
Vol.:(0123456789)1 3

Journal of Electronic Testing (2023) 39:347–370
https://doi.org/10.1007/s10836-023-06070-x

A Novel Metaheuristic Based Method for Software Mutation Test Using
the Discretized and Modified Forrest Optimization Algorithm

Bahman Arasteh1 · Farhad Soleimanian Gharehchopogh2 · Peri Gunes3 · Farzad Kiani4 ·
Mahsa Torkamanian‑Afshar5

Received: 23 November 2022 / Accepted: 20 May 2023 / Published online: 20 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
The number of detected bugs by software test data determines the efficacy of the test data. One of the most important topics
in software engineering is software mutation testing, which is used to evaluate the efficiency of software test methods. The
syntactical modifications are made to the program source code to make buggy (mutated) programs, and then the resulting
mutants (buggy programs) along with the original programs are executed with the test data. Mutation testing has several
drawbacks, one of which is its high computational cost. Higher execution time of mutation tests is a challenging problem in
the software engineering field. The major goal of this work is to reduce the time and cost of mutation testing. Mutants are
inserted in each instruction of a program using typical mutation procedures and tools. Meanwhile, in a real-world program,
the likelihood of a bug occurrence in the simple and non-bug-prone sections of a program is quite low. According to the 80–20
rule, 80 percent of a program's bugs are discovered in 20% of its fault-prone code. The first stage of the suggested solution
uses a discretized and modified version of the Forrest optimization algorithm to identify the program's most bug-prone paths;
the second stage injects mutants just in the identified bug-prone instructions and data. In the second step, the mutation opera-
tors are only injected into the identified instructions and data that are bug-prone. Studies on standard benchmark programs
have shown that the proposed method reduces about 27.63% of the created mutants when compared to existing techniques.
If the number of produced mutants is decreased, the cost of mutation testing will also decrease. The proposed method is
independent of the platform and testing tool. The results of the experiments confirm that the use of the proposed method in
each testing tool such as Mujava, Muclipse, Jester, and Jumble makes a considerable mutant reduction.

Keywords Software mutation test · Bug-prone codes · Forest optimization algorithm · Mutation score

1 Introduction

Testing is an important method to find and remove bugs in
a software product [20]. Software engineers employ testing
techniques to improve the quality of software. Finding effec-
tive test data is the main role of software testers. The per-
centage of identified bugs by the selected test data indicates
its effectiveness. One of the most challenging study fields in
software testing is evaluating the effectiveness of test data
[2, 9, 14, 31, 32]. Mutation testing is the main technique
to evaluate the effectiveness of test data. In this technique,
the effectiveness of test data is indicated by mutation score
[12]. In the mutation test, programming bugs are made by
the mutation operators and injected into the source code of
the original program. The injected bugs (mutants) are made
by syntactic modification using mutation operators. A set
of buggy (mutated) programs are created in the mutation

Responsible Editor: Y. K. Malaiya

 * Bahman Arasteh
 Bahman.arasteh@istinye.edu.tr

1 Department of Software Engineering, Faculty
of Engineering and Natural Science, Istinye University,
Istanbul, Turkey

2 Department of Computer, Urmia Branch, Islamic Azad
University, Urmia, Iran

3 Computer Education and Instructional Technology, Yıldız
Technical University, Istanbul, Turkey

4 Computer Engineering Department, Faculty of Engineering,
Fatih Sultan Mehmet Vakif University, 34445 Istanbul,
Turkey

5 Computer Engineering Department, Faculty of Engineering
and Architecture, Nisantasi University, 34398 Istanbul,
Turkey

http://orcid.org/0000-0001-5202-6315
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06070-x&domain=pdf

348 Journal of Electronic Testing (2023) 39:347–370

1 3

testing in such a way none of them have compiler error. The
mutants (buggy programs) are executed along with the origi-
nal program to measure the mutation score of the selected
test data. A mutant is killed by the test data when the outputs
of the original program and the mutated (buggy) program
are not the same. The mutation score of a test set is 100%
when it kills all of the created mutants. Test data with a
100% score is ideal test data.

Each syntactical modification made by the mutation
operator simulates a bug in the program source code. The
number of produced mutants (buggy programs) is a function
of the lines of code and mutation operators; in the real-world
program, a large number of mutated versions are generated,
and these mutants should be executed with the test set.
Indeed, the computational cost and time of mutation testing
are one of the most significant problems in mutation test-
ing. The major goal of this work is to reduce the number of
generated mutants, and the time and cost of mutation test-
ing. Mutants are inserted in each instruction of a program
using typical mutation procedures and tools. But, in a real-
world program, the likelihood of a failure bug occurring in
the program's simple areas (instructions and data) is quite
low. According to the 80–20 rule, 80 percent of a program's
bugs are discovered in 20% of its bug-prone code [5, 13].

A suitable selection of mutant operators and cod sections
leads to reducing the cost of the mutation test. As a result,
injecting mutants into the bug-prone codes of a program
results in a limited number of mutations. Moreover, inject-
ing mutants into the simple codes (codes with low com-
plexity) results in bugs that are found (killed) by poor test
data. According to the expert programmer hypothesis, the
probability of programming bugs in the non-bug-prone parts
of the program is very low. The method proposed in this
study makes a static source code analysis to find out the
program's bug-prone parts. This method avoids injecting
mutants in non-bug-prone codes and makes a large reduction
in the number of mutations. In a program having n branch
instructions, there are 2n execution paths (test paths). Find-
ing the most bug-prone (most complex) test paths in a pro-
gram source code is an NP-hard problem. Nowadays, differ-
ent artificial intelligence and machine learning algorithms
have been used to sort out different NP = complete problems
in computer science [7, 18]. In the first stage of the proposed
technique, the Forrest optimization algorithm (FOA) is used
to find out the most bug-prone paths of the program; in the
second stage, the mutant operators are injected primarily
into the bug-prone sections. MuJava was utilized to achieve
program code alteration [25]. The main contributions of this
study are as follows:

• A novel heuristic-based method using discretized forest
optimization algorithm was developed to find the bug-
prone codes of a program source code. The method quan-

tifies the complexity weight of the identified bug-prone
codes.

• The mutation operators were applied only to the most
bug-prone instructions identified by the method, and the
non-bug-prone instructions were eliminated in the muta-
tion test.

• Avoiding the mutation of the non-bug-prone instructions
is the main technical advantage of the proposed method,
which leads to about a 27% reduction in the number of
generated mutants.

• The proposed method is independent of the platform
and testing tool. Results of experiments confirm that the
use of the proposed method in each testing tool such as
Mujava, Muclipse, Jester, and Jumble makes a consider-
able mutant reduction.

• An open-source tool to analyze a program’s source code
and find the bug-prone codes of the program was imple-
mented in this study.

Section 2 examines relevant studies. The proposed
method is shown in Section 3. The suggested method's simu-
lation, experiments, and evaluation criteria are discussed in
Section 4. This part also examines and analyzes the experi-
mental data, as well as compares and contrasts the suggested
method with alternative approaches. Section 5 wraps up the
study's findings and suggests future research areas.

2 Related Studies

Researchers have proposed many strategies for lowering
the cost of mutation testing. Here's a review of several key
techniques. It is regarded as one of the simplest methods
for reducing the number of mutations [8]. Techniques for
sampling mutants aim to take a representative sample of the
generated mutants. Researchers have examined the percent-
age of several samples ranging from 10 to 40% [34]. The
effect of the 10% sample percentage was only 16% smaller
than the entire set of generated mutants, according to the
experimental results. As a result, techniques for assessing
mutations with a 10% sampling percentage can still be a
good option. This is consistent with King's research results
[21]. Papadakis and Malevris [30] investigated the effective-
ness of several mutation sampling techniques (from 10 to
60 percent in 10 percent steps). The researchers found that
the registered test's effectiveness loss varied from 6 to 26%.

