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Abstract—Rapid federated bilevel optimization (FBO) devel-
opments have attracted much attention in various emerging ma-
chine learning and communication applications. Existing work on
FBO often assumes that clients participate in the learning process
with some particular pattern (such as balanced participation),
and/or in a synchronous manner, and/or with homogeneous local
iteration numbers, which might be hard to hold in practice. This
paper proposes a novel Anarchic Federated Bilevel Optimization
(AFBO) algorithm, which allows clients to 1) participate in any
inner or outer rounds; 2) participate asynchronously; and 3)
participate with any number of local iterations. The AFBO
algorithm enables clients to participate in FBO training flexibly.
We provide a theoretical analysis of the learning loss of AFBO
for both cases of non-convex and strongly convex loss functions.
The convergence results of the AFBO algorithm match that of the
existing benchmarks. Numerical studies are conducted to verify
the effectiveness of AFBO.

Index Terms—bilevel optimization, federated learning, asyn-
chronous, partial participation.

I. INTRODUCTION

Bilevel Optimization (BO) involves two levels of optimiza-
tion tasks, with one optimization problem nested within the
other. The outer optimization problem is often called the
leader’s (upper-level) optimization problem, and the inner
optimization problem is often called the follower’s (lower-
level) optimization problem. This two-level optimization can
be viewed as a constrained optimization problem, where
the lower-level optimization problem can be viewed as the
constraints of the upper-level optimization problem. BO has
been widely used in many important applications, such as
meta-learning, hyper-parameter optimization, model selection,
adversarial networks, game theory, and reinforcement learning.
Recently, some studies have provided non-asymptotic analyses
for BO, such as BSA [1], TTSA [2], ALSET [3] and so on.

Federated Bilevel Optimization (FBO) is to run BO prob-
lems in a federated system. It allows a large number of clients
to perform computations in parallel, rather than in series or
with one client, which can not only save training time but
also keep the data private. [1], [2], [4] proposed methods to
compute the estimated hyper-gradient. After that, FBO has
received much attention [5]–[7]. For example, [8] studied the
federated meta-learning problems, [9] provided a federated
hyperparameter optimization approach, and [10] improved
the fairness of federated learning using a bilevel method. In
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addition, [11] studied the decentralized stochastic bilevel prob-
lem, and [12] proposed an asynchronous distributed bilevel
algorithm.

To fully realize the potential of FBO, several chal-
lenges need to be addressed, such as heterogeneous and/or
time-varying computation and communication capabilities of
clients, and the clients’ partial and/or asynchronous partici-
pation. First of all, clients’ heterogeneous computation and
communication capabilities lead to a large waiting time when
using synchronous algorithms. Furthermore, if the fast clients
(with a large computation rate or small communication time)
run more local iterations, then the training result will converge
to a local optimal instead of a global optimal. In addition,
clients may not be able to participate in each round during the
entire learning process.

This paper provides a novel Anarchic Federated Bilevel
Optimization (AFBO) algorithm to address flexible asyn-
chronous participation, heterogeneous local iteration numbers,
and non-IID data simultaneously in FBO. Specifically, AFBO
imposes minimum control over how clients participate in FBO
by allowing them to 1) participate in any outer or inner
rounds (respectively); 2) participate asynchronously across
outer rounds or inner rounds (respectively); 3) participate
with any numbers of local iterations; 4) participate with
arbitrary dataset distributions. By giving clients maximum
freedom, AFBO enables them to participate flexibly, accom-
modating their heterogeneous and time-varying computation
and communication capabilities. Meanwhile, the asynchronous
communication structure of AFBO can greatly reduce the wall-
clock time, as clients synchronize their local models with the
server using the most recent data stored in the server instead of
waiting for stragglers. Furthermore, due to the two-level struc-
ture of the optimization problem, the double-loop algorithm is
proposed, thus double asynchronous delay is the essential parts
to be analysis, which is much more challenge than previous
asynchronous works. Our contributions are summarized as
follows.

• We propose AFBO, which allows clients to participate
asynchronously in any rounds with heterogeneous local
iteration numbers and dataset distributions. AFBO allows
clients to participate in FBO efficiently and flexibly with
their heterogeneous system parameters and datasets. The
algorithm design of AFBO involves some key techniques,
including using clients’ most recent local gradients, and
adjusting learning rates when the delays of inner loop and
outer loop increase.
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TABLE I
COMPARISON FOR DIFFERENT FBO ALGORITHMS. S REPRESENTS SYNCHRONOUS AND AS REPRESENTS ASYNCHRONOUS.

