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Learning Sparse High-Dimensional Matrix-Valued
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Abstract—We consider the problem of inferring the conditional
independence graph (CIG) of a sparse, high-dimensional, station-
ary matrix-variate Gaussian time series. All past work on high-
dimensional matrix graphical models assumes that independent
and identically distributed (i.i.d.) observations of the matrix-
variate are available. Here we allow dependent observations.
We consider a sparse-group lasso-based frequency-domain for-
mulation of the problem with a Kronecker-decomposable power
spectral density (PSD), and solve it via an alternating direction
method of multipliers (ADMM) approach. The problem is bi-
convex which is solved via flip-flop optimization. We provide
sufficient conditions for local convergence in the Frobenius norm
of the inverse PSD estimators to the true value. This result also
yields a rate of convergence. We illustrate our approach using
numerical examples utilizing both synthetic and real data.

Index Terms—Sparse graph learning, matrix graph estimation,
matrix time series, undirected graph, inverse spectral density
estimation.

I. INTRODUCTION

IN graphical models, graphs display the conditional inde-
pendence structure of the variables, and learning the graph

structure is equivalent to learning a factorization of the joint
probability distribution of these random variables [1]. In a
vector graphical model, the conditional statistical dependency
structure among p random variables x1, x2, · · · , xp, is repre-
sented using an undirected graph G = (V, E) with a set of p
vertices (nodes) V = {1, 2, · · · , p}= [p], and a corresponding
set of (undirected) edges E ⊆ [p]× [p]. There is no edge be-
tween nodes i and j iff xi and xj are conditionally independent
given the remaining p-2 variables. Suppose x∼Nr(m,Σ),
with m ∈ R

p, Σ ∈ R
p×p, positive definite Σ=Ω−1, where

Nr(m,Σ) denotes a real-valued Gaussian vector with mean
m and covariance Σ. Then Ωij , the (i, j)-th element of Ω, is
zero iff xi and xj are conditionally independent [1]. Of much
interest is the high-dimensional case where p is greater than
or of the order of the data sample size n [2]. In particular,
in a high-dimensional setting, as n ↑∞, p/n→ c > 0, instead
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of p/n→ 0 as in classical low-dimensional statistical analy-
sis framework [2, Chapter 1]. Such models for x have been
extensively studied [2], [3], [4], [5]. In this paper we address
the problem of high-dimensional matrix graph estimation. If
p/n� 1, we use the term low-dimensional for such cases in
this paper.
Consider a stationary p−dimensional multivariate Gaussian

time series x(t), t= 0,±1,±2, · · · , with ith component xi(t).
In the corresponding time series graph G = (V, E), there is
no edge between nodes i and j iff {xi(t)} and {xj(t)} are
conditionally independent given the remaining p-2 scalar se-
ries {x�(t), � ∈ [p], � 	= i, � 	= j} [6]. Denote the power spec-
tral density (PSD) matrix of zero-mean {x(t)} by Sx(f),
whereSx(f) =

∑∞
τ=−∞ Rxx(τ)e

−ι2πfτ ,Rxx(τ) = E{x(t+
τ)x�(t)} and ι=

√−1. In [6] it was shown that conditional
independence of two time series components given all other
components of the zero-mean time series, is encoded by zeros
in the inverse PSD, that is, {i, j} 	∈ E iff the (i, j)-th element of
S−1

x (f), [S−1
x (f)]ij = 0 for every f . In [6] the low-dimensional

case is addressed whereas nonparametric frequency-domain
approaches for graph estimation in high-dimensional settings
have been considered in [7], [8], [9]. Refs. [7], [9] provide per-
formance analysis and guarantees. Parametric modeling based
approaches in low-dimensional settings for conditional inde-
pendence graph (CIG) estimation for time series are discussed
in [10], [11], [12], [13], [14], [15]. These papers are focused
on algorithm development and they do not provide performance
guarantees (such as [9], Theorem 1]). Estimation of sparse high-
dimensional parametric time series models is discussed in [16]
where performance analysis in high-dimensions is carried out,
but the graphical modeling aspect is not addressed.
The need for matrix-valued graphical models arises in sev-

eral applications [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27] (see also related work of [28]). Here we ob-
serve matrix-valued time series {Z(t)} where Z(t) ∈ R

p×q .
If one vectorizes using vec(Z) where vec(Z) ∈ R

pq denotes
column-wise vectorization of Z, then use of vec(Z) will result
in a pq-node graph with (pq)× (pq) precision matrix, which
could be ultra-high-dimensional, and it ignores any structural
information among rows and columns of Z(t) [17]. With ⊗
denoting the matrix Kronecker product, the basic idea in matrix-
valued graphs is to model the covariance of vec(Z) as Ψ⊗Σ
with Ψ ∈ R

q×q and Σ ∈ R
p×p, reducing the number of un-

knowns fromO(p2q2) toO(p2 + q2), while also preserving the
structural information. Given data, one estimates two precision
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matrices Ω=Σ−1 and Υ=Ψ−1. In the matrix graph, con-
ditional independence between Zij and Zk� is determined by
zeros in Ω and Υ [17]. This is the Kronecker graph model
[29], [30]: If G1 and G2 are graphs with adjacency matrices
A(G1) and A(G2), respectively, then the Kronecker product
graph (KPG) G1 ⊗ G2 is defined as the graph with adjacency
matrix A(G1)⊗A(G2) [30, Def. 1]. In our context the nonzero
entries of Υ and Ω determine the nonzero entries of the ad-
jacency matrices of graphs G1 and G2, respectively, with KPG
G = G1 ⊗ G2.
Our objective in this paper is to learn a conditional indepen-

dence KPG associated with time-dependent matrix-valued zero-
mean p× q Gaussian sequence Z(t), under high-dimensional
settings, given observations of {Z(t)}n−1

t=0 .

A. Related Work

Prior work on KPG estimation under high-dimensional set-
tings [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27] all assume that i.i.d. observations of Z are available for
graphical modeling. Refs. [17], [18], [25] all solve the same
bi-convex optimization problem, using an identical alternating
minimization approach, but they differ in theoretical analy-
sis. Ref. [21] uses a Kronecker sum model whereas we use a
Kronecker-product separable covariance structure (see (4) later)
for {Z(t)}.
There is no prior reported work on high-dimensional matrix

graph estimation with dependent data using a nonparametric
approach. Parametric models using state-space models are es-
timated in [31], [32] for KPG estimation in low-dimensional
settings using Bayesian approaches. Granger causality graphs
(not the same as CIGs) for matrix time series are estimated
in [33] using first-order AR models and in [34] using an infi-
nite dimensional model class (which includes ARMAX models
of any order), both in low-dimensional settings (i.e., pq/n�
1 and/or limn→∞ pq/n= 0, with pq representing number of
nodes in KPG). In contrast, this paper considers conditional
independence KPG’s under high-dimensional settings. Ref. [35]
investigates sum of Kronecker product AR models for matrix
times series with no consideration of CIGs. Estimation of a
KPG model corresponding to an AR Gaussian process is in-
vestigated in [36] in low-dimensional settings with no perfor-
mance analysis or guarantees. A distinguishing aspect of [36]
is that it imposes a Kronecker product decomposition on the
support of the inverse PSD, not the inverse PSD of the time
series. With regard to [34], [36], we note that in the synthetic
data example using an ARMA model in [34, Sec. 6.1, Fig. 2],
number of nodes is 16 (= pq) and sample size is n= 3900,
leading to pq/n= 0.004, a low-dimensional setting. The real
data example of [34, Sec. 6.2] does have pq =96 and n= 500,
implying pq/n= 0.19. The distinction is that the ground truth
is known in synthetic data examples permitting evaluation of
the efficacy of the considered approach, whereas such is not
the case in real data examples. Thus [34] does not address
the high-dimensional scenario as relatively high pq/n= 0.19
in their real data example is not supported by any commen-
surate synthetic data example. In contrast, we provide such

support, as seen in Table I, Sec. VI-A of this paper, where pq =
225 and varying n ∈ {64, 128, 256, 512, 1024, 2148}, implying
pq/n= {3.5, 1.76, 0.88, 0.44, 0.22, 0.11}. In our real data ex-
ample (Sec. VI-B), we have pq = 88 and n= 364 with pq/n=
0.24. In [36, Sec. 6.1], the synthetic data example has pq = 36
and n=1000 or 2000 (pq/n=0.036 or 0.018), again a low-
dimensional scenario. The real data example of [36, Sec. 6.2]
has pq = 36 and n= 389 (pq/n= 0.09). The comments made
pertaining to [34] regarding differences in pq/n ratios for real
and synthetic data examples, apply to [36] as well. Finally, [37]
considers a first-order matrix AR model for matrix time series
where when vectorized, the vectorized time-series AR coeffi-
cient is expressed as a Kronecker product. Low-dimensional
asymptotics are provided in [37] and the issue of the underlying
CIG is not addressed.
A frequency-domain formulation is used in this paper, fol-

lowing the approach of [9] for dependent vector time series.
The resulting optimization problem is bi-convex, as in [17],
[18], [25], but with complex variables, and is solved via an al-
ternating minimization approach using Wirtinger calculus [38]
for optimization of real functions of complex variables.
A preliminary version of parts of this paper appear in a

workshop paper [39]. Theorems 1–3 and their proofs, and the
real data example do not appear in [39].

B. Our Contributions, Outline and Notation

The underlying system model including a generative model
(5) for time-dependent matrix Gaussian sequence, is presented
in Sec. II. A frequency-domain based penalized log-likelihood
objective function is derived in Sec. III for estimation of the
matrix graph, resulting in a Kronecker-decomposable power
spectral density representation (15). A flip-flop algorithm based
on two ADMM algorithms is presented in Sec. IV to optimize
the bi-convex objective function. In Sec. V the performance
of the proposed optimization algorithm is analyzed under a
high-dimensional large sample setting in Theorems 1–3, pat-
terned after [22] and exploiting some results from [9], [40],
[41]. Numerical results are presented in Sec. VI and proofs of
Theorems 1, 2 and 3 are given in three appendices.

Notation. The superscripts ∗,  and H denote the com-
plex conjugate, transpose and conjugate transpose operations,
respectively, R and C denote the sets of real and complex
numbers, respectively, and Re(x) is the real part of x ∈ C

p.
We use ι :=

√−1. A p× p identity matrix is denoted by Ip.
Given A ∈ C

p×p, φmin(A), φmax(A), |A|, tr(A) and etr(A)
denote the minimum eigenvalue, maximum eigenvalue, de-
terminant, trace, and exponential of trace of A, respectively.
We useA� 0 andA� 0 to denote that HermitianA is positive
semi-definite and positive definite, respectively. ForB ∈ C

p×q ,
we define the operator norm, the Frobenius norm and the

vectorized �1 norm, respectively, as ‖B‖=
√

φmax(B
HB),

‖B‖F =
√
tr(BHB) and ‖B‖1 =

∑
i,j |Bij |, whereBij is the

(i, j)-th element of B, also denoted by [B]ij . For vector θ ∈
C

p, we define ‖θ‖1 =
∑p

i=1 |θi| and ‖θ‖2 =
√∑p

i=1 |θi|2, and
we also use ‖θ‖ for ‖θ‖2. Given A ∈ C

p×p, A+ = diag(A)
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is a diagonal matrix with the same diagonal as A, and A− =
A−A+ is A with all its diagonal elements set to zero.
We use A−∗ for (A∗)−1, the inverse of complex conjugate of
A, and A−� for (A�)−1. Given A ∈ C

n×p, column vector
vec(A) ∈ C

np denotes the vectorization of A which stacks
the columns of the matrix A. The notation yn =OP (xn) for
random yn,xn ∈ C

p means that for any ε > 0, there exists 0<
T <∞ such that P (‖yn‖ ≤ T‖xn‖)≥ 1− ε∀n≥ 1. The no-
tation x∼Nc(m,Σ) denotes a complex random vector x that
is circularly symmetric (proper), complex Gaussian with mean
m and covariance Σ, and x∼Nr(m,Σ) denotes real-valued
Gaussian x with meanm and covariance Σ.

II. SYSTEM MODEL

A random matrix Z ∈ R
p×q is said to have a matrix normal

(Gaussian) distribution if its pdf f(Z|M ,Σ,Ψ), characterized
byM ∈ R

p×q , Σ ∈ R
p×p, Ψ ∈ R

q×q, is [42, Chap. 2]

f(Z|M ,Σ,Ψ) =
etr
(
− 1

2 (Z −M)Ψ−1(Z −M)�Σ−1
)

(2π)pq/2 |Σ|q/2 |Ψ|p/2 .