Another approximate strategy for reducing the number of
mutants is selective mutation. Proposed random selection
mutation as a way to reduce the number of mutations. Only
a small percentage of the mutations are randomly exam-
ined. Limited mutation [28] is an approach that evaluates
only a small number of mutations while ignoring the rest.
One disadvantage of this strategy is the way operators are

349Journal of Electronic Testing (2023) 39:347–370

1 3

chosen; also, they are unable to construct multiple excellent
sets for different reasons. Offutt et al. [28, 29] investigated
the effectiveness of several mutation operator sets to build
on this approach. According to the results, measuring the
success of mutation testing requires just 5 operators out
of 22. Barbosa et al. [6] proposed six operators for esti-
mating the number of suitable mutation operators. These
operators were combined to create a set of 10 operators
that removed 65 percent of the mutations while retaining
test effectiveness. Other studies looked at how successful
it was to use just one or two mutation operators. Wong [34]
evaluated the efficacy of using mutation with one or two
assignment mutation operators in contrast to the depend-
ent mutation operator. According to the experiment results,
the number of matching mutations can be decreased by up
to 67%, while only 5% of the test efficacy is lost. In addi-
tion, multiple studies have demonstrated that inserting these
mutations does not affect the quality of the test cases gen-
erated. Zhang et al. [36] looked at the differences between
sampling mutation and selective mutation. Two sample
methodologies were compared to three selection proce-
dures. The selective mutation was shown to be less effec-
tive than the sampling mutation. Finally, Zhang et al. [37]
proposed that selecting and sampling mutations be used
in combination to generate promising results.

The results indicate that by concentrating on other
mutants, a considerable proportion of mutations might be
eliminated [26]. Researchers have made an effort to deter-
mine the fewest mutations necessary to fully cover their set,
which would be adequate for determining the minimum set's
ability. The experiment that used the fewest changes to pro-
gram source code was originally carried out by Kintis et al.
[22]. The gathered data demonstrates that even for muta-
tions that are scarcely destroyed, just a little portion of the
produced mutations (9%) is required to cover the whole set
(35 percent). Investigated this issue both theoretically and
experimentally. Dynamic sharing was used to lower the
number of mutations. Given a test set, the x mutation is
dynamically translated into the y mutation; test cases that
kill x also kill y. Testing the dynamic subset in the C pro-
gramming language revealed that just 12% of the generated
mutations were necessary to cover the whole set. Last but
not least, Kurtz et al. [23, 24] investigated if establishing
the association between frequent mutations might be done
using dynamic and static analytic approaches. They found
that for better results, static and dynamic analysis techniques
should be used.

Researchers have developed a variety of strategies for
reducing the price of the mutation test's application, in
addition to limiting the number of pertinent mutations to
reduce mutation costs. The weak mutation strategy is one of
Howden's strategies [17]. By omitting the whole implemen-
tation of the main program and its mutations, weak mutation

aims to lower the processing cost associated with mutation
avoidance. To achieve this, the weak mutation lays forth
the requirements that a mutation must meet to be labeled as
a dead mutation. To compare the final output of the main
program and the modified program, the internal states of
the programs are compared immediately after applying the
mutation or altered components. It should be noted that
when compared to a "weak mutation," the average mutation
is referred to as a "strong mutation." As a middle ground
between strong and weak mutations, Jackson and Woodward
[18] proposed the strong mutation. They claimed that we
could compare the internal states of the main program
and its mutation at any point between the mutation's first
execution and the program's conclusion. Weak mutations
are useful in many investigations. Offutt and Lee [22] built
a fragile structure for the FORTRAN77 software and then
assessed its effectiveness and usefulness. The results showed
that weak mutations reduced manual effectiveness because
fewer related mutations were evaluated. Offutt and Lee [22,
30] used a range of techniques to examine the efficacy of
weak mutations. They concluded that this approach provides
stronger mutations at a lower cost. Researchers suggested
comparing the internal states of the main program and its
mutations following the first execution of the altered expres-
sion or the main block that contains it based on the results of
the experiments. Table 1 displays the salient characteristics
of the previously proposed strategies.

3 Identifying and Mutating the Bug
Prone Paths

Software mutation testing is time- and money-consuming,
therefore recent research efforts have focused on finding a
solution. The fundamental objective of this kind of study is
to reduce mutations while retaining efficacy. In this study,
we provide a method for mutation testing that makes use
of a forest optimization algorithm (FOA). In this process,
mutation operators were only applied to the codes of the
identified fault-prone regions of the program source code.
The recommended approach stops mutation of the program's
non-bug-prone sections, which significantly lowers the num-
ber of mutants. Figure 1 shows the proposed approach. The
developed FOA takes a subset of CFG's paths as input (ini-
tial population). The size of the initial population (number
of selected paths) depends on the number of total paths in
the CFGs of the input program. Figure 3 shows the structure
of the created CFG and the structure of a test path (solution)
in the proposed method. Each solution (test path), which
represents a tree in FOA, is implemented by an array. The
suggested FOA is used to find out the most bug-prone paths
(a subset of paths) of the program. The FOA begins with the
initial population of paths (trees). The bug-proneness of the

350 Journal of Electronic Testing (2023) 39:347–370

1 3

Ta
bl

e
1

 T
he

 re
la

te
d

w
or

ks
 p

ro
po

se
d

to
 re

du
ce

 th
e

nu
m

be
r o

f m
ut

an
ts

Th
e

m
et

ho
ds

Pr
oc

ed
ur

e
M

er
its

D
em

er
its

M
ut

at
io

n
sa

m
pl

in
g:

(B
ud

d
[8

];
A

cr
ee

 e
t a

l.
[1

];
W

on
g

[3
4]

; K
in

g
an

d
O

ffu
tt

[2
1]

; W
ei

 e
t a

l.
[3

3]
; A

ra
ste

h
et

 a
l.

[4
])

A
 su

bs
et

 o
f t

he
 g

en
er

at
ed

 m
ut

at
io

ns
 is

se

le
ct

ed
.

Th
e

si
m

pl
ic

ity
 o

f c
on

du
ct

in
g

th
e

te
st

Re
du

ce
d

te
st

effi
ca

cy

Se
le

ct
iv

e
m

ut
at

io
n,

 li
m

ite
d

m
ut

at
io

n:

(P
ap

ad
ak

is
 a

nd
 M

al
ev

ris
 [3

0]
; K

in
tis

 e
t a

l.
[2

2]
; W

on
g

[3
4]

; O
ffu

tt
et

 a
l.

[2
8]

; J
ia

 e
t a

l.
[1

9]
; O

ffu
tt

et
 a

l.
[2

9]
; B

ar
bo

sa
 e

t a
l.

[6
];

Zh
an

g
et

 a
l.

[3
6,

 3
7]

; D
el

ga
do

 e
t a

l.
[1

0]
)

Se
le

ct
io

n
of

 a
 sm

al
l s

et
 o

f m
ut

at
io

n
op

er
at

or
s

M
ai

nt
en

an
ce

 o
f t

es
t e

ffe
ct

iv
en

es
s b

y
re

du
ci

ng

65
%

 o
f m

ut
at

io
ns

Po
or

 p
er

fo
rm

an
ce

 a
nd

 th
e

re
qu

ire
m

en
t t

o
co

m
bi

ne
 it

 w
ith

 m
ut

at
io

n
sa

m
pl

in
g

M
in

im
um

 m
ut

at
io

n
se

ts
:

(K
in

tis
 e

t a
l.

[2
2]

; M
al

ev
ris

 a
nd

 Y
at

es
 [2

6]
;

K
ur

tz
 e

t a
l.

[2
3,

 2
4]

; D
en

g
et

 a
l.

[1
1]

; G
he

yi

et
 a

l.
[1

5]
)

El
im

in
at

io
n

of
 m

ut
at

io
ns

Sm
al

l s
ec

tio
n

of
 p

ro
du

ce
d

m
ut

at
io

ns
 is

se

le
ct

ed
 fo

r c
ov

er
in

g
th

e
en

tir
e

se
t

im
pr

ec
is

en
es

s

St
ro

ng
, w

ea
k

an
d

ha
rd

 m
ut

at
io

ns
: (

K
in

tis
 e

t a
l.

[2
2]

; J
ac

ks
on

 a
nd

 W
oo

dw
ar

d
[1

8]
; H

ow
de

n
[1

7]
; H

os
se

in
i e

t a
l.

[1
6]

, Y
ao

 e
t a

l.
[3

5]
)

W
ea

k
m

ut
at

io
n:

 B
y

by
pa

ss
in

g
th

e
fu

ll
ex

ec
ut

io
n

of
 th

e
pr

og
ra

m
, i

t l
ow

er
s t

he

nu
m

be
r o

f m
ut

at
io

ns
.

St
ro

ng
 m

ut
at

io
n:

 it
 re

du
ce

s t
he

 n
um

be
r o

f
m

ut
at

io
ns

 b
y

co
nt

ra
sti

ng
 th

e
ou

tp
ut

 o
f t

he

or
ig

in
al

 p
ro

gr
am

 w
ith

 th
e

ou
tp

ut
 o

f t
he

m

od
ifi

ed
 p

ro
gr

am
.

A
 m

ix
tu

re
 o

f s
tro

ng
 a

nd
 w

ea
k

m
ut

at
io

n
is

re

fe
rr

ed
 to

 a
s h

ar
d

m
ut

at
io

n.

