
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10836-023-06050-1

Intrinsic Based Self‑healing Adder Design Using Chromosome
Reconstruction Algorithm

Raghavendra Kumar Sakali1 · Noor Mahammad Shak1 

Received: 16 December 2022 / Accepted: 29 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Evolvable hardware-based fault-tolerant hardware design is an efficient approach to self-adaptability. It is an essential fea-
ture to mitigate errors on the fly. But there are two issues while designing an adder using the evolutionary hardware (EHW)
approach: scalability issues in circuit representation and a low error recovery speed due to many evolutions. To avoid scal-
ability issues, we designed an optimized virtual reconfiguration circuit (VRC) for adder. In this paper, we introduce the
chromosome reconstruction algorithm for evolving the circuit to recover faults in an adder circuit at a faster speed. The
proposed self-healing adder design is implemented on a single FPGA using an intrinsic approach. The complete hardware
is designed on a Proasic A3PE3000 FPGA. Compared to existing work, the proposed work’s resource utilization is optimal.

Keywords  Self-healing hardware · Evolvable hardware · Adder · FPGA · SEU

1  Introduction

FPGAs are prominent devices in the semiconductor area due
to their programmability. Due to the dynamic programmabil-
ity feature, these devices are adaptable to any specific system
on the fly. FPGAs can also be capable of partial reconfigu-
ration; only specified hardware parts of the circuit can be
modified at runtime [25]. So, many industries, such as com-
mercial, defense, and medical, are interested in implement-
ing their work on FPGAs. These devices are achieving good
computing performance with ease of implementation. But
it has limitations as the FPGA is an electronic device. This
device is sensitive to errors. Errors are classified as either
transient (soft) or hardware (permanent) errors. FPGAs are
affected by transient errors. Transient errors have occurred
due to environmental conditions such as cosmic rays and
electromagnetic interference [27]. For example, these errors
may mutate the information bits in memory elements. These

are known as single-event upsets. A fault-tolerant technique
is the best approach to suppress upsets. The fault-tolerant
system can be efficiently implemented on the FPGA because
of its reprogrammable and reusable capabilities. As a
result, fault-tolerant FPGAs are the best option for radiation
environments.

Fault tolerance is a significant factor in various fields for the
sophisticated working condition of a system because it involves
detecting and correcting failure points automatically. Fault tol-
erance can be grouped into active and passive fault tolerance [8,
32]. The active fault tolerance mechanism uses the information
to mitigate system faults and reconfigures based on approaches.
Evolvable hardware and reconfiguration techniques are parts of
active fault tolerance. The traditional fault-tolerant methods like
redundancy and self-reconfiguration techniques are subsets of
passive fault tolerance. The evolvable hardware will quell the
limitations of conventional approaches with self-repair and self-
adaptability in the fault tolerance mechanism. The redundancy
technique will require extra hardware to mitigate the faults in
the circuit [26]. The self-reconfiguration technique has a more
extended delay in recovering the standard functionality of
the system. These two are drawbacks to error recovery in the
design, but its working will be simple and effective.

Evolutionary hardware (EHW) [3, 14] is self-adaptive
hardware inspired by natural evolution. The term EHW has
appeared in electronic research works from the early ’90s
because of Hugo De Garis. The motive of self-adaptive

Responsible Editor: A. Yan

 *	 Noor Mahammad Shak
	 noor@iiitdm.ac.in

	 Raghavendra Kumar Sakali
	 CS21D0002@iiitdm.ac.in

1	 Department of CSE, Indian Institute of Information
Technology, Manufacturing and Design, Chennai, India

/ Published online: 29 March 2023

Journal of Electronic Testing (2023) 39:111–122

http://orcid.org/0000-0003-4708-4769
http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-023-06050-1&domain=pdf

Journal of Electronic Testing (2023) 39:111–122

1 3

hardware is to adapt to changes in the computational behav-
ior based on dynamic self-reconfiguration, which will
quell faults and degradation of the hardware by recovering
unexpected functionalities and disruptions from the envi-
ronment. Order to achieve motive requires programmable
architecture [30] and evolutionary algorithms [6]. Despite
the limitations of traditional methods, such as size/power,
component types, and fault tolerance, EHW has accom-
plished a great deal in real-world engineering applications.
EHW uses numerous algorithms to evaluate the effective-
ness of circuits, such as genetic algorithms and memetic
algorithms. Extrinsic or intrinsic evolutions [1] is used
to determine the chromosome of the circuit. An extrinsic
approach is a software-based approach where the evalua-
tion of chromosomes is carried out using the simulator. The
intrinsic method evaluates the chromosomes on the targeted
FPGA itself because of their programmability and compat-
ibility with EHW. A virtual reconfigurable circuit allows the
evolution of evolvable hardware in a conventional FPGA. In
a virtual reconfiguration circuit (VRC), an FPGA creates a
virtual reconfigurable hardware layer. It is known as “pro-
grammable architecture” for EHW.

SRAM-based FPGAs have the best features for EHW
implementation [11], many researchers have used Xilinx-based
FPGAs such as the Virtex series, Spartan, and Zync-7000 [4,
23]. The majority of EHW projects have used either the DPR
mechanism or the VRC mechanism with an extrinsic approach.
The EHW work was implemented on FPGAs, which had three
components: a microprocessor, an evaluation unit, and an AXI
bus. The microprocessor hosts the genetic algorithm, which
was designed using a native high-level language. An evalua-
tion unit was used to identify the fault in a targeted circuit. The
evaluation was compared with a copy of the targeted circuit.
An AXI bus was an interface between the processor and the
evaluation unit. In addition to this, the ICAP controller was
used as an API. With the assistance of an ICAP controller,
users can modify the configuration bits to change the circuit
structure and functionality during the evolution process.

The addition is an essential operation in digital systems.
The adder is a combinational circuit designed with digital
gates such as AND, XOR, and OR. The combinational cir-
cuit is delicate and prone to a single-event upset [16]. This
might have resulted in inaccurate outcomes. To resolve this
issue, it required a fault-tolerant hardware design. Tradi-
tional fault-tolerant adder design necessitates additional
hardware and increases power consumption [12]. So we
explored a self-healing fault-tolerant approach to avoid the
limitations of conventional methods. In this paper, an adder
is designed using an optimized VRC technique to address
scalability concerns. This adder is fault-tolerant thanks to
human-inspired techniques. An efficient error detection
approach is also introduced to reduce hardware scalability.
We are concerned with error recovery speed in our design

to increase efficacy in the proposed self-heal based fault-
tolerant adder.

