
0018-9162/07/$25.00 © 2007 IEEE September 2007 23P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

P E R S P E C T I V E S

Long-standing techniques for

performance evaluation of

computer designs are

beginning to fail. Computers

increasingly interact with other

computers, humans, and the

outside world, leading to

scenario-oriented computing,

an emerging category of

design that will enable future

consumer devices and usher

in a new era of performance

evaluation.

A New Era of
Performance Evaluation

Sean M. Pieper
University of Wisconsin-Madison

JoAnn M. Paul
Virginia Tech

Michael J. Schulte
University of Wisconsin-Madison

S ince 1943, researchers have used latency and throughput
as the primary metrics to describe computer performance.
These metrics served us well because we used computers
in fairly simple ways.

The unspoken assumption is that data is available on
demand and only its quantity and content can affect execution
time. This implies batch-style execution, in which measuring each
program’s speed, including the operating system, in isolation can
determine overall performance. For performance-evaluation pur-
poses, programs are merely an extension of instructions—reduced
latency and higher throughput are always better. This perspective
informs the design of benchmark suites such as those from the
Standard Performance Evaluation Corporation (SPEC)1 and the
Embedded Microprocessor Benchmark Consortium (EEMBC),2

which are composed of batch-style jobs executed in isolation.
For many new computer systems, such evaluation is misleading.

Computers increasingly interact with humans, the physical world,
and each other—often simultaneously. Overall performance in this
context is a function not only of individual applications, but also
of their interactions as they contend for resources both internal and
external to the device. Cell phones, for example, often perform
some baseband processing in software. Wireless communications
arrive over time rather than on demand, and strict requirements
dictate when outputs must occur. Other tasks such as video-
conferencing depend on this software, but they also can compete
with it for memory and processing resources. I/O subsystems over
which the processor has little or no control and interdependencies
between unrelated programs break the batch processing model,
but they are essential aspects of this new computing style.

Researchers must describe modern computer usage in terms of
scenarios consisting of numerous I/O streams, timing information,
and parallel tasks that enter and leave the system, rather than in
terms of programs executing in isolation from the physical world
and each other.3 Such use represents a new style of computing,
which we call scenario-oriented to contrast it with other well-
established computing styles such as general-purpose and appli-
cation-specific. Table 1 compares these three styles.

Evaluation methods designed for general-purpose and appli-
cation-specific computing are insufficient for scenario-oriented
computing. Existing benchmarks do not reflect modern usage,
and their metrics fail to describe performance as perceived by
end users.

COMPUTER USAGE EVOLUTION
As Figure 1a illustrates, with traditional computer usage, a sin-

gle task, T1, enters the system, executes for some period of time,

24 Computer

and then completes. Some time later, another task, T2,
enters the system and takes its turn. This model abstracts
schedulers and other operating system features to sim-
plify performance evaluation. There is no contention
between T1 and T2. Only program control flow
sequences and interleaves data access; there is a single
input stream and a single output stream.

In contrast, as Figure 1b depicts, modern usage is more
complicated. Many tasks operate simultaneously, con-
tend for resources, and communicate with each other.
Unlike traditional usage, both asynchronous and stream-
ing I/Os such as alerts and user inputs, webcams, and
music are important to the functionality, and there is not
necessarily a one-to-one mapping from inputs to outputs.

An arbitration layer uses preemptive scheduling to
allow for interleaved execution and to enable multiple
logical I/O streams to share a single physical link. This
layer supports real-time requirements and user demand
for concurrency. Advanced hardware also enables simul-
taneous execution. Complex interactions between tasks
and hardware resources prevent describing an entire sys-
tem’s performance in terms of a single task evaluated in
isolation or even of multiple tasks run one after the
other. This break from traditional assumptions on com-
puting causes Amdahl’s law to fail for bounded systems
with heterogeneous resources in that slowing down
some tasks can actually improve overall performance.4

While Figure 1a accurately describes scientific and
engineering usage, the computing industry has expanded
beyond the small market of engineers and scientists who
use computers to develop and run batch-style programs
to an ever-growing group of nontechnical users. Software
that uses processing power to deliver both new func-
tionality and increasing ease of use has made this growth
possible. These nontechnical users currently buy billions
of processors every year in the form of cell phones, set-
top boxes, and music players; and they expect these
devices to make their lives easier and more enjoyable.