W
ea

k
m

ut
at

io
n

is
 le

ss
 e

xp
en

si
ve

 a
nd

 u
se

s
fe

w
er

 c
om

pu
tin

g
re

so
ur

ce
s.

W
ea

k
m

ut
at

io
ns

 re
qu

ire
 e

va
lu

at
io

n
an

d
m

ig
ht

be

 in
ac

cu
ra

te
 if

 th
e

en
tir

e
pr

og
ra

m
 is

 n
ot

 ru
n.

351Journal of Electronic Testing (2023) 39:347–370

1 3

paths in the populations is calculated by Eq. 7. The popu-
lation's fitness value increases during iterations. The first
population is the worst, and the final population includes
the optimal (the most bug-prone) paths. The final popula-
tion is the output of the suggested method. Indeed, the final
population, as the most bug-prone path subset, is considered
for performing mutation tests.

3.1 Control Flow Graph

While injecting mutation operators, the suggested technique
identifies the program's most bug-prone regions. The related
control flow graph (CFG) of the program source code should
be constructed initially, as illustrated in Fig. 1. A CFG is a
diagram that shows all of a program's potential pathways
and branches. There are nodes and edges in the graph. Each
node is described as a block that contains a collection of
constantly performed operators and operands. In reality, if a
single instruction in the block is performed, the entire block
is executed. The presence of a directed edge between nodes
suggests a probable graph execution path. The term "branch"
refers to a node with more than one output edge. Figure 2
depicts the CFG of a program.

In this study, program complexity criteria were used
to calculate the bug susceptibility of program blocks. In
a CFG, a path's bug susceptibility (complexity) is deter-
mined by the complexity of its nodes. As a result, in the
CFG, determining the weight of nodes (bug susceptibility
measure of nodes) is necessary. The bug susceptibility of
a path is a function of the complexity of the nodes and

the sum of the complexity of the branches in the paths.
Finding the bug-prone test path of a program is the main
research problem of this study. Regarding the control flow
graph of a program, finding the optimal test paths (test
paths with the highest bug proneness) is an NP-complete
optimization problem (Page 4, First Paragraph). Equa-
tion 1 was proposed to calculate the bug proneness of a
test path. In a program with n branch instruction, there
are 2n test paths. The proposed method evaluates the error
detection power of a software test method by injecting
bugs only into error-prone codes. The modified and dis-
cretized version of FOA was developed to find out the
most bug-prone paths of a program. At the first stage of
the proposed method, the CFG of the input source code
was automatically generated by visustin tool. The adja-
cency matrix of the CFG was generated automatically by
the second module of the method. In the third stage, the
FOA gets the adjacency matrix and generates a subset of
paths (final population) as the most bug-prone test paths.
Finally, Mujava was used to make the heuristic mutation
test only on the selected bug-prone codes of the program.

Equation 1 represents the bug susceptibility of a path in
a CFG. In this equation, α and β are fixed values whose val-
ues are considered 0.5. Measuring the bug susceptibility of
blocks and branches in a CFG is explained in subsections 3.2
and 3.3. BBj refers to normal basic block (BB) and BCHk
refers to branch type node (BB) in pathi. In Eq. 1, bj specifies
the number of non-branch nodes (BB) in the pathi. Similarly,
rk indicates the number of branch nodes in the pathi. Table 2
describes the variables used in this study.

Fig. 1 An overview of the
proposed method

352 Journal of Electronic Testing (2023) 39:347–370

1 3

3.2 Block Susceptibility

This study uses basic block (CFG node) weight to evaluate
the bug susceptibility (complexity) of a code basic block
(BB). The larger the weight of a block, the more bug-prone

(1)

Susceptability of Pathi = W(Pathi) =

|bj|∑
j= 1

W(BBj)

× � +

|rk|∑
k= 1

W(BCHk) × β

it is. BB weight is measured by Eq. 2. The number of opera-
tors and operands in a BB influences its bug susceptibility.

The weight of operators in BBi is Ni; where Ni is the
total number of operators in that node. The weight of
operands in BBi is shown by Mi, which provides the total
number of accessible operands in that node. The total
weight (W �

(
BBi

)
) is then calculated using each of their

normalized weights. Operator weights were normalized

(2)
W �

(
BBi

)
=W �

(
Ni

)
+W

(
Mi

)

+ �

{
� = 0.5, Node have if instruction.

� = 1, Node have not if instruction.

Fig. 2 A program source code
and its generated CFG

Table 2 Variable description Variable Name Description

CFG Control flow graph of the program under test
����

�
The execution path i in the program control flow

graph
�(����

�
) The bug proneness of a pathi

BBi The normal basic block i in the program control flow
graph which does not include the jump command

BCHi The branch basic block i in the program control flow
graph which include the jump command

�(���) Weight of normal BBi
�(����) Weight of branch BCBi
bi The number of non-branch nodes (BB) in pathi
ri The number of branch nodes (BB) in pathi
α and β Constant coefficients
�′

(
��

�

)
Normalized W

(
BB

i

)
h Number of expressions in the branch statement

353Journal of Electronic Testing (2023) 39:347–370

1 3

using Eq. 3, which divides the number of available opera-
tors in each node by the total number of operators in the
corresponding path. We utilized Eq. 4, which divides the
number of operands accessible at each node by the total
number of operands in the path.

3.3 Branch Susceptibility

A branch block in a program's source code includes con-
ditional statements and expressions. An expression in
a branch block is a sequence of data and operators that
evaluates a single value. An executable path of a program
is selected based on the value of the respective expres-
sions at run time. A branch's susceptibility is determined
by the complexity weight of the respective expressions. A
program path with a higher complexity weight is hard to
comprehend by programmers and is bug-prone. In real-
world programs, the hard-to-comprehend and hard-to-
reach parts of a program may include more bugs (bug-
prone parts). Hence, to simulate the real-world bugs in
a program, the hard-to-reach codes of a program should
be considered with higher priority in the mutation test.
Expression weight (complexity) is calculated using Eq. 5
and Table 3 for each branch statement in the CFG. The
following two stages are created by Eq. 5:

• If the relevant decision node contains h expressions that
have been combined using the AND operator, the square
root of the overall weight of the expressions is consid-
ered.

• The selection criteria will be the lowest weight of the
expression weight if the associated decision node
includes h expressions that have been merged using the
OR operator.

(3)W �(Ni) =
Ni∑�bj�
j= 1

Nj

(4)W �
�
Mi

�
=

Mi∑�bj�
j= 1

Mj

In Eq. 5, Cg stands for the gth expression in the branch
statement (1 ≤ g ≤ h). h shows the number of expressions
in the branch statement. The Wr variable is the condition
weight set by Table 3. For normalizing the expression weight
of branch statements, we employed Eq. 6, which divides the
expression weight of each branch by the overall weight of
the branches. Table 3 also lists all the operators that might be
included in the condition expressions. Equation 7 represents
the objective (fitness) function.

The phrase
∑�pi�

i= 1
W

�

(BBi) describes the total complexity
of nodes in a program path (pathi), where bi specifies the
number of non-branch nodes in the pathi. Similarly, the
phrase

∑�rj�
j= 1

BCHj defines the total complexity of branch
(decision) nodes, where ri is the number of branch nodes
(decision node) in the program path. In Eq. 7, α was
employed as an impact factor and as a criterion for the effi-
cacy degree of complexity. The value of α is 0.5 in this
study.

