290.2022.9780773
https://doi.org/10.1109/ICDCS54290.2022.9780773
https://doi.org/10.1007/s10825-020-01555-w
https://doi.org/10.1016/j.jksuci.2017.02.001
https://doi.org/10.1016/j.jksuci.2017.02.001
https://doi.org/10.1049/iet-cds.2017.0505
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1109/TCAD.2021.3061514
https://doi.org/10.1109/TCAD.2021.3061514
https://doi.org/10.1080/00051144.2018.1541644
https://downloads.hindawi.com/journals/jece/2022/5416722.pdf
https://downloads.hindawi.com/journals/jece/2022/5416722.pdf
https://doi.org/10.1080/03772063.2020.1772127
https://doi.org/10.1080/03772063.2020.1772127
https://doi.org/10.1049/cdt2.12028
https://doi.org/10.1049/cdt2.12028
https://doi.org/10.1007/s10836-020-05922-0
https://doi.org/10.1016/j.aeue.2017.01.002
https://doi.org/10.1016/j.compeleceng.2011.05.005
https://doi.org/10.1016/j.compeleceng.2011.05.005
https://doi.org/10.1145/3299874.3317976
https://doi.org/10.1145/3299874.3317976
https://www.academia.edu/35881239/Deep_Learning_in_Neural_Networks_The_science_behind_an_Artificial_Brain
https://www.academia.edu/35881239/Deep_Learning_in_Neural_Networks_The_science_behind_an_Artificial_Brain
https://www.academia.edu/35881239/Deep_Learning_in_Neural_Networks_The_science_behind_an_Artificial_Brain
https://doi.org/10.1109/ICICT50816.2021.9358633
https://doi.org/10.1109/ICICT50816.2021.9358633
https://doi.org/10.1016/j.patrec.2005.08.025
https://doi.org/10.1016/j.patrec.2005.08.025
https://doi.org/10.1007/s00034-020-01572-x
https://doi.org/10.1109/TIM.2018.2866300
https://doi.org/10.22075/ijnaa.2021.5526
https://doi.org/10.1007/s10470-021-01835-w
https://doi.org/10.1007/s10470-021-01835-w
https://doi.org/10.1109/TEST.2009.5355681
https://github.com/cad-polito-it/I99T
https://iwls.org/iwls2005/benchmarks.html


433Journal of Electronic Testing (2023) 39:421–433	

1 3

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

R. Saravana Ram  received his PhD degree from the Department 
of Electronics and Communication Engineering at Anna Univer-
sity, Chennai, India, in 2019. He is currently an assistant professor 

at Anna University Regional Campus Madurai, Madurai, India. His 
research interest includes VLSI, Network Security, Wireless Sensor 
Network,Embedded System and IOT.

M. Lordwin Cecil  Prabhaker  received his PhD degree from the 
Department of Electronics and Communication Engineering 
at Anna University, Chennai, India, in 2018. He is currently an 
Associate professor at, Vel Tech Rangarajan Dr. Sagunthala R&D 
Institute of Science and Technology, Chennai, India. His research 
interest includes VLSI, real time systems, embedded systems and 
Multicore Architecture.


	Diagnosis of Analog and Digital Circuit Faults Using Exponential Deep Learning Neural Network
	Abstract
	1 Introduction
	1.1 Problem Definition

	2 Related Work
	3 Proposed Fault and Fault Location Diagnosis with Optimal VLSI Circuit Recovery System
	3.1 Frequency Response Collection
	3.2 Pre-Processing
	3.3 Feature Extraction
	3.4 Diagnosis of Fault
	3.5 Fault Location Detection
	3.6 Optimal VLSI Circuit Recovery

	4 Result and Discussion
	4.1 Performance Analysis of Fault Diagnosis
	4.2 Performance Analysis of Optimal Circuit Recovery

	5 Conclusion
	Acknowledgements 
	References