The rest of the paper is categorized as follows. Section 2
provides detailed information on the importance and limi-
tations of existing works. Section 3 determines the design
of the proposed VRC-based Adder. Section 4 explains the
self-healing adder design. Section 5 illustrates the experi-
mental setup and results of the proposed work. Section 6
describes the proposed work’s advantages compared to the
existing ones. The conclusion of the work is presented in
Section 7.

2 � Related Work

Evolvable hardware is an essential topic in self-healing
and self-adaptable circuit design. EWH uses bio-inspiring
approaches. So far, many researchers have worked in this
field in various ways. The researchers had designed fault-
tolerant evolvable hardware using various reconfigurable
hardware, different evolutionary algorithms, diverse recon-
figuration techniques, and different circuit evaluation pro-
cesses based on their requirements.

Many evolvable hardware circuits were designed on
Xilinx XC6200 FPGAs. These FPGAs were the first com-
mercial FPGAs with bitstream readability access and were
provided publicly for research purposes. But these FPGAs
were stopped due to security issues. Later, most of the
evolvable hardware circuits were implemented on Xilinx
SRAM-based FPGAs such as the Virtex series and Spartan
series. Due to the use of JBITS, the reconfiguration of EHW
became complicated after the shutdown of XC6200 FPGAs.

Later, FPGAs were insufficient for EHW as they did not
have the feature of partial reconfiguration. Sekanina [17]
introduced the virtual reconfiguration circuit for this prob-
lem. VRC is the top-layer architecture of an FPGA imple-
mented in HDL. Sekanina and Friedl [18] proposed an
FPGA-based evolvable combinational circuit. The authors
designed adder and multiplier circuits with virtual recon-
figurable circuits to simplify evolution. Some things could
have been improved, such as no carry being generated and
two output bits remaining with logic zero in implement-
ing the two 3-bit adders. This resulted in inaccurate output.
Another drawback is insufficient resources; it is difficult to
evolve the circuit in FPGA as the input size of the circuit
increases. Sekanina [19] explained the reliability of virtual
reconfigurable circuits and implemented a 1-bit full adder
and 2-bit multiplier to recover the faults with an evolutionary
algorithm using the VRC architecture. Vasicek et al. [24]
stated the limitations of evolutionary combinational circuits,
such as the scalability of representation and evolution. They
implemented an FIR filter with multiple constant multipliers
composed of adders, shifters, and subtractors.

112

Journal of Electronic Testing (2023) 39:111–122

1 3

The authors [13] implemented a fault-tolerant adder
using evolvable hardware. The bitstream of the adder cir-
cuit evolved with a genetic algorithm to recover the faults.
The complete process was a direct manipulation approach.
The evolution of the adder took around thirty minutes to
recover the faults. The Xilinx Virtex II Pro FPGA was used
to implement the experimental setup. Cancare et al. [2] pro-
posed the evolution of digital circuits using an evolutionary
algorithm and a dynamic partial configuration technique. It
was implemented on the Xilinx Virtex-5 FPGA. The evolu-
tion time of the adder was around 45 minutes to recover the
faults, and for the 9-bit adder, it took about 10 hours. The
authors have tried to reduce the scalability issue. Here, as
the circuit’s input size increases, the circuit’s scalability
also increases.

Salvdor et al. [15] designed a fault-tolerant circuit using
DPR method. They implemented the circuit on Xilinx Ver-
tex FPGA. These FPGAs can read and write configuration
bitstream through the HWICAP port. But, this facility has
a drawback like data loss or corruption of the chip. Some
vendors don’t manufacture the FPGAs which support the
DPR; to these FPGAs, VRC is the best approach for imple-
menting evolutionary-based circuits. Silva et al. [21] have
designed a combinational circuit using evolutionary research
and artificial neural networks.

Wang et al. [28] have introduced an evolutionary fault-
tolerant approach using a genetic algorithm and improved
its efficiency using self-adaptive sampling model, which is
adapted from the cartesian genetic algorithm and employed
this approach on the 2-bit multiplier. Jian and Mengfei [7]
implemented a 2-bit full-adder with 176 configuration bits.
The adder was designed based on neural-network architec-
ture using VRC. This VRC adder scales up the memory
space to accumulate the configuration bits for a longer-
length adder. The adder was evolved using the extrinsic
approach to avoid faults in it. The VRC adder was imple-
mented on Xilinx Virtex. The evolutionary algorithm, fault-
detection module, and evolution module were executed on
Xilinx Spartan3 to recover the faults in the adder. Another
limitation is hardware overhead because two chips were used
to implement the fault-free circuit.

Mora et al. [11] have compared two different topologies:
systolic array (SA) and Cartesian genetic programming
(CGP), and analyzed which algorithm would scale more
hardware resources. The authors concluded that CGP scaled
resources 60% more than the SA, and both have similar com-
putational performance. Shang et al. [20] digital circuits
using evolvable hardware. Circuits were implemented using
a hybrid intrinsic approach. The evolution of the circuit was
done using the AGA algorithm to improve the convergence
rate. The experimental work was implemented on the Intel
Cyclone V SOC. The evolutionary algorithm was executed
on an ARM core, and the VRC was designed on an FPGA.

But the authors had yet to mention evolution time or configu-
ration bit length. These are the two necessary parameters to
calculate the efficiency of an evolvable and its convergence
rate.

From these existing works identified some critical issues
such as scalability of representation, evolution time, and
dependability. These are significant parameters to manage dur-
ing the construction of fault-tolerant hardware. The detailed
description of each parameter and fault-tolerant adder construc-
tion will be explained in the following sections.

Contribution of the proposed work states as follows:

•	 The scalability issue in the existing VRC adder was
addressed with the optimized VRC adder.

•	 The optimized VRC adder requires less hardware area. It
efficiently utilizes the available resources in the FPGA.

•	 The optimized VRC adder’s configuration bitstream will
be shorter than previous works, improving the circuit’s
evolution speed.

•	 The novel chromosome reconstruction algorithm will
accelerate the error recovery rate.

•	 The optimized VRC adder, error detection unit, and chro-
mosome reconstruction unit were deployed as digital cir-
cuits on a single FPGA to avoid dependability and reduce
the delay.

•	 The proposed work was tested with single-bit and multi-
bit errors using an error injection simulator to estimate
its efficiency and error recovery speed.

