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Abstract
The number of detected bugs by software test data determines the efficacy of the test data. One of the most important topics 
in software engineering is software mutation testing, which is used to evaluate the efficiency of software test methods. The 
syntactical modifications are made to the program source code to make buggy (mutated) programs, and then the resulting 
mutants (buggy programs) along with the original programs are executed with the test data. Mutation testing has several 
drawbacks, one of which is its high computational cost. Higher execution time of mutation tests is a challenging problem in 
the software engineering field. The major goal of this work is to reduce the time and cost of mutation testing. Mutants are 
inserted in each instruction of a program using typical mutation procedures and tools. Meanwhile, in a real-world program, 
the likelihood of a bug occurrence in the simple and non-bug-prone sections of a program is quite low. According to the 80–20 
rule, 80 percent of a program's bugs are discovered in 20% of its fault-prone code. The first stage of the suggested solution 
uses a discretized and modified version of the Forrest optimization algorithm to identify the program's most bug-prone paths; 
the second stage injects mutants just in the identified bug-prone instructions and data. In the second step, the mutation opera-
tors are only injected into the identified instructions and data that are bug-prone. Studies on standard benchmark programs 
have shown that the proposed method reduces about 27.63% of the created mutants when compared to existing techniques. 
If the number of produced mutants is decreased, the cost of mutation testing will also decrease. The proposed method is 
independent of the platform and testing tool. The results of the experiments confirm that the use of the proposed method in 
each testing tool such as Mujava, Muclipse, Jester, and Jumble makes a considerable mutant reduction.

Keywords Software mutation test · Bug-prone codes · Forest optimization algorithm · Mutation score

1 Introduction

Testing is an important method to find and remove bugs in 
a software product [20]. Software engineers employ testing 
techniques to improve the quality of software. Finding effec-
tive test data is the main role of software testers. The per-
centage of identified bugs by the selected test data indicates 
its effectiveness. One of the most challenging study fields in 
software testing is evaluating the effectiveness of test data 
[2, 9, 14, 31, 32]. Mutation testing is the main technique 
to evaluate the effectiveness of test data. In this technique, 
the effectiveness of test data is indicated by mutation score 
[12]. In the mutation test, programming bugs are made by 
the mutation operators and injected into the source code of 
the original program. The injected bugs (mutants) are made 
by syntactic modification using mutation operators. A set 
of buggy (mutated) programs are created in the mutation 
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testing in such a way none of them have compiler error. The 
mutants (buggy programs) are executed along with the origi-
nal program to measure the mutation score of the selected 
test data. A mutant is killed by the test data when the outputs 
of the original program and the mutated (buggy) program 
are not the same. The mutation score of a test set is 100% 
when it kills all of the created mutants. Test data with a 
100% score is ideal test data.

Each syntactical modification made by  the mutation 
operator simulates a bug in the program source code. The 
number of produced mutants (buggy programs) is a function 
of the lines of code and mutation operators; in the real-world 
program, a large number of mutated versions are generated, 
and these mutants should be executed with the test set. 
Indeed, the computational cost and time of mutation testing 
are one of the most significant problems in mutation test-
ing. The major goal of this work is to reduce the number of 
generated mutants, and the time and cost of mutation test-
ing. Mutants are inserted in each instruction of a program 
using typical mutation procedures and tools. But, in a real-
world program, the likelihood of a failure bug occurring in 
the program's simple areas (instructions and data) is quite 
low. According to the 80–20 rule, 80 percent of a program's 
bugs are discovered in 20% of its bug-prone code [5, 13].

A suitable selection of mutant operators and cod sections 
leads to reducing the cost of the mutation test. As a result, 
injecting mutants into the bug-prone codes of a program 
results in a limited number of mutations. Moreover, inject-
ing mutants into the simple codes (codes with low com-
plexity) results in bugs that are found (killed) by poor test 
data. According to the expert programmer hypothesis, the 
probability of programming bugs in the non-bug-prone parts 
of the program is very low. The method proposed in this 
study makes a static source code analysis to find out the 
program's bug-prone parts. This method avoids injecting 
mutants in non-bug-prone codes and makes a large reduction 
in the number of mutations. In a program having n branch 
instructions, there are  2n execution paths (test paths). Find-
ing the most bug-prone (most complex) test paths in a pro-
gram source code is an NP-hard problem. Nowadays, differ-
ent artificial intelligence and machine learning algorithms 
have been used to sort out different NP = complete problems 
in computer science [7, 18]. In the first stage of the proposed 
technique, the Forrest optimization algorithm (FOA) is used 
to find out the most bug-prone paths of the program; in the 
second stage, the mutant operators are injected primarily 
into the bug-prone sections. MuJava was utilized to achieve 
program code alteration [25]. The main contributions of this 
study are as follows:

• A novel heuristic-based method using discretized forest 
optimization algorithm was developed to find the bug-
prone codes of a program source code. The method quan-

tifies the complexity weight of the identified bug-prone 
codes.

• The mutation operators were applied only to the most 
bug-prone instructions identified by the method, and the 
non-bug-prone instructions were eliminated in the muta-
tion test.

• Avoiding the mutation of the non-bug-prone instructions 
is the main technical advantage of the proposed method, 
which leads to about a 27% reduction in the number of 
generated mutants.

• The proposed method is independent of the platform 
and testing tool. Results of experiments confirm that the 
use of the proposed method in each testing tool such as 
Mujava, Muclipse, Jester, and Jumble makes a consider-
able mutant reduction.

• An open-source tool to analyze a program’s source code 
and find the bug-prone codes of the program was imple-
mented in this study.

Section  2 examines relevant studies. The proposed 
method is shown in Section 3. The suggested method's simu-
lation, experiments, and evaluation criteria are discussed in 
Section 4. This part also examines and analyzes the experi-
mental data, as well as compares and contrasts the suggested 
method with alternative approaches. Section 5 wraps up the 
study's findings and suggests future research areas.

2  Related Studies

Researchers have proposed many strategies for lowering 
the cost of mutation testing. Here's a review of several key 
techniques. It is regarded as one of the simplest methods 
for reducing the number of mutations [8]. Techniques for 
sampling mutants aim to take a representative sample of the 
generated mutants. Researchers have examined the percent-
age of several samples ranging from 10 to 40% [34]. The 
effect of the 10% sample percentage was only 16% smaller 
than the entire set of generated mutants, according to the 
experimental results. As a result, techniques for assessing 
mutations with a 10% sampling percentage can still be a 
good option. This is consistent with King's research results 
[21]. Papadakis and Malevris [30] investigated the effective-
ness of several mutation sampling techniques (from 10 to 
60 percent in 10 percent steps). The researchers found that 
the registered test's effectiveness loss varied from 6 to 26%.