3.4 Finding Bug‑Susceptible Paths Using Forrest
Optimization Algorithm (FOA)

3.4.1 Modeling the Research Problem in the FOA

The third stage of the proposed method, as shown in Fig. 1,
is a search optimization problem; also, finding the most sus-
ceptible paths in a control flow graph is an NP-complete
problem. In this research, the forest optimization algorithm
(FOA) is suggested to identify the most susceptible paths
in a program source code. As explained in subsection 3.3,
the bug-susceptibility of each block should be calculated
using Eqs. 2–6 before executing the FOA. FOA takes the
calculated weights of each block and then finds the most
bug-susceptible paths of a program source code. To reduce

(5)

W
�
BCHj

�
=

⎧
⎪⎨⎪⎩

�
h∑

g= 1

W2
r

�
Cg

�
. if conjuction is AND

min{Wr

�
Cg

�
, 1 ≤ g ≤ h}. other wise

(6)W �
�
BCHi

�
=

W
�
BCHj

�
∑�ri�

j= 1
W
�
BCHj

�

(7)

Fitness
(
Pathpi

)
=

|bi|∑
i= 1

W �(BBi)

× � +

|rj|∑
j= 1

W �(BCHj) × (1 − �)

Table 3 Operators’ weight
in terms of bug-prone used
to compute the weight of
expression

Operator Weight

 = = 0.9
 < , < = , > , > = 0.6
Boolean 0.5
! = 0.2

354 Journal of Electronic Testing (2023) 39:347–370

1 3

the cost of software mutation testing, only the identified
susceptible paths of the program are considered for muta-
tion. The base form of FOA was proposed by Manizheh
and Mohammad-Reza [27]. The basic forest optimization
algorithm is a continuous heuristic algorithm that can be
used to solve continuous NP-hard problems. On the other
hand, finding the bug-prone test paths of a program source
code is an NP-compete discrete problem. The basic form
of the FOA cannot be adapted directly to the software test-
ing problem. The other challenge of the basic FOA is its
local optima problem in the test optimization problem. The
lower success rate and low stability are the main problems
of the basic FOA. In this study, the basic FOA was modified
and discretized. As shown in Fig. 3, each individual (tree)
is implemented by an integer array that shows a test path
in a graph. Furthermore, to increase the diversity among
the individuals and to avoid the local optimum, a version
crossover has been used between the best and worst trees in
a specific iteration. The results of experiments indicate that
the modified and discretized FOA has higher performance
in the software test problem.

The customized and modified form of FOA is used in
this study. Similar to other heuristic algorithms, the FOA
takes a subset of CFG's paths as input (initial population).
The FOA process begins with the initial population of trees;
each tree denotes a potential solution to the problem (a path
in the CFG). Each CFG path, which represents a tree, is
implemented by an array. The array's length represents the
path length. Figure 3 shows a tree structure in the proposed
FOA. In the tree array, Nvar is equal to the length of the
path in the CFG and Age is equal to the age of the tree, and
Cost is the bug-susceptibility of the tree (path) that is cal-
culated via Eq. 7. The initial population is represented as a
matrix where each row is a tree array (Fig. 3). The proposed
FOA includes three basic steps: local tree seeding, popula-
tion constraint, and global tree seeding. Figure 4 shows the
general form of FOA.

The age of the tree is regarded as zero in the FOA when
it begins to work. The local seed operator grows new trees
from the young trees in the forest. Then, with the exception
of newly generated trees, all trees rise in age from 0 to 1.
After that, control over the forest's tree population eliminates
part of the trees. One percent of the candidate population is
chosen to travel around the forest during the global seeding
stage. Now the forest trees are ordered by their bug-suscep-
tibility values (calculated by Eq. 7); the tree with the greatest
bug-susceptibility (most fitted) value is chosen as the best
tree, and its age is set to zero to prevent re-selection. These
steps continue until the stop condition is obtained.

3.4.2 Forest Initialization and Local Seeding

The effect of tree age is that if a tree was optimal in terms of
bug-susceptibility, the local seed operator would add trees
similar to the optimal tree to the population, and optimal
trees would remain in the population. But if the tree is not
optimal, the trees produced from this tree will be removed
from the population after several repetitions due to old age
or limited forest width. A predetermined parameter called
the lifetime determines how old a tree may be. At the start
of the algorithm, this parameter must be changed. When
a tree reaches the end of its life, it is cut down and added
to the candidate population. If this option is set to a large
value, each iteration of the algorithm will only grow this
tree, resulting in a forest full of elderly trees that don't par-
ticipate in local seeding. If we set this parameter to a low
value, the trees will quickly age and be eliminated from the

Fig. 3 Tree structure in FOA

355Journal of Electronic Testing (2023) 39:347–370

1 3

forest population. As a result, depending on the application,
this value should be changed.

Local seeding is done on trees that are less than a year
old and adds some trees from the surrounding area to the
forest. The figure shows two repetitions of this operator
(Fig. 5). Except for newly generated trees, the age of all

trees grows by one unit after local sowing in zero-age
trees. The algorithm approach is implemented utilizing
the local seeding step if a tree is promising (increased
bug susceptibility). Otherwise, the hopeless trees (lower
bug susceptibility trees) age and die naturally after a few
cycles. The number of seeds that fall near a tree (CFG's

Fig. 4 The pseudo-code and flowchart of the developed FOA

Fig. 5 Local seeding operation in FOA

356 Journal of Electronic Testing (2023) 39:347–370

1 3

path) and then form a tree is a FOA calibration parameter,
as illustrated in Fig. 5. A local seeding change (LSC) is a
parameter. In Fig. 5, the value of this option is set to 3. The
application scope dimension should be used to determine
this parameter. We experiment to determine the ideal LSC
parameter values (explained in Section 4). As a result,
three trees have been put into the forest for each tree with
an age of 0. Figure 6 illustrates an example of a local seed-
ing operator for a tree (CFG's path) with an LSC value of
2. The values of r and r’ (values generated randomly) are
in the interval [−ΔX.ΔX].

3.4.3 Population Limitation and Global Seeding

The number of trees in the forest needs to be managed to pre-
vent unrestrained forest installation. Two factors, life span,
and geographical restriction, limit the number of trees. The
trees that go through the tree's life cycle must first be elimi-
nated from the forest since they will eventually represent the
population. The second restriction, the area constraint, is
determined by fitness (bug-susceptibility); this constraint is
handled in such a way that if the number of trees exceeds the
forest constraint, many trees are destroyed. Another param-
eter called area constraint is forest constraint. In the experi-
ments of this study, the constraint values of the area were
considered the same number of primary trees. Therefore,
after doing this, the number of trees in the forest is equal to
the number of primary trees.

The global seeding operator seeks to imitate tree seed
dispersion in the forest. In the search space, this operator
does a global search. In the previous stage, the global seed-
ing operator was specified as a percentage of the candidate
trees. Figure 7 shows an example of a tree's global seed-
ing procedure (program path). The tree is chosen at random
from the candidate population; after that, certain elements
in each tree are chosen at random. At this point, each ele-
ment's value is created using a random output value within a
reasonable range. Another FOA parameter is the number of

these elements that vary, which is described as global seed-
ing variation (GSC). The GSC parameter is assumed to have
a value of 2 in Fig. 7. As a result, two variables are chosen
at random and their values are swapped with other randomly
produced values in the relevant variables' range, such as r
and r'. The trees should be classified depending on fitness
once they have been seeded globally (bug susceptibility).
The best tree is chosen by sorting the trees and selecting the
one with the highest fitness. To re-select in the local seeding
stage, the age of the best tree is set to zero. The finest tree
in this scenario might be selected from a local seed stage.
Because, as previously said, local seeding is performed on
trees that are less than ten years old.

4 Evaluation

4.1 Experiment Platform and Benchmark Programs

An extensive series of experiments have been implemented
to evaluate the method. The proposed method has been
implemented in the MATLAB 2020 programming language.
The tests were run on a PC with an Intel Core i7 CPU, 8 GB
of RAM, and Windows 10 operating system. After selecting
the most bug-prone paths of the benchmark programs by the
proposed FOA, the mutants were injected by the MuJava
tool (https:// cs. gmu. edu/ ~offutt/ mujava/). A set of standard
and most frequently used programs have been selected as
benchmarks. The selected programs have been used in previ-
ous studies as evaluation benchmarks. Table 4 explains the
characteristics of the benchmark programs. These programs
include the structures that are used in real-world programs,
such as loop and conditional structures, I/O instructions,
and different arithmetic, and logical operators. Also, the
selected programs include nested programming structures.
Today’s real-world programs with millions of lines of code
are written in modular form. Indeed, all the codes are not
written in one function (unit) but are divided into functions

Fig. 6 Local seeding example for a tree when LSC = 2

Fig. 7 Global seeding example for a tree (program path) when GSC = 2

https://cs.gmu.edu/~offutt/mujava/

357Journal of Electronic Testing (2023) 39:347–370

1 3

and modules. Regarding the programming standard styles,
the code written into a function should be between 5 and
60 lines of code. Indeed, these functions are considered
the test unit. The functions with hundreds of lines of code
are not standard and understandable and should be broken
to smaller-size functions. Therefore, in a real project, we
face a set of functions (units) that must be tested. To evalu-
ate the proposed method, a set of standard functions was
selected. Similar to real-world programs, the selected bench-
mark programs include 30 to 75 lines of code. The selected
benchmark programs include different arithmetic and logi-
cal operators, branch instructions (if-else instructions),
loop structures, and different types of data. Concerning the
Halstead and Cyclomatic metrics, the selected programs are
hard to test. The number of branch instructions and operators
in the selected benchmark programs is higher than in real-
world application programs. For example, the triangle type
benchmark includes 31 lines of code, but each line includes
an if structure. As a result, testing the selected benchmark
programs with 100% coverage is hard and time-consuming.