3 � Proposed VRC Adder

As for FPGA devices, the minimal functional units con-
trolled by configuration are logical gates, which make the
device extremely flexible and able to implement all the logic
with specified numbers of inputs and outputs. In the FPGA,
configuration size is too large during the evolutionary opera-
tion; it will be problematic to handle and can face scalability
issues [5]. This limitation can be achieved using the VRC
approach. It is commonly constructed as an artificial array of
PEs built on top of an FPGA, forming a virtual reconfigur-
able device layer. The functionality of each PE is designed
based on practical applications. VRC has features of a
knowledgeable configuration format and a coarse-grained
array of elements. Thus, VRC is best suitable for complex
circuit evolution.

3.1 � VRC Adder Design

The VRC-based Adder is built with programmable elements
(PE). The programmable elements were arranged in a N ×M
matrix. The implementation of PE required three multiplex-
ers (MUXs). Among these, two MUXs were used to select

113

Journal of Electronic Testing (2023) 39:111–122

1 3

the inputs, and one MUX was used to select the logical func-
tion. The adder circuit is designed with XOR, AND, and
OR logical functions. These functions were given as inputs
to the logical function MUX. The size of this MUX is 4:1,
and two select lines are required to choose the function. The
logical function MUX will be kept at the constant size for
any input length, as shown in Fig. 1. The input-based MUX
will change its size based on the input length of the adder.
This MUX is required as an N+1:1 MUX for implemen-
tation. Here, N is the number of input bits, and the extra
“1” is the wire which is used to provide input from the out-
put of a previous PE. Based on the adder’s input size, the
input-based MUX selection lines will be increased. All PEs
would require a common register to store configuration bits.
Based on these configuration bits, the complete VRC adder
will work. The architecture of the programmable element
is shown in Fig. 1. The four-bit adder is designed using the
proposed programmable element as shown in Fig. 2.

3.2 � VRC Adder Routing and Configuration Bitstream

The routing of the internal circuits in the adder was controlled
using MUXs through the configuration bits. These bits are
stored in a configuration register and provided as input to
selection lines of MUX to perform the operation. In the N-bit

adder design, two PEs were required to design a half-adder
for zeroth bit input. Five PEs were needed to develop the full
adder for remaining ( 1st to (N − 1)th ) adders. We have designed
a 4-bit adder with 17 PEs shown in Fig. 2. Here, each PE
requires the eight configuration bits to perform the operation
shown in Fig. 1. Selecting input-1 and input-2 requires three
bits for each and a total of six bits for input selection. The two
bits are required for function selection. For a 4-bit adder, PEs
were arranged in 2 × 9 matrix format. A total of 136 configu-
ration bits were needed to implement the 4-bit adder. In the
M × N arrangement of PEs, ’M’ would remain the same for
any adder length (where M is row), and ’N’ would increase its
scalability based on adder length (where N is column). This
matrix format will be simple to access and process the result
without any ambiguity.

The same as the 4-bit VRC adder, the 8-bit, 16-bit, and
32-bit VRC adders were designed using PEs and MUX sizes
for inputs, selection lines, and configuration bits. As an adder’s
input size increases, the size of the input-based MUX will also
increase, as shown in Table 1. Similar to the previous state-
ment based on the input size of an adder, the count of PEs,
selection lines, and configuration bit-length will increase in
8-bit, 16-bit, and 32-bit VRC adder as shown in Tables 2, 3
and 4 respectively. The configuration bitstream of VRC adder
is calculated based on the count of PEs and selection lines as
shown in Eq. (1), where x = number of PEs for half-adder, y
= number of PEs for full-adder, m = the number of columns
of full adder and s = number selection lines in each PE. The
4-bit and 8-bit VRC adders were considered for experimental
and testing of intrinsic EHW fault-tolerant adders.

In existing works, the matrix design of the VRC adder was
expensive and more challenging to implement. Sekanina and
Friedl [18] designed a programmable element with 11-bit.

(1)Configuration bitlength = (x + (y × m)) × s

Fig. 1   Programmable Element of VRC Adder

Fig. 2   4-bit VRC Adder

Table 1   Input based MUX size
for various adder lengths

Adder Bit Length MUX Size

4-bit adder 5 ∶ 1

8-bit adder 9 ∶ 1

16-bit adder 17 ∶ 1

32-bit adder 33 ∶ 1

114

Journal of Electronic Testing (2023) 39:111–122

1 3

The PEs were arranged in a 10 × 8 matrix for a 3-bit adder. A
total of 880 bits were utilized in constructing the 3-bit adder.
Jian and Mengfei [7] designed a 2-bit adder in the format of
neural network architecture. This looks fine for representation,
but the implementation might be risky. A total of 176 bits
were required to construct a 2-bit adder with neural network
architecture. Many evolvable hardware adders were designed
with direct bitstream manipulation using dynamic partial
reconfiguration. This alternative implementation of VRC.
This implementation was done with SRAM-based Xilinx
FPGAs using ICAP or Jbits controller. Microsemi FPGAs
were designed with AES encryption for encrypting the bit-
stream used for military and space applications. These FPGAs
will have challenges in manipulating the bitstream directly
with ICAP/JTAG controller during evolution. To avoid these
issues, VRC is the best option to use. Although a solution is
available, scalability issues were faced in existing works. But
the proposed VRC adder has resolved the scalability issue at
maximum. This adder can be generalized and used to maxi-
mum bit length based on the resources in the FPGA.

4 � Proposed Intrinsic based Self‑healing Adder

Evolvable hardware is hardware that can modify its behavior
and architecture autonomously and dynamically according
to its environment. In the early days of EHW design, EA
was used for optimizing the circuit. Later, researchers tried
to design fault-tolerant hardware with an evolutionary algo-
rithm. The evolutionary algorithm has the capability of self-
healing and self-adaptability. It will recover the faults in the
circuit using a reconfigurable device. Hence, EHW combines
a reconfigurable platform and an evolutionary algorithm. In
EHW, the configuration bitstream is named as a chromo-
some. The existing work used reference circuits to calculate
fitness in the evolution process during error recovery. This

may require lots of memory space to store configuration
memory [31]. Moreover, a long-length circuit could not be
implemented due to memory space. This could be one of
the limitations, as previously proposed adders with short bit
lengths had been designed in this manner.