Another approximate strategy for reducing the number of 
mutants is selective mutation. Proposed random selection 
mutation as a way to reduce the number of mutations. Only 
a small percentage of the mutations are randomly exam-
ined. Limited mutation [28] is an approach that evaluates 
only a small number of mutations while ignoring the rest. 
One disadvantage of this strategy is the way operators are 
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chosen; also, they are unable to construct multiple excellent 
sets for different reasons. Offutt et al. [28, 29] investigated 
the effectiveness of several mutation operator sets to build 
on this approach. According to the results, measuring the 
success of mutation testing requires just 5 operators out 
of 22. Barbosa et al. [6] proposed six operators for esti-
mating the number of suitable mutation operators. These 
operators were combined to create a set of 10 operators 
that removed 65 percent of the mutations while retaining 
test effectiveness. Other studies looked at how successful 
it was to use just one or two mutation operators. Wong [34]  
evaluated the efficacy of using mutation with one or two 
assignment mutation operators in contrast to the depend-
ent mutation operator. According to the experiment results, 
the number of matching mutations can be decreased by up 
to 67%, while only 5% of the test efficacy is lost. In addi-
tion, multiple studies have demonstrated that inserting these 
mutations does not affect the quality of the test cases gen-
erated. Zhang et al. [36] looked at the differences between 
sampling mutation and selective mutation. Two sample 
methodologies were compared to three selection proce-
dures. The selective mutation was shown to be less effec-
tive than the sampling mutation. Finally, Zhang et al. [37] 
proposed that selecting and sampling mutations be used  
in combination to generate promising results.

The results indicate that by concentrating on other 
mutants, a considerable proportion of mutations might be 
eliminated [26]. Researchers have made an effort to deter-
mine the fewest mutations necessary to fully cover their set, 
which would be adequate for determining the minimum set's 
ability. The experiment that used the fewest changes to pro-
gram source code was originally carried out by Kintis et al.  
[22]. The gathered data demonstrates that even for muta-
tions that are scarcely destroyed, just a little portion of the 
produced mutations (9%) is required to cover the whole set 
(35 percent). Investigated this issue both theoretically and 
experimentally. Dynamic sharing was used to lower the 
number of mutations. Given a test set, the x mutation is 
dynamically translated into the y mutation; test cases that 
kill x also kill y. Testing the dynamic subset in the C pro-
gramming language revealed that just 12% of the generated 
mutations were necessary to cover the whole set. Last but 
not least, Kurtz et al. [23, 24] investigated if establishing 
the association between frequent mutations might be done 
using dynamic and static analytic approaches. They found 
that for better results, static and dynamic analysis techniques  
should be used.

Researchers have developed a variety of strategies for 
reducing the price of the mutation test's application, in 
addition to limiting the number of pertinent mutations to 
reduce mutation costs. The weak mutation strategy is one of 
Howden's strategies [17]. By omitting the whole implemen-
tation of the main program and its mutations, weak mutation 

aims to lower the processing cost associated with mutation 
avoidance. To achieve this, the weak mutation lays forth 
the requirements that a mutation must meet to be labeled as 
a dead mutation. To compare the final output of the main 
program and the modified program, the internal states of 
the programs are compared immediately after applying the 
mutation or altered components. It should be noted that 
when compared to a "weak mutation," the average mutation 
is referred to as a "strong mutation." As a middle ground 
between strong and weak mutations, Jackson and Woodward  
[18] proposed the strong mutation. They claimed that we 
could compare the internal states of the main program 
and its mutation at any point between the mutation's first 
execution and the program's conclusion. Weak mutations 
are useful in many investigations. Offutt and Lee [22] built 
a fragile structure for the FORTRAN77 software and then 
assessed its effectiveness and usefulness. The results showed 
that weak mutations reduced manual effectiveness because 
fewer related mutations were evaluated. Offutt and Lee [22, 
30] used a range of techniques to examine the efficacy of 
weak mutations. They concluded that this approach provides 
stronger mutations at a lower cost. Researchers suggested 
comparing the internal states of the main program and its 
mutations following the first execution of the altered expres-
sion or the main block that contains it based on the results of 
the experiments. Table 1 displays the salient characteristics 
of the previously proposed strategies.

3  Identifying and Mutating the Bug  
Prone Paths

Software mutation testing is time- and money-consuming, 
therefore recent research efforts have focused on finding a 
solution. The fundamental objective of this kind of study is 
to reduce mutations while retaining efficacy. In this study, 
we provide a method for mutation testing that makes use 
of a forest optimization algorithm (FOA). In this process, 
mutation operators were only applied to the codes of the 
identified fault-prone regions of the program source code. 
The recommended approach stops mutation of the program's 
non-bug-prone sections, which significantly lowers the num-
ber of mutants. Figure 1 shows the proposed approach. The 
developed FOA takes a subset of CFG's paths as input (ini-
tial population). The size of the initial population (number 
of selected paths) depends on the number of total paths in 
the CFGs of the input program. Figure 3 shows the structure 
of the created CFG and the structure of a test path (solution) 
in the proposed method. Each solution (test path), which 
represents a tree in FOA, is implemented by an array. The 
suggested FOA is used to find out the most bug-prone paths 
(a subset of paths) of the program. The FOA begins with the 
initial population of paths (trees). The bug-proneness of the 
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paths in the populations is calculated by Eq. 7. The popu-
lation's fitness value increases during iterations. The first 
population is the worst, and the final population includes 
the optimal (the most bug-prone) paths. The final popula-
tion is the output of the suggested method. Indeed, the final 
population, as the most bug-prone path subset, is considered 
for performing mutation tests.

3.1  Control Flow Graph

While injecting mutation operators, the suggested technique 
identifies the program's most bug-prone regions. The related 
control flow graph (CFG) of the program source code should 
be constructed initially, as illustrated in Fig. 1. A CFG is a 
diagram that shows all of a program's potential pathways 
and branches. There are nodes and edges in the graph. Each 
node is described as a block that contains a collection of 
constantly performed operators and operands. In reality, if a 
single instruction in the block is performed, the entire block 
is executed. The presence of a directed edge between nodes 
suggests a probable graph execution path. The term "branch" 
refers to a node with more than one output edge. Figure 2 
depicts the CFG of a program.