Examples such as e-mail, Web browsing, and gaming
illustrate how researchers have historically harnessed
increased processing power to create a virtual infra-
structure unique to computing. These applications do
more than simply facilitate problem solving; they actu-

ally create entirely new technological foundations that
increase demand for computing. In turn, the applica-
tions themselves become ever more sophisticated.
E-mail, for example, dates back to at least 1972, but
increased memory and processing capability, as well as
multithreaded operating systems, have expanded its
capability far beyond the transmission of text messages.

Modern e-mail programs have integrated this base
functionality with features such spell checking, junk-
mail filtering, scheduling, sort and search functions,
HTML support, image decompression, encryption, and
virus checking. As a result, e-mail is significantly more
useful, but it is also more complicated and computa-
tionally intensive.

This trend is not confined to general-purpose devices
and their applications. Cell phones have reached the
point where they no longer can be considered traditional
application-specific devices. They now use multithreaded
operating systems, such as Symbian and Windows CE,
and they can run applications such as video-editing soft-
ware and 3D games that would traditionally run on a
PC. Users are thinking less in terms of general-purpose
computers or single-purpose systems, such as phones,
and more in terms of programmable convergence devices
that integrate into various aspects of their lives. They
expect such devices to facilitate common tasks and to
enable novel ways of interacting with the world.

TURNING POINT IN HARDWARE DESIGN
Modern users’ demands are rapidly outpacing the capa-

bilities of existing design methodologies. The computer
community has been in this position before. Vacuum
tubes gave way to discrete transistors, then came simple
integrated circuits, followed by very large-scale integra-
tion systems. In each case, the response was to create
entirely new foundational principles. As uniprocessor
design hits its limits, researchers must find new design
methodologies to deliver next-generation functionality.

Sematech’s most recent International Technology
Roadmap for Semiconductors suggests that single-core
designs cannot scale beyond 20 to 25 million transistors.
Multiprocessor designs with “SOC-like integration of
less efficient, general-purpose processor cores with more

Table 1. Comparison of general-purpose, application-specific, and scenario-oriented computing.

Computing style User programmability Design Performance evaluation Inputs

General-purpose Complete programmability Balanced performance Each application evaluated Sequenced by application
individually

Application-specific Limited or no Excellent performance Compared against known Timed to external reference
programmability for a single application requirements

Scenario-oriented Can install software for Variety of uses, but Holistic evaluation of Both sequenced by applications
new functionality emphasizes performance scenario components and and timed to external reference

of some their interactions

September 2007 25

efficient special-purpose ‘helper engines’” are projected
to be the next step in computer evolution.5 Developers
expect as many as 63 processing engines—cores and
custom logic blocks—on a single chip by 2009. The
migration to single-chip heterogeneous multiprocessors
(SCHMs) will pick up over the next few years and ulti-
mately allow exponential increases in performance to con-
tinue while reducing reliance on clock scaling.5

Two early SCHM architectures for commercial
devices are the Sony, Toshiba, and IBM (STI) Cell and
the Sandbridge Sandblaster.6,7 Cell is geared toward set-
top boxes and game consoles, while Sandblaster targets
wireless handsets. In both of these areas, the most diffi-
cult problems, such as physics processing for games and
baseband processing in cell phones, contain significant
data- and thread-level parallelism. To exploit this par-
allelism, both Cell and Sandblaster combine a cluster of
single-instruction, multiple-data processors with a sin-
gle scalar processor. Cell uses its scalar processor to coor-
dinate the SIMD units, and Sandblaster uses its to handle
user-interface tasks. Neither architecture reserves proces-
sors for specific functions. As a result of their nontradi-
tional design and programming model, processors such
as Cell and Sandblaster have been described as system-
on-chip designs, but this is not strictly accurate. Both

Cell and Sandblaster are more accurately described as
“processors of processors.”