Genetic algorithm is one of the most used evolutionary
algorithms in EHW. In the genetic algorithm, the primary
issue is the number of iterations. This has variant operators,
such as population generation, fitness calculation, selection
operation, and crossover. Suppose we have an n-bit chro-
mosome; we should generate a 2n population. For example,
the 4-bit adder requires a 136-bit chromosome for imple-
mentation and requires 2136 populations in the initial itera-
tion to perform further operations. Then it will be memory
overhead to store 2136 populations. The maximum number
of iterations will be required until the fitness function is
validated. These are significant complications in the genetic
algorithm. But the novel chromosome reconstruction algo-
rithm is feasible to implement and execute. The chromo-
some will be reconstructed based on information such as the
number of programmable elements in half and full adders,
the number of selection lines, the size of the adder, and the
results of VRC construction and implementation.

The design of the proposed adder circuit is based on
human-inspired techniques. This algorithm has various stages
for recovering a fault in a circuit, as shown in Fig. 3. In the
initial stage, the designed VRC adder circuit will be oper-
ated based on the chromosome along with inputs given by
the user. The second stage is evaluation. In this stage, the
resultant of the adder circuit is verified and validated with the
help of the result generated by the reference output generator.
The reference output generator is pre-executed before the first
stage has been started. The absence of 1’s bit in the evaluation
result will indicate that no error has occurred; otherwise, it
will indicate that there has been an error. If an error is absent,
it will give back the result and terminates the execution of the
adder. Else, the process will be continued to recover the error
result. It follows the third stage, i.e., the chromosome recon-
struction algorithm. This algorithm will restore the original
chromosome of the adder in linear computational complex-
ity. The proposed self-healing adder architecture is depicted
in Fig. 3. The self-healing adder was implemented using an
intrinsic approach. More details of the proposed work will be
explained in further sections.

Table 2   # PEs for various bit length adders

Adder Bit Length 0th Bit Adder 1st to (N − 1)th Bit Adders Total

4-bit adder 2 15 17
8-bit adder 2 35 37
16-bit adder 2 75 77
32-bit adder 2 155 157

Table 3   Selection lines for each PE in various adders

Adder Bit Length Selection lines (s)

4-bit adder 8
8-bit adder 10
16-bit adder 12
32-bit adder 14

Table 4   Configuration bit length for each adder

Adder Bit Length Configuration bitlength

4-bit adder 136 bits
8-bit adder 370 bits
16-bit adder 924 bits
32-bit adder 2198 bits

115

Journal of Electronic Testing (2023) 39:111–122

1 3

4.1 � Reference Output Generator (ROG)

The theme of the fault-tolerant EHW adder is to execute the oper-
ation with a self-repair mechanism for generating accurate output.
This process requires a fault-detection mechanism to locate the
fault in a circuit before processing the self-repair mechanism. The
fault detection unit requires a reference output to compare with
the targeted circuit output. So, we designed a reference output
generator (ROG) module for generating a reference output. In
this module, the full-adder truth table has been used to generate
the output of the adder circuit. The process of output generation
is designed with an algorithm using logical AND. The truth table
is stored in FlashROM of the FPGA fabric to avoid distractions.
The main advantage of this approach is constant memory occu-
pancy. Even as the size of the adder grows, the size of the ROG
module remains constant. It is used for one-time output genera-
tion. The output will be generated at an initial stage and stored
permanently. It will be operated before the VRC adder execution.

4.2 � Fault Detection Mechanism

The output of the VRC adder is evaluated to analyze its
accuracy and circuit efficiency. Hence, an error detection
unit is designed with an XOR operation for evaluation.
This unit will accept the outputs of the VRC adder and
ROG as inputs. Later, it compares both the outputs with
an XOR operation. The VRC adder generates an accurate
result when the result of the fault detection operation is
equal to all zero bits. If the function generates an output
containing “1” bits, there might be a fault in the circuit.
Then the circuit requires a self-repair facility. Later, it ini-
tiates the RC Algorithm unit to recover faults in a circuit.
This algorithm will be helpful in reducing the execution
time and increasing the system’s performance.

4.3 � Fault Recovery Mechanism

We are developing a novel algorithm for reconstructing the
chromosome of the VRC adder. The proposed work avoids
the first limitation of existing works by not storing a refer-
ence chromosome in memory. The chromosome is gener-
ated by the information of the VRC adder, such as the total
configuration bitstream, total number of PEs, and number
of PEs for the adder using this algorithm. This information
will allow us to set the original chromosome of a circuit.
The chromosome for each PE will be generated using simple
mathematical calculations and programming techniques; it
is induced in the proposed algorithm. This will reduce the
recovery time. The proposed work avoids the first limitation
of existing works by not storing a reference chromosome
in memory. In this work, the chromosomes of functional
elements and the Nth wire of inputs will remain the same in
each bit adder, as mentioned in Tables 5 and 6.

Fig. 3   Proposed Intrinsic based
Self-Healing Adder Design

116

Journal of Electronic Testing (2023) 39:111–122

1 3

In the error recovery process, the reconstructed chro-
mosome is transferred to the configuration memory of the
adder module to recover a fault in a circuit. Again, based
on the new chromosome, the VRC adder will be processed
and reperforms the operation to mitigate a fault in a circuit
and generate a result. The result will be tested in an error
detection unit. This evolution will be processed until the
circuit generates an error-free result. We looked into many
existing research studies that used the genetic algorithm for
new chromosomes and noticed that they required the long-
est evolution time. This is another limitation of evolvable
hardware. For the proposed approach, a genetic algorithm
isn’t needed. This limitation could be overcome with the
proposed algorithm. The proposed algorithm is named the
chromosome reconstruction (RC) algorithm.

4.3.1 � Chromosome Reconstruction Algorithm

The chromosome reconstruction algorithm will work based
on the blueprint of the VRC adder. Initially, information
about the configuration bitstream length and the total num-
ber of PEs of the VRC adder was required. This information
will be retrieved based on the number of PEs used in the
full-adder and half-adder and the size of the adder. At the
time of VRC design, the number of PEs for the full-adder
and half-adder was finalized. The adder size can be identi-
fied from the input size. The total number of PEs and con-
figuration bitstream length will be calculated using Eqs. (2)

and (3), respectively. The algorithm’s flow was started as a
result of this information. In the algorithm, the configura-
tion bitstream is stated as the chromosome. Allocating the
required memory after finalizing the chromosome length of
the complete adder in the algorithm. The allocated memory
will be partitioned based on the number of PEs. Now, the
chromosome bits for each PE will be generated and stored in
the allocated memory. In this algorithm, the chromosomes
will be rebuilt in the bottom-up approach.