Performance Criteria that were used to evaluate the pro-
posed method are as follows:

• Success Rate: Heuristic algorithms work based on prob-
ability, so the results of one execution are not enough
to assess their success rate. The success rate shows the
probability of success of the proposed method in produc-
ing the optimal solution. In this study, the success rate of
the proposed FOA was evaluated during 10 times. The
percentage of times that the heuristic algorithm can pro-
duce the optimal solution indicates the success rate of the
algorithm. The success rate of the proposed method was
explained in subsection 4.2.3.

• Mutant Reduction: Mutation test is used to evaluate
the effectiveness of a test technique or tool. The muta-
tion score indicates the effectiveness of the test data. The
mutation score is the percentage of the detected bugs
that were injected by the mutation test tool. The cost and
time of the mutation test methods depend on the number
of injected mutants (bugs) by the mutation test method.

The proposed method injects mutants only in the bug-
prone codes of the program. The rate of reduction of
ineffective mutants is one of the important criteria that
was discussed in subsection 4.2.4.

• Stability: Stability shows the closeness of the generated
results to each other. The stability of an algorithm means
that the results are not subject to specific conditions or
are not obtained by chance. The algorithm will be sta-
ble when the difference in the fitness of the final results
generated in different executions is not noticeable. The
stability is evaluated by calculating the standard devia-
tion among the results obtained during 10 executions.
The stability of the proposed mutation test method was
discussed in subsection 4.2.2.

• Convergence Speed: One of the evaluation criteria
of heuristic algorithms is the convergence to optimal
response. During the execution of the heuristic algo-
rithms, the results should be gradually improved in
terms of fitness and converged to the optimal solution.
The convergence shows how well FOA does at identify-
ing bug-prone codes of the program's source code. The
convergence speed of the proposed method was discussed
in subsection 4.2.1.

As shown in Fig. 1, the source code of the input program
(function) source code should be converted to the CFG. This
stage of the method is performed automatically using existing
tools such as Visustin (https:// www. aivos to. com/ visus tin. html).
Figure 8 shows the generated CFG for the triangle benchmark
program. After extracting the CFG by the software tool, the
CFG is also automatically converted to an adjacent matrix by
the implemented code in MATLAB. Table 5 shows the gener-
ated adjacent matrix for the triangle benchmark. At the next
stage, the implemented FOA as a module in the MATLAB
is invoked. The invoked FOA finds out the bug-prone paths
of the program during the determined iterations. Overall, all
stages of the proposed method are performed automatically,
and the method was implemented as a software package to per-
form automatically. Table 6 shows the calculated node weight
for all nodes of the triangle CFG (shown in Fig. 8).

Table 4 Characteristics of the benchmark programs

Program name Num. Of
Input

Code lines
(LOC)

Cyclomatic
Complexity

Time Complexity Program Output

Triangle Type 3 31 20 O(c) Specifying triangle type
Binary Search 3 75 8 O (log n) Searching from an integer list
Quadratic Equation 3 30 5 O(c) Calculating the roots of quadratic equations
Number of Digits 1 39 5 O(n) Calculating the digits of integer number
Largest Num 3 32 7 O(n) Finding the largest integer number

https://www.aivosto.com/visustin.html

358 Journal of Electronic Testing (2023) 39:347–370

1 3

After identifying the bug-prone paths of the benchmark
programs by the FOA, the mutation stage is performed on the
selected paths. To this end, MuJava is used to make the func-
tion-level mutants (buggy versions of the original programs).
Table 7 depicts the function-level mutation operators in
MuJava that are used to simulate the programming bugs in the
bug-prone codes of the programs (selected by FOA). In stage 5
of the proposed method, a set of test suits are required to evalu-
ate the proposed method in terms of mutation score. Indeed,
the generated mutants by the MuJava should be executed using
a test suit. The branch coverage criterion is used to generate
effective test data for the benchmarks. Traxtor [3], was used
for the test-generation stage of this study. This method (Trax-
tor) is invoked as the other MATLAB module to automatically
generate the coverage-based test data. Finally, the calibration
parameters of the FOA and genetic algorithm have been cali-
brated experimentally and are described in Table 8.

4.2 Results and Discussion

4.2.1 Convergence Criterion

One of the evaluation criteria of heuristic algorithms is
the convergence to optimal response. Therefore, during
the implementation of the heuristic algorithms, the results
should be gradually improved and converged to the opti-
mal response. The convergence depicts the performance
of the heuristic algorithms. The convergence in this study
shows how well a heuristic algorithm does when it comes
to identifying the most bug-prone regions in a program's
source code. The convergence diagram depicts the fitness
(bug-susceptibility) function's optimal value across itera-
tions for the proposed approach. The population's fitness
value increases during iterations in the best-fit conver-
gence diagram. The ideal solution is finally found using

Fig. 8 The generated CFG for
the triangle benchmark by the
visustin tool

359Journal of Electronic Testing (2023) 39:347–370

1 3

this convergence diagram (most bug-prone paths). The rea-
son the chart is staggered during different performances
is that the improved individuals (trees) always replace
the worse individuals. Figure 9 shows the convergence
(performance) of the FOA and GA in finding the most
bug-prone paths in the binary-search benchmark program.
The genetic algorithm converged to 3.94 at 111 iterations.
While the forest algorithm has converged to 4.06 with a
maximum of 200 iterations. FOA finds the optimal solu-
tion (a path with higher bug susceptibility). The fitness of
the best path found by FOA is 4.09 which is higher than
the path found by GA. As a result, FOA is more capable
of finding bug-prone paths in this benchmark. Also, as
shown in Fig. 9, the convergence speed of the FOA is
higher than the GA.

As shown in Fig. 10, although the GA had a good start
compared to the FOA; then, the proposed algorithm (FOA)
has converged significantly faster than the GA, although
they are both identical in value. Overall, the FOA has better
performance than GA in terms of convergence. Figure 11,
like the previous convergence diagrams, has an evolutionary
trend. It can be seen that the FOA has converged in lower
iterations than the genetic algorithm. Hence, the FOA has
better performance than the GA in several digits benchmark

in terms of convergence. The other experiments have been
performed on the quadratic equation benchmark; FOA and
GA have been executed to find out the bug-prone paths of
this benchmark program. Figure 12 shows the results of this
experiment. The results show the superiority of the FOA
over the GA because it converged faster than GA. FOA
attains the maximum value of fitness (4.48) in iteration 26
while the GA achieved the same value in replication 192.

Finally, in Fig. 13, which is related to the triangle bench-
mark, it is observed that the FOA is more powerful than
the GA in terms of convergence. Also, FOA outperforms
GA concerning convergence speed. Overall, concerning the
convergence criteria, FOA has a higher performance.

Figure 14 shows the average results obtained by FOA
and GA. Each algorithm (FOA and GA) has been executed
10 times on each of the benchmark programs. Each execu-
tion includes 200 iterations. The fitness (bug-susceptibility)
of final results (CFG’s paths) obtained in each execution
has been used to calculate the average value. As shown in
Fig. 14, the FOA has better performance in terms of average
fitness, specifically in the triangle benchmark. The triangle
benchmark has higher cyclomatic complexity than the other
benchmarks. Indeed, FOA has a higher bug-prone finding
capability than GA, specifically in complex programs.

Table 5 The generated
adjacent matric for the triangle
benchmark program

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 1 0
2 0 0 1 1 0
3 0 0 0 1 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
17 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
19 0 1
20 1 1 0
21 0 1 0 0
22 0 1
23 0 1
24 0

360 Journal of Electronic Testing (2023) 39:347–370

1 3

4.2.2 Stability Criterion

Because the initial population is produced randomly and
because these algorithms use random operators, the out-
comes achieved from each heuristic method may change in

Table 6 The weight of each
node in the CFG of the triangle
benchmark calculated by Eq. 2