SoC descends from application-specific integrated cir-
cuit design and provides a methodology to rapidly
develop integrated circuits for complex, but well-
defined, task sets that are fixed at design time. The SoC
design style divides the chip into several units; some of
these units can be programmable, but each has a fixed
purpose. Cell and Sandblaster diverge from this model
by considering the entire chip as a programmable device
that must be able to dynamically reallocate resources.
They also are intended for devices that are marketable
based on their compelling features, rather than sheer
processing power.

SCENARIO-ORIENTED COMPUTING
The changes in usage combined with developments in

technology point to a new organizing principle for
design—rather than being general-purpose or applica-
tion-specific, computing is becoming scenario-oriented.
Consider an onboard navigation system that determines
its current location using GPS, and receives verbal
instructions, such as “Go to 1600 Pennsylvania Avenue.”

In response to the user’s command, the system con-
nects to a map server and checks for traffic advisories,

1 TT 2 T1 T3

T4 T5 T3 T5

Computer

T3

ComputerInput stream Output stream

Program

T 1 T2

Active task timeline Active task timeline

Traditional

(a)

Modern

(b)

Arbitration layer

Storage

Internet

World

User

Storage

Internet

Speakers

Display
<85 Hz

<22 KHz

<10 Mbps

Mouse
Keyboard
Microphone
Tablet

Webcam
GPS

HTML
E-mail
Peer-to-peer
Games

HDD
Flash
RAM

Movies
Pictures
GUIs

Music
Alerts
Speech

Peer-to-peer
Games
Web feeds

Save-files
Logs
Downloads

Figure 1.Traditional and modern computer usage. (a) Common traditional tasks include compilation, data compression, physics

simulation, placement and routing, and discrete event simulation. (b) Common modern tasks include image manipulation, video

and audio playback, e-mail, virus scanning, Web browsing with dynamic content, voice over IP, and 3D gaming.

26 Computer

calculates and displays an optimized route, and trans-
mits the directions through speech synthesis software as
the user nears the destination. If a traffic advisory arrives,
the computer drops the speech synthesis and seeks an
alternate route. Unlike application-specific computing,
the processor performs different tasks over time, but
unlike general-purpose computing, these tasks share a
common goal.

In contrast with the assumptions of both general-pur-
pose and application-specific design, actual usage of
devices such as cell phones, PDAs,
and set-top boxes is modal. Users
view these devices differently accord-
ing to their immediate purpose—
they might use a smart phone as a
scheduler, music player, game-play-
ing device, digital camera, or simply
as a phone. These devices also can
implement a single mode in several
ways—for example, a user might
play songs in several different for-
mats while using the device as a music player. The user’s
expectations distinguish the modes, rather than the
actual hardware or software that enables them.

Because customers expect a variety of uses for a finite
amount of silicon, heterogeneous programmable cores
become the central elements in scenario-oriented hard-
ware. In contrast to the fixed-purpose resources in SoC
and other application-specific design styles, the pro-
cessing power of these cores is intended for a wide range
of tasks. Unlike general-purpose computers, scenario-
oriented devices must accommodate varying demands
for different types of processing within a finite amount
of silicon and certain time constraints. Heterogeneity is
a response to this challenge. Software designers can
leverage modality to inform scheduling decisions and
use heterogeneous cores more effectively.

FAILURE OF EXISTING METRICS
AND BENCHMARKS

A benchmark suite is a set of applications that pro-
vide a representative sample of usage. SPEC CPU,1 the
primary benchmark suite computer architects use, con-
tains a variety of real engineering and scientific appli-
cations that are selected and modified to run with
minimal operating system support and interaction. The
EEMBC benchmarks, which contain representative ker-
nels and applications from the embedded domain, sup-
port embedded systems design.2 The Stanford SPLASH
benchmark suite, which measures the runtime of paral-
lelizable algorithms, provides similar services for tradi-
tional multiprocessor architectures.8 All applications in
these benchmark suites are batch jobs and are executed
in isolation. Figure 1a illustrates this type of usage.

Performance in SPEC is measured as speedup,
s = �reference/�measured, over a reference system. Because the

design goal is to provide excellent performance under
arbitrary usage, each application’s speedup is treated
equally, using the geometric mean to generate a com-
posite score. The geometric mean places greater weight
on entries with low performance than those with high
performance—if a single result is 0, the entire output is
0, giving this entry infinite weight. This rewards bal-
anced performance, which is appropriate for general-
purpose usage, but does not accurately describe
scenario-oriented performance.