Related Outer Inner Partial Convergence Data Linear
Work Loop Loop Participation Rate Heterogeneity Speedup
[13] S S × O(ε−1.5n−1) ×

√

[14] S S × O(ε−1.5)
√

×
[6] S S × O(ε−2)

√
×

[5] S S
√

O(ε−2n−1)
√ √

[15] S S
√

O(ε−2n−1)
√ √

[12] AS S
√

O(ε−2) × ×
This paper AS AS

√
O(ε−2n−1)

√ √

• We provide convergence analyses for AFBO with the
settings of strongly convex and non-convex upper-level
objectives respectively. Our results show that the AFBO
algorithm can achieve a convergence rate of O( 1

T ) for the
strongly convex upper-level objective, and a convergence
rate of O(

√
1
T ) as well as a linear convergence speedup

(O(
√

1
mT )) for the non-convex upper-level objective,

which matches that of existing benchmarks. The results
also characterize the impacts of clients’ local iteration
numbers, local model delays, and global model delays
on learning loss.

• We conduct numerical experiments to verify the effec-
tiveness of AFBO. The experimental results demonstrate
the efficiency of the AFBO.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work. In Section III, we present the
system model and algorithm design of AFBO. In Section IV,
we provide the convergence analysis of the AFBO algorithm.
Numerical results and conclusions are provided in Section V
and Section VI, respectively.

II. RELATED WORK

Bilevel Optimization. The BO problem was first introduced
by [16]. Some recent works [17] assumed there is an analytical
solution to the lower-level optimization problem, and then
the BO problem can be reduced to a single-level problem.
However, it is not always possible to find an analytical
solution for lower-level problems. [18] replaced the lower-
level optimization problem with optimal surrogate under some
sufficient conditions (e.g., KKT conditions). Then, the bilevel
problem can be reformulated as a single-level constrained
optimization problem. However, the resulting problem could
be hard to solve since it often involves a large number of
constraints [19]. Then, [1], [2], [4] proposed gradient-based
methods, which compute the hyper-gradient (or the estimation
of hyper-gradient), i.e., ∂F (x,y)

∂x + ∂F (x,y)
∂y

∂y
∂x , and use gradient

descent (GD) or stochastic gradient descent (SGD) methods to
solve the bilevel optimization problems. As far as we know,
most BO papers focus on synchronous communication with
homogeneous local iterations in inner rounds, which is limited
in real-world applications.

Federated Bilevel Optimization. Most existing bilevel op-
timization algorithms focus on centralized settings and re-
quire collecting massive amounts of data from distributed
edge clients. This may give rise to data privacy risks and
communication bottlenecks [20]. In federated bilevel prob-
lems, it is challenging to approximate the hyper-gradient
(i.e., 1

M

∑M
i=1

∂Fi(x,y)
∂y

∂y
∂x ̸= ∂F (x,y)

∂y
∂y
∂x ). [21] proposed au-

tomatic machine learning, which is a powerful tool for ap-
proximating the hyper-gradient. [5] studied data heterogeneity
in federated bilevel problems under a synchronous setting
with one local iteration in the inner loop. [22] provided an
algorithm ShroFBO to reduce communication costs and allow
heterogeneous local computation in the synchronous FBO
system. [14] used momentum-based variance reduced local-
SGD to reach a communication-efficient FBO. [23] proposed
a different FL algorithm based on Local-SVRG to obtain exact
gradient information and achieve lower communication com-
plexity. [24] proposed a new backward updating mechanism
to collaboratively learn the model without privacy leakage
in an asynchronous vertical federated learning system. [25]
provided some low communication complexity algorithms to
solve FBO problems through the variance-reduction technique.
[12] proposed the ADBO algorithm to solve the bilevel opti-
mization problem in an asynchronous distributed manner. [5]
proposed a synchronous partial participation FBO based on the
parallel hyper-gradient estimator. [15] proposed a synchronous
flexible FBO algorithm that has no sub-loops to improve com-
munication efficiency. [26] proposed an efficient estimation
of the hyper-gradient in the distributed setting to achieve
a communication complexity O(ϵ−1), a sample complexity
O(ϵ−1.5) and a linear speed-up. [27] proposed a distributed
BO algorithm to achieve a communication complexity O(ϵ−2).
This paper considers a federated bilevel optimization problem
with partial participation, and heterogeneous local iteration
numbers in an asynchronous federated communication setting-
AFBO, which has several major differences compared to
general BO works. In addition, our paper considers a two-level
optimization problem (e.g., meta-learning), which is different
from the existing FL works (e.g., AFL).
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III. ANARCHIC FEDERATED BILEVEL OPTIMIZATION

A. System Setting and Problem Formulation

A general bilevel optimization in a federated learning sys-
tem is formulated as follows,

min
x∈Rp

Φ(x) := f(x, y∗(x)) :=
1

m

∑
i∈M

fi(x, y
∗(x)) (1a)

s.t. y∗(x) = argminy∈Rqg(x, y) :=
1

m

∑
i∈M

gi(x, y), (1b)

where fi(x, y) = E [fi(x, y; ξi)] and gi(x, y) =
E [gi(x, y; ζi)] are stochastic upper- and lower-level loss func-
tions of client i, respectively. M is the set of clients, and y∗(x)
is the optimal solution of the lower-level problem. The goal of
problem (1) is to minimize the objective function Φ(x) with
respect to (w.r.t.) x, where y∗(x) is obtained by solving the
lower-level minimization problem.