In the VRC adder, the zeroth bit adder has two PEs, and
the remaining bit adders from the first bit to the N-1 bit
will have five PEs. We have information that each PE has
three parts: input 1, input 2, and function. To operate the
adder, these are accessed through selection lines. In the early
stages of VRC construction, it was determined that each PE
required eight chromosome bits for selecting the inputs and
functions. Among these eight bits, six are used for access-
ing inputs 1 and 2 (three bits for each input), and two are
used for accessing the function. As shown in Table 5, the
two-bit chromosome was also finalized during VRC adder
construction for accessing the function. The three-bit chro-
mosome will access each input. The chromosome bits for
input1 and input2 of PE1 and PE2 will be generated based
on their adder positions, as described in Section 4.3.2. The
chromosome bits for input1 and input2 for PE3, PE4, and
PE5 will remain static. So, these bits were determined at the
time of the VRC adder design shown in Table 5. Later, based
on the blueprint of the VRC adder structure, the chromo-
some bits of each PE of every adder will be arranged and
stored in allocated memory in the algorithm. This algorithm
is described in HDL.

4.3.2 � Procedure for Chromosome Reconstruction
Algorithm

•	 Initially calculated number of PEs that required for adder
using following equation

•	 Calculated the chromosome length of complete adder.

•	 Assign the chromosome bit length for each PE based on
selection lines information.

•	 Assign the chromosome bit length for each bit adder
based on the number of PEs in each full adder and half-
adder.

•	 In each PE chromosome, last two LSBs related to func-
tional element(n) and remaining bits are related to
inputs(m).

(2)
PEs = PEs in HA + ((PEs in FA) × (size of adder − 1))

(3)Z = PEs × sel_lines

Table 5   Chromosome of functional elements (FEs) and Nth wire of
input1 and input2

S.No Wires Chromosome of Nth wire in various length
adders

4-bit 8-bit 16-bit 32-bit
1 PE3 100 1000 10000 100000
2 PE4 100 1000 10000 100000
3 PE5 100 1000 10000 100000
S.No FEs Chromosome
1 AND 00
2 XOR 01
3 OR 10

Table 6   Mapping FEs with PEs

S.No PEs FEs Chromosome

1 PE1 XOR 01
2 PE2 AND 00
3 PE3 XOR 01
4 PE4 AND 00
5 PE5 OR 10

117

Journal of Electronic Testing (2023) 39:111–122

1 3

•	 Remaining chromosome length related to inputs divided
by two. Hence, provides the chromosome length for each
input.

•	 In each bit adder, the PE1 and PE2 input wire chromo-
somes will be generated based on the bit position of
adder.

•	 For example, the zero wire will be selected in zeroth bit
adder. Then chromosome for input1 is 000 and chromo-
some for input2 is 000 (for 4-bit adder).

•	 Based on chromosome length of input1 and input2, could
be able to retrive the appropriate chromosome for N th
wire inputs of PE3, PE4 and PE5.

•	 Also set the functional elements(FEs) chromosome of
each PE based on pattern 01, 00 and 01, 00, 01, 00, 10
for half-adder and full-adder respectively.

•	 Now combine the chromosome bits of PEs and set for
each bit adder with help of the bit position of each adder
from 0 to N − 1 , shown in Fig. 4.

•	 The complete process has been structured in the HDL
according to logic.

The proposed algorithm is generic to reconstruct the
chromosome of a VRC adder for any input length. Its sim-
ple and easy to implement without hardware overhead and
time delay. The above procedure will be explained with
4-bit adder in the following section.

4.3.3 � Example for Chromosome Reconstruction Algorithm

After identification of the error in the result of the 4-bit adder,
we can restore the chromosome of the 4-bit adder using a chro-
mosome reconstruction algorithm as below.

1.	 calculated number of PEs that required for adder using
following equation PEs = 2 + ((5 × (4 − 1)) = 17

2.	 Calculated the chromosome length of complete adder.
z = 17 × 8 = 136 bits

3.	 Assign 8-bits for PE of adder based on selection lines
information.

4.	 Assign number of chromosome length for each adder
based on count of PEs in full-adder and half-adder and
with bits for each PE.

•	 PEs in full-adder,m = 5 and PEs in half-adder,n = 2
•	 Chromosome length of full-adder, k = m × z = 5 × 8

= 40 bits
•	 Chromosome length of half-adder, l= n × z = 2 × 8 =

16 bits

5.	 In each PE chromosome, the last two LSBs (i= 2 bits)
are assigned to adder functions.

6.	 Remaining chromosome bit length (j) are assigned to
two inputs. For each input, the chromosome bit length
are assigned by dividing with 2.

•	 j = z − i = 8 − 2 = 6-bits
•	 p = j∕2 = 6∕2 = 3-bits
•	 Then assigned chromosome length input 1 = 3 − bits

and input 2 = 3 − bits
•	 Generate the chromosome bits for input1 and input2

of PE1 and PE2 (shown in Table 7) based on ’p’ and
bit-position of adder.

7.	 Retrive the chromosome information for input1 and
input2 of PE3, PE4, and PE5, and also logical functions
chromosome for each PE from Flash ROM memory
based on size of adder (shown in Table 8).

8.	 Now reconstruct the chromosome according to represen-
tation shown in Fig. 4. This chromosome representation
has been derived from VRC adder structure.