SPEC also includes SPEC_rate, a
throughput measurement intended
for multiprocessor systems. To gen-
erate SPEC_rate scores, the com-
puter executes n copies of each task
simultaneously and then measures
the time to complete all n copies.
This measurement anticipates homo-
geneous usage appropriate to indus-
trial applications such as simulation,
Web hosting, database processing,

and supercomputing. Scenario-oriented design, in con-
trast, anticipates diverse usage, as is common in most
consumer applications.

Some newer benchmarks such as Business Applications
Performance’s SYSmark and Futuremark’s 3Dmark9 are
more representative of commercial use. SYSmark evalu-
ates computer performance in a business setting. It uses
common commercial applications such as Adobe
Acrobat Reader, Macromedia Dreamweaver, McAfee
VirusScan, and Microsoft Office in combination with
input events and data generated by observing real users.
Multiple applications execute together under different
scenarios, such as communication (e-mail and Web
browsing) and data analysis (database queries and
spreadsheet operations). The benchmark reports sepa-
rate scores for each scenario. SYSmark focuses on
response times rather than runtimes, reflecting the fact
that many applications are event-driven and can go idle
while the user is not interacting with them.10

SYSmark comes closer than SPEC to describing mod-
ern usage, but it still does not include any real-time
applications. Real-time tasks such as streaming media,
baseband processing, and voice recognition are essen-
tial to multimedia, mobile usage, and human-computer
interaction. Their absence limits SYSmark’s ability to
describe scenario-oriented usage. SYSmark’s focus on
current usage also limits its applicability to scenario-ori-
ented hardware design. Several years can pass between
the time developers make fundamental design decisions
and when a new device hits the market. Designers need
the ability to evaluate performance under anticipated
future workloads.

3Dmark evaluates gaming performance under next-
generation loads. It measures the real-time frame rate of
a set of games with extremely demanding graphics.

The processing power

of heterogeneous

programmable cores

is intended

for a wide range

of tasks.

3Dmark originally focused on
graphics processing units, but
recently it has added a CPU por-
tion to model the impact of AI
and physics calculations on frame
rate. While 3Dmark can describe
real-time performance of future
gaming workloads, its depen-
dence on frame rate as a figure of
merit limits its applicability to
other areas.

While researchers have invested
much effort and creativity in the
design of these benchmarks and
their associated metrics, they are
insufficient for guiding scenario-
oriented design for the following
reasons:

• Their composite metrics
weight all applications
equally. This is a relic of
sharing general-purpose processors for batch jobs.
With interactive usage, fast responses to some events
are more important than the response time to others.

• They judge hardware on its ability to accelerate, rather
than enable. Customers expect increasing integration
of new features such as speech recognition, rather
than faster execution of existing features such as spell
checkers.

• They can’t describe cooperation across tasks. If sev-
eral tasks operate toward a common purpose, the
acceleration of some tasks is not necessarily benefi-
cial and can even degrade overall performance.

Fundamentally, none of these approaches identifies
the modifications that would improve a scenario-ori-
ented design. Computer architecture has historically
been the art of identifying performance bottlenecks and
then identifying performance facilitators such as caches
and branch predictors to alleviate these bottlenecks.
Different performance facilitators will exist for future
architectures, but these will facilitate critical cases—the
instances when application software overloads the sys-
tem and performance rapidly deteriorates. Scenario-ori-
ented benchmarks must enable designers to identify
critical cases and, in doing so, aid the discovery of new
performance facilitators.

EVALUATING SCENARIO-ORIENTED
PERFORMANCE

Figures 2 and 3 describe a hypothetical system’s per-
formance in an onboard navigation scenario in terms of
usefulness and timeliness. Usefulness indicates the degree
to which the device helps the user navigate, and timeli-
ness indicates the device’s ability to perform calculations

in a timely manner. Although subjective, human or even
marketing studies can measure usefulness. Timeliness is
a complex metric—some deadlines can be more impor-
tant than others (this relative importance, of course, is
also subjective) and creating a composite can be diffi-
cult. The importance of such metrics lies in bringing per-
formance evaluation in line with user satisfaction.