(1)

We will use the notation Z ∼MVN (M ,Σ,Ψ) for the matrix
normal distribution specified by (1). Equivalently,

vec(Z) ∼ Nr

(
vec(M),Ψ⊗Σ

)
. (2)

Here Ψ is the row covariance matrix and Σ is the col-
umn covariance matrix [42] since the kth column Z·k ∼
Nr(0, [Ψ]kkΣ) and the ith row Z�

i· ∼Nr(0, [Σ]iiΨ).
With Z ∈ R

p×q modeled as a zero-mean matrix normal vec-
tor and z = vec(Z), [17] assumes

E{zz�}=Ψ⊗Σ, (3)

implying a separable covariance structure [28]. Let Ω=Σ−1

and Υ=Ψ−1 denote the respective precision matrices. Then
Zij and Zk� are conditionally independent given remaining
entries in Z iff (i) at least one of Ωik and Υj� is zero when
i 	= k, j 	= �, (ii) Ωik = 0 when i 	= k, j = �, and (iii) Υj� = 0
when i= k, j 	= � [17].
In this paper we will model our time-dependent zero-

mean matrix-valued, stationary, p× q Gaussian sequenceZ(t),
z(t) = vec(Z(t)), as having the separable covariance structure
given by

E{z(t+ τ)z�(t)}=Ψ(τ)⊗Σ (4)

where Ψ(τ), τ = 0,±1, · · · models time-dependence while
Σ� 0 is fixed. Under (4), the row covariance sequence is
E{Z�

i· (t+ τ)Zi·(t)}= [Σ]ii Ψ(τ) and the column covariance
sequence is E{Z·k(t+ τ)Z�

·k(t)}=Σ [Ψ(τ)]kk. Thus we al-
low possible temporal dependence in matrix observations via
Ψ(τ). With {e(t)} i.i.d., e(t)∼Nr(0, Ipq), a generative model

for z(t) is given by

z(t) =

L∑
i=0

(Bi ⊗ F )e(t− i), Bi ∈ R
q×q, F ∈ R

p×p (5)

⇒ E{z(t+ τ)z�(t)}= (
L∑

i=0

BiB
�
i−τ︸ ︷︷ ︸

=Ψ(τ)

)⊗ (FF�)︸ ︷︷ ︸
=Σ

. (6)

In (5), we can have L ↑∞ so long as assumption (A2) stated
in Sec. III holds. In the sequel, we exploit (4) in our approach
without considering (6), the latter is used only for synthetic
data generation.
The PSD of {z(t)} is Sz(f) = S̄(f)⊗Σ where S̄(f) =∑
τ Ψ(τ)e−ι2πfτ . Then S−1

z (f) = S̄
−1

(f)⊗Σ−1, and by
[6], in the pq−node graph G = (V, E), |V |= pq, associated with
{z(t)}, edge {i, j} 	∈ E iff [S−1

z (f)]ij = 0 for every f . This
does not account for the separable structure of our model. Not-
ing that S̄

−1
(f), f ∈ [0, 0.5], plays the role ofΥ=Ψ−1, using

[6], [17] (also [30, Observation 1]), we deduce that {Zij(t)}
and {Zk�(t)} are conditionally independent given remaining
entries in {Z(t)} iff (i) at least one of Ωik and [S̄

−1
(f)]j�, for

every f ∈ [0, 0.5], is zero when i 	= k, j 	= �, (ii) Ωik = 0 when
i 	= k, j = �, and (iii) [S̄

−1
(f)]j� = 0, for every f ∈ [0, 0.5]

when i= k, j 	= �. That is, we have a KPG G = G1 ⊗ G2 where
the adjacency matrix of G1 is specified by the nonzero entries of
S̄

−1
(f), f ∈ [0, 0.5], and that of G2 follows from the nonzero

entries of Ω.
Our objective is to learn the graph associated with {Z(t)}

under some sparsity constraints onΩ and S̄
−1

(f), f ∈ [0, 0.5].
Since αS̄

−1
(f)⊗ (α−1Ω) = S̄

−1
(f)⊗Ω, to resolve

scaling ambiguity, we could normalize ‖Ω‖F = 1 or
‖[S̄−1

(f1) · · · S̄−1
(fM )]‖F = 1 for suitably placed M

frequencies in (0, 0.5); we will follow the latter as stated later
in step 2 of Sec. IV-A.

III. PENALIZED NEGATIVE LOG-LIKELIHOOD

Given z(t) for t= 0, 1, 2, · · · , n− 1. Define the (normal-
ized) DFT’s dz(fm) and Dz(fm) of z(t) and Z(t), respec-
tively, as (recall ι=

√−1),

dz(fm) =
1√
n

n−1∑
t=0

z(t) exp (−ι2πfmt) , (7)

Dz(fm) =
1√
n

n−1∑
t=0

Z(t) exp (−ι2πfmt) , (8)

fm =m/n, m= 0, 1, · · · , n− 1. (9)

Then dz(fm) = vec(Dz(fm)). It is established in [43] (see also
[9]) that, for even n, the set of random vectors {dz(fm)}n/2m=0

is a sufficient statistic for any inference problem based on
dataset {z(t)}n−1

t=0 . Suppose Sz(fk) is locally smooth, so that
Sz(fk) is (approximately) constant over K = 2mt + 1 con-
secutive frequency points fm’s where mt is the half-window
size; in our case, this assumption applies to S̄(fk). Pick M =⌊
(n2 −mt − 1)/K

⌋
and

f̃k =
(
(k − 1)K +mt + 1

)
/n, k ∈ [M ], (10)
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yielding M equally spaced frequencies f̃k in the interval
(0, 0.5). We state the local smoothness assumption as assump-
tion (A1).
(A1) Assume that for �=−mt,−mt + 1, · · · ,mt,

Sz(f̃k,�) = Sz(f̃k), (11)

wheref̃k,� =
(
(k − 1)K +mt + 1 + �

)
/n. (12)

We will invoke [44, Theorem 4.4.1] for distribution of
dz(fm). To this end we need assumption (A2).
(A2) The matrix time series {Z(t)}∞t=−∞ is zero-mean sta-

tionary, Gaussian, satisfying
∑∞

τ=−∞ |[Ψ(τ)]k�|<∞
for every k, � ∈ [q].

By [44, Theorem 4.4.1], under assumption (A1), asymptoti-
cally (as n→∞), dz(fm),m= 1, 2, · · · , (n/2)− 1, (n even),
are independent proper, complex GaussianNc(0,Sz(fm)) ran-
dom vectors, respectively. Denote the joint probability density
function of dz(fm),m= 1, 2, · · · , (n/2)− 1, as fD(D)where
D = {Dz(fm)}(n/2)−1

m=1 . Then we have [9], [43]

fD(D) =
M∏
k=1

[
mt∏

�=−mt

exp (−gkl − g∗kl)
πpq |Bk|1/2|B∗

k|1/2
]
, (13)

gkl =
1

2
dH
z (f̃k,�)

(
S̄

−1
(f̃k)⊗Σ−1

)
dz(f̃k,�), (14)

Bk = S̄(f̃k)⊗Σ. (15)

Using tr
(
A�BCG�)= ( vec(A))�(G⊗B)vec(C) and

parametrizing in terms of Φk := S̄
−1

(f̃k) and Ω=Σ−1,
we have

gkl =
1

2
DH

z (f̃k,�)Σ
−1Dz(f̃k,�)(S̄

−1
(f̃k))

�

=
1

2
DH

z (f̃k,�)ΩDz(f̃k,�)Φ
∗
k. (16)

Define q × (qM) matrix Γ as

Γ= [Φ1 Φ2 · · ·ΦM ]. (17)

Using |Bk|= |S̄(f̃k)⊗Σ|= |S̄(f̃k)|p |Σ|q , up to some con-
stants the negative log-likelihood follows from (13) as

− 1

KMpq
ln fD(D)∝G(Ω,Γ,Γ∗)

:=−1

p
ln(|Ω|)− 1

2Mq

M∑
k=1

(
ln(|Φk|) + ln(|Φ∗

k|)
)

+
1

2Mq

M∑
k=1

tr(Ak +A∗
k), (18)

Ak =
1

Kp

mt∑
�=−mt

DH
z (f̃k,�)ΩDz(f̃k,�)Φ

∗
k. (19)

In the high-dimension case, to enforce sparsity and to make
the problem well-conditioned, we propose to minimize a penal-
ized version L(Ω,Γ) w.r.t. Ω and Γ,

L(Ω,Γ) =G(Ω,Γ,Γ∗) + Pp(Ω) + Pq({Φ}), (20)

Pp(Ω) = λp

p∑
i�=j

|Ωij |= λp‖Ω−‖1, (21)

Pq({Φ}) = αλq

M∑
k=1

q∑
i�=j

∣∣[Φk]ij
∣∣

+ (1− α)
√
Mλq

q∑
i�=j

‖Φ(ij)‖, (22)

Φ(ij) := [[Φ1]ij [Φ2]ij · · · [ΦM ]ij ]
� ∈ C

M , (23)

where {Φ} := {Φk}Mk=1, α ∈ [0, 1], λp, λq > 0 are tuning pa-
rameters, Pp(Ω) is the lasso constraint, Pq({Φ}) is a sparse-
group lasso sparsity constraint (cf. [45], [46], [47]) and

√
M in

Pq({Φ}) reflects number of group variables [47].

IV. OPTIMIZATION

The objective function L(Ω,Γ) in (20) is biconvex: (strictly)
convex in Γ, Φk � 0, for fixed Ω, and (strictly) convex in
Ω, Ω� 0, for fixed Γ. As is a general approach for bicon-
vex function optimization [48], we will use an iterative and
alternating minimization approach where we optimize w.r.t. Ω
with Γ fixed, and then optimize w.r.t. Γ with Ω fixed at the
last optimized value, and repeat the two optimizations (flip-
flop). The algorithm is only guaranteed to converge to a local
stationary point of L(Ω,Γ) [48, Sec. 4.2.1].
With Γ̂= [Φ̂1 Φ̂2 · · · Φ̂M ] denoting the estimate of Γ, fix

Γ= Γ̂ and let L1(Ω) denote L(Ω, Γ̂) up to some irrelevant
constants. We minimize L1(Ω) w.r.t. Ω to estimate Ω̂, where

L1(Ω) =−1

p
ln(|Ω|) + 1

p
tr
(
ΩΘ̌
)
+ Pp(Ω), (24)

Θ̌=
1

MKq

M∑
k=1

mt∑
�=−mt

Re
{
Dz(f̃k,�)Φ̂

∗
kD

H
z (f̃k,�)

}
.

(25)

Fix Ω= Ω̂ and and let L2(Γ) denote L(Ω̂,Γ) up to some
irrelevant constants. We minimize L2(Γ) w.r.t. Γ to obtain
estimate Γ̂, where

L2(Γ) =− 1

2Mq

M∑
k=1

(ln(|Φk|) + ln(|Φ∗
k|))

+
1

2Mq

M∑
k=1

tr
(
Θ̃kΦk + Θ̃

∗
kΦ

∗
k

)
+ Pq({Φ}), (26)

Θ̃k =
1

Kp

mt∑
�=−mt

D�
z (f̃k,�)Ω̂D∗

z(f̃k,�). (27)

Our optimization algorithm is as in Sec. IV-A.

A. Flip-Flop Optimization

1) Initialize m= 1, Ω(0) = Ip, Φ
(0)
k = Iq , k ∈ [M ].

2) Set Ω̂=Ω(m−1) in (27). Use the iterative ADMM algo-
rithm [49], as outlined in [9, Sec. 4] and based onWirtinger
calculus [38], to minimize L2(Γ) (given by (26)) w.r.t.
Γ to obtain estimates Φ(m)

k , k ∈ [M ], the M component
matrices of the estimate Γ(m). Details are in Sec. IV-B and
step II of Sec. IV-D. Normalize Γ(m) ← Γ(m)/‖Γ(m)‖F
to resolve the scaling ambiguity. Let m←m+ 1.
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3) Set Γ̂= Γ(m) in (25). Use the ADMM algorithm of [40,
Sec. III] (with α= 1 therein, no group-lasso penalty) to
minimize L1(Ω)w.r.t.Ω, to obtain estimateΩ(m). Details
are in Sec. IV-C and step IV of Sec. IV-D.

4) Repeat steps 2 and 3 until convergence.

B. ADMM for Estimation of Γ

After variable splitting, the scaled augmented Lagrangian for
minimization of L2(Γ) is [9]

LaL
2 ({Φ}, {W }, {U}) = 1

2Mq

M∑
k=1

tr
(
Θ̃kΦk + Θ̃

∗
kΦ

∗
k

)

− 1

2Mq

M∑
k=1

(ln(|Φk|) + ln(|Φ∗
k|)) + Pq({W })

+
ρ

2

M∑
k=1

‖Φk −W k +Uk‖2F

where {U}= {Uk}Mk=1 are dual variables, similarly {W k}Mk=1

are the “split” variables, ρ > 0 is the penalty parameter,

Uk,W k ∈ C
q×q. Given the results {Φ̃(i)}, {W (i)}, {U (i)} of

the ith iteration, in the (i+ 1)st iteration, the ADMM algorithm
executes the following three updates, given in Steps (a)-(c), until
convergence. To distinguish between the estimates Γ(m) and
Φ

(m)
k of the mth iteration of the flip-flip optimization and the

estimate of the ith iteration of the ADMM algorithm, we use

Φ̃
(i)

k for the latter.