In this study, program complexity criteria were used 
to calculate the bug susceptibility of program blocks. In 
a CFG, a path's bug susceptibility (complexity) is deter-
mined by the complexity of its nodes. As a result, in the 
CFG, determining the weight of nodes (bug susceptibility 
measure of nodes) is necessary. The bug susceptibility of 
a path is a function of the complexity of the nodes and 

the sum of the complexity of the branches in the paths. 
Finding the bug-prone test path of a program is the main 
research problem of this study. Regarding the control flow 
graph of a program, finding the optimal test paths (test 
paths with the highest bug proneness) is an NP-complete 
optimization problem (Page 4, First Paragraph). Equa-
tion 1 was proposed to calculate the bug proneness of a 
test path. In a program with n branch instruction, there 
are  2n test paths. The proposed method evaluates the error 
detection power of a software test method by injecting 
bugs only into error-prone codes. The modified and dis-
cretized version of FOA was developed to find out the 
most bug-prone paths of a program. At the first stage of 
the proposed method, the CFG of the input source code 
was automatically generated by visustin tool. The adja-
cency matrix of the CFG was generated automatically by 
the second module of the method. In the third stage, the 
FOA gets the adjacency matrix and generates a subset of 
paths (final population) as the most bug-prone test paths. 
Finally, Mujava was used to make the heuristic mutation 
test only on the selected bug-prone codes of the program.

Equation 1 represents the bug susceptibility of a path in 
a CFG. In this equation, α and β are fixed values whose val-
ues are considered 0.5. Measuring the bug susceptibility of 
blocks and branches in a CFG is explained in subsections 3.2 
and 3.3.  BBj refers to normal basic block (BB) and  BCHk 
refers to branch type node (BB) in  pathi. In Eq. 1, bj specifies 
the number of non-branch nodes (BB) in the  pathi. Similarly, 
rk indicates the number of branch nodes in the  pathi. Table 2 
describes the variables used in this study.

Fig. 1  An overview of the 
proposed method
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3.2  Block Susceptibility

This study uses basic block (CFG node) weight to evaluate 
the bug susceptibility (complexity) of a code basic block 
(BB). The larger the weight of a block, the more bug-prone 

(1)

Susceptability of Pathi = W(Pathi) =

|bj|∑
j= 1

W(BBj)

× � +

|rk|∑
k= 1

W(BCHk) × β

it is. BB weight is measured by Eq. 2. The number of opera-
tors and operands in a BB influences its bug susceptibility.

The weight of operators in BBi is  Ni; where  Ni is the 
total number of operators in that node. The weight of 
operands in BBi is shown by  Mi, which provides the total 
number of accessible operands in that node. The total 
weight ( W �

(
BBi

)
) is then calculated using each of their 

normalized weights. Operator weights were normalized 

(2)
W �

(
BBi

)
=W �

(
Ni

)
+W

(
Mi

)

+ �

{
� = 0.5, Node have if instruction.

� = 1, Node have not if instruction.

Fig. 2  A program source code 
and its generated CFG

Table 2  Variable description Variable Name Description

CFG Control flow graph of the program under test
����

�
The execution path i in the program control flow 

graph
�(����

�
) The bug proneness of a pathi

BBi The normal basic block i in the program control flow 
graph which does not include the jump command

BCHi The branch basic block i in the program control flow 
graph which include the jump command

�(���) Weight of normal BBi
�(����) Weight of branch BCBi
bi The number of non-branch nodes (BB) in pathi
ri The number of branch nodes (BB) in pathi
α and β Constant coefficients
�′

(
��

�

)
Normalized W

(
BB

i

)
h Number of expressions in the branch statement
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using Eq. 3, which divides the number of available opera-
tors in each node by the total number of operators in the 
corresponding path. We utilized Eq. 4, which divides the 
number of operands accessible at each node by the total 
number of operands in the path.

3.3  Branch Susceptibility

A branch block in a program's source code includes con-
ditional statements and expressions. An expression  in 
a branch block is a sequence of data and operators that 
evaluates a single value. An executable path of a program 
is selected based on the value of the respective expres-
sions at run time. A branch's susceptibility is determined 
by the complexity weight of the respective expressions. A 
program path with a higher complexity weight is hard to 
comprehend by programmers and is bug-prone. In real-
world programs, the hard-to-comprehend and hard-to-
reach parts of a program may include more bugs (bug-
prone parts). Hence, to simulate the real-world bugs in 
a program, the hard-to-reach codes of a program should 
be considered with higher priority in the mutation test. 
Expression weight (complexity) is calculated using Eq. 5 
and Table 3 for each branch statement in the CFG. The 
following two stages are created by Eq. 5:

• If the relevant decision node contains h expressions that 
have been combined using the AND operator, the square 
root of the overall weight of the expressions is consid-
ered.

• The selection criteria will be the lowest weight of the 
expression weight if the associated decision node 
includes h expressions that have been merged using the 
OR operator.

(3)W �(Ni) =
Ni∑�bj�
j= 1

Nj

(4)W �
�
Mi

�
=

Mi∑�bj�
j= 1

Mj

In Eq. 5, Cg stands for the gth expression in the branch 
statement (1 ≤ g ≤ h). h shows the number of expressions 
in the branch statement. The Wr variable is the condition 
weight set by Table 3. For normalizing the expression weight 
of branch statements, we employed Eq. 6, which divides the 
expression weight of each branch by the overall weight of 
the branches. Table 3 also lists all the operators that might be 
included in the condition expressions. Equation 7 represents 
the objective (fitness) function.

The phrase 
∑�pi�

i= 1
W

�

(BBi) describes the total complexity 
of nodes in a program path (pathi), where bi specifies the 
number of non-branch nodes in the  pathi. Similarly, the 
phrase 

∑�rj�
j= 1

BCHj defines the total complexity of branch 
(decision) nodes, where ri is the number of branch nodes 
(decision node) in the program path. In Eq.  7, α was 
employed as an impact factor and as a criterion for the effi-
cacy degree of complexity. The value of α is 0.5 in this 
study.