The navigation system is assumed to involve speech
recognition, route optimization, Web search, and graph-
ical display, executing on a SCHM with both reduced-
instruction-set computer and SIMD cores. The speech
and display software run better on the SIMD cores,
while the route optimization and Web search run better
on the RISC cores.

Figure 2 compares the performance of several possi-
ble implementations of a navigation scenario as the com-
ponent algorithms’ complexities vary. Each group of
bars represents an implementation, and each bar—
whose height indicates relative computational com-
plexity—represents a task. Reasons for complexity
changes can include algorithm selection, the amount of
data the system is processing, or control dependencies on
input values. We assume that, given infinite processing
power, higher complexity results in increased usefulness.

Figure 2 illustrates three important points:

• Software and hardware are not evaluated indepen-
dently.

• Adding a new feature can significantly increase a
device’s usefulness even if the individual quality of
other features is sacrificed.

• The relative amount of computing power dedicated
to each feature has a significant effect on usefulness
and timeliness.

September 2007 27

Implementation
description
 1 No software
 2 Basic function
 3 Best without speech
 4 RISC load too high
 5 Inadequate speech
 6 Inadequate display
 7 Speech and display equal
 8 Optimal balance
 9 SIMD load too high
 10 All load too high

Implementation
1 2 3 4 5 6 7 8 9 10

Qu
ali

ty

 Speech recognition
Route optimization
Web search
Display

Usefulness
Timeliness

Figure 2.Timeliness and usefulness of various implementations of a navigation scenario.

28 Computer

In implementation 1 in Figure 2, no software is run-
ning. As a result, no deadlines are missed, and the time-
liness rating is perfect. However, the lack of functionality
brings the usefulness score to zero.

Implementation 8 does not have perfect timeliness, but
it incorporates enough functionality in a sufficiently timely
manner that the device is very useful. In implementation
10, the load is too high, and all deadlines are missed.
Timeliness bottoms out, and this degradation destroys use-
fulness. On a more powerful processor, however, timeli-
ness would improve, and the usefulness of these more
complex implementations would increase with it. Software
must match hardware to optimize performance.

Comparing implementations 1-4, which do not
include speech recognition, with implementations 5-8
shows the impact of adding an additional feature.
Usefulness hits a local maximum in implementation 3,
and then begins to decrease because the requirements
for route optimization and Web search are too high, and
they must be performed on SIMD processors where they
execute less efficiently. Using these processors to imple-
ment speech recognition, rather than improve existing
features, will make the device far more useful overall.

Implementations 5-8 also demonstrate the importance
of striking the correct balance. When the speech recog-
nition is prioritized too much in implementation 6, the
display must be sacrificed to maintain timeliness. In
implementations 7 and 8, the balance adjusts to
improve usefulness without reducing timeliness. This
leads to an unequal division of computing resources.

Figure 3 illustrates a navigation system’s dynamic
behavior and the impact of adding an extra feature to

this system. The figure shows dif-
ferent situations in roughly
chronological order from left to
right. The navigation system is
idle until it receives a verbal
request, which triggers a chain of
computation that continues until
the system finds a route. From
then on, the navigation system
periodically polls the GPS and
traffic advisory Web sites and
announces each turn. Two bars
illustrate each situation. The
green bar shows the timeliness of
the navigation system executing
alone, while the yellow bar shows
the timeliness when the system is
downloading and displaying a
streaming video at the same time.

This type of graph can reveal
unexpected consequences of
adding new functionality that
might not be apparent from the
macroscopic view of Figure 2. For

example, downloading map data is not a problem for
the base navigation system, so we might not think
about how adding a new feature affects performance.
Figure 3, however, reveals that this is the worst case
when simultaneously streaming video. Further analy-
sis might reveal that limited bandwidth is to blame,
which could lead to solutions such as compressing map
data or designing around a more sophisticated wire-
less protocol.

Figures 2 and 3 demonstrate the potential for new per-
formance representations to isolate critical cases and
describe tradeoffs. When performance evaluation breaks
free of traditional assumptions, many representations
become possible.