Step (a). {Φ̃(i+1)}← argmin{Φ} LaL
2 ({Φ}, {W (i)},

{U (i)}). Up to some terms not dependent upon Φk’s [9]

LaL
2 ({Φ}, {W (i)}, {U (i))

=
1

2Mq

M∑
k=1

LaL
2k (Φk,W

(i)
k ,U

(i)
k ),

LaL
2k (Φk,W

(i)
k ,U

(i)
k ) =− ln(|Φk|)− ln(|Φ∗

k|)
+ tr
(
Θ̃kΦk + Θ̃

∗
kΦ

∗
k

)
+Mqρ‖Φk −W

(i)
k +U

(i)
k ‖2F ,

that is, the objective function is separable in k. For each k,
the solution is as follows [9]. Let PΔPH denote the eigen-
decomposition of the Hermitian Θ̃k −Mqρ

(
W

(i)
k −U

(i)
k

)
with diagonal matrix Δ consisting of the eigenvalues and

PPH = PHP = Iq . Then Φ̃
(i+1)

k = P Δ̃PH where Δ̃ is the
diagonal matrix with �th diagonal element

[Δ̃]�� =
−[Δ]�� +

√
([Δ]��)2 + 4Mqρ

2Mqρ
.

Step (b). Here we have

{W(i+1)}← arg min
{W }

LaL
2 ({Φ̃(i+1)}, {W }, {U (i)}).

We update {W (i+1)
k }Mk=1 as the minimizer w.r.t. {W }Mk=1 of

ρ

2

M∑
k=1

‖W k − (Φ̃
(i+1)

k +U
(i)
k )‖2F + Pq({W }).

The solution follows from [9, Lemma 1]. Let Gk = Φ̃
(i+1)

k +

U
(i)
k ∈ C

q×q and let G(j�) ∈ C
M be defined as in (23), but

based on Gk’s. Then the update of {W } is given by
[W

(i+1)
k ]j� = [Gk]jj , if j = �

[W
(i+1)
k ]j� =

(
1− (1− α)λq

√
M

ρ‖SF (G
(j�), αλq/ρ)‖

)
+

× SF

(
[G(j�)]k,

αλq

ρ

)
, if j 	= �,

where (b)+ := max(0, b), SF (b, β) := (1− β/|b|)+b (for com-
plex scalar b 	= 0) is the soft-thresholding scalar operator, and
[SF (a, β)]j = S(aj , β) with aj = [a]j , is the soft-thresholding
vector operator.

Step (c). {U (i+1)}← {U (i)}+
(
{Φ̃(i+1)} − {W (i+1)}

)
.

C. ADMM for Estimation of Ω

Using variable splitting, consider

min
Ω�0,W̄

{1
p

(
tr(Θ̌Ω)− ln(|Ω|))+ λp‖W̄−‖1

}
subject to Ω= W̄ . The scaled augmented Lagrangian for this
problem is [49]

LaL
1 (Ω, W̄ , Ū) = (1/p)

(
tr(Θ̌Ω)− ln(|Ω|))

+ λp‖W̄−‖1 + ρ

2
‖Ω− W̄ + Ū‖2F

where Ū is the dual variable, and ρ > 0 is the penalty parameter.

Given the results Ω̃
(i)
, W̄

(i)
, Ū

(i)
of the ith iteration, in the

(i+ 1)st iteration, an ADMM algorithm executes the following
three updates until convergence:

Step (a). Ω̃
(i+1) ← argminΩ LaL

1 (Ω, W̄
(i)
, Ū

(i)
).

We choose Ω to minimize

tr(Θ̌Ω)− ln(|Ω|) + pρ

2
‖Ω− W̄

(i)
+ Ū

(i)‖2F .

The solution is as follows [40]. Let QJQ� denote the eigen-
decomposition of Θ̌− pρ

(
W̄

(i) − Ū
(i)
)
with diagonal ma-

trix J consisting of the eigenvalues and QQ� =Q�Q= Iq .

Then Ω̃
(i+1)

=QJ̃Q� where J̃ is the diagonal matrix with �th
diagonal element

[J̃ ]�� =
−[J ]�� +

√
([J ]��)2 + 4pρ

2pρ
.

Step (b). W̄
(i+1) ← argminW̄ LaL

1 (Ω̃
(i+1)

, W̄ , Ū
(i)
).

We update W̄
(i+1)

as the minimizer w.r.t. W̄ of

λp ‖W̄−‖1 + ρ

2
‖Ω̃(i+1) − W̄ + Ū

(i)‖2F .
The solution is soft thresholding given by [40]

[W̄ ]
(i+1)
jk =

{
[Ω̃

(i+1) − Ū
(i)
]jj if j = k

SF ([Ω̃
(i+1) − Ū

(i)
]jk,

λp

ρ ) if j 	= k

where SF () denotes soft-thresholding as in Sec. IV-C.

Step (c). Ū (i+1) ← Ū
(i)

+
(
Ω̃

(i+1) − W̄
(i+1)

)
.
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D. Practical Implementation

Here we present our implementation of the algorithms of
Secs. IV-A-IV-C that was used in our numerical results.
1) Parameters μ̄= 10, τrel = τabs = 10−4, τff = 10−5,

mmax = 20, imax = 100 and ρ(0) = 2. Initialize m= 1,
Ω(0) = Ip, Φ

(0)
k = Iq, k ∈ [M ].

2) For m= 1, 2, · · · ,mmax, do steps III-IV.

3) Set Ω̂=Ω(m−1) in (27). Pick ρ= ρ(0), Φ̃
(0)

k = Iq for
k ∈ [M ]. For i= 0, 1, · · · , imax, do steps 1-6 below.

(a) For k ∈ [M ], update Φk as Φ̃
(i+1)

k as in step (a),
Sec. IV-B, then update W k as W

(i+1)
k as in step

(b), Sec. IV-B, and then update Uk as U
(i+1)
k as in

step (c), Sec. IV-B, all with ρ= ρ(i).
(b) Check for convergence following [9,

Sec. 4.1.5]. Define the primal residual matrix
E

(i+1)
pri ∈ C

q×(qM) at the (i+ 1)st iteration as

E
(i+1)
pri =

[
Φ̃

(i+1)

1 −W
(i+1)
1 , Φ̃

(i+1)

2

−W
(i+1)
2 , · · · , Φ̃(i+1)

M −W
(i+1)
M

]
and the dual residual matrix E

(i+1)
dual ∈ C

q×(qM) at
the (i+ 1)st iteration as

E
(i+1)
dual = ρ(i)

[
W

(i+1)
1 −W

(i)
1 , W

(i+1)
2

−W
(i)
2 , · · · ,W (i+1)

M −W
(i)
M

]
.

Let e1 = ‖[Φ̃(i+1)

1 Φ̃
(i+1)

2 · · · Φ̃(i+1)

M ]‖F , e2 =

‖[W (i+1)
1 W

(i+1)
2 · · ·W (i+1)

M ]‖F , e3 =

‖[U (i+1)
1 U

(i+1)
2 · · ·U (i+1)

M ]‖F , τpri =
q
√
M τabs + τrel max(e1, e2) and τdual =

q
√
M τabs + τrel e3/ρ

(i). If ‖E(i+1)
pri ‖F ≤ τpri

and ‖E(i+1)
dual ‖F ≤ τdual, the convergence criterion

is met. If the convergence criterion is met or
if i+ 1> imax, exit to step IV after setting

Φ
(m)
k = Φ̃

(i+1)

k , k ∈ [M ], and then normalizing
Γ(m) ← Γ(m)/‖Γ(m)‖F , else continue,

(c) Update variable penalty parameter ρ as

ρ(i+1) =

⎧⎪⎨
⎪⎩
2ρ(i) if ‖E(i+1)

pri ‖F > μ̄‖E(i+1)
dual ‖F

ρ(i)/2 if ‖E(i+1)
dual ‖F > μ̄‖E(i+1)

pri ‖F
ρ(i) otherwise.

For k ∈ [M ], set U (i+1)
k =U

(i)
k /2 if ‖E(i+1)

pri ‖F >

μ̄‖E(i+1)
dual ‖F and U

(i+1)
k = 2U

(i)
k if ‖E(i+1)

dual ‖F >

μ̄‖E(i+1)
pri ‖F .

(d) Set i← i+ 1 and return to step 2.

4) Set Γ̂= Γ(m) in (25). Pick ρ= ρ(0), Ω̃
(0)

= Ip. For i=
0, 1, · · · , imax, do steps i-v below.

(a) Update Ω as Ω̃
(i+1)

as in step (a), Sec. IV-C, then
update W̄ as W̄

(i+1)
as in step (b), Sec. IV-C, and

then update Ū as Ū
(i+1)

as in step (c), Sec. IV-C,
all with ρ= ρ(i).

(b) Check for convergence following [40,
Sec. II-A]. Define the primal residual matrix

H
(i+1)
pri = Ω̃

(i+1) − W̄
(i+1)

and the dual residual

matrix H
(i+1)
dual = ρ(i)

[
W̄

(i+1) − W̄
(i)]

where
H

(i+1)
pri ,H

(i+1)
dual ∈ C

p×p. Let

τpri=p τabs+τrel max(‖Ω̃(i+1)‖F , ‖W̃ (i+1)‖F )
τdual=p τabs+τrel ‖Ũ (i+1)‖F /ρ(i).
If ‖H(i+1)

pri ‖F ≤ τpri and ‖H(i+1)
dual ‖F ≤ τdual, the

convergence criterion is met. If the convergence
criterion is met or if i+ 1> imax, exit to step V

after setting Ω(m) = Ω̃
(i+1)

, else continue.
(c) Update variable penalty parameter ρ as

ρ(i+1) =

⎧⎪⎨
⎪⎩
2ρ(i) if ‖H(i+1)

pri ‖F > μ̄‖H(i+1)
dual ‖F

ρ(i)/2 if ‖H(i+1)
dual ‖F > μ̄‖H(i+1)

pri ‖F
ρ(i) otherwise

Set Ū
(i+1)

= Ū
(i)
/2 if ‖H(i+1)

pri ‖F >

μ̄‖H(i+1)
dual ‖F and Ū

(i+1)
= 2Ū

(i)
if

‖H(i+1)
dual ‖F > μ̄‖H(i+1)

pri ‖F .
(d) Set i← i+ 1 and return to step ii.

5) Check for convergence of the flip-flop algorithm.
If ‖Γ(m) − Γ(m−1)‖F /‖Γ(m−1)‖F ≤ τff and
‖Ω(m) −Ω(m−1)‖F /‖Ω(m−1)‖F ≤ τff , or m>mmax,
go to step VI, else set m←m+ 1 and return to step III.

6) The final estimates are given by Ω̂=Ω(m) and Γ̂=
Γ(m), and EΩ̂ = {(i, j) : |[Ω̂]ij |> 0} and EΓ̂ = {(i, j) :

‖Φ̂(ij)‖> 0} are the estimated edgesets for Ω and Γ
respectively.

Remark 1: We terminate the flip-flop optimization (step V)
when relative improvements in new updates of both Ω(m) and
Γ(m) are below the threshold τff , or the maximum number
of iterations in m is reached. The ADMM algorithms are ter-
minated when both primary and dual residuals are below the
respective tolerances, or the maximum number of iterations in
i is reached; here we follow [49, Sec. 3.3.1] (see also [40] and
[9]). The variable penalty ρ(i) follows the recommendations in
[49, Sec. 3.4.1]. The most expensive computation in Sec. IV-B
is in step (a) requiring the eigen-decomposition ofMq × q ma-
trices, with computational complexity O(Mq3). Similarly, the
most expensive computation in Sec. IV-C is in step (a) requiring
the eigen-decomposition of a p× p matrix, with computational
complexity O(p3). Thus the overall computational complexity
of our proposed approach is O(Mq3 + p3). �

E. BIC for Selection of λp, λq (and α)

Given n,K andM , the Bayesian information criterion (BIC)
is given by (see also [9])

BIC(λp, λq, α) =−2KMq ln(|Ω̂|)

+ 2Kp

M∑
k=1

(
− ln(|Φ̂k|)+p−1 Re

(
tr(Âk)

))

+ ln(2KM)

(
|Ω̂|0/2 +

M∑
k=1

|Φ̂k|0
)

(28)
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where Âk is given by (19) with Ω and Φk therein re-
placed with Ω̂ and Φ̂k, respectively, |H|0 denotes num-
ber of nonzero elements in H , 2KM is total number
of real-valued measurements in frequency-domain and 2K
is the number of real-valued measurements per frequency
point, with total M frequencies in (0, 0.5). A general ex-
pression for BIC is −2 log-likelihood+(number of model
parameters)×log(number of data points). The expression in
(28) follows by using {dz(fm)}(n/2)−1)

m=1 as complex-valued
data in frequency-domain whose log-likelihood is given by (18).
We count each complex value as two real values, both for data
points and for parameters (entries of Φ̂k), and also use the fact
that Ω̂ is symmetric and Φ̂k is Hermitian.
Pick α, λq and λp to minimize BIC. In our simulations we

fixed α= 0.05 and then picked λq and λp over a grid of values,
as follows. We search over λq ∈ [λq�, λqu] and λp ∈ [λp�, λpu]
selected via a heuristic as in [40]. Find the smallest λq and λp,
labeled λqsm and λpsm, for which we get a no-edge model;
then we set λqu = λqsm/2 and λq� = λqu/10; similarly for λpu

and λp�.