Node N1 N2 N1(Normalized) N2(Normalized) N1 + N2(Weight) N1 + N2 + λ BCH Weight

1 0 3 0.00 0.05 0.05 1.05 0
2 0 1 0.00 0.02 0.02 1.02 0
3 6 6 0.13 0.10 0.23 0.73 0.1
4 0 1 0.00 0.02 0.02 1.02 0
5 0 1 0.00 0.02 0.02 1.02 0
6 2 2 0.04 0.03 0.08 0.58 0.11
7 2 3 0.04 0.05 0.09 1.09 0
8 2 2 0.04 0.03 0.08 0.58 0.13
9 2 3 0.04 0.05 0.09 1.09 0
10 2 2 0.04 0.03 0.08 0.58 0.15
11 2 3 0.04 0.05 0.09 1.09 0
12 2 2 0.04 0.03 0.08 0.58 0.16
13 9 9 0.20 0.15 0.34 0.84 0.2
14 2 2 0.04 0.03 0.08 0.58 0.2
15 0 1 0.00 0.02 0.02 1.02 0
16 0 1 0.00 0.02 0.02 1.02 0
17 0 1 0.00 0.02 0.02 1.02 0
18 5 5 0.11 0.08 0.19 0.66 0.3
19 0 1 0.00 0.02 0.02 1.02 0
20 5 5 0.11 0.08 0.19 0.69 0.32
21 0 1 0.00 0.02 0.02 1.02 0
22 5 5 0.11 0.08 0.19 0.69 0.34
23 0 1 0.00 0.02 0.02 1.02 0
24 0 1 0.00 0.02 0.02 1.02 0
25
(Final

instruc-
tion)

0 0 0.00 0.00 0.00 1 0

Table 7 MuJava mutation operators used in the mutation step of the
proposed method

Operator Description

AOR Replacing the arithmetic operator in the code
AOI Inserting an arithmetic operator in the code
AOD Deleting an arithmetic operator from the code
ROR Replacing a relational operator in the code
COR Replacing a conditional operator in the code
COI Inserting a conditional operator in the code
COD Deleting a conditional operator from the code
SOR Replacing a shift operator in the code
LOR Replacing a logical operator in the code
LOI Inserting a logical operator in the code
LOD Deleting a logical operator from the code
ASR Replacing an assignment operator in the code
SDL Deleting a statement from the code
VDL Deleting a variable from the code
CDL Deleting a constant from the code
ODL Operator Deletion

Table 8 Calibration parameters of FOA and GA

Method Parameters Values

FOA 25% of all paths in the CFG Initial Population
Lifetime 10
Area limit 100
LSC 8
GSC 8
Transfer rate %3
Iteration 200
Dimension 15

GA Initial population 25% of all paths in the CFG
Pc 0.8
Pm 0.3
Iteration 200

361Journal of Electronic Testing (2023) 39:347–370

1 3

different executions. As a result, one of the most significant
characteristics to consider while assessing a heuristic algo-
rithm is its stability. The stability indicates the closeness
of the different results (obtained from different executions
of a heuristic algorithm) to each other. The stability of an
algorithm means that the results are not subject to specific
conditions or are not obtained by chance. The algorithm will
be stable when the difference between the final values of
the fitness function in different executions is not noticeable.
This will be confirmed by calculating the standard devia-
tion of different values of the fitness function. The amount
of standard deviation is inversely related to the stability of
the algorithm. Therefore, the smaller the standard deviation,
the more stable the algorithm is. To this end, each algorithm
has been executed 10 times, and each execution includes
200 iterations. Figure 15 depicts the bug-susceptibility of

obtained results (CFG’s path) by FOA and GA in 10 execu-
tions. Each execution includes 200 iterations. The lower
the variance among the obtained 10 results, the higher the
stability of the algorithm in different executions. The stand-
ard deviation of these results was calculated and shown in
Fig. 16. Figure 16 shows the standard deviations among the
obtained results. Based on the results of these 10 executions,
for each benchmark program, the standard deviation of FOA
is less than the GA. This is one of the reasons for the stabil-
ity of FOA in finding the bug-prone path of a program.

4.2.3 Success Rate Criterion

Another performance criterion for heuristic algorithms
to consider is the success rate. The stability revealed the
similarity of distinct fitness result values from different

Fig. 9 Convergence of the FOA
and GA in finding the bug-
prone paths of binary-search
benchmark

Fig. 10 Convergence of the
FOA and GA in finding the bug-
prone paths of largest-number
benchmark

362 Journal of Electronic Testing (2023) 39:347–370

1 3

executions. The success rate of a heuristic algorithm, on the
other hand, is the capacity of the algorithm to determine the
optimal (best) value. In other words, it's the degree to which
the acquired fitness value is similar to an ideal value. This
criterion is determined by dividing the total number of times
the algorithm has been run using the suitable benchmark
program by the number of times the fitness function value
has reached its maximum value. With 10 runs, the results
displayed in Fig. 17 confirmed that the FOA outperformed
GA in terms of success rate. In almost 80% of cases, the
algorithm can find the bug-prone paths of programs. Over-
all, the probability of the FOA finding the best results (most
bug-prone) paths of a program source code is close to 80%.

4.2.4 Mutant Reduction

The mutation score is a useful metric for evaluating the
effectiveness of a test suite. Tables 9 and 10 display the

total number of mutants produced by the suggested method
for all paths in each benchmark program. The recom-
mended approach reduces the number of mutations. The
suggested method uses the FOA algorithm to locate the
bug-prone paths in the source code before performing
mutation operations. As a result, the suggested method
decreases the number of mutants by removing mutant
injection in the program's non-bug-prone paths. According
to studies done on common benchmark programs, the pro-
posed method reduces 27.63% of the created mutants when
compared to existing methodologies. The cost of mutation
testing will go down if the quantity of created mutants is
decreased. The method outlined in this paper may allow the
use of common mutation testing tools (Mujava, Muclipse,
Jester, and Jumble) to do mutation testing at a lower cost.

Concerning the results of experiments shown in Fig. 8,
the bug-prone aware mutation test requires a lower number
of mutants. The lower the number of generated mutants,

Fig. 11 Convergence of the
FOA and GA in finding the bug-
prone paths of number of digits
benchmark

Fig. 12 Convergence of the
FOA and GA in identifying the
bug-prone paths of Quadratic
equation benchmark

363Journal of Electronic Testing (2023) 39:347–370

1 3

the less time and cost. Performing the mutation test with
a limited number of generated mutants is more efficient
in terms of time and cost.

4.2.5 Calibrating the FOA Parameter

The behavior of the heuristic algorithms depends on dif-
ferent parameters. The calibration parameters of the FOA
should be adapted regarding the problem features and its
applications. The authors adapt the FOA parameters regard-
ing the benchmark programs during the experiments. LSC,
GSC, and transfer rate are the main parameters of the FOA
algorithm that should be calibrated experimentally. To this
end, the experiments have been repeated with different val-
ues of GSC (8, 6, 4, and 2). Figure 18 shows the effect of
GSC on the performance of the FOA in the field. The value
of GCS influences the fitness of the obtained results by the

FOA. As shown in Fig. 18, the optimal results (the paths
with maximum bug susceptibility) have been identified
when the GSC = 8. Figure 19 shows the effects of the LSC,
as the other calibration parameter, on the performance of the
FOA in finding the most bug-prone paths of a program. The
best results were obtained when LSC = 8.

Figure 10 shows the most bug-prone path of each bench-
mark program identified by the proposed method. The best
(most bug-prone) path of the final population that is gener-
ated by the method is shown in Table 11. This path, along
with the other paths of the final population, is considered
for the mutation test.

The proposed method is independent of the platform
and tools used for mutation tests. To this end, the proposed
method was used with different mutation test tools. Pit-
est, Muclipse, MuJava, Jester, Jumble, and JavaLancer are
the most frequently used tools for Java programs. In the

Fig. 13 Convergence of the
FOA and GA in identifying
the bug-prone paths of triangle
program

Fig. 14 The average of obtained
fitness values in 10 executions
of FOA and GA

364 Journal of Electronic Testing (2023) 39:347–370

1 3

final series of experiments, the benchmark programs were
mutated by different mutation-test tools. The number of
generated mutants for each benchmark program with and
without the proposed method is shown in Figs. 20, 21, and
22. The results confirm that the proposed method makes a

considerable reduction in the number of generated mutants
by all testing tools. In the triangle benchmark program, the
average number of generated mutants in all tools is about
160; meanwhile, the average number of generated mutants
for triangle program with the proposed method is about 107.