3.4  Finding Bug‑Susceptible Paths Using Forrest 
Optimization Algorithm (FOA)

3.4.1  Modeling the Research Problem in the FOA

The third stage of the proposed method, as shown in Fig. 1, 
is a search optimization problem; also, finding the most sus-
ceptible paths in a control flow graph is an NP-complete 
problem. In this research, the forest optimization algorithm 
(FOA) is suggested to identify the most susceptible paths 
in a program source code. As explained in subsection 3.3, 
the bug-susceptibility of each block should be calculated 
using Eqs. 2–6 before executing the FOA. FOA takes the 
calculated weights of each block and then finds the most 
bug-susceptible paths of a program source code. To reduce 
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Fitness
(
Pathpi

)
=

|bi|∑
i= 1

W �(BBi)

× � +

|rj|∑
j= 1

W �(BCHj) × (1 − �)

Table 3  Operators’ weight 
in terms of bug-prone used 
to compute the weight of 
expression

Operator Weight

 =  = 0.9
 < , <  = , > , >  = 0.6
Boolean 0.5
! = 0.2
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the cost of software mutation testing, only the identified 
susceptible paths of the program are considered for muta-
tion. The base form of FOA was proposed by Manizheh 
and Mohammad-Reza [27]. The basic forest optimization 
algorithm is a continuous heuristic algorithm that can be 
used to solve continuous NP-hard problems. On the other 
hand, finding the bug-prone test paths of a program source 
code is an NP-compete discrete problem. The basic form 
of the FOA cannot be adapted directly to the software test-
ing problem. The other challenge of the basic FOA is its 
local optima problem in the test optimization problem. The 
lower success rate and low stability are the main problems 
of the basic FOA. In this study, the basic FOA was modified 
and discretized. As shown in Fig. 3, each individual (tree) 
is implemented by an integer array that shows a test path 
in a graph. Furthermore, to increase the diversity among 
the individuals and to avoid the local optimum, a version 
crossover has been used between the best and worst trees in 
a specific iteration. The results of experiments indicate that 
the modified and discretized FOA has higher performance 
in the software test problem.

The customized and modified form of FOA is used in 
this study. Similar to other heuristic algorithms, the FOA 
takes a subset of CFG's paths as input (initial population). 
The FOA process begins with the initial population of trees; 
each tree denotes a potential solution to the problem (a path 
in the CFG). Each CFG path, which represents a tree, is 
implemented by an array. The array's length represents the 
path length. Figure 3 shows a tree structure in the proposed 
FOA. In the tree array, Nvar is equal to the length of the 
path in the CFG and Age is equal to the age of the tree, and 
Cost is the bug-susceptibility of the tree (path) that is cal-
culated via Eq. 7. The initial population is represented as a 
matrix where each row is a tree array (Fig. 3). The proposed 
FOA includes three basic steps: local tree seeding, popula-
tion constraint, and global tree seeding. Figure 4 shows the 
general form of FOA.

The age of the tree is regarded as zero in the FOA when 
it begins to work. The local seed operator grows new trees 
from the young trees in the forest. Then, with the exception 
of newly generated trees, all trees rise in age from 0 to 1. 
After that, control over the forest's tree population eliminates 
part of the trees. One percent of the candidate population is 
chosen to travel around the forest during the global seeding 
stage. Now the forest trees are ordered by their bug-suscep-
tibility values (calculated by Eq. 7); the tree with the greatest 
bug-susceptibility (most fitted) value is chosen as the best 
tree, and its age is set to zero to prevent re-selection. These 
steps continue until the stop condition is obtained.

3.4.2  Forest Initialization and Local Seeding

The effect of tree age is that if a tree was optimal in terms of 
bug-susceptibility, the local seed operator would add trees 
similar to the optimal tree to the population, and optimal 
trees would remain in the population. But if the tree is not 
optimal, the trees produced from this tree will be removed 
from the population after several repetitions due to old age 
or limited forest width. A predetermined parameter called 
the lifetime determines how old a tree may be. At the start 
of the algorithm, this parameter must be changed. When 
a tree reaches the end of its life, it is cut down and added 
to the candidate population. If this option is set to a large 
value, each iteration of the algorithm will only grow this 
tree, resulting in a forest full of elderly trees that don't par-
ticipate in local seeding. If we set this parameter to a low 
value, the trees will quickly age and be eliminated from the 

Fig. 3  Tree structure in FOA
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forest population. As a result, depending on the application, 
this value should be changed.

Local seeding is done on trees that are less than a year 
old and adds some trees from the surrounding area to the 
forest. The figure shows two repetitions of this operator 
(Fig. 5). Except for newly generated trees, the age of all 

trees grows by one unit after local sowing in zero-age 
trees. The algorithm approach is implemented utilizing 
the local seeding step if a tree is promising (increased 
bug susceptibility). Otherwise, the hopeless trees (lower 
bug susceptibility trees) age and die naturally after a few 
cycles. The number of seeds that fall near a tree (CFG's 

Fig. 4  The pseudo-code and flowchart of the developed FOA

Fig. 5  Local seeding operation in FOA
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path) and then form a tree is a FOA calibration parameter, 
as illustrated in Fig. 5. A local seeding change (LSC) is a 
parameter. In Fig. 5, the value of this option is set to 3. The 
application scope dimension should be used to determine 
this parameter. We experiment to determine the ideal LSC 
parameter values (explained in Section 4). As a result, 
three trees have been put into the forest for each tree with 
an age of 0. Figure 6 illustrates an example of a local seed-
ing operator for a tree (CFG's path) with an LSC value of 
2. The values of r and r’ (values generated randomly) are   
in the interval [−ΔX.ΔX].

3.4.3  Population Limitation and Global Seeding

The number of trees in the forest needs to be managed to pre-
vent unrestrained forest installation. Two factors, life span, 
and geographical restriction, limit the number of trees. The 
trees that go through the tree's life cycle must first be elimi-
nated from the forest since they will eventually represent the 
population. The second restriction, the area constraint, is 
determined by fitness (bug-susceptibility); this constraint is 
handled in such a way that if the number of trees exceeds the 
forest constraint, many trees are destroyed. Another param-
eter called area constraint is forest constraint. In the experi-
ments of this study, the constraint values   of the area were 
considered the same number of primary trees. Therefore, 
after doing this, the number of trees in the forest is equal to 
the number of primary trees.

The global seeding operator seeks to imitate tree seed 
dispersion in the forest. In the search space, this operator 
does a global search. In the previous stage, the global seed-
ing operator was specified as a percentage of the candidate 
trees. Figure 7 shows an example of a tree's global seed-
ing procedure (program path). The tree is chosen at random 
from the candidate population; after that, certain elements 
in each tree are chosen at random. At this point, each ele-
ment's value is created using a random output value within a 
reasonable range. Another FOA parameter is the number of 

these elements that vary, which is described as global seed-
ing variation (GSC). The GSC parameter is assumed to have 
a value of 2 in Fig. 7. As a result, two variables are chosen 
at random and their values are swapped with other randomly 
produced values in the relevant variables' range, such as r 
and r'. The trees should be classified depending on fitness 
once they have been seeded globally (bug susceptibility). 
The best tree is chosen by sorting the trees and selecting the 
one with the highest fitness. To re-select in the local seeding 
stage, the age of the best tree is set to zero. The finest tree 
in this scenario might be selected from a local seed stage. 
Because, as previously said, local seeding is performed on 
trees that are less than ten years old.