V. THEORETICAL ANALYSIS

Now we provide sufficient conditions for local convergence
in the Frobenius norm of the Kronecker-decomposable inverse
PSD estimators to the true value or a scaled version of it.
First some notation. The true values of Ω, Σ and S̄(f) will
be denoted as Ω�, Σ� and S̄

�
(f), respectively. Therefore,

Ω� = (Σ�)−1. Since we use Φk := S̄
−1

(f̃k), we have Φ
�
k :=

S̄
−�

(f̃k) (where A
−� = (A�)−1). Therefore, in this notation,

dz(fm)∼Nc(0,S
�
z(fm)) and S�

z(fm) = S̄
�
(fm)⊗Σ�. Also

in this section, we replace Φ̂k’s in (25) with Φk’s and still use
the notation Θ̌ for the sum (25) and the notation L1(Ω) for
(24), and similarly, we replace Ω̂ in (27) with Ω and still use
the notation Θ̃ for the sum (27) and L2(Γ) for (26).
We follow [22] in first considering the solution to the un-

penalized population objective function (i.e., expectation of
G(Ω, {Φ}, {Φ∗}) given by 18). We have

Ḡ(Ω, {Φ}, {Φ∗}) = E{G(Ω, {Φ}, {Φ∗})}

=−1

p
ln(|Ω|)− 1

2Mq

M∑
k=1

[
ln(|Φk|) + ln(|Φ∗

k|)

− 1

p

(
tr(S̄

�
kΦk) + tr(S̄

�
kΦk)

∗)tr(Σ�Ω)
]
, (29)

where we have used the facts S̄
�
k = S̄

�
(f̃k),

E{tr(Ak)}= 1

Kp

mt∑
�=−mt

tr(E{dz(f̃k,�)d
H
z (f̃k,�)}(Φk ⊗Ω))

=
1

p
tr((S̄

�
k ⊗Σ�)(Φk ⊗Ω)) =

1

p
tr((S̄

�
kΦk)⊗ (Σ�Ω))

= p−1tr(S̄
�
kΦk)tr(Σ

�Ω). (30)

Define

Ω̄(Γ) = argmin
Ω

Ḡ(Ω, {Φ}, {Φ∗}), (31)

Γ̄(Ω) = argmin
Γ

Ḡ(Ω, {Φ}, {Φ∗}) (32)

where Γ̄(Ω) = [Φ̄1(Ω) Φ̄2(Ω) · · · Φ̄M (Ω)].
Theorem 1: If

∑M
k=1

(
tr(S̄

�
kΦk) + tr(S̄

�
kΦk)

∗) 	= 0, then

Ω̄(Γ) =
2Mq∑M

k=1

(
tr(S̄

�
kΦk) + tr(S̄

�
kΦk)∗

) Ω�, (33)

and if tr(Σ�Ω) 	= 0, then for k ∈ [M ],

Φ̄k(Ω) =
p

tr(Σ�Ω)
(S̄

�
k)

−1 =
p

tr(Σ�Ω)
Φ�

k • (34)

Theorem 1 shows that the unpenalized population objec-
tive function yields true values up to a constant scalar. No-
tice that Ω̄(Γ) =Ω� if Γ= Γ�, and similarly, Φ̄k(Ω) =Φ�

k,
k = 1, 2, · · · ,M , if Ω=Ω�.
We now turn to penalized data-based objective function

L(Ω,Γ) which is minimized alternatingly as L2(Γ) w.r.t.Φk’s
and as L1(Ω) w.r.t. Ω. Here in addition to assumptions (A1)
and (A2), we assume
(A3) Define the true edgesets Sq = {{i, j} : [(S̄

�
)−1(f)]ij 	≡

0, i 	= j, 0≤ f ≤ 0.5, i, j ∈ [q]} and Sp =
{{i, j} : [Ω�]ij 	= 0, i 	= j, i, j ∈ [p]}, where
S̄

�
(f) denotes DTFT of Ψ(τ) and Ω� = (Σ�)−1

denotes the true value of Ω. Assume that number of
nonzero elements in the true edgesets Sq and Sp are
upperbounded as |Sq| ≤ sq and |Sp| ≤ sp.

(A4) The minimum and maximum eigenvalues of q × q
PSD S̄

�
(f)� 0 satisfy 0< βq,min ≤minf∈[0,0.5]

φmin(S̄
�
(f)) and maxf∈[0,0.5] φmax(S̄

�
(f))≤

βq,max <∞. Similarly, 0< βp,min ≤ φmin(Σ
�)≤

φmax(Σ
�)≤ βp,max <∞. Here β·,min and β·,max are

not functions of n, p, q.
Theorem 2 establishes bounds on estimation errors of local

minimizers Ω̂(Γ) and Γ̂(Ω) of L1(Ω) and L2(Γ), respectively.
We now explicitly allow p, q, M , K, sp, sq , λp and λq to be
functions of sample size n, denoted as pn, qn, Mn, Kn, spn,
sqn, λpn and λqn, respectively. (In the appendices we do not do
so to keep the notation simple.) First we define some variables.
For τ > 2, define

γp = 0.1/βp,max, (35)

C1q =
2√

ln(M
1/τ
n qn)

+

√
2τ +

2 ln(16)

ln(M
1/τ
n qn)

, (36)

C0q = 16C1q(1 + γpβp,max)βq,max, (37)

γq = 0.1/βq,max, (38)

C1p =

√
2

ln(pn)
+

√
τ +

ln(4)

ln(pn)
, (39)

C0p = 8C1p (2 + γqβq,max)βp,max, (40)

rqn =

√
Mn(qn + sqn) ln(M

1/τ
n qn)/(Knpn) = o(1), (41)

rpn =
√

(pn + spn) ln(pn)/(MnKnqn) = o(1). (42)
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Theorem 2: Let τ > 2.
(i) Let B(Γ�) = {Γ : ‖Γ− Γ�‖F ≤ γq, Φk =ΦH

k � 0} and
Ω̂(Γ) = argmin{Ω:Γ∈B(Γ�)} L1(Ω). Suppose λpn satisfies

C0p

pn

√
ln(pn)

MnKnqn
≤ λpn ≤ C0p

pn

√(
1 +

pn
spn

)
ln(pn)

MnKnqn
.

(43)

Let Np := argminn
{
n : rpn ≤ βp,min/(34C0p)

}
. Then under

assumptions (A1)-(A4), for n >Np, Ω̂(Γ) satisfies

‖Ω̂(Γ)− Ω̄(Γ)‖F ≤ 17C0p

β2
p,min

rpn (44)

with probability greater than 1− 1
pτ−2 − 4p2e−KqM .

(ii) Let B(Ω�) = {Ω : ‖Ω−Ω�‖F ≤ γp, Ω=Ω� � 0}
and Γ̂(Ω) = argmin{Γ:Ω∈B(Ω�)} L2(Γ). Suppose λqn

satisfies

C0q

Mnqn

√
dn ≤ λqn ≤ C0q

Mnqn

√(
1 +

qn
sqn

)
dn, (45)

where dn = ln(M
1/τ
n qn)/(Knpn). Let Nq := argminn

{
n :

rqn ≤ βq,min/(34C0q)
}
. Then under assumptions (A1)-(A4),

for n >Nq and α ∈ [0, 1], Γ̂(Ω) satisfies

‖Γ̂(Ω)− Γ̄(Ω)‖F ≤ 17C0q

β2
q,min

rqn (46)

with probability greater than 1− 1
qτ−2 − 16Mq2e−Kp/2 •

Remark 2: Theorem 2 helps determine how to choose Mn

andKn so that for given n, spn, sqn, qn and pn, limn→∞ rpn =
0 and limn→∞ rqn = 0, and moreover, how fast can spn and sqn
grow with n and still have rqn and rpn↓ 0. SinceKnMn ≈ n/2,
if one picks Kn =O(nμ), then Mn =O(n1−μ) for some 0<
μ < 1. We assume pn and qn are of the same order. (i) First con-
sider the caseO(pn) =O(pn + spn) =O(qn) =O(qn + sqn),
which, for example, is true for chain graphs. Also, takeO(pn)∝
nν for some ν > 0. Then rpn =O(

√
ln(n)/n)→ 0 as n→∞,

and rqn =O(
√

ln(n)/n2μ−1)→ 0 as n→∞ if μ > 0.5. This
holds for any ν > 0. If μ= 3

4 , then rqn =O(
√

ln(n)/n1/4)>

rpn. If μ= 2
3 , then rqn =O(

√
ln(n)/n1/6)> rpn. (ii) Now

suppose O(pn) =O(qn)∝ nν for some ν > 0, but O(spn) =
O(sqn)∝ n2ν =O(p2n), which is true for Erdös-Rènyi graphs,
e.g. Then rpn =O(

√
ln(n)/n1−ν)→ 0 as n→∞ if ν < 1,

and rqn =O(
√

ln(n)/n2μ−1−ν)→ 0 as n→∞ if 2μ− ν > 1.
Clearly ν = 1 does not work. Suppose ν = 0.25 and μ= 0.75.
Then rpn =O(

√
ln(n)/n0.375) and rqn =O(

√
ln(n)/n1/8).

�
Remark 3: The values of γp and γq specified in (35) and

(38), respectively, are used in the proofs of Theorem 2(ii)
(see after (116)) and Theorem 2(i) (see (101)), respectively.
One can enlarge γp and γq to γp = 0.1

√
pn/βp,min and γq =

0.1
√
Mnqn/βq,min, respectively, and the proofs and the other

results remain unchanged and valid. Enlarging these values im-
plies that the balls B(Γ�) and B(Ω�) specified in Theorem 2 are
larger, signifying larger convergence regions for initialization
of Γ and Ω. However, this would slow the convergence rates
from ‖Ω̂(Γ)− Ω̄(Γ)‖F =OP (rpn) and ‖Γ̂(Ω)− Γ̄(Ω)‖F =

OP (rqn) to ‖Ω̂(Γ)− Ω̄(Γ)‖F =OP (
√
pn rpn) and‖Γ̂(Ω)−

Γ̄(Ω)‖F =OP (
√
Mnqn rqn), respectively. �

Theorem 3: Assume ‖Ω�‖F = 1.
(i) Define Ω̂= Ω̂(Γ)/‖Ω̂(Γ)‖F . Let N2p :=

argminn
{
n : rpn ≤ β2

p,min ‖Ω̄(Γ)‖F /(34C0p)
}

and
γr = (βq,max + βq,min)/βq,min. Under the assumptions of
Theorem 2(i), for n >max{Np, N2p}, Ω̂ satisfies

‖Ω̂−Ω�‖F ≤ 4γr‖Ω̂(Γ)− Ω̄(Γ)‖F ≤ 68γrC0p

β2
p,min

rpn (47)

with probability greater than 1− 1
pτ−2 − 4p2e−KqM .

(ii) Let C2p = 68γr
√
pβp,maxC0p/β

2
p,min, U1p = p/(2C2p),

U2p = 0.1β2
p,min/(68γrC0pβp,max), N3p := argminn

{
n :

rpn ≤max{U1p, U2p}
}

and C2q = 2C2p‖Γ�‖F /p. Let
Γ̂(Ω̂) = argmin{Γ:Ω=Ω̂∈B(Ω�)} L2(Γ) where Ω̂ is as in
Theorem 3(i). Under the assumptions of Theorem 2, for
n >max{Np, N2p, Nq, N3p} and α ∈ [0, 1], Γ̂(Ω̂) satisfies

‖Γ̂(Ω̂)− Γ�‖F ≤ 17C0q

β2
q,min

rqn + C2qrpn (48)

with probability greater than 1− 1
pτ−2 − 4p2e−KqM − 1

qτ−2 −
16Mq2e−Kp/2 •

VI. NUMERICAL RESULTS

We now present numerical results for both synthetic and real
data to illustrate the proposed approach. In synthetic data exam-
ples the ground truth is known and this allows for assessment
of the efficacy of various approaches. In real data examples
where the ground truth is unknown, our goal is visualization
and exploration of the linear conditional dependency structures
underlying the data.

A. Synthetic Data

We use model (5)-(6) to generate synthetic data whereΨ(τ)
is controlled via a vector autoregressive (VAR) model im-
pulse response and Σ is determined via an Erdös-Rènyi graph.
We take p= q = 15. Consider the impulse response H

(r)
i ∈

R
5×5 generated as H

(r)
i =

∑3
k=1 A

(r)
k H

(r)
i−k + I5δi, where

H
(r)
i = 0 for i < 0, δi is the Kronecker delta, r = 1, 2, 3, and

only 5% of entries of A
(r)
i ’s are nonzero and the nonzero

elements are independently and uniformly distributed over
[−0.8, 0.8]. We then check if the VAR(3) model is stable with
all eigenvalues of the companion matrix ≤ 0.95 in magnitude;
if not, we re-draw randomly till this condition is fulfilled.
The impulse response Bi ∈ R

15×15 in (5) is given by Bi =

block-diag{H(1)
i ,H

(2)
i ,H

(3)
i }, for 0≤ i≤ L= 40, otherwise

it is set to zero. ThusBi’s in (5) have a block-diagonal structure
with 3 blocks, each block is 5× 5. In the Erdös-Rènyi graph
with p= 15 nodes, the nodes are connected with probability
per = 0.05. In the upper triangular Ω̄, Ω̄ij = 0 if {i, j} 	∈ Sp,
Ω̄ij is uniformly distributed over [−0.4,−0.1] ∪ [0.1, 0.4] if
{i, j} ∈ Sp, and Ω̄ii = 0.5. With Ω̄= Ω̄

�
, add κIp to Ω̄with κ

picked to make minimum eigenvalue ofΩ= Ω̄+ κIp equal to

0.5. Let Ω= F̃ F̃ (matrix square-root), then F = F̃
−1
in (5).
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Fig. 1. ROC curves: plots labeled “IID” are from the approach of [17], [18],
[25], and the plots labeled “dep.” are from our proposed approach. TPR=true
positive rate, TNR=true negative rate.