Fig. 15 Standard deviation among the fitness (bug-susceptibility) values of the obtained results from 10 executions of each algorithm

365Journal of Electronic Testing (2023) 39:347–370

1 3

Fig. 16 Standard deviation
among the fitness (bug-suscep-
tibility) values of the obtained
results from 10 executions of
each algorithm

Fig. 17 The probability of FOA
and GA algorithms in finding
the most bug-prone paths in
different benchmarks

Table 9 The average number of generated mutants with and without proposed method

Programs Total Mutants Killed Mutants Live Mutants Mutation Score

Largest Number Mutation of all codes 242 196 46 81.19%
Mutation of bug-prone codes 161 127 34 79.30%

Quadratic Equation Mutation of all codes 114 100 14 88.00%
Mutation of bug-prone codes 82 70 12 86.00%

Number of Digits Mutation of all codes 77 73 4 95.10%
Mutation of bug-prone codes 66 60 60 92.00%

Binary search Mutation of all codes 155 136 19 88.00%
Mutation of bug-prone codes 112 88 24 78.60%

Triangle Mutation of all codes 445 304 141 68.31%
Mutation of bug-prone codes 291 206 85 71.58%

366 Journal of Electronic Testing (2023) 39:347–370

1 3

Similar results are produced for the binary search pro-
gram. Figure 21 shows the average number of the generated
mutants by different tools. The number of generated mutants
for this benchmark are respectively 56 and 42. The sort pro-
grams are one of the most used program units in real-world
programs. The proposed method makes a considerable reduc-
tion in the number of mutants. Indeed, the proposed method
is independent of the test platform and tools. Figure 22
shows the generated mutants by different methods for the
largest number program. The average number of mutants
generated by different tools is about 70, while the number

Table 10 The effect of proposed method on the mutant reduction

Program name Mutant
Reduction
Rate

Largest Number 33.47%
Quadratic Equation 28.07%
Number of digits 14.28%
Binary search 27.74%
Triangle 34.60%
AVG 27.63%

Fig. 18 The effects of GSC
on the fitness of the obtained
results by the FOA in different
benchmarks

Fig. 19 The effects of LSC
on the fitness of the obtained
results by the FOA in different
benchmarks

367Journal of Electronic Testing (2023) 39:347–370

1 3

of mutants generated by the same tools using the proposed
method is about 52. All in all, the proposed method is plat-
form independent method that can be used along with the
different mutation tools.

The suggested FOA takes a subset of CFG`s paths as
input (initial population). The initial population (a subset
of testing paths) is selected randomly from the created con-
trol flow graph (CFG). The CFG of the input source code
is created automatically by different tools in polynomial
time complexity. In this study, the CFG was generated by
Visustin tool. This tool takes the source code of the pro-
gram under test and automatically generates the CFG. Each
test path is implemented by an array (shown in Fig. 3).
The suggested FOA is used to find out the most bug-prone
paths of the program under test. The bug-proneness of each
selected path is calculated by Eq. 7. The final population,
as the most bug-prone paths of the input program, was con-
sidered for performing the mutation operators instead of all
paths of the program. The proposed method reduces about

Table 11 The most bug-prone path of each benchmark is identified
by the FOA

Bench. App Most bug-prone path
Triangle Best solution: [1 2 3 5 6 7 8 9 10 11 12

14 15 16 18 20 22 23 24]
Binary Search Best solution: [1 2 4 5 7 8 10]
Number of digits Best solution: [1 2 3 4 5 6 7 8 9 10 11 12]
Quadratic Eq. Best solution: [1 2 3 5 6 8 10 11]
Largest Number Best solution: [1 2 3 5 9 10 11]

Fig. 20 Number of generated
mutants in triangle benchmark
by different mutation test tools
with and without proposed
method

Fig. 21 Number of generated
mutants in binary search bench-
mark by different mutation test
tools with and without proposed
method

368 Journal of Electronic Testing (2023) 39:347–370

1 3

27.63% of the created mutants when compared to existing
techniques. The proposed method can be used to evalu-
ate the effectiveness of the test data generating methods
and tools with a limited time and cost consumption. The
proposed method can be used in each testing tool such as
Mujava, Muclipse, Jester, and Jumble.

ANOVA, as a statistical test, has been performed on the
results obtained by the GA and proposed FOA. ANOVA
is used to prove the significant effects of the FOA on the
results of the experiments. The success rate of the two
methods on the benchmarks has been used in the ANOVA
analysis. Table 12 shows the statistical analysis of the
results obtained by the GA and FOA. The mean, vari-
ance, and standard deviation of the obtained results during
the 10 executions of each method are shown in Table 12.
Table 13 shows the results of the ANOVA test. The val-
ues of p and f indicate the significance of the results.
The f-ratio value is 11.52 and the p-value is 0.009442.

Hence, the result is significant at p < .01 and the proposed
FOA has significant effects on the number of mutants and
hence on the time and cost of software mutation testing.

5 Conclusion and Future Studies

Reducing the number of generated mutants is the main goal of
this research. The proposed method identifies the most bug-
prone paths at the first stage; then, the identified bug-prone
paths are considered in mutation tasting at the second stage of
the method. The modified version of the FOA, as a heuristic
algorithm, was used at the first stage of the proposed method.
MuJava is used as the code mutation tool. The original pro-
gram and also the sliced program by the proposed method
were mutated by MuJava. The mutants are executed with the
test data generated by the Traxtor tool. This tool automatically
generates the coverage-based test data at the unit level (func-
tion level). Indeed, the generated mutants have been executed
by the generated test data via Traxtor. The results of con-
ducted experiments confirm that the proposed method avoids
mutating the non-bug-prone codes of the program. All in all,
the method performs the mutation test with a lower number of
mutants and lower cost. The method has higher performance
and stability than the other methods. Bug-susceptibility of a
line of source code is a function of different parameters, such
as complexity parameters. Some of these effective parameters
are now unknown. These parameters depend on the program-
ming language features and programming styles. Also, the
people (programmers) features may affect the probability dis-
tribution of bug occurrences. Analyzing and identifying the
parameters effective on the bug-susceptibility are suggested
as one of future study. Other evolutionary algorithms can be
employed to get optimal results.

Fig. 22 Number of generated
mutants in largest number
benchmark by different muta-
tion test tools with and without
proposed method

Table 12 The summary data in
the ANOVA test on the success
rate of the GA and proposed
FOA

FOA GA Total

∑X 3.9 2.7 6.6
Mean 0.78 0.54 0.66
∑X2 3.09 1.51 4.6

Table 13 The results of the ANOVA test on the success rate of the
GA and proposed FOA

Source SS df MS

Between-treatments 0.144 1 0.144 F = 11.28
Within-treatments 0.1 8 0.0125
Total 0.244 9

369Journal of Electronic Testing (2023) 39:347–370

1 3

Author Contribution All authors contributed to the study's conception
and design. The data collection, and analysis were performed by Bah-
man Arasteh. Experiments have been performed by Bahman Arasteh.
All authors read and approved the final manuscript.

Data Availability The datasets generated during and the implemented
code during the current study are available in the google.drive and
can be freely accessed by the following link: https:// drive. google. com/
drive/ folde rs/ 1eHkL dF2b- of6Lq gJQaE pcyLj cfejz 0Az? usp= shari ng.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

 1. Acree AT, Budd TA, DeMillo RA, Lipton RJ, Sayward FG
(1980) Mutation Analysis. School of Information and Computer
Science, Georgia Institute of Technology

 2. Aghdam ZK, Arasteh B (2017) An efficient method to generate
test data for software structural testing using artificial bee colony
optimization algorithm. Int J Software Eng Knowl Eng 27(6):2017

 3. Arasteh B, Hosseini SMJ (2022) Traxtor: An Automatic Software
Test Suit Generation Method Inspired by Imperialist Competitive
Optimization Algorithms. J Electron Test. https:// doi. org/ 10. 1007/
s10836- 022- 05999-9

 4. Arasteh B, Imanzadeh P, Arasteh K et al (2022) A Source-code
Aware Method for Software Mutation Testing Using Artificial
Bee Colony Algorithm. J Electron Test 38:289–302. https:// doi.
org/ 10. 1007/ s10836- 022- 06008-9

 5. Arasteh B (2019) ReDup: A software-based method for detecting
soft-error using data analysis. Comp Electrical Eng 78(September
2019):89–107

 6. Barbosa EF, Maldonado JC, Vincenzi AMR (2001) Toward the
determination of sufficient mutant operators for C. Software Test-
ing, Verification and Reliability 11(2):113–136

 7. Bouyer A, Arasteh B, Movaghar A (2007) A New Hybrid Model
Using Case-Based Reasoning and Decision Tree Methods for
Improving Speedup and Accuracy. IADIS International Confer-
ence of Applied Computing

 8. Budd TA (1980) Mutation Analysis of Program Test Data. Yale
University

 9. Chandra SSV, Sankar SS, Anand HS (2022) Smell Detection
Agent Optimization Approach to Path Generation in Auto-
mated Software Testing. J Electron Test. https:// doi. org/ 10. 1007/
s10836- 022- 06033-8

 10. Delgado-Pérez P, Medina-Bulo I (2018) Search-based mutant
selection for efficient test suite improvement: Evaluation and
results. Inf Softw Technol 104(2018):130–143