4  Evaluation

4.1  Experiment Platform and Benchmark Programs

An extensive series of experiments have been implemented 
to evaluate the method. The proposed method has been 
implemented in the MATLAB 2020 programming language. 
The tests were run on a PC with an Intel Core i7 CPU, 8 GB 
of RAM, and Windows 10 operating system. After selecting 
the most bug-prone paths of the benchmark programs by the 
proposed FOA, the mutants were injected by the MuJava 
tool (https:// cs. gmu. edu/ ~offutt/ mujava/). A set of standard 
and most frequently used programs have been selected as 
benchmarks. The selected programs have been used in previ-
ous studies as evaluation benchmarks. Table 4 explains the 
characteristics of the benchmark programs. These programs 
include the structures that are used in real-world programs, 
such as loop and conditional structures, I/O instructions, 
and different arithmetic, and logical operators. Also, the 
selected programs include nested programming structures. 
Today’s real-world programs with millions of lines of code 
are written in modular form. Indeed, all the codes are not 
written in one function (unit) but are divided into functions 

Fig. 6  Local seeding example for a tree when LSC = 2

Fig. 7  Global seeding example for a tree (program path) when GSC = 2

https://cs.gmu.edu/~offutt/mujava/
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and modules. Regarding the programming standard styles, 
the code written into a function should be between 5 and 
60 lines of code. Indeed, these functions are considered 
the test unit. The functions with hundreds of lines of code 
are not standard and understandable and should be broken 
to smaller-size functions. Therefore, in a real project, we 
face a set of functions (units) that must be tested. To evalu-
ate the proposed method, a set of standard functions was 
selected. Similar to real-world programs, the selected bench-
mark programs include 30 to 75 lines of code. The selected 
benchmark programs include different arithmetic and logi-
cal operators, branch instructions (if-else instructions), 
loop structures, and different types of data. Concerning the 
Halstead and Cyclomatic metrics, the selected programs are 
hard to test. The number of branch instructions and operators 
in the selected benchmark programs is higher than in real-
world application programs. For example, the triangle type 
benchmark includes 31 lines of code, but each line includes 
an if structure. As a result, testing the selected benchmark 
programs with 100% coverage is hard and time-consuming.

Performance Criteria that were used to evaluate the pro-
posed method are as follows:

• Success Rate: Heuristic algorithms work based on prob-
ability, so the results of one execution are not enough 
to assess their success rate. The success rate shows the 
probability of success of the proposed method in produc-
ing the optimal solution. In this study, the success rate of 
the proposed FOA was evaluated during 10 times. The 
percentage of times that the heuristic algorithm can pro-
duce the optimal solution indicates the success rate of the 
algorithm. The success rate of the proposed method was 
explained in subsection 4.2.3.

• Mutant Reduction: Mutation test is used to evaluate 
the effectiveness of a test technique or tool. The muta-
tion score indicates the effectiveness of the test data. The 
mutation score is the percentage of the detected bugs 
that were injected by the mutation test tool. The cost and 
time of the mutation test methods depend on the number 
of injected mutants (bugs) by the mutation test method. 

The proposed method injects mutants only in the bug-
prone codes of the program. The rate of reduction of 
ineffective mutants is one of the important criteria that 
was discussed in subsection 4.2.4.

• Stability: Stability shows the closeness of the generated 
results to each other. The stability of an algorithm means 
that the results are not subject to specific conditions or 
are not obtained by chance. The algorithm will be sta-
ble when the difference in the fitness of the final results 
generated in different executions is not noticeable. The 
stability is evaluated by calculating the standard devia-
tion among the results obtained during 10 executions. 
The stability of the proposed mutation test method was 
discussed in subsection 4.2.2.

• Convergence Speed: One of the evaluation criteria 
of heuristic algorithms is the convergence to optimal 
response. During the execution of the heuristic algo-
rithms, the results should be gradually improved in 
terms of fitness and converged to the optimal solution. 
The convergence shows how well FOA does at identify-
ing bug-prone codes of the program's source code. The 
convergence speed of the proposed method was discussed 
in subsection 4.2.1.

As shown in Fig. 1, the source code of the input program 
(function) source code should be converted to the CFG. This 
stage of the method is performed automatically using existing 
tools such as Visustin (https:// www. aivos to. com/ visus tin. html). 
Figure 8 shows the generated CFG for the triangle benchmark 
program. After extracting the CFG by the software tool, the 
CFG is also automatically converted to an adjacent matrix by 
the implemented code in MATLAB. Table 5 shows the gener-
ated adjacent matrix for the triangle benchmark. At the next 
stage, the implemented FOA as a module in the MATLAB 
is invoked. The invoked FOA finds out the bug-prone paths 
of the program during the determined iterations. Overall, all 
stages of the proposed method are performed automatically, 
and the method was implemented as a software package to per-
form automatically. Table 6 shows the calculated node weight 
for all nodes of the triangle CFG (shown in Fig. 8).

Table 4  Characteristics of the benchmark programs

Program name Num. Of 
Input

Code lines 
(LOC)

Cyclomatic 
Complexity

Time Complexity Program Output

Triangle Type 3 31 20 O(c) Specifying triangle type
Binary Search 3 75 8 O (log n) Searching from an integer list
Quadratic Equation 3 30 5 O(c) Calculating the roots of quadratic equations
Number of Digits 1 39 5 O(n) Calculating the digits of integer number
Largest Num 3 32 7 O(n) Finding the largest integer number

https://www.aivosto.com/visustin.html


358 Journal of Electronic Testing (2023) 39:347–370

1 3

After identifying the bug-prone paths of the benchmark 
programs by the FOA, the mutation stage is performed on the 
selected paths. To this end, MuJava is used to make the func-
tion-level mutants (buggy versions of the original programs). 
Table  7 depicts the function-level mutation operators in 
MuJava that are used to simulate the programming bugs in the 
bug-prone codes of the programs (selected by FOA). In stage 5 
of the proposed method, a set of test suits are required to evalu-
ate the proposed method in terms of mutation score. Indeed, 
the generated mutants by the MuJava should be executed using 
a test suit. The branch coverage criterion is used to generate 
effective test data for the benchmarks. Traxtor [3], was used 
for the test-generation stage of this study. This method (Trax-
tor) is invoked as the other MATLAB module to automatically 
generate the coverage-based test data. Finally, the calibration 
parameters of the FOA and genetic algorithm have been cali-
brated experimentally and are described in Table 8.