We applied our proposed approach with n= 256, M = 2,
K = 63 and compared with the approach of [17] (which is also
the approach of [18], [25], all of whom assume i.i.d. obser-
vations and have two lasso penalties one each on Ω and Υ,
counterpart to our Φk). In our approach, we fix α= 0.05 for
all simulations and real data results. For fixed values of λq and
λp, using our proposed approach of Sec. IV-D, we calculated the
true positive rate (TPR) and false positive rate 1-TNR (where
TNR is the true negative rate) over 100 runs, separately for
Ω and {Φk}/Υ, based on the estimated edges. As we vary
λq and λp over a wide range of values, we can compute the
corresponding pairs of estimated (1-TNR, TPR). The receiver
operating characteristic (ROC) is shown in Fig. 1 based on 100
runs, using the estimated (1-TNR, TPR). We repeat this method
for the i.i.d. modeling approach of [17], [18], [25]. Fig. 1 shows
that the i.i.d. modeling of [17], [18], [25] is unable to capture
the “dependent” edges (cf. (4)) via Υ whereas it has no issues
with Ω. Our approach works well for both components of the
Kronecker product graph.
In Table I we show the results based on 100 runs under

different parameter settings and samples sizes. Here we show
the F1score, TPR, 1-TNR and timing values for the overall
graph (not the two Kronecker product components separately)
along with the±σ errors. All algorithms were run on a Window
10 Pro operating system with processor Intel(R) Core(TM)
i7-10700 CPU @2.90 GHz with 32 GB RAM, using MATLAB
R2023a. We take n= 64, 128, 256, 512, 1024, 2048, and for
our proposed approach, the correspondingmt values leading to
different M values are mt = 7, 15, 31, 63, 127, 255 (M = 2),
mt = 4, 9, 20, 41, 84, 169 (M = 3), mt = 3, 7, 14, 31, 63, 127
(M = 4), mt = 2, 5, 12, 24, 50, 101 (M = 5), mt =
∗∗, 4, 10, 20, 42, 84 (M = 6), mt = ∗∗, ∗∗, ∗∗, 15, 31, 63
(M = 8), and mt = ∗∗, ∗∗, ∗∗, 12, 25, 50 (M = 10). Here
∗∗ denotes that no simulation were performed for the
corresponding sample size n (since K = 2mt + 1 is too
small). We show the resulting F1 scores under two different
scenarios: when we use the proposed BIC parameter selection
method (Sec. IV-E) and when F1 score was selected based on λ

values that maximize the F1 score. While the latter approach is
not practical, it is presented to illustrate what is possible using
the proposed approach and what may be “lost” when there are
errors in the BIC parameter selection method. The number
of unknown parameters being estimated are O(p2 +Mq2),
with O(p2) for Ω and O(Mq2) for MΦk’s. We see that for
a fixed n, at first the performance improves with increasing
M , then it slowly declines as more parameters need to be
estimated with increasing M . Increasing M also reduces
K = 2mt + 1 since KM ≈ n

2 , which reduces the number
of frequency-domain samples (K) for averaging for the kth
model for Φk, k ∈ [M ] (see assumption (A1) in Sec. III). Note
also that by (46) of Theorem 2(ii), the error in estimating
Φk’s ∝ rqn ∝√(Mq)/(Kp). For a fixedM , the performance
improves, in general, with increasing n but more slowly for
higher n’s. Higher n values implies higher resolution in the
frequency-domain and for fixed M , higher n implies higher
K (and mt), in which case assumption (A1) in Sec. III may
not hold. The TPR, 1-TNR and timing values are shown for
selected M ’s for the proposed approach where timing per run
is for the λ values picked by the BIC criterion. It is seen that
increasingM and/or n leads to only a small increase in timing.
In Table I we also show the performance of i.i.d. modeling

approach of [17], [18], [25], in terms of the F1 score and timing.
The i.i.d. modeling approach is significantly faster but the accu-
racy in edge detection in terms of the F1 score is much poorer.
Finally, to assess sensitivity to modeling errors such as violation
of the Gaussianity assumption, we used either exponential or
uniform e(t) in (5), both with zero-mean unit variance, instead
of the assumed Gaussian e(t) in our model. The results are
shown for M = 4 and we see that the performance is robust
w.r.t. violation of this assumption.

B. Real Data: Beijing Air-Quality Dataset [50]

Here we consider Beijing air-quality dataset [50], [51],
downloaded from https://archive.ics.uci.edu/dataset/501/
beijing+multi+site+air+quality+data. This data set includes
hourly air pollutants data from 12 nationally-controlled air-
quality monitoring sites in the Beijing area. The time period
is from March 1st, 2013 to February 28th, 2017. The six air
pollutants are PM2.5, PM10, SO2, NO2, CO, and O3, and the
meteorological data is comprised of five features: temperature,
atmospheric pressure, dew point, wind speed, and rain; we did
not use wind direction. Thus we have eleven (= q) features
(pollutants and weather variables). We used data from 8 (= p)
sites: 4 rural/suburban sites Changping, Dingling, Huairou,
Shunyi, and 4 urban sites Aotizhongxin, Dongsi, Guanyuan,
Gucheng (labeled Stn 1 through 8 in Fig. 2). The data are
averaged over 24 hour period to yield daily averages. We used
one year 2013-14 of daily data resulting in n= 365 days.
Arranging stations as rows and features as columns, we have
Z(t) ∈ R

8×11, t= 1, 2, · · · , 365. We pre-processed the data
as follows. Given jth feature data Zij(t) at ith station, we
transform it to Z̄ij(t) = ln(Zij(t)/Zij(t− 1)) for each i
and j, and then detrend it (i.e., remove the best straight-line
fit). Finally, we scale the detrended scalar sequence to have a
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TABLE I
F1 SCORES, TPR, 1-TNR AND TIMING PER RUN FOR FIXED TUNING PARAMETERS, FOR THE SYNTHETIC DATA EXAMPLE, AVERAGED OVER

100 RUNS. THE ENTRIES ∗∗ DENOTE NO SIMULATIONS DONE FOR THESE PARAMETERS

n 64 128 256 512 1024 2048

Proposed Approach: F1 scores ±σ when λ’s are selected to minimize BIC
M=2 0.5163 ± 0.1530 0.5660 ± 0.1580 0.6440 ± 0.1709 0.7061 ± 0.1147 0.7018 ± 0.1176 0.7190 ± 0.1217
M=3 0.5111 ± 0.1705 0.5876 ± 0.1560 0.6969 ± 0.1421 0.7266 ± 0.1159 0.7322 ± 0.1031 0.7474 ± 0.1000
M=4 0.5454 ± 0.1852 0.6470 ± 0.1489 0.7106 ± 0.1465 0.7376 ± 0.1011 0.7446 ± 0.1069 0.7524 ± 0.1047
M=5 0.5977 ± 0.1717 0.6609 ± 0.1465 0.7049 ± 0.1367 0.7253 ± 0.1104 0.7401 ± 0.1028 0.7467 ± 0.1002
M=6 ∗∗ 0.6277 ± 0.1353 0.6773 ± 0.1379 0.7115 ± 0.1172 0.7343 ± 0.1025 0.7369 ± 0.0971
M=8 ∗∗ ∗∗ ∗∗ 0.7016 ± 0.1071 0.7366 ± 0.1013 0.7365 ± 0.0974
M=10 ∗∗ ∗∗ ∗∗ 0.7123 ± 0.1117 0.7319 ± 0.1044 0.7367 ± 0.1022

Proposed Approach: F1 scores ±σ when λ’s are selected to maximize F1 score
M=2 0.6826 ± 0.1440 0.6954 ± 0.1588 0.7485 ± 0.1632 0.8026 ± 0.1139 0.8032 ± 0.1588 0.8440 ± 0.1184
M=3 0.6984 ± 0.1383 0.7322 ± 0.1730 0.8055 ± 0.1383 0.8293 ± 0.1190 0.8372 ± 0.1442 0.8670 ± 0.1295
M=4 0.7041 ± 0.1355 0.7364 ± 0.1646 0.8074 ± 0.1434 0.8282 ± 0.1169 0.8401 ± 0.1197 0.8633 ± 0.1397
M=5 0.6652 ± 0.1664 0.7309 ± 0.1431 0.8072 ± 0.1466 0.8411 ± 0.1158 0.8451 ± 0.1251 0.8637 ± 0.1314
M=6 ∗∗ 0.7218 ± 0.1490 0.8089 ± 0.1324 0.8252 ± 0.1206 0.8433 ± 0.1282 0.8583 ± 0.1396
M=8 ∗∗ ∗∗ ∗∗ 0.8329 ± 0.1130 0.8382 ± 0.1221 0.8601 ± 0.1404
M=10 ∗∗ ∗∗ ∗∗ 0.8187 ± 0.1216 0.8286 ± 0.1525 0.8496 ± 0.1406

IID modeling [17], [18], [25]: λ’s are selected to maximize F1 score
F1 scores ±σ 0.4329 ± 0.1244 0.4230 ± 0.1208 0.4368 ± 0.1228 0.4746 ± 0.1367 0.4483 ± 0.1180 0.4709 ± 0.1104

timing (s) per run ±σ 0.0051 ± 0.0011 0.0073 ± 0.0014 0.0111 ± 0.0020 0.0195 ± 0.0031 0.0342 ± 0.0035 0.0640 ± 0.0050

Proposed approach under model mismatch – non-Gaussian e in (5): F1 scores ±σ when λ’s are selected to minimize BIC
Exponential e, M=4 0.5518 ± 0.1853 0.6565 ± 0.1728 0.7098 ± 0.1349 0.7355 ± 0.0976 0.7514 ± 0.1141 0.7555 ± 0.0888
Uniform e, M=4 0.5434 ± 0.1772 0.6510 ± 0.1693 0.7137 ± 0.1364 0.7400 ± 0.1043 0.7494 ± 0.1146 0.7537 ± 0.0982

Proposed Approach: TPR ±σ when λ’s are selected to maximize F1 score
M=2 0.6312 ± 0.1675 0.6420 ± 0.1541 0.6937 ± 0.1852 0.7533 ± 0.1332 0.8146 ± 0.1187 0.8249 ± 0.1199
M=4 0.6793 ± 0.1493 0.7120 ± 0.1477 0.7595 ± 0.1529 0.7919 ± 0.1307 0.8142 ± 0.1229 0.8836 ± 0.1021
M=6 ∗∗ 0.6711 ± 0.1529 0.7459 ± 0.1608 0.8024 ± 0.1287 0.8162 ± 0.1215 0.8275 ± 0.1290
M=10 ∗∗ ∗∗ ∗∗ 0.7867 ± 0.1269 0.8278 ± 0.1199 0.8504 ± 0.1177

Proposed Approach: 1-TNR ±σ when λ’s are selected to maximize F1 score
M=2 0.0032 ± 0.0092 0.0033 ± 0.0090 0.0022 ± 0.0074 0.0018 ± 0.0061 0.0049 ± 0.0157 0.0025 ± 0.0096
M=4 0.0041 ± 0.0118 0.0044 ± 0.0127 0.0020 ± 0.0074 0.0021 ± 0.0097 0.0023 ± 0.0086 0.0043 ± 0.0174
M=6 ∗∗ 0.0035 ± 0.0116 0.0013 ± 0.0050 0.0026 ± 0.0113 0.0027 ± 0.0120 0.0030 ± 0.0161
M=10 ∗∗ ∗∗ ∗∗ 0.0025 ± 0.0113 0.0046 ± 0.0173 0.0040 ± 0.0173

Proposed Approach: timing (s) per run ±σ when λ’s are selected to minimize BIC
M=2 0.1687 ± 0.0400 0.1688 ± 0.0418 0.1791 ± 0.1005 0.1777 ± 0.0289 0.2166 ± 0.0322 0.3131 ± 0.1051
M=4 0.2294 ± 0.1650 0.2470 ± 0.1026 0.2284 ± 0.0846 0.2278 ± 0.0392 0.2890 ± 0.1338 0.3627 ± 0.0494
M=6 ∗∗ 0.2738 ± 0.0903 0.2426 ± 0.0633 0.2507 ± 0.0537 0.2944 ± 0.0902 0.3842 ± 0.0471
M=10 ∗∗ ∗∗ ∗∗ 0.3040 ± 0.1400 0.3230 ± 0.0733 0.4285 ± 0.0890

mean-square value of one. All temperatures were converted
from Celsius to Kelvin to avoid negative numbers. If a value of
a feature is zero (e.g., wind speed), we added a small positive
number to it so that the log transformation is well-defined.
We applied our proposed approach with M = 4, K = 45

and n= 364 (p= 8, q = 11) and compared it with the i.i.d.
modeling approach of [17], [18], [25]. The objective here is
to compare the two approaches in estimation of the pollution
(feature) graph and the site graph. The spatio-temporal data
has a matrix structure and one is interested in learning two
aspects of conditional dependencies: the relationship among
the features via the pollution graph and the relationship among
the sites via the site graph. We have not yet tested if our
model assumptions apply to this dataset (this needs further
theoretical analysis to devise suitable statistical tests, partic-
ularly in a high-dimensional setting), but it still seems to be
useful to compare the results of our proposed approach and
that of [17], [18], [25]. Fig. 2(a) shows the resulting graph for
the air quality and environmental variables where {i, j} ∈ Sq

iff Φ̂
(ij)