 11. Deng L, Offutt J, Ammann P, Mirzaei N (2017) Mutation operators
for testing Android apps. Inf Softw Technol 81(2017):154–168

 12. Dominguez-Jimenez JJ, Estero-Botaro A, Garcia-Dominguez A,
Medina-Bulo I (2011) Evolutionary mutation testing. Inf Softw
Technol 53(10):1108–1123

 13. Fenton NE, Ohlsson N (2000) Quantitative analysis of faults and
failures in a complex software system. IEEE Transact Software
Eng 26(8):797–814

 14. Ghaemi A, Arasteh B (2020) SFLA-based heuristic method
to generate software structural test data. J Softw Evol Proc
32:e2228. https:// doi. org/ 10. 1002/ smr. 2228

 15. Gheyi R, Ribeiro M, Souza B, Guimarães M, Fernandes L,
d’Amorim M, Alves V, Teixeira L, Fonseca B (2021) Identifying

method-level mutation subsumption relations using Z3. Inf Softw
Technol 132:106496

 16. Hosseini S, Arasteh B, Isazadeh A, Mohsenzadeh M, Mirzarezaee
M (2021) An error-propagation aware method to reduce the software
mutation cost using genetic algorithm. Data Technologies and Appli-
cations 55(1):118–148. https:// doi. org/ 10. 1108/ DTA- 03- 2020- 0073

 17. Howden WE (1982) Weak mutation testing and completeness of
test sets. IEEE Trans Software Eng 8(4):371–379

 18. Jackson D, Woodward MR (2000) Parallel firm mutation of Java
programs. Proc. First Workshop on Mutation Analysis, pp 55–61

 19. Jia Y, Harman M (2011) An Analysis and Survey of the Develop-
ment of Mutation Testing. IEEE Trans Software Eng 37(5):649–
678. https:// doi. org/ 10. 1109/ tse. 2010. 62

 20. Keshtgar A, Arasteh B (2017) Enhancing Software Reliabil-
ity against Soft-Error using Minimum Redundancy on Critical
Data. https:// doi. org/ 10. 5815/ ijcnis. 2017. 05. 03

 21. King KN, Offutt AJ (1991) A Fortran language system for mutation-
based software testing. Software: Practice and Experience 21(7):
685–718

 22. Kintis M, Papadakis M, Malevris N (2010) Evaluating mutation
testing alternatives: a collateral experiment. Proceedings of the
17th Asia-Pacific Software Engineering Conference (APSEC)

 23. Kurtz B, Ammann P, Delamaro ME, Offutt J, Deng L
(2014) Mutant subsumption graphs. 2014 IEEE Seventh Interna-
tional Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW)

 24. Kurtz B, Ammann P, Offutt J (2015) Static analysis of mutant
subsumption. IEEE Eighth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW)

 25. Ma YS, Offutt J, Kwon YR (2006) MuJava: A Mutation System
for Java. In 28th International Conference on Software Engineer-
ing (ICSE ’06)

 26. Malevris N, Yates D (2006) The collateral coverage of data flow
criteria when branch testing. Inf Softw Technol 48(8):676–686

 27. Manizheh G, Mohammad-Reza F (2014) Forest Optimization
Algorithm. Expert Syst Appl 41(15):6676–6687

 28. Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C (1996) An
experimental determination of sufficient mutant operators. ACM
Trans Softw Eng Methodol 5(2):99–118

 29. Offutt AJ, Rothermel G, Zapf C (1993) An experimental evalua-
tion of selective mutation. Proceedings of the 15th International
Conference on Software Engineering, ICSE ’93. IEEE Computer
Society Press, Los Alamitos, CA

 30. Papadakis M, Malevris N (2010) An empirical evaluation of the
first and second order mutation testing strategies. 2010 Third
International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW)

 31. Sankar SS, Chandra SS (2020a) A Structural Testing Model Using
SDA Algorithm. Lect Notes Comput Sci 405–412. https:// doi. org/
10. 1007/ 978-3- 030- 53956-6_ 36

 32. Sankar SS, Chandra SS (2020b) An Ant Colony Optimiza-
tion Algorithm Based Automated Generation of Software Test
Cases. Lect Notes Comput Sci 231–239. https:// doi. org/ 10. 1007/
978-3- 030- 53956-6_ 21

 33. Wei C, Yao X, Gong D, Liu H (2021) Spectral clustering
based mutant reduction for mutation testing. Inf Softw Technol
132(2021):106502

 34. Wong WE (1993) On mutation and data flow. Ph.D. dissertation,
Purdue University

 35. Yao X, Zhang G, Pan F, Gong D, Wei C (2020) Orderly Generation
of Test Data via Sorting Mutant Branches Based on Their Domi-
nance Degrees for Weak Mutation Testing. IEEE Trans Software
Eng 48(4):1169–1184. https:// doi. org/ 10. 1109/ tse. 2020. 30149 60

 36. Zhang L, Hou SS, Hu JJ, Xie T, Mei H (2010) Is operator-
based mutant selection superior to random mutant selection?

https://drive.google.com/drive/folders/1eHkLdF2b-of6LqgJQaEpcyLjcfejz0Az?usp=sharing
https://drive.google.com/drive/folders/1eHkLdF2b-of6LqgJQaEpcyLjcfejz0Az?usp=sharing
https://doi.org/10.1007/s10836-022-05999-9
https://doi.org/10.1007/s10836-022-05999-9
https://doi.org/10.1007/s10836-022-06008-9
https://doi.org/10.1007/s10836-022-06008-9
https://doi.org/10.1007/s10836-022-06033-8
https://doi.org/10.1007/s10836-022-06033-8
https://doi.org/10.1002/smr.2228
https://doi.org/10.1108/DTA-03-2020-0073
https://doi.org/10.1109/tse.2010.62
https://doi.org/10.5815/ijcnis.2017.05.03
https://doi.org/10.1007/978-3-030-53956-6_36
https://doi.org/10.1007/978-3-030-53956-6_36
https://doi.org/10.1007/978-3-030-53956-6_21
https://doi.org/10.1007/978-3-030-53956-6_21
https://doi.org/10.1109/tse.2020.3014960

370 Journal of Electronic Testing (2023) 39:347–370

1 3

Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering

 37. Zhang L, Gligoric M, Marinov D, Khurshid S (2013) Operator-
based and random mutant selection: better together. Automated
Software Engineering (ASE). IEEE/ACM 28th International
Conference

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Bahman Arasteh was born in Tabriz. He received the master’s degree in
software engineering from Azad University of Arak, and the Ph.D degree
in software engineering from Islamic Azad University, Tehran Science and
Research Branch, respectively. Currently, he is an associate professor at
Istinye University, Istanbul, Turkiye. He has published more than 50 papers

in refereed international journals and conferences. He is the coordinating
editor in the springer journal of electronic test, and he is the reviewer of dif-
ferent international journals in Elsevier, Springer, Wiley and Hindawi. His
research interests include search-based software engineering, Software test-
ing, optimization algorithms, software fault tolerance, and software security.

Farhad Soleimanian Gharehchopogh is an associate professor in Urmia
Azad University in Iran. His research interest includes search-based
computer engineering, complex networks, optimization problems and
meta heuristic algorithms.

Peri Gunes is an assistant professor in Dogus university in Turkiye. Her
research interest includes computer networks, evolutionary algorithms
and their function in dependability engineering.

Farzad Kiani is associate professor at Fatih Sultan Mehmet Vakif Uni-
versity in Turkiye. His research interest includes software testing, evo-
lutionary algorithms and network security.

Mahsa Torkamanian‑Afshar is an assistant professor in Nisantasi Uni-
versity in Turkiye. Her research interest includes the dependability
of computer networks, and evolutionary and optimization algorithms.

	A Novel Metaheuristic Based Method for Software Mutation Test Using the Discretized and Modified Forrest Optimization Algorithm
	Abstract
	1 Introduction
	2 Related Studies
	3 Identifying and Mutating the Bug Prone Paths
	3.1 Control Flow Graph
	3.2 Block Susceptibility
	3.3 Branch Susceptibility
	3.4 Finding Bug-Susceptible Paths Using Forrest Optimization Algorithm (FOA)
	3.4.1 Modeling the Research Problem in the FOA
	3.4.2 Forest Initialization and Local Seeding
	3.4.3 Population Limitation and Global Seeding

	4 Evaluation
	4.1 Experiment Platform and Benchmark Programs
	4.2 Results and Discussion
	4.2.1 Convergence Criterion
	4.2.2 Stability Criterion
	4.2.3 Success Rate Criterion
	4.2.4 Mutant Reduction
	4.2.5 Calibrating the FOA Parameter

	5 Conclusion and Future Studies
	References