4.2  Results and Discussion

4.2.1  Convergence Criterion

One of the evaluation criteria of heuristic algorithms is 
the convergence to optimal response. Therefore, during 
the implementation of the heuristic algorithms, the results 
should be gradually improved and converged to the opti-
mal response. The convergence depicts the performance 
of the heuristic algorithms. The convergence in this study 
shows how well a heuristic algorithm does when it comes 
to identifying the most bug-prone regions in a program's 
source code. The convergence diagram depicts the fitness 
(bug-susceptibility) function's optimal value across itera-
tions for the proposed approach. The population's fitness 
value increases during iterations in the best-fit conver-
gence diagram. The ideal solution is finally found using 

Fig. 8  The generated CFG for 
the triangle benchmark by the 
visustin tool



359Journal of Electronic Testing (2023) 39:347–370 

1 3

this convergence diagram (most bug-prone paths). The rea-
son the chart is staggered during different performances 
is that the improved individuals (trees) always replace 
the worse individuals. Figure 9 shows the convergence 
(performance) of the FOA and GA in finding the most 
bug-prone paths in the binary-search benchmark program. 
The genetic algorithm converged to 3.94 at 111 iterations. 
While the forest algorithm has converged to 4.06 with a 
maximum of 200 iterations. FOA finds the optimal solu-
tion (a path with higher bug susceptibility). The fitness of 
the best path found by FOA is 4.09 which is higher than 
the path found by GA. As a result, FOA is more capable 
of finding bug-prone paths in this benchmark. Also, as 
shown in Fig. 9, the convergence speed of the FOA is 
higher than the GA.

As shown in Fig. 10, although the GA had a good start 
compared to the FOA; then, the proposed algorithm (FOA) 
has converged significantly faster than the GA, although 
they are both identical in value. Overall, the FOA has better 
performance than GA in terms of convergence. Figure 11, 
like the previous convergence diagrams, has an evolutionary 
trend. It can be seen that the FOA has converged in lower 
iterations than the genetic algorithm. Hence, the FOA has 
better performance than the GA in several digits benchmark 

in terms of convergence. The other experiments have been 
performed on the quadratic equation benchmark; FOA and 
GA have been executed to find out the bug-prone paths of 
this benchmark program. Figure 12 shows the results of this 
experiment. The results show the superiority of the FOA 
over the GA because it converged faster than GA. FOA 
attains the maximum value of fitness (4.48) in iteration 26 
while the GA achieved the same value in replication 192.

Finally, in Fig. 13, which is related to the triangle bench-
mark, it is observed that the FOA is more powerful than 
the GA in terms of convergence. Also, FOA outperforms 
GA concerning convergence speed. Overall, concerning the 
convergence criteria, FOA has a higher performance.

Figure 14 shows the average results obtained by FOA 
and GA. Each algorithm (FOA and GA) has been executed 
10 times on each of the benchmark programs. Each execu-
tion includes 200 iterations. The fitness (bug-susceptibility) 
of final results (CFG’s paths) obtained in each execution 
has been used to calculate the average value. As shown in 
Fig. 14, the FOA has better performance in terms of average 
fitness, specifically in the triangle benchmark. The triangle 
benchmark has higher cyclomatic complexity than the other 
benchmarks. Indeed, FOA has a higher bug-prone finding 
capability than GA, specifically in complex programs.

Table 5  The generated 
adjacent matric for the triangle 
benchmark program

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



360 Journal of Electronic Testing (2023) 39:347–370

1 3

4.2.2  Stability Criterion

Because the initial population is produced randomly and 
because these algorithms use random operators, the out-
comes achieved from each heuristic method may change in 

Table 6  The weight of each 
node in the CFG of the triangle 
benchmark calculated by Eq. 2

Node N1 N2 N1(Normalized) N2(Normalized) N1 + N2(Weight) N1 + N2 + λ BCH Weight

1 0 3 0.00 0.05 0.05 1.05 0
2 0 1 0.00 0.02 0.02 1.02 0
3 6 6 0.13 0.10 0.23 0.73 0.1
4 0 1 0.00 0.02 0.02 1.02 0
5 0 1 0.00 0.02 0.02 1.02 0
6 2 2 0.04 0.03 0.08 0.58 0.11
7 2 3 0.04 0.05 0.09 1.09 0
8 2 2 0.04 0.03 0.08 0.58 0.13
9 2 3 0.04 0.05 0.09 1.09 0
10 2 2 0.04 0.03 0.08 0.58 0.15
11 2 3 0.04 0.05 0.09 1.09 0
12 2 2 0.04 0.03 0.08 0.58 0.16
13 9 9 0.20 0.15 0.34 0.84 0.2
14 2 2 0.04 0.03 0.08 0.58 0.2
15 0 1 0.00 0.02 0.02 1.02 0
16 0 1 0.00 0.02 0.02 1.02 0
17 0 1 0.00 0.02 0.02 1.02 0
18 5 5 0.11 0.08 0.19 0.66 0.3
19 0 1 0.00 0.02 0.02 1.02 0
20 5 5 0.11 0.08 0.19 0.69 0.32
21 0 1 0.00 0.02 0.02 1.02 0
22 5 5 0.11 0.08 0.19 0.69 0.34
23 0 1 0.00 0.02 0.02 1.02 0
24 0 1 0.00 0.02 0.02 1.02 0
25
(Final 

instruc-
tion)

0 0 0.00 0.00 0.00 1 0

Table 7  MuJava mutation operators used in the mutation step of the 
proposed method

Operator Description

AOR Replacing the arithmetic operator in the code
AOI Inserting an arithmetic operator in the code
AOD Deleting an arithmetic operator from the code
ROR Replacing a relational operator in the code
COR Replacing a conditional operator in the code
COI Inserting a conditional operator in the code
COD Deleting a conditional operator from the code
SOR Replacing a shift operator in the code
LOR Replacing a logical operator in the code
LOI Inserting a logical operator in the code
LOD Deleting a logical operator from the code
ASR Replacing an assignment operator in the code
SDL Deleting a statement from the code
VDL Deleting a variable from the code
CDL Deleting a constant from the code
ODL Operator Deletion