= (
∑M

k=1 |[Φ̂k]ij |2)1/2 > 0 for i 	= j, and Fig. 2(b)

shows the resulting graph for the sites around the Beijing area
where {i, j} ∈ Sp iff |Ω̂ij |> 0 for i 	= j. Since all the sites are
physically close to one another, it is not surprising that the site
graph in Fig. 2(b) is fully connected. But we do see that the
rural/suburban sites stn. 1 through stn. 4 have higher weight
edges among the group and the urban sites stn. 5 through stn.
8 have higher weight edges among the urban group, with inter-
group edge weights being slightly weaker (but fully connected).
Automobile exhaust is the main cause of NO2 which is likely
to undergo a chemical reaction with Ozone O3, thereby, low-
ering its concentration [51]. This fact is captured by the edge
between NO2 and Ozone O3 in Fig. 2(a). Cold, dry air from
the north of Beijing reduces both dew point and PM2.5 particle
concentration in suburban areas while southerly wind brings
warmer and more humid air from the more polluted south that
elevates both dew point and PM2.5 concentration [50]. This
fact is captured by the edge between dew point and PM2.5 in
Fig. 2(a). The counterparts to Figs. 2(a) and 2(b) when using
the i.i.d. modeling approach of [17], [18], [25], are shown in
Figs. 2(e) and 2(f), respectively. While the site graph in Fig. 2(f)
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Fig. 2. Pollution and site graphs for the Beijing air-quality dataset [50] for year 2013-14: 8 monitoring sites and 11 features (p= 8, q = 11, n= 364). Number
of distinct edges = 18, 28, 20, 6, 30, 28 in graphs (a), (b), (c), (d), (e) and (f), respectively. Monitoring sites labeled Stn. 1-4 are the rural/suburban sites and

those labeled Stn. 5-8 are the urban sites (see the text). For the pollution graph, estimated Φ̂
(ij)

is the edge weight (normalized to have maxi �=j Φ̂
(ij)

= 1)
and for the site graph, estimated |Ω̂ij | is the edge weight (normalized to have maxi �=j |Ω̂ij |= 1). The edge weights are color coded (all pollution graphs
share the same color legend, and similarly for the site graphs), in addition to the edges with higher weights being drawn thicker.

is fully connected and quite similar to the proposed approach’s
site graph in Fig. 2(b), the pollution graph in Fig. 2(e) far denser
than the proposed approach’s pollution graph in Fig. 2(a).
We do not have any systematic approach for selection of

M for a given sample size n. Since KM ≈ n
2 , fixing M fixes

K = 2mt + 1, and vice-versa. Using BIC to pick M does not
work as BIC always picks the smallest M . The synthetic data
results presented in Table I show that the performance is not
unduly sensitive to the choice ofM . To illustrate the sensitivity
of the proposed approach in Beijing data case, we show the
pollution graphs in Figs. 2(c) and 2(d) for the choice M = 3
(K=59) and M = 5 (K = 35), respectively. There is not much
difference between pollution graphs forM = 4 andM = 3, but
that for M = 5 is much sparser. This is consistent with the
results of Sec. VI-A on synthetic data.

VII. CONCLUSION

Sparse-group lasso penalized log-likelihood approach in
frequency-domain with a Kronecker-decomposable PSD was
investigated for matrix CIG learning for dependent time series.
An ADMM-based flip-flop approach for iterative optimization
of the bi-convex problem was presented. We provided sufficient
conditions for consistency of a local estimator of inverse PSD.
We illustrated our approach using numerical examples utilizing

both synthetic and real data. Lasso and related approaches are
known to yield biased estimates [52]. To remedy this, various
non-convex penalties have been suggested [52] and typically,
lasso-based approaches provide the initial guess for iterative op-
timization. In the context of this paper, adaptive lasso has been
used in [40] (the basis of the ADMM method of Sec. IV-C),
and a log-sum penalty has been used in [53] (which modifies
[9], the basis for Sec. IV-B). Investigation of such non-convex
penalties is left for future research.

APPENDIX A
PROOF OF THEOREM 1

With fixed Γ, let Ḡ1(Ω) denote Ḡ(Ω, {Φ}, {Φ∗}) up to
some irrelevant constants. Then

Ḡ1(Ω) =−1

p
ln(|Ω|) +B tr(Σ�Ω), (49)

where B = tr(S̄
�
kΦk)

∗/(2Mqp). We have

0 =
∂Ḡ1(Ω)

∂Ω
=−1

p
Ω−1 +BΣ�, (50)
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establishing (33) if B 	= 0. The solution is unique since the
Hessian of Ḡ1(Ω), given by 1

pΩ
−1 ⊗Ω−1, is positive defi-

nite at Ω= Ω̄(Γ). Similarly, with fixed Ω, let Ḡ2(Γ) denote
Ḡ(Ω, {Φ}, {Φ∗}) up to some irrelevant constants. Then

Ḡ2(Γ) =

M∑
k=1

Ḡ2k(Φk), (51)

Ḡ2k(Φk) =− ln(|Φk|)− ln(|Φ∗
k|)

+
1

p

(
tr(S̄

�
kΦk) + tr(S̄

�
kΦk)

∗)tr(Σ�Ω). (52)

The cost Ḡ2(Γ) is separable in k, Φk. We have

0 =
∂Ḡ2k(Φk)

∂Φ∗
k

=−Φ−1
k +

1

p
S̄

�
ktr (Σ

�Ω), (53)

establishing (34) if tr(Σ�Ω) 	= 0. Similar to [9, Lemma 4],
the Hessian of Ḡ2k(Φk) is positive definite at Φk = Φ̄k(Ω).
Therefore, the solution is unique. �

APPENDIX B
TECHNICAL LEMMAS AND PROOF OF THEOREM 2

Lemma 1 is a restatement of [22, Lemma S.1, Supplemen-
tary].

Lemma 1: Assume that i.i.d. data Xi ∈ R
p×q , i=

1, 2, · · · , n, follows the matrix-valued normal distribution
MVN (0,Σ�,Ψ�), with Σ� ∈ R

p×p, Ψ� ∈ R
q×q , Σ� � 0

and Ψ� � 0, i.e., vec(Xi) ∼ Nr

(
0,Ψ� ⊗Σ�). Assume that

φmax(Σ
�)≤ C1h <∞ and φmax(Ψ

�)≤ C2h <∞ for some
positive constants C1h and C2h. For any symmetric positive-
definite Ω ∈ R

p×p such that ‖Ω−Ω�‖F ≤ γ, Ω� = (Σ�)−1,
we have

P
(
max
i,j

∣∣∣
[

1

np

n∑
i=1

X�
i ΩXi − 1

p
E{X�

i ΩXi}
]
ij

∣∣∣≥ δ
)

≤ 4q2

[
exp

{
− np

2

[
δ

8(1 + γC1h)C2h
− 2√

np

]2}

+ exp
{
− np

2

}]
(54)

for any δ > 16(1 + γC1h)C2h/
√
np •

The lower bound on δ follows from [22, Lemma S.12, Sup-
plementary] and (54) is [22, Eqn. (S.26), Supplementary] in our
notation.
Lemma 2 collects some useful results from [42, Theo-

rem 2.3.5].
Lemma 2: SupposeX ∼MVN (0,Σ,Ψ)whereX ∈ R

p×q ,
Σ ∈ R

p×p, Ψ ∈ R
q×q , i.e., vec(X) ∼ Nr

(
0,Ψ⊗Σ

)
. Then

(i) X� ∼MVN (0,Ψ,Σ), i.e., vec(X�) ∼Nr

(
0,Σ⊗

Ψ
)
.

(ii) For any A ∈ R
q×q, E{XAX�}= tr(A�Ψ)Σ.

(iii) For any B ∈ R
p×p, E{X�BX}= tr(B�Σ)Ψ.

(iv) For any C ∈ R
q×p, E{XCX}=ΣC�Ψ •

Lemma 3: Suppose X ∈ C
p×q , vec(X) ∼ Nc

(
0,S ⊗Σ

)
where Σ ∈ R

p×p, S ∈ C
q×q , Σ=Σ� � 0, S = SH � 0 and

S = Sr + jSi with Sr,Si ∈ R
q×q and j =

√−1.

(i) Let X =Xr + jXi, Xr,Xi ∈ R
p×q . Then

X̃ = [Xr Xi]∼MVN (0,Σ, S̃) (55)

i.e., vec(X̃) ∼ Nr

(
0, S̃ ⊗Σ

)
, where

S̃ =
1

2

[
Sr −Si

Si Sr

]
∈ R

2q×2q. (56)

(ii) For any Ω ∈ R
p×p, E{X̃�

ΩX̃}= tr (Ω�Σ) S̃.
(iii) For any Φ ∈ C

q×q , Φ=Φr + jΦi =ΦH , Φr,
Φi ∈ R

q×q ,

E{Re(XΦ∗XH
)}= E{X̃Φ̃X̃

�)}= tr(Φ̃�
S̃)Σ

(57)

where

Φ̃=

[
Φr −Φi

Φi Φr

]
∈ R

2q×2q • (58)

Proof:
(i) If x= vec(X) ∼ Nc

(
0,S ⊗Σ

)
, then by [38, Sec. 2.3],

x̃= vec(X̃) ∼ Nr

(
0,R

)
(59)

where, with x= xr + jxi, xr,xi ∈ R
pq ,

R==

[
E{xrx

�
r } E{xix

�
r }

E{xrx
�
i } E{xix

�
i }
]
=

[
Rrr Rir

Rri Rii

]
(60)

Rrr =Rii, Rri =−R�
ri =R�

ir. (61)

Now Rrr =
1
2Sr ⊗Σ=Rii and Rri =− 1

2S
�
i ⊗Σ.

Therefore, R= S̃ ⊗Σ, yielding the desired result.
(ii) It follows from Lemma 2(iii) and Lemma 3(i).
(iii) SinceΦ=ΦH , it follows thatΦr =Φ�

r andΦi =−Φ�
i .

We have Re
(
XΦ∗XH

)
= X̃Φ̃X̃

�
. Then the given ex-

pression for E{X̃Φ̃X̃
�)} follows from Lemma 2(ii). �

We now consider a tail bound on Θ̃k defined in (27). First
we need Lemma 4.

Lemma 4: Given S ∈ C
q×q and S̃ ∈ R

2q×2q as in Lemma 3.
Then S̃ � 0 and φmax(S̃) =

1
2φmax(S).

Proof: If λ is a an eigenvalue of S, then for some v =
vr + jvi ∈ C

q , vr,vi ∈ R
q , we have Sv = λv, where λ is real

positive since S is Hermitian, positive-definite. It then follows
that

S̃

[
vr

vi

]
=

1

2
λ

[
vr

vi

]
, S̃

[−vi

vr

]
=

1

2
λ

[−vi

vr

]
. (62)

That is, each eigenvalue of S is also an eigenvalue of 2S̃ with
multiplicity two. This proves the desired result. �

Lemma 5: Under assumptions (A1) and (A2), for any sym-
metric positive-definite Ω̂ ∈ R

p×p such that ‖Ω̂−Ω�‖F ≤ γp,
Ω� = (Σ�)−1, and τ > 2, we have

P
(
max
k,i,j

∣∣[Θ̃∗
k − E{Θ̃∗

k}
]
ij

∣∣≥ C0q

√
ln(M1/τq)

Kp

)
≤ 1

qτ−2
+ 16Mq2e−Kp/2 (63)
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for any q ≥ 1, where C0q is given by (37) and

E{Θ̃∗
k}=

1

p
tr
(
Ω̂Σ�) (S̄�

k)
∗. (64)

Proof: Let Dz(f̃k,�) =Dr,kl + jDi,kl, Dr,kl,Di,kl ∈
R

p×q . Define

Xkl =
[
Dr,kl Di,kl

] ∈ R
p×(2q), (65)

Bkl =X�
klΩ̂Xkl, F k =

1

Kp

mt∑
�=−mt

Bkl. (66)

Since

DH
z (f̃k,�)Ω̂Dz(f̃k,�) =D�

r,klΩ̂Dr,kl +D�
i,klΩ̂Di,kl

+ j
[
D�

r,klΩ̂Di,kl −D�
i,klΩ̂Dr,kl

]
,

(67)

it follows that

max
k,i,j

∣∣[Θ̃∗
k − E{Θ̃∗

k}
]
ij

∣∣≤ 4 max
k,i,j

∣∣[F k − E{F k}
]
ij

∣∣. (68)
Therefore, {

max
k,i,j

∣∣[F k − E{F k}
]
ij

∣∣< δ

4

}
⊆
{
max
k,i,j

∣∣[Θ̃∗
k − E{Θ̃∗

k}
]
ij

∣∣< δ
}
, (69)

implying

P
(
max
k,i,j

∣∣[Θ̃∗
k − E{Θ̃∗

k}
]
ij

∣∣≥ δ
)

≤ P
(
max
k,i,j

∣∣[F k − E{F k}
]
ij

∣∣≥ δ

4

)
. (70)

Since dz(f̃k,�) = vec(Dz(f̃k,�))∼Nc(0, S̄
�
(f̃k)⊗Σ�), it

follows from Lemma 3(i) that

Xkl ∼MVN (0,Σ�, S̃
�
k), (71)

S̃
�
k =

1

2

[
S̄

�
rk −S̄

�
ik

S̄
�
ik S̄

�
rk

]
, S̄

�
(f̃k) = S̄

�
rk + jS̄

�
ik. (72)

By assumption (A4), φmax(Σ
�)≤ βp,max and additionally, by

Lemma 4, φmax(S̃
�
k)≤ βq,max/2 for every k. With a= 4(1 +

γpβp,max)βq,max, invoking Lemma 1 for the sum F k, we have

P
(
max
i,j

∣∣[F k − E{F k}
]
ij

∣∣≥ δ

4

)
≤ 4(2q)2

[
exp
{
− Kp

2

[δ/4
a

− 2√
Kp

]2}
+ e−Kp/2

]
= Pqtb.