9.	 The reconstructed chromosome (shown in Table 9) will
be transferred to configuration bitsream memory.

Fig. 4   Representation of VRC
Adder Chromosome

Table 7   Chromosome for Input1 and Input2 for PE1 and PE2

S. No Bit position of adder Inputs PE1 and PE2

Input 1 Input 2

1 Zeroth 000 000
2 First 001 001
3 Second 010 010
4 Third 011 011

Table 8   Chromosome of full-adder for 4-bit Adder

S. No PE Number Chromosomes

Input 1 Input 2 Function

1 PE1 XXX XXX 00
2 PE2 XXX XXX 01
3 PE3 100 100 00
4 PE4 100 100 01
5 PE5 100 100 10

118

Journal of Electronic Testing (2023) 39:111–122

1 3

5 � Experimental Setup and Results

5.1 � Experimental Environment

The experimental work was carried out with the 4-bit and
8-bit adders to test the proposed work efficiency. The fault-
tolerant evolvable hardware adder prototype and algorithm
hardware testing were hosted on the Proasic3e 3000 FPGA.
This FPGA is encrypted with the AES algorithm. Reading and
writing the bitstream of a circuit is complicated compared to
Xilinx-based FPGAs. It is a challenging task to implement a
fault-tolerant combinational unit on the Proasic3e 3000 FPGA.
So, we designed the optimized VRC adder to overcome the
significant complication. The adder circuit evolved through
the reconstruction chromosome algorithm. This algorithm is
compensated with a genetic algorithm to reduce the recovery
time during the recovery process of the original chromosome.
Most existing works were created using an extrinsic or hybrid
approach. But, the proposed work has been implemented using
intrinsic approach. The entire proposed self-healing hardware
was deployed and executed on a single FPGA running at a fre-
quency of 350 MHz. All four modules were designed in HDL
using the Libero SOC design suite 11.8. This design suite
is related to the Microsemi vendor, which uses it to develop
the HDL models for their FPGAs. This suite is an integrated
FPGA design tool that incorporates a modelsim simulation
tool, a synopsys synthesis tool, and a programming debug tool.

In the Proasic3e 3000, the FPGA has flash ROM memory.
It is one of the advantages of storing the essential information.
The FPGA chip contains the full adder truth table for reference
output generation, a chromosome of functional information
elements, PEs information for full-adder and half-adder, sev-
eral columns for full-adder, and the number of selection lines
of a MUX. This is a secure memory that offers programmers
the ability to read, modify, and write the content using the
JTAG interface. This is one of the best features compared to
other SRAM-based FPGAs. The primary motivation for the
proposed work is to solve the scalability issues by optimiz-
ing the VRC adder design and to improve the fault-recovery

time with a novel human-inspired algorithm, i.e., chromosome
reconstruction. Here, the circuit evolution process continues
until the error detection notifies the no error with a complete
all-zero bit. The proposed work has been tested by fault injec-
tion to analyze the efficiency of the work. Hence, the fault-
injection simulator was implemented for injecting faults in a
VRC adder in two locations, i.e., at input routing and at func-
tional MUX.

5.2 � Experimental Results

The proposed algorithm required around eight milliseconds to
reconstruct the chromosome of Adder. It takes very little time
compared to the genetic algorithm. In one of the existing works,
it takes around 2.5 seconds to recover 90% matched chromo-
some compared to its original [29]. In a best-case scenario, the
algorithm unit may be used once to evolve a circuit to get a fault-
free result. In the worst case, the algorithm unit may be executed
N times until the error detection unit results in a zero error. The
best and worst-case scenarios depend on the working conditions
and usage of the device. But during physical error injection, the
algorithm unit was used once, and at the first evolution of the
circuit, the error detection validated the result with zero errors.
The execution time of the complete self-healing adder circuit
will be the sum of the execution times of a VRC adder, an error
detection unit, a reference output generator unit, and a chromo-
some reconstruction unit. This is the execution time for an initial
error occurrence. If the error occurs again for the second time
or N times, exclude the execution time of a reference output
generator unit. When the circuit is initially tested without error,
calculate the execution time based on the execution times of
the VRC adder, an error detection unit, and a reference output
generator unit. The proposed work for 4-bit and 8-bit adders
takes around 12 milliseconds and 28 milliseconds to generate
fault-free results, respectively. In Jian and Mengfei [7] work,
the 2-bit adder took approximately 17 milliseconds of evolu-
tion time using the hybrid approach. We analyzed Jian’s adder
with 4-bit input, and it takes around 38 milliseconds to evolve a
circuit. In Cancare et al.’s work [2], the evolution time for a 4-bit

Table 9   Chromosome of 4-bit Adder

zeroth adder First adder

PE1 PE2 PE1 PE2 PE3 PE4 PE5

000 000 01 000 000 00 001 001 01 001 001 00 100 100 01 100 100 00 100 100 10

Second adder

PE1 PE2 PE3 PE4 PE5

010 010 01 010 010 00 100 100 01 100 100 00 100 100 10
Third adder
PE1 PE2 PE3 PE4 PE5
011 011 01 011 011 00 100 100 01 100 100 00 100 100 10

119

Journal of Electronic Testing (2023) 39:111–122

1 3

adder took approximately 34 minutes to get a fault-free result.
However, it was implemented using the DPR mechanism using
an extrinsic approach. The comparison of the evolution time of
existing works and proposed work is shown in Tables 10 and
11. In contrast to previous work, the proposed work evolves the
circuit more efficiently during fault occurrence.

The area occupancy of the proposed work is accounted
for in terms of IO cells, core cells, and flashROM utiliza-
tion. The power consumption is estimated by the LiberoSOC
design suite tools. Therefore, the resource usage and recov-
ery time of the proposed work are compared with similar
works that were discussed in the related works. The pro-
posed work has a core cell utilisation of 53.64%, which is
lower than existing work for both size adders. In addition,
IO cells and FlashROM were used 42.77% and 54.9% less,
respectively, than in previous work. Hence, the resource uti-
lisation of the proposed work is 50% lower than the existing
work.

6 � Discussion

The proposed fault-tolerant evolvable adder design is moti-
vated by human-inspired algorithms [10]. Human-inspired
algorithms are a subset of nature-inspired algorithms. These
algorithms are designed based on human-related techniques.
These techniques are related to non-physical activities, such
as behavior and thinking, known as human activities.

The state-of-the-art works encounter challenges like scal-
ability issues, evolution time, dependability, and redundancy.
Scalability is a major issue in EHW with VRC mechanisms.

The design space of the application was increased due to the
usage of more functions in the VRC adder circuit [18]. Due
to this, the configuration bit size will increase. Therefore, the
configuration bit size is directly related to the circuit size.
This affects the evolution time of a circuit. The adder’s design
would require more resources in the FPGA if its input size
increased. If the same circuit is designed with VRC, then
there may be insufficient resources in the FPGA during cir-
cuit deployment. The proposed VRC adder resolves this scal-
ability issue by using the required functions of the operation.
This will decrease the size of the MUX. As the size of the
MUX is optimized for function selection, the configuration
bitstream length will also be reduced. This will reduce the
evolution time of a circuit and improve the error recovery rate.
In some works [7, 29], due to the larger size of the configura-
tion bitstream resulted in a long evolution time and slow error
recovery speed. The use of a genetic algorithm for recover-
ing the configuration bitstream in previous works increased
the search space due to the larger bitstream size. This led to
slow error recovery speed. Using a genetic algorithm, it is
not always possible to expect the desired outcome within the
specified time frame.