Table 8  Calibration parameters of FOA and GA

Method Parameters Values

FOA 25% of all paths in the CFG Initial Population
Lifetime 10
Area limit 100
LSC 8
GSC 8
Transfer rate %3
Iteration 200
Dimension 15

GA Initial population 25% of all paths in the CFG
Pc 0.8
Pm 0.3
Iteration 200
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different executions. As a result, one of the most significant 
characteristics to consider while assessing a heuristic algo-
rithm is its stability. The stability indicates the closeness 
of the different results (obtained from different executions 
of a heuristic algorithm) to each other. The stability of an 
algorithm means that the results are not subject to specific 
conditions or are not obtained by chance. The algorithm will 
be stable when the difference between the final values   of 
the fitness function in different executions is not noticeable. 
This will be confirmed by calculating the standard devia-
tion of different values   of the fitness function. The amount 
of standard deviation is inversely related to the stability of 
the algorithm. Therefore, the smaller the standard deviation, 
the more stable the algorithm is. To this end, each algorithm 
has been executed 10 times, and each execution includes 
200 iterations. Figure 15 depicts the bug-susceptibility of 

obtained results (CFG’s path) by FOA and GA in 10 execu-
tions. Each execution includes 200 iterations. The lower 
the variance among the obtained 10 results, the higher the 
stability of the algorithm in different executions. The stand-
ard deviation of these results was calculated and shown in 
Fig. 16. Figure 16 shows the standard deviations among the 
obtained results. Based on the results of these 10 executions, 
for each benchmark program, the standard deviation of FOA 
is less than the GA. This is one of the reasons for the stabil-
ity of FOA in finding the bug-prone path of a program.

4.2.3  Success Rate Criterion

Another performance criterion for heuristic algorithms 
to consider is the success rate. The stability revealed the 
similarity of distinct fitness result values from different 

Fig. 9  Convergence of the FOA 
and GA in finding the bug-
prone paths of binary-search 
benchmark

Fig. 10  Convergence of the 
FOA and GA in finding the bug-
prone paths of largest-number 
benchmark
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executions. The success rate of a heuristic algorithm, on the 
other hand, is the capacity of the algorithm to determine the 
optimal (best) value. In other words, it's the degree to which 
the acquired fitness value is similar to an ideal value. This 
criterion is determined by dividing the total number of times 
the algorithm has been run using the suitable benchmark 
program by the number of times the fitness function value 
has reached its maximum value. With 10 runs, the results 
displayed in Fig. 17 confirmed that the FOA outperformed 
GA in terms of success rate. In almost 80% of cases, the 
algorithm can find the bug-prone paths of programs. Over-
all, the probability of the FOA finding the best results (most 
bug-prone) paths of a program source code is close to 80%.

4.2.4  Mutant Reduction

The mutation score is a useful metric for evaluating the 
effectiveness of a test suite. Tables 9 and 10 display the 

total number of mutants produced by the suggested method 
for all paths in each benchmark program. The recom-
mended approach reduces the number of mutations. The 
suggested method uses the FOA algorithm to locate the 
bug-prone paths in the source code before performing 
mutation operations. As a result, the suggested method 
decreases the number of mutants by removing mutant 
injection in the program's non-bug-prone paths. According 
to studies done on common benchmark programs, the pro-
posed method reduces 27.63% of the created mutants when 
compared to existing methodologies. The cost of mutation 
testing will go down if the quantity of created mutants is 
decreased. The method outlined in this paper may allow the 
use of common mutation testing tools (Mujava, Muclipse, 
Jester, and Jumble) to do mutation testing at a lower cost.

Concerning the results of experiments shown in Fig. 8, 
the bug-prone aware mutation test requires a lower number 
of mutants. The lower the number of generated mutants, 

Fig. 11  Convergence of the 
FOA and GA in finding the bug-
prone paths of number of digits 
benchmark

Fig. 12  Convergence of the 
FOA and GA in identifying the 
bug-prone paths of Quadratic 
equation benchmark
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the less time and cost. Performing the mutation test with 
a limited number of generated mutants is more efficient 
in terms of time and cost.

4.2.5  Calibrating the FOA Parameter

The behavior of the heuristic algorithms depends on dif-
ferent parameters. The calibration parameters of the FOA 
should be adapted regarding the problem features and its 
applications. The authors adapt the FOA parameters regard-
ing the benchmark programs during the experiments. LSC, 
GSC, and transfer rate are the main parameters of the FOA 
algorithm that should be calibrated experimentally. To this 
end, the experiments have been repeated with different val-
ues of GSC (8, 6, 4, and 2). Figure 18 shows the effect of 
GSC on the performance of the FOA in the field. The value 
of GCS influences the fitness of the obtained results by the 

FOA. As shown in Fig. 18, the optimal results (the paths 
with maximum bug susceptibility) have been identified 
when the GSC = 8. Figure 19 shows the effects of the LSC, 
as the other calibration parameter, on the performance of the 
FOA in finding the most bug-prone paths of a program. The 
best results were obtained when LSC = 8.

Figure 10 shows the most bug-prone path of each bench-
mark program identified by the proposed method. The best 
(most bug-prone) path of the final population that is gener-
ated by the method is shown in Table 11. This path, along 
with the other paths of the final population, is considered 
for the mutation test.

The proposed method is independent of the platform 
and tools used for mutation tests. To this end, the proposed 
method was used with different mutation test tools. Pit-
est, Muclipse, MuJava, Jester, Jumble, and JavaLancer are 
the most frequently used tools for Java programs. In the 

Fig. 13  Convergence of the 
FOA and GA in identifying 
the bug-prone paths of triangle 
program

Fig. 14  The average of obtained 
fitness values in 10 executions 
of FOA and GA
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final series of experiments, the benchmark programs were 
mutated by different mutation-test tools. The number of 
generated mutants for each benchmark program with and 
without the proposed method is shown in Figs. 20, 21, and 
22. The results confirm that the proposed method makes a 

considerable reduction in the number of generated mutants 
by all testing tools. In the triangle benchmark program, the 
average number of generated mutants in all tools is about 
160; meanwhile, the average number of generated mutants 
for triangle program with the proposed method is about 107.