(73)

Maximizing over all k = 1, 2, · · · ,M , and using the union
bound, we obtain

P
(
max
k,i,j

∣∣[F k − E{F k}
]
ij

∣∣≥ δ

4

)
≤MPqtb. (74)

For τ > 2, pick δ = 4a(
√

2 ln(16Mqτ )/(Kp) +

2/
√
Kp ), leading to δ = C0q

√
ln(M1/τq)/(Kp) and

(Kp/2)[(δ/(4a))− 2/
√
Kp]2 = ln(16M qτ ). Thus

MPqtb = 16Mq2
[
e− ln(16Mqτ ) + e−Kp/2

]
=

1

qτ−2
+ 16Mq2e−Kp/2. (75)

Thus we have established (63). The lower bound on δ/4 speci-
fied in Lemma 1 is satisfied if (δ/(4a)> 2/

√
Kp, which is true

for any q ≥ 1. Turning to (64), by (66), (71) and Lemma 2(iii),
we have

E{Bkl}= tr(Ω̂Σ�)
1

2

[
S̄

�
rk −S̄

�
ik

S̄
�
ik S̄

�
rk

]
. (76)

By assumption (A1), (66), (67) and (76),

E{DH
z (f̃k,�)Ω̂Dz(f̃k,�)}= 1

2
tr(Ω̂Σ�)

(
2S̄

�
rk − j2S̄

�
ik

)
= tr(Ω̂Σ�)(S̄�

k)
∗. (77)

By (27) and (77), we obtain (64). �
Now we consider a tail bound on Θ̌ defined in (25).
Lemma 6: Under assumptions (A1) and (A2), for any Her-

mitian positive-definite Φ̂k ∈ C
q×q , k = 1, 2, · · · ,M , such that

‖Γ̂− Γ�‖F ≤ γq , Γ
� = [Φ�

1, · · · ,Φ�
M ], Γ̂= [Φ̂1, · · · , Φ̂M ],

and τ > 2, we have

P
(
max
i,j

∣∣[Θ̌− E{Θ̌}]
ij

∣∣≥ C0p

√
ln(p)

KqM

)
≤ 1

pτ−2
+ 4p2e−KqM (78)

for any p≥ 1 where, where C0p is given by (40), and

E{Θ̌}=
[ 1

2Mq

M∑
k=1

tr
(
S̄

�
kΦ̂k + (S̄

�
kΦ̂k)

∗)]Σ�. (79)

Proof: We have

Re
(
Dz(f̃k,�)Φ̂kD

H
z (f̃k,�)

)
=XklΦ̃kX

�
kl, (80)

where Xkl is as in (65) and

Φ̃k =

[
Φ̂rk −Φ̂ik

Φ̂ik Φ̂rk

]
∈ R

2q×2q. (81)

Define

Φ̌=

⎡
⎢⎢⎢⎣
Φ̃1 0 · · · 0
0 Φ̃2 · · · 0
...

...
. . .

...
0 0 · · · Φ̃M

⎤
⎥⎥⎥⎦ ∈ R

(2qM)×(2qM) , (82)

X̌� =
[
X1l X2l · · · XMl

]�
. (83)

Then we can express Θ̌ as

Θ̌=
1

MKq

mt∑
�=−mt

X̌
�
� Φ̌X̌�. (84)

SinceXkl ∼MVN (0,Σ�, S̃
�
k), andXk1l andXk2l are inde-

pendent for k1 	= k2, we have

X̌
�
� ∼MVN (0,Σ�, Š

�
), X̌� ∼MVN (0, Š

�
,Σ�), (85)

where

Š
�
=

⎡
⎢⎢⎢⎢⎣
S̃

�
1 0 · · · 0

0 S̃
�
2 · · · 0

...
...

. . .
...

0 0 · · · S̃
�
M

⎤
⎥⎥⎥⎥⎦ ∈ R

(2qM)×(2qM). (86)
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By assumption (A4), φmax(Σ
�)≤ βp,max and

additionally, by Lemma 4, φmax(Š
�
)≤ βq,max/2. With

b= 8(1 + γqβq,max/2)βp,max, apply Lemma 1 to the sum 1
2Θ̌

to obtain

P
(
max
i,j

∣∣1
2

[
Θ̌− E{Θ̌}]

ij

∣∣≥ δ
)

≤ 4p2
[
exp
{
− 2qMK

2

[δ
b
− 2√

2qMK

]2}
+ e−2qMK/2

]
= Pptb. (87)

For τ > 2, pick δ = b(
√

ln(4pτ )/(KqM) +
√
2/(KqM) ),

leading to (2qMK/2)[(δ/b)−√2/(KqM)]2 = ln(4pτ ).
Thus

Pptb = 4p2
[
e− ln(4pτ ) + e−qMK

]
=

1

pτ−2
+ 4p2e−qMK .

(88)

The lower bound on δ specified in Lemma 1 is satisfied if
(δ/b)>

√
2/(KqM), which is true for any p≥ 1. With our

choice of δ, we have 2δ = C0p

√
ln(p)
KqM , establishing (78). Turn-

ing to (79), by (85) and Lemma 2(iii), we have

E{X̌�
� Φ̌X̌�}= tr

(
Φ̌

�
Š

�)
Σ� = tr

( M∑
k=1

Φ̃
�
k S̃

�
k

)
Σ�. (89)

By (72) and (81),

tr
(
Φ̃

�
k S̃

�
k

)
= tr
(
Φ̂rkS̄

�
rk + Φ̂ikS̄

�
ik

)
=

1

2
tr
(
S̄

�
kΦ̂k + (S̄

�
kΦ̂k)

∗). (90)

Using (84), (89) and (90), we have (79). �
Proof of Theorem 2(i): Let Ω= Ω̄(Γ) +Δ with

Ω, Ω̄(Γ)� 0, and denote Q(Ω) = L1(Ω)− L1(Ω̄(Γ)). For
the rest of the proof, we will denote Ω̄(Γ) by Ω̄. Then Ω̂(Γ)
minimizes Q(Ω), or equivalently, Δ̂= Ω̂(Γ)− Ω̄ minimizes
J(Δ) =Q(Ω̄+Δ). Consider the set

Ψp(Rp) :=
{
Δ : Δ=Δ� , ‖Δ‖F =Rprpn

}
(91)

whereRp = 17C0p/β
2
p,min and rpn is as in (42). Since J(Δ̂)≤

J(0) = 0, if we can show that infΔ{J(Δ) : Δ ∈Ψp(Rp)} >
0, then the minimizer Δ̂ must be inside the sphere defined by
Ψp(Rp), and hence, ‖Δ̂‖F ≤Rprpn. It is shown in [41, (9)]
that ln(|Ω̄+Δ|)− ln(|Ω̄|) = tr(Ω̄−1

Δ)− B̃1 where, with
H(Ω̄,Δ, v) = (Ω̄+ vΔ)−1 ⊗ (Ω̄+ vΔ)−1 and v denoting a
real scalar,

B̃1 := vec(Δ)�
(∫ 1

0

(1− v)H(Ω̄,Δ, v) dv

)
vec(Δ). (92)

We have

J(Δ) =
3∑

i=1

Bi, B1 =
1

p
B̃1, (93)

B2 :=
1

p
tr
(
(Θ̌− Ω̄

−1
)Δ
)
, (94)

B3 := λp

(‖Ω̄−
+Δ−‖1 − ‖Ω̄−‖1

)
. (95)

By (33) and (79), Ω̄
−1

= E{Θ̌}=
(

1
2Mq

∑M
k=1 tr

(
S̄

�
kΦk +

(S̄
�
kΦk)

∗))Σ� (where we replaced Φ̂k with Φk). By

Lemma 6, maxi,j
∣∣[Θ̌− E{Θ̌}]

ij

∣∣≥ C0p

√
ln(p)
KqM w.h.p.

(which refers to 1− 1
pτ−2 − 4p2e−KqM , cf. (78)). Following

[41, p. 502], we have

B̃1 ≥ ‖Δ‖2F /
(
2(‖Ω̄‖+ ‖Δ‖)2). (96)

Turning to E{Θ̌}, we have
tr
(
S̄

�
kΦk + (S̄

�
kΦk)

∗)= 2Re tr
(
S̄

�
k(Φk −Φ�

k +Φ�
k)
)
(97)

= 2Re tr
(
S̄

�
k(Φk −Φ�

k)
)
+ 2tr(Iq) (98)

≥ 2q − 2 ‖S̄�
k‖F ‖Φk −Φ�

k‖F (99)

where we used |tr(BCH)| ≤ ‖B‖F ‖C‖F (Cauchy-Schwarz
inequality). Since ‖S̄�

k‖F ≤√
q ‖S̄�

k‖ ≤
√
q βq,max and∑M

k=1 ‖Φk −Φ�
k‖F ≤√

M‖Γ− Γ�‖F ≤√
M γq , we have

A= 2Re
M∑
k=1

tr
(
S̄

�
kΦk

)≥ 2Mq − 2
√

Mq βq,maxγq (100)

≥ 2Mq − 2Mq βq,maxγq = 1.8Mq, (101)

where we have used the facts that
√
Mq ≤Mq and

βq,maxγq = 0.1, as defined in (38). Therefore, ‖Ω̄−1‖=
‖E{Θ̌}‖ ≥ 0.9 ‖Σ�‖, implying ‖Ω̄‖ ≤ 10/(9 ‖Σ�‖)≤ 10/
(9βp,min)≤ 1.5/βp,min . Using (93), (96), and the facts
‖Ω̄‖ ≤ 1.5/βp,min and ‖Δ‖ ≤ ‖Δ‖F =Rprpn, we obtain
w.h.p.

B1 ≥ ‖Δ‖2F β2
p,min/(8p), (102)

for n >Np, since rpn ≤ βp,min/(34C0p) for n >Np and
Rprpn ≤ 0.5/βp,min.
We now consider B2 given by (94). Define S̄p = Sp ∪

{{i, j} : i= j} so that |S̄p|= sp + p. We have

|B2| ≤B12 +B22, pB12 =
∣∣∣ ∑
{i,j}∈S̄p

[Θ̌− Ω̄
−1

]ijΔji

∣∣∣,
pB22 =

∣∣∣ ∑
{i,j}∈S̄c

p

[Θ̌− Ω̄
−1

]ij Δji

∣∣∣,
where S̄c

p denotes the complement of set S̄p. For an index set
B and a matrix C ∈ R

p×p, we write CB to denote a matrix
in R

p×p such that [CB]ij = Cij if (i, j) ∈B, and [CB]ij =
0 if (i, j) 	∈B. Using

∣∣∑{i,j}∈S̄p
Δij

∣∣≤√
sp + p ‖Δ‖F (by

Cauchy-Schwarz inequality),

pB12 ≤max
i,j

[Θ̌− Ω̄
−1

]ij
∣∣ ∑
{i,j}∈S̄p

Δij

∣∣,
≤ C0p

√
ln(p)/(KqM)

√
sp + p ‖Δ‖F = C0prpn‖Δ‖F .