TAKING PERFORMANCE EVALUATION
INTO A NEW ERA

Because it differs so vastly from both general-purpose
and application-specific computing, scenario-oriented
computing requires an overhaul of performance evalu-
ation. We can divide this challenge into benchmark selec-
tion and metric design.

Scenario-oriented benchmark criteria
Benchmark selection is the problem of defining a com-

putational load in terms of inputs (programs and data)
and timing information. New scenario-oriented bench-
marks should satisfy the following criteria:

• Include software and hardware interactions. Tasks
can wait for each other, communicate, spawn chil-
dren, and leave the system. As a result, the processor’s

Base navigation system (BNS)
BNS while streaming video

BNS idle Processing
request

Downloading
maps

Parsing
data

Optimizing
route

Checking
GPS

Checking
advisories

Instructing
driver

Situation

Ti
m

el
in

es
s

Figure 3. Navigation system timeliness.The green bar shows the timeliness of the navi-

gation system executing alone, while the yellow bar describes timeliness when the sys-

tem is downloading and displaying a streaming video at the same time.

load can change dramatically during usage. Figure 3
illustrates this type of dynamic behavior as well as an
example in which multiple tasks compete for a
shared hardware resource.

• Provide timing information for inputs and outputs.
Because a mouse click can spark a chain of calculations,
its occurrence relative to other events is important. For
example, Figure 3 shows how processing directions
while streaming a video can hurt performance, but run-
ning the streaming video is fine when the base naviga-
tion system is idle. Outputs such as video and music
have associated timing requirements that play an impor-
tant role in determining perceived quality.

• Exercise critical cases. Scenarios should isolate the
knees of performance curves. Because this will vary
according to the underlying hardware, mechanisms
must exist to adjust requirements in a variety of ways.
Implementation 9 in Figure 2 illustrates this type of
operating point.

• Describe sets of usage modes. Although they are
geared toward certain uses, scenario-oriented proces-
sors can provide additional value in other modes.
Quantitative evaluation of tradeoffs between pri-
mary and secondary modes is necessary. For exam-
ple, is it better to have an excellent handheld TV or
to sacrifice some TV functionality to allow using the
same device as a phone?

We propose a fundamental change in the structure
of benchmarks for scenario-oriented computing.
Accordingly, metrics for evaluation must also change.

Scenario-oriented metric criteria
Metric design is the problem of quantitatively assess-

ing the execution of a benchmark. Scenario-oriented per-
formance metrics should satisfy the following criteria:

• Differentiate application elements by relative impact
on usefulness. Users do not have equal performance
requirements for all tasks or even all portions of a
single task. In Figure 2, for example, speech recog-
nition is slightly more important than display
because drivers try to avoid looking away from the
road, and speech recognition assists with this
requirement.

• Account for nonlinearity. A hard real-time task will
not perform correctly if it can’t meet its deadlines.
Once it meets all deadlines, however, there might be
no benefit to further accelerating that task. Human
interaction is similar—beneath some threshold,
humans can’t perceive faster response times. For
example, a graphics task doesn’t benefit from frame
rates higher than the monitor can support.

• Describe critical cases. Understanding the tradeoffs
in a scenario-oriented computer requires knowing
when the interaction of time, data, functionality, and

hardware causes overall performance to degrade. For
example, there should be a way to describe exactly
what happens in implementation 9 in Figure 2 that
causes performance to rapidly drop or to explain the
interactions that occur in Figure 3 when download-
ing a map while displaying a streaming video.

• Have a visual representation. Pictures and graphs
are powerful tools for rapidly conveying complex
information and tradeoffs. Developers often use bar
charts in conjunction with SPEC to demonstrate
improvements in throughput and latency. Scenario-
oriented designers will frequently need to select one
approach from numerous alternatives when a single
“best” choice is not apparent. Intuitive ways of
expressing the results of future benchmarks are nec-
essary to guide such decisions.

These properties for future benchmarks and metrics
depart sharply in structure and focus from those that
historically have guided computer design. This overhaul
is necessary for computer designers to develop and eval-
uate the new principles required to deliver compelling
devices to end users.