Fig. 15  Standard deviation among the fitness (bug-susceptibility) values of the obtained results from 10 executions of each algorithm
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Fig. 16  Standard deviation 
among the fitness (bug-suscep-
tibility) values of the obtained 
results from 10 executions of 
each algorithm

Fig. 17  The probability of FOA 
and GA algorithms in finding 
the most bug-prone paths in 
different benchmarks

Table 9  The average number of generated mutants with and without proposed method

Programs Total Mutants Killed Mutants Live Mutants Mutation Score

Largest Number Mutation of all codes 242 196 46 81.19%
Mutation of bug-prone codes 161 127 34 79.30%

Quadratic Equation Mutation of all codes 114 100 14 88.00%
Mutation of bug-prone codes 82 70 12 86.00%

Number of Digits Mutation of all codes 77 73 4 95.10%
Mutation of bug-prone codes 66 60 60 92.00%

Binary search Mutation of all codes 155 136 19 88.00%
Mutation of bug-prone codes 112 88 24 78.60%

Triangle Mutation of all codes 445 304 141 68.31%
Mutation of bug-prone codes 291 206 85 71.58%
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Similar results are produced for the binary search pro-
gram. Figure 21 shows the average number of the generated 
mutants by different tools. The number of generated mutants 
for this benchmark are respectively 56 and 42. The sort pro-
grams are one of the most used program units in real-world 
programs. The proposed method makes a considerable reduc-
tion in the number of mutants. Indeed, the proposed method 
is independent of the test platform and tools. Figure 22  
shows the generated mutants by different methods for the 
largest number program. The average number of mutants 
generated by different tools is about 70, while the number 

Table 10  The effect of proposed method on the mutant reduction

Program name Mutant 
Reduction 
Rate

Largest Number 33.47%
Quadratic Equation 28.07%
Number of digits 14.28%
Binary search 27.74%
Triangle 34.60%
AVG 27.63%

Fig. 18  The effects of GSC 
on the fitness of the obtained 
results by the FOA in different 
benchmarks

Fig. 19  The effects of LSC 
on the fitness of the obtained 
results by the FOA in different 
benchmarks
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of mutants generated by the same tools using the proposed 
method is about 52. All in all, the proposed method is plat-
form independent method that can be used along with the 
different mutation tools.

The suggested FOA takes a subset of CFG`s paths as 
input (initial population). The initial population (a subset 
of testing paths) is selected randomly from the created con-
trol flow graph (CFG). The CFG of the input source code 
is created automatically by different tools in polynomial 
time complexity. In this study, the CFG was generated by 
Visustin tool. This tool takes the source code of the pro-
gram under test and automatically generates the CFG. Each 
test path is implemented by an array (shown in Fig. 3). 
The suggested FOA is used to find out the most bug-prone 
paths of the program under test. The bug-proneness of each 
selected path is calculated by Eq. 7. The final population, 
as the most bug-prone paths of the input program, was con-
sidered for performing the mutation operators instead of all 
paths of the program. The proposed method reduces about 

Table 11  The most bug-prone path of each benchmark is identified 
by the FOA

Bench. App Most bug-prone path
Triangle Best solution: [1 2 3 5 6 7 8 9 10 11 12 

14 15 16 18 20 22 23 24]
Binary Search Best solution: [1 2 4 5 7 8 10]
Number of digits Best solution: [1 2 3 4 5 6 7 8 9 10 11 12]
Quadratic Eq. Best solution: [1 2 3 5 6 8 10 11]
Largest Number Best solution: [1 2 3 5 9 10 11]

Fig. 20  Number of generated 
mutants in triangle benchmark 
by different mutation test tools 
with and without proposed 
method

Fig. 21  Number of generated 
mutants in binary search bench-
mark by different mutation test 
tools with and without proposed 
method
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27.63% of the created mutants when compared to existing 
techniques. The proposed method can be used to evalu-
ate the effectiveness of the test data generating methods 
and tools with a limited time and cost consumption. The 
proposed method can be used in each testing tool such as 
Mujava, Muclipse, Jester, and Jumble.

ANOVA, as a statistical test, has been performed on the 
results obtained by the GA and proposed FOA. ANOVA 
is used to prove the significant effects of the FOA on the 
results of the experiments. The success rate of the two 
methods on the benchmarks has been used in the ANOVA 
analysis. Table 12 shows the statistical analysis of the 
results obtained by the GA and FOA. The mean, vari-
ance, and standard deviation of the obtained results during 
the 10 executions of each method are shown in Table 12. 
Table 13 shows the results of the ANOVA test. The val-
ues of p and f indicate the significance of the results. 
The f-ratio value is 11.52 and the p-value is 0.009442. 

Hence, the result is significant at p < .01 and the proposed 
FOA has significant effects on the number of mutants and 
hence on the time and cost of software mutation testing.

5  Conclusion and Future Studies

Reducing the number of generated mutants is the main goal of 
this research. The proposed method identifies the most bug-
prone paths at the first stage; then, the identified bug-prone 
paths are considered in mutation tasting at the second stage of 
the method. The modified version of the FOA, as a heuristic 
algorithm, was used at the first stage of the proposed method. 
MuJava is used as the code mutation tool. The original pro-
gram and also the sliced program by the proposed method 
were mutated by MuJava. The mutants are executed with the 
test data generated by the Traxtor tool. This tool automatically 
generates the coverage-based test data at the unit level (func-
tion level). Indeed, the generated mutants have been executed 
by the generated test data via Traxtor. The results of con-
ducted experiments confirm that the proposed method avoids 
mutating the non-bug-prone codes of the program. All in all, 
the method performs the mutation test with a lower number of 
mutants and lower cost. The method has higher performance 
and stability than the other methods. Bug-susceptibility of a 
line of source code is a function of different parameters, such 
as complexity parameters. Some of these effective parameters 
are now unknown. These parameters depend on the program-
ming language features and programming styles. Also, the 
people (programmers) features may affect the probability dis-
tribution of bug occurrences. Analyzing and identifying the 
parameters effective on the bug-susceptibility are suggested 
as one of future study. Other evolutionary algorithms can be 
employed to get optimal results.

Fig. 22  Number of generated 
mutants in largest number 
benchmark by different muta-
tion test tools with and without 
proposed method

Table 12  The summary data in 
the ANOVA test on the success 
rate of the GA and proposed 
FOA

FOA GA Total

∑X 3.9 2.7 6.6
Mean 0.78 0.54 0.66
∑X2 3.09 1.51 4.6

Table 13  The results of the ANOVA test on the success rate of the 
GA and proposed FOA

Source SS df MS

Between-treatments 0.144 1 0.144 F = 11.28
Within-treatments 0.1 8 0.0125
Total 0.244 9
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