(103)

We will combine B22 with B3. By (95),

B3 = λp

(‖Ω̄−
+Δ−

Sp
‖1 + ‖Δ−

Sc
p
‖1 − ‖Ω̄−‖1

)
≥ λp

(‖Δ−
Sc
p
‖1 − ‖Δ−

Sp
‖1
)
, (104)
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using the triangle inequality ‖Ω̄−
+Δ−

Sp
‖1 ≥

‖Ω̄−‖1 − ‖Δ−
Sp
‖1 and the fact Ω̄

−
Sc
p
= Ω̄S̄c

p
= 0. Hence,

B2 +B3 ≥−B12 −B22 + λp

(‖Δ−
Sc
p
‖1 − ‖Δ−

Sp
‖1
)
. But

pB22 ≤ C0p

√
ln(p)/(KqM) ‖Δ−

Sc
p
‖1 w.h.p., therefore,

B2 +B3 ≥
(
λp − C0p

√
ln(p)/(p2KqM)

)‖Δ−
Sc
p
‖1

− λp‖Δ−
Sp
‖1 − C0prpn‖Δ‖F /p. (105)

Using the fact that by (43), the first term on right side
of (105) is nonnegative, and ‖Δ−

Sp
‖1 ≤√

sp ‖Δ‖F
by the Cauchy-Schwarz inequality, we obtain
B2 +B3 ≥−(λp

√
sp + rpn/p

)‖Δ‖F . Thus, by (43), (93)
and (102)

J(Δ)≥ ‖Δ‖2F β2
p,min

8p
− (λp

√
sp + C0prpn/p

)‖Δ‖F

≥ ‖Δ‖2F β2
p,min

8p
− 2C0prpn‖Δ‖F

p

=
‖Δ‖2F β2

p,min

8p

(
1− 16

17

)
> 0 (106)

using ‖Δ‖F =Rprpn and Rp = 17C0p/β
2
p,min. This proves

Theorem 2(i). �
Proof of Theorem 2(ii): With Γ as in (17), let

Γ= Γ̄(Ω) +Λ with Φk =ΦH
k � 0, and denote Q(Γ) =

L2(Γ)− L2(Γ̄(Ω)). For the rest of the proof, we will denote
Γ̄(Ω) by Γ̄. Then Γ̂(Ω) minimizes Q(Γ), or equivalently,
Λ̂= Γ̂(Ω)− Γ̄ minimizes J(Λ) =Q(Γ̄+Λ). Note that
Λ= [Λ1, · · · , ΛM ] ∈ C

q×(qM) and Λk =Φk − Φ̄k, k =
1, · · · ,M , where Φ̄k = Φ̄k(Ω) = pΦ�

k/tr(Σ
�Ω) by (34).

Consider the set

Ψq(Rq) :=
{
Λ : Λk =ΛH

k , k = 1, · · ·M, ‖Λ‖F =Rqrqn

}
(107)

where Rq = 17C0q/β
2
q,min and rqn is as in (41). Similar

to the proof of Theorem 2(i), our objective is to show
that infΛ{J(Λ) : Λ ∈Ψq(Rq)} > 0, which would ensure
‖Λ̂‖F ≤Rqrqn w.h.p. It is shown in [9, Lemma 5] that
ln(|Φ̄k +Λk|) − ln(|Φk|) + ln(|Φ̄∗

k +Λ∗
k|)− ln(|Φ∗

k|) =
tr
(
Φ̄

−1
k Λk + (Φ̄

−1
k Λk)

∗)− B̃1k where

B̃1k = gH(Λk)

(∫ 1

0

(1− v)Hk(Φ̄k,Λk, v) dv

)
g(Λk),

(108)

g(Λk) =

[
vec(Λk)
vec(Λ∗

k)

]
, Hk(Φ̄k,Λk, v) =

[
H11k 0

0 H22k

]
,

(109)

H11k = (Φ̄k + vΛk)
−∗ ⊗ (Φ̄k + vΛk)

−1, (110)

H22k = (Φ̄k + vΛk)
−1 ⊗ (Φ̄k + vΛk)

−∗, (111)

and v is a real scalar. Therefore,

J(Λ) =

M∑
k=1

3∑
i=1

Bik +B4, Bik =
1

2Mq
B̃1k, (112)

B2k =
1

2Mq
tr
(
B̃2k + B̃∗

2k

)
, B̃2k = (Θ̃− Φ̄

−1
k )Λk,

(113)

B3k = αλq

(‖Φ̄−
k +Λ−

k ‖1 − ‖Φ̄−
k ‖1
)
, (114)

B4 = (1− α)
√
Mλq

p∑
i�=j

(‖Φ(ij) +Λ(ij)‖ − ‖Φ(ij)‖).
(115)

By [9, Eqn. (B.43)], we have

B1k ≥ 1

2Mq

‖Λk‖2F
(‖Φ̄k‖+ ‖Λk‖)2 . (116)

Now tr(Σ�Ω) = tr(Σ�(Ω−Ω� +Ω�)) = tr(Σ�(Ω−
Ω�)) + p. Since |tr(Σ�(Ω−Ω�))| ≤ ‖Σ�‖F ‖Ω−Ω�‖F ≤√
p βp,maxγp, we have |tr(Σ�Ω)| ≥ p−√

p βp,minγp ≥
p− p βp,minγp = 0.9p since γp = 0.1/βp,min. Therefore,
‖Φ̄k‖ ≤ p‖Φ�

k‖/(0.9p)≤ 1.5/βq,min. Also, ‖Λk‖ ≤
‖Λk‖F ≤ ‖Λ‖F =Rqrqn. Therefore,

M∑
k=1

B1k ≥ 1

2Mq

∑M
k=1 ‖Λk‖2F

(1.5/βq,min +Rqrqn)2

≥ ‖Λ‖2F β2
q,min

8Mq
(117)

w.h.p. for n >Nq , since rqn ≤ βq,min/(34C0q) for n >Nq and
Rqrqn ≤ 0.5/βq,min.
We now bound B2k noting that |B2k| ≤ L1k + L2k where

L1k =
2

2Mq

∣∣∣ ∑
{i,j}∈S̄q

[Θ̃− Φ̄
−1
k ]ij [Λk]ji

∣∣∣,
L2k =

2

2Mq

∣∣∣ ∑
{i,j}∈S̄c

q

[Θ̃− Φ̄
−1
k ]ij [Λk]ji

∣∣∣
where S̄q = Sq ∪ {{i, j} : i= j} so that |S̄q|= sq + q. Us-
ing Lemma 5 and

∣∣∑{i,j}∈S̄q
[Λk]ij

∣∣≤√
sq + q ‖Λk‖F (by

Cauchy-Schwarz inequality), we have

L1k ≤ 1

Mq
C0q

√
ln(M1/τq)

Kp

∣∣∣ ∑
{i,j}∈S̄q

[Λk]ij

∣∣∣
≤ C0q

M3/2q
rqn ‖Λk‖F , (118)

L2k ≤ C0q

Mq

√
ln(M1/τq)

Kp
‖Λ−

kSc
q
‖1. (119)

Alternatively, as in [9, Eqn. (B.56)], with B2 =
∑M

k=1 B2k,

|B2| ≤ 2

2Mq

p∑
i,j=1

M∑
k=1

∣∣[Θ̃− Φ̄
−1
k ]ij

∣∣ ∣∣[Λk]ji
∣∣

≤C0q

Mq

√
ln(M1/τq)

Kp

p∑
i,j=1

M∑
k=1

∣∣[Λk]ij
∣∣. (120)
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Define Λ̌ ∈ R
q×q with [Λ̌]ij = ‖Λ(ij)‖F and as in (23),

Λ(ij) := [[Λ1]ij · · · [ΛM ]ij ]
� ∈ C

M . Using
∑M

k=1

∣∣[Λk]ij
∣∣≤√

M ‖Λ(ij)‖F , we have

|B2| ≤ C0q√
M q

√
ln(M1/τq)

Kp
‖Λ̌‖1. (121)

Mimicking [9, Eqns. (B.56)-(B.58)], we have
B3k ≥ αλq(‖Λ−

kSc
q
‖1 − ‖Λ−

kSq
‖1) and B4 ≥ (1−

α)
√
M λq(‖Λ̌−

kSc
q
‖1 − ‖Λ̌−

kSq
‖1). With B3 =

∑M
k=1 B3k

and using (118) and (119), similar to [9, Eqns. (B.60)], we
have

αB2 +B3 ≥−α|B2|+B3

≥−αλq

M∑
k=1

‖Λ−
kSq

‖1 − α
C0q

M3/2q
rqn

M∑
k=1

‖Λk‖F (122)

where we also used the first inequality in (45). Using
‖Λ−

kSq
‖1 ≤√

sq ‖Λk‖F ,
∑M

k=1 ‖Λk‖F ≤√
M ‖Λ‖F and the

second inequality in (45), we can simplify (122) as

αB2 +B3 ≥−2α‖Λ‖F C0q

Mq
rqn. (123)

In a similar manner (see also [9, Eqns. (B.61)]) using (121), we
have

(1− α)B2 +B4 ≥−2(1− α)‖Λ‖F C0q

Mq
rqn (124)

under the upperbound on λqn specified in (45). Thus, by (112),
(117), (123) and (124), we obtain

J(Λ)≥ ‖Λ‖2F β2
q,min

8Mq
− 2C0qrqn‖Λ‖F

Mq

=
‖Λ‖2F β2

q,min

8Mq

(
1− 16

17

)
> 0 (125)

using ‖Λ‖F =Rqrqn and Rq = 17C0q/β
2
q,min. This proves

Theorem 2(ii). �

APPENDIX C
PROOF OF THEOREM 3

Proof of Theorem 3(i): Since ‖Ω�‖F = 1, we have
Ω̄(Γ)/‖Ω̄(Γ)‖F =Ω�. We have

‖Ω̂−Ω�‖F =
∥∥∥Ω̂(Γ)/‖Ω̂(Γ)‖F − Ω̄(Γ)/‖Ω̄(Γ)‖F

∥∥∥
F

=
∥∥∥ Ω̂(Γ)

‖Ω̂(Γ)‖F
− Ω̄(Γ)

‖Ω̂(Γ)‖F
+

Ω̄(Γ)

‖Ω̂(Γ)‖F
− Ω̄(Γ)

‖Ω̄(Γ)‖F
∥∥∥
F

≤ ‖Ω̂(Γ)− Ω̄(Γ)‖F
‖Ω̂(Γ)‖F

+ ‖Ω̄(Γ)‖F
∣∣∣ 1

‖Ω̂(Γ)‖F
− 1

‖Ω̄(Γ)‖F
∣∣∣

≤ 2

‖Ω̂(Γ)‖F
‖Ω̂(Γ)− Ω̄(Γ)‖F (126)

using
∣∣‖Ω̄(Γ)‖F − ‖Ω̂(Γ)‖F

∣∣≤ ‖Ω̂(Γ)− Ω̄(Γ)‖F (by
triangle inequality). Now ‖Ω̂(Γ)‖F = ‖Ω̂(Γ)− Ω̄(Γ) +
Ω̄(Γ)‖F ≥ ‖Ω̄(Γ)‖F − ‖Ω̂(Γ)− Ω̄(Γ)‖F . For n >N2p,

we have ‖Ω̂(Γ)− Ω̄(Γ)‖F ≤ 0.5‖Ω̄(Γ)‖F , and therefore,
‖Ω̂(Γ)‖F ≥ 0.5‖Ω̄(Γ)‖F . Hence,

‖Ω̂−Ω�‖F ≤ 4 ‖Ω̂(Γ)− Ω̄(Γ)‖F /‖Ω̄(Γ)‖F . (127)

We now characterize ‖Ω̄(Γ)‖F . We have

A=
∣∣ M∑
k=1

(
tr(S̄

�
kΦk) + tr(S̄

�
kΦk)

∗)∣∣≤ 2

M∑
k=1

∣∣tr(S̄�
kΦk)

∣∣
≤ 2

M∑
k=1

‖S̄�
k‖F ‖Φk‖F ≤ 2

√
q βq,max

M∑
k=1

‖Φk‖F .

Since
∑M

k=1 ‖Φk‖F ≤∑M
k=1 ‖Φk −Φ�

k‖F +∑M
k=1 ‖Φ�

k‖F ≤√
M γq +

√
qM/βq,min, we have A≤

0.2
√
qM + 2qMβq,max/βq,min ≤ 2qM(1 + βq,max/βq,min).

By (33) and the fact ‖Ω�‖F = 1, we infer ‖Ω̄(Γ)‖F ≥
βq,min/(βq,max + βq,min) = 1/γr, which combined with (127)
and (44) yields (47). �

Proof of Theorem 3(ii): For n >N3p, Ω̂ ∈ B(Ω�) (cf.
Theorem 3(i)), and C2prpn ≤ (p/2) w.h.p. We have

‖Γ̂(Ω̂)− Γ�‖F ≤ ‖Γ̂(Ω̂)− Γ̄(Ω̂)‖F + ‖Γ̄(Ω̂)− Γ�‖F
where Theorem 2(ii) applies to ‖Γ̂(Ω̂)− Γ̄(Ω̂)‖F . By (34),

Γ̄(Ω̂)− Γ� =
( p

tr(Σ�Ω̂)
− 1
)
Γ�. (128)

As in the proof of Theorem 2(ii) (following (116)), we have
tr(Σ�Ω̂) = tr(Σ�(Ω̂−Ω� +Ω�)) = tr(Σ�(Ω̂−Ω�)) + p
and |tr(Σ�(Ω̂−Ω�))| ≤ ‖Σ�‖F ‖Ω̂−Ω�‖F ≤ C2prpn
(using (47)). Therefore, p− C2prpn ≤ tr(Σ�Ω̂)≤ p+ C2prpn
and |p− tr(Σ�Ω̂)| ≤ C2prpn. Since 0<C2prpn ≤ (p/2)
w.h.p., |tr(Σ�Ω̂)|−1 ≤ 2/p. Thus we have ‖Γ̄(Ω̂)− Γ�‖F ≤
C2qrpn, which yields (48). The given probability bound is the
result of the bounds in Theorem 2 (both (44) and (46) must
hold) and an application of the union bound. �
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