The proposed chromosome reconstruction algorithm
doesn’t require functions like fitness, selection, mutation,
and crossover for children’s generations. Because these
functions were unavailable, the search space was avoided
in this algorithm. Hence, the error recovery rate of the
circuit will be improved. The other point is that the execu-
tion time of an algorithm only depends on the size of the
configuration bitstream. The optimized VRC adder has
a smaller configuration bitstream compared to previous

Table 10   Comparing the
evolution time of a proposed
work with existing works

Works Adder size Reconfiguration
mechanism

Evolvable approach Evolution
time (in
seconds)

Existing works 4-bit [2] DPR Extrinsic 2040
4-bit [7] VRC Extrinsic 0.038

Proposed work 4-bit VRC Intrinsic 0.012
16-bit VRC Intrinsic 0.028

Table 11   Hardware utilization
of Proposed Work

Adder size Resources Available Proposed Self-Healing Adder
with Optimized VRC

Existing EHW Adder with
standard VRC

Utilization Utilization % Utilization Utilization %

4-bit Core Cells 75264 15 0.0199 32 0.0425
IO Cells 620 55 8.870 95 15.32
FlashROM 1024 200 19.53 430 41.99

8-bit Core Cells 75264 33 0.0438 72 0.0956
IO Cells 620 112 18.06 198 31.94
FlashROM 1024 400 39.06 840 82.03

120

Journal of Electronic Testing (2023) 39:111–122

1 3

work. The EHW was implemented using an extrinsic and
hybrid approach in previous works [7, 9, 22]. It means
that an evolutionary algorithm will be implemented on
the external processor or processor on the SoC and evalu-
ate the circuit’s functionality in hardware, which can cre-
ate an additional delay. The proposed work is completely
designed on a single FPGA. Due to this intrinsic approach,
implementation avoids dependability. It will reduce the
delay during the operation as compared to previous work.
Other works suggested that to avoid mission halts [7, 9],
the EHW be implemented using the redundancy method at
the FPGA board level, which meant dual boards were used
to avoid the hardware overhead. The redundancy method
at the board was not encouraged in the proposed work.
The limitation of the EHW is that when algorithms are
implemented on the same FPGA as the circuit, there might
also be a probability of errors occurring in the algorithm.
This may mislead the VRC adder circuit’s operation. In
future work, we will overcome this issue with an opti-
mized redundancy approach in the algorithm.

7 � Conclusion

The radiation environment or other external sources are
the most common causes of SEU in a combinational cir-
cuit such as an adder. This could flip a single bit of the
original content and result in a fault. To avoid this obstruc-
tion, there are many conventional fault-tolerant techniques
and EHW approaches for combinational circuits. How-
ever, each of these has drawbacks such as area, delay, and
error recovery time. The proposed work has overcome
these drawbacks. Compared to previous works described
in related works, the optimized VRC adder required only
136 configuration bits for 4-bit. This adder evolved using
a novel algorithm named the chromosome reconstruction
algorithm. This will generate a new chromosome (con-
figuration bitstream) when an adder result notices an error.
This algorithm is efficient for recovering the fault-free
circuit and producing results within the short time men-
tioned in the results section. The complete fault-tolerant
self-healing adder architecture required 50% less hardware
than existing fault-tolerant hardware.

Acknowledgements  This work was supported by DRDO/
DFTM/05/3424/EMECS/001/M/01/RIC-35. Research and Innovation
Centre, DRDO, Chennai.

Data Availability  Data sharing does not apply to this article as no data
sets were generated or analyzed during the current study.

Declarations 

Conflicts of Interest  The authors have no conficts of interest to declare
relevant to this article’s content.

References

	 1.	 Almeida M, Pedrino EC (2018) Hybrid evolvable hardware for
automatic generation of image filters. Integr Comput Aided Eng
25(3):289–303

	 2.	 Cancare F, Bartolini DB, Carminati M, Sciuto D, Santambrogio
MD (2012) On the evolution of hardware circuits via reconfig-
urable architectures. ACM Trans Reconfigurable Technol Syst
(TRETS) 5(4):1–22

	 3.	 Eiben AE, Smith JE et al (2003) Introduction to evolutionary com-
puting 53

	 4.	 Garnica O, Glette K, Torresen J (2018) Comparing three online
evolvable hardware implementations of a classification system.
Genet Program Evolvable Mach 19(1):211–234

	 5.	 Haddow PC, Tyrrell AM (2011) Challenges of evolvable hard-
ware: past, present and the path to a promising future. Genet Pro-
gram Evolvable Mach 12(3):183–215

	 6.	 Huang X, Wu N, Zhang X, Liu Y (2015) An evolutionary algo-
rithm based on novel hybrid repair strategy for combinational
logic circuits. IEICE Electron Exp pp. 12–20150765

	 7.	 Jian G, Mengfei Y (2018) Evolutionary fault tolerance method
based on virtual reconfigurable circuit with neural network archi-
tecture. IEEE Trans Evol Comput 22(6):949–960. https://​doi.​org/​
10.​1109/​TEVC.​2017.​27798​74

	 8.	 Jiang J, Yu X (2012) Fault-tolerant control systems: A comparative
study between active and passive approaches. Annu Rev Control
36(1):60–72

	 9.	 Lohn J, Larchev G, DeMara R (2003) A genetic representation
for evolutionary fault recovery in Virtex FPGAs. In: International
conference on evolvable systems. Springer, pp 47–56

	10.	 Mohamed AW, Hadi AA, Mohamed AK (2020) Gaining-sharing
knowledge based algorithm for solving optimization problems:
a novel nature-inspired algorithm. Int J Mach Learn Cybern
11(7):1501–1529

	11.	 Mora J, Salvador R, de la Torre E (2019) On the scalability of
evolvable hardware architectures: comparison of systolic array
and cartesian genetic programming. Genet Program Evolvable
Mach 20(2):155–186

	12.	 Morgan KS, McMurtrey DL, Pratt BH, Wirthlin MJ (2007) A
comparison of tmr with alternative fault-tolerant design tech-
niques for FPGAs. IEEE Trans Nucl Sci 54(6):2065–2072