D evelopers must reconsider performance evaluation
in light of emerging hardware and software trends.
A new era of scenario-oriented computing is

dawning. The means to evaluate new performance facil-
itators and decisions shape, both directly and indirectly,
approaches to design and their ultimate success—or
failure. The advancement of scenario-oriented design,
therefore, hinges on the development of appropriate
evaluation methods. We invite the community to join
us in considering this challenge. Contact us at soar@ece.
wisc.edu or visit www.ece.wisc.edu/~soar for more
information. ■

Acknowledgments

This work was supported in part by the National
Science Foundation under grants 0607934 and
0606675. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
the NSF.

References

1. J.L. Henning, “SPEC CPU2000: Measuring CPU Performance
in the New Millennium,” Computer, July 2000, pp. 28-35;
www.spec.org.

2. M. Levy, “Evaluating Digital Entertainment System Perfor-
mance,” Computer, July 2005, pp. 68-72; www.eembc.org.

September 2007 29

30 Computer

3. J.M. Paul, D.E. Thomas, and A. Bobrek, “Scenario-Oriented
Design for Single-Chip Heterogeneous Multiprocessors,”
IEEE Trans. VLSI, Aug. 2006, pp. 868-880.

4. J.M. Paul and B.H. Meyer, “Amdahl’s Law Revisited for Sin-
gle Chip Systems,” Int’l J. Parallel Programming, Apr. 2007,
pp. 101-123.

5. Sematech, International Technology Roadmap for Semicon-
ductors (ITRS), 2005; www.itrs.net/Links/2005ITRS/
Home2005.htm.

6. H.P. Hofstee, “Power-Efficient Processor Architecture and the
Cell Processor,” Proc. 11th Conf. High-Performance Com-
puting Architectures, IEEE CS Press, 2005, pp. 258-262.

7. M.J. Schulte et al., “A Low-Power Multithreaded Processor
for Software Defined Radio,” J. VLSI Signal Processing Sys-
tems, June 2006, pp. 143-159.

8. S.C. Woo et al., “The SPLASH-2 Programs: Characterization
and Methodological Considerations,” Proc. 22nd Ann. Int’l
Symp. Computer Architecture, ACM Press, 1995, pp. 24-36.

9. N. Renqvist and M. Kallinen, “3DMark06,” white paper
v1.0.2, Jan. 2006; www.futuremark.com/products/
3dmark06.

10. J.M. Sammons and C.H. Sauer, “Measuring the Performance
of Personal Computers,” Proc. 37th IEEE Computer Society
Int’l Computer Conf. (Compcon 92), IEEE CS Press, 1992,
pp. 311-313.

Sean M. Pieper is a PhD student in the Department of Elec-
trical and Computer Engineering at the University of Wis-
consin-Madison. His research interests include scenario-
oriented and power-efficient computer architectures. Pieper
received an MS in electrical and computer engineering from
Carnegie Mellon University. Contact him at spieper@wisc.edu.

JoAnn M. Paul is an associate professor in the Department
of Electrical and Computer Engineering at Virginia Tech.
Her research interests include the design, modeling, simu-
lation, and evaluation of single-chip heterogeneous multi-
processors. Paul received a PhD in electrical engineering
from the University of Pittsburgh. She is a member of the
IEEE and the IEEE Computer Society. Contact her at
jmpaul@vt.edu.

Michael J. Schulte is an associate professor in the Depart-
ment of Electrical and Computer Engineering at the Uni-
versity of Wisconsin-Madison. His research interests include
high-performance embedded processors, computer archi-
tecture, domain-specific systems, and computer arithmetic.
Schulte received a PhD in electrical engineering from the
University of Texas at Austin. He is a senior member of the
IEEE and the IEEE Computer Society. Contact him at
schulte@ece.wisc.edu.

■ Monthly updates highlight the latest additions to the digital library
 from all 23 peer-reviewed Computer Society periodicals.

■ New links access recent Computer Society conference publications.

■ Sponsors offer readers special deals on products and events.

Available for FREE to members, students, and computing professionals.

Visit http://www.computer.org/services/csdl_subscribe

For the
IEEE
Computer Society
Digital Library
E-Mail Newsletter

Si
gn

 U
p

To
da

y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