	13.	 Oreifej RS, Al-Haddad RN, Tan H, DeMara RF (2007) Layered
approach to intrinsic evolvable hardware using direct bitstream
manipulation of Virtex II pro devices. In: 2007 International
Conference on Field Programmable Logic and Applications, pp
299–304. https://​doi.​org/​10.​1109/​FPL.​2007.​43806​63

	14.	 Salvador R (2016) Evolvable hardware in FPGAs: Embedded tuto-
rial. In: 2016 International Conference on Design and Technology
of Integrated Systems in Nanoscale Era (DTIS), IEEE pp 1–6

	15.	 Salvador R, Otero A, Mora J, dela Torre E, Sekanina L, Riesgo T
(2011) Fault tolerance analysis and self-healing strategy of autono-
mous, evolvable hardware systems. In: 2011 International Confer-
ence on Reconfigurable Computing and FPGAs, IEEE, pp 164–169

	16.	 Sayil S (2019) A survey of circuit-level soft error mitigation meth-
odologies. Analog Integr Circ Sig Process 99(1):63–70

	17.	 Sekanina L (2003) Virtual reconfigurable circuits for real-world
applications of evolvable hardware. In: International Conference
on Evolvable Systems, Springer, pp. 186–197

	18.	 Sekanina L, Friedl Š (2004) An evolvable combinational unit for
FPGAs. Comput Inform 23(5–6):461–486

	19.	 Sekanina L (2007) Evolutionary functional recovery in virtual
reconfigurable circuits. ACM J Emerg Technol Comput Syst
3(2):8. https://​doi.​org/​10.​1145/​12659​49.​12659​54

	20.	 Shang Q, Chen L, Wang D, Tong R, Peng P (2019) Evolvable
hardware design of digital circuits based on adaptive genetic

121

https://doi.org/10.1109/TEVC.2017.2779874
https://doi.org/10.1109/TEVC.2017.2779874
https://doi.org/10.1109/FPL.2007.4380663
https://doi.org/10.1145/1265949.1265954

Journal of Electronic Testing (2023) 39:111–122

1 3

algorithm. In: International Conference on Applications and Tech-
niques in Cyber Security and Intelligence, Springer, pp 791–800

	21.	 Silva BA, Dias MA, Silva JL, Osorio FS (2010) Genetic algo-
rithms and artificial neural networks to combinational circuit gen-
eration on reconfigurable hardware. International Conference on
Reconfigurable Computing and FPGAs. https://​doi.​org/​10.​1109/​
recon​fig.​2010.​25

	22.	 Silva GNP, Duarte RO (2018) Towards evolvable hardware and
genetic algorithm operators to fail safe systems achievement. In:
2018 IEEE 19th Latin-American Test Symposium (LATS), pp
1–4. https://​doi.​org/​10.​1109/​LATW.​2018.​83496​69

	23.	 Trefzer MA, Tyrrell AM (2015) Devices and architectures for evo-
lutionary hardware. In: Evolvable Hardware, Springer, pp. 27–87

	24.	 Vašíček Z, Žádník M, Sekanina L, Tobola J (2008) On evolution-
ary synthesis of linear transforms in FPGAa. In: International
Conference on Evolvable Systems. Springer, pp 141–152

	25.	 Vipin K, Fahmy SA (2018) FPGA dynamic and partial reconfigu-
ration: A survey of architectures, methods, and applications. ACM
Computing Surveys (CSUR) 51(4):1–39

	26.	 VonNeumann J (2016) Probabilistic logics and the synthesis
of reliable organisms from unreliable components. Automata
studies 34

	27.	 Wang F, Agrawal VD (2008) Single event upset: An embed-
ded tutorial. In: 21st International Conference on VLSI Design
(VLSID 2008), IEEE pp. 429–434

	28.	 Wang J, Liu J, Feng B, Hou G (2015) The dynamic evaluation
strategy for evolvable hardware 2015. 9th International Confer-
ence on Frontier of Computer Science and Technology. https://​
doi.​org/​10.​1109/​fcst.​2015.​35

	29.	 Wang J, Liu J (2017) Fault-tolerant strategy for real-time sys-
tem based on evolvable hardware. J Circuits Syst Comput
26(07):1750111

	30.	 Yao R, Zhu P, Du J, Wang M, Zhou Z (2018) A general low-cost fast
hybrid reconfiguration architecture for FPGA-based self-adaptive
system. IEICE Trans Inform Syst 101(3):616–626

	31.	 Yao X, Higuchi T (1999) Promises and challenges of evolvable hard-
ware. IEEE Trans Syst Man Cybern Part C (Appl Rev) 29(1):87–97

	32.	 Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable
fault-tolerant control systems. Annu Rev Control 32(2):229–252

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Raghavendra Kumar Sakali  has obtained his B.Tech. in Information
Technology and M.Tech. in Computer Science and Engineering from
Jawaharlal Nehru Technological University, Anantapur. He is currently
pursuing PhD at the department of Computer Science and Engineering,
Indian Institute of Information Technology Design and Manufactur-
ing Kancheepuram, Chennai, India. His research interest is evolvable
hardware and fault tolerant computing.

Noor Mahammad Shak  has obtained his PhD from Indian Institute of
Technology Madras, Chennai, India. He is currently working as Associ-
ate professor in the Department of Computer Science and Engineering,
Indian Institute of Information Technology Design and Manufactur-
ing, Kancheepuram, Chennai, India. His research interest are evolvable
hardware and reconfigurable computing.

122

https://doi.org/10.1109/reconfig.2010.25
https://doi.org/10.1109/reconfig.2010.25
https://doi.org/10.1109/LATW.2018.8349669
https://doi.org/10.1109/fcst.2015.35
https://doi.org/10.1109/fcst.2015.35

	Intrinsic Based Self-healing Adder Design Using Chromosome Reconstruction Algorithm
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed VRC Adder
	3.1 VRC Adder Design
	3.2 VRC Adder Routing and Configuration Bitstream

	4 Proposed Intrinsic based Self-healing Adder
	4.1 Reference Output Generator (ROG)
	4.2 Fault Detection Mechanism
	4.3 Fault Recovery Mechanism
	4.3.1 Chromosome Reconstruction Algorithm
	4.3.2 Procedure for Chromosome Reconstruction Algorithm
	4.3.3 Example for Chromosome Reconstruction Algorithm

	5 Experimental Setup and Results
	5.1 Experimental Environment
	5.2 Experimental Results

	6 Discussion
	7 Conclusion
	Acknowledgements
	References