The key step to find the solution of problem (1) is to exactly
estimate the ∇Φ as follows,

∇Φ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x)) (2)[

∇2
yyg(x, y

∗(x))
]−1 ∇yf(x, y

∗(x)),

where ∇2
yyg(x, y) is defined as the Hessian matrix of g w.r.t.

y and ∇2
xyg(x, y) is

∇2
xyg(x, y) :=


∂2

∂x1∂y1
g(x, y) ... ∂2

∂x1∂yq
g(x, y)

...
∂2

∂xp∂y1
g(x, y) ... ∂2

∂xp∂yq
g(x, y)

 .

Since it is hard to find y∗(x) in each step, we usually use
a surrogate to efficiently approximate the hyper-gradient ∇Φ
in (2), denoted as

∇̄Φ(xt) = ∇xf(x
t, yt+1)−∇2

xyg(x
t, yt+1)[

∇2
yyg(x

t, yt+1)
]−1 ∇yf(x

t, yt+1),

where t is the outer loop round index.
Let Hi(x

t, yt+1) be a hyper-gradient estimator
of client i to approximate ∇f(xt, yt+1) and
F t := σ{y0, x0, ..., yt, xt, yt+1} denotes the filtration
that captures all the randomness up to the t-th outer
loop. We denote Hi(x

t, yt+1) := E[Hi(x
t, yt+1)|F t] and

H(xt, yt+1) := E[ 1m
∑

i∈M Hi(x
t−τt

i , yt−ρt
i+1)], where τ ti

(ρti) is the outer (inner) rounds asynchronous delay of client
i in round t, respectively.

B. Algorithm Design of AFBO

The challenges in solving the bilevel problem in problem
1 lie in computing the federated hyper-gradient ∇Φ(x) =
(1/m)

∑m
i=1 ∇fi(x, y

∗(x)), whose explicit form can be ob-
tained as follows via implicit differentiation. To calculate the
above equation, we need to overcome some difficulties in
the federated setting. (i) It is required to approximate the
minimizer y∗(x) of the lower-level problem, which can intro-
duce a bias due to the client drift, especially when there are
heterogenous local iteration numbers and partial participation;

(ii) The computation of a series of global Hessian-vector prod-
ucts lies in a nonlinear manner (i.e., 1

M

∑M
i=1

∂Fi(x,y)
∂y

∂y
∂x ̸=

∂F (x,y)
∂y

∂y
∂x ), which can introduce a large estimation variance;

(iii) The federated hyper-gradient estimation may suffer from
a bias due to both the upper- and lower-level client drifts
including partial participation, asynchronous delay, and un-
balanced computing and/or communication abilities, etc. To
address those challenges, we propose a double-loop scheme
Anarchic Federated Bilevel Optimization (AFBO) algorithm.
We use the following federated hyper-gradient estimation:

Hi(x
t, yt+1) = ∇xfi(x

t, yt+1;ϕt
i)

−

 1

m

m∑
j=1

∇2
xygj(x

t−τt
j , yt−ρt

j+1; ς
t−ρt

j+1

i )


× m

lg,1

U∏
l=1

I − 1

lg,1m

m∑
j=1

∇2
yygj(x

t−τt
j , yt−ρt

j+1; ζ
t−ρt

j+1

i )


×∇yfi(x

t−τt
i , yt−ρt

i+1; ξ
t−τt

i+1
i ).

Algorithm 1 Anarchic Federated Bilevel Optimization
(AFBO)

1: input: full client index set M, initial point (x0, y0) local
computation delays {τ ti | i ∈ M, t ∈ [1, T ]}, inner loop
iterations {Kt| t ∈ [1, T ]}} where Kt = maxi{Kt

i | ∀i ∈
M},the number of local iterations {Et,k

i |∀i ∈ M, t ∈
[0, T − 1]}

2: for Round t = 0 to T − 1 do
3: for k = 0 to Kt − 1 do
4: for Client i ∈ M in parallel do
5: for e = 0 to Et,k

i − 1 do
6: Client i computes Gt,k

i,e = ∇ygi(x
t, yt,ki,e ; ξ

t,k
i,e );

7: end for
8: Client i sends Gt,k

i = 1

Et,k
i

∑Et,k
i −1

e=0 Gt,k
i,e to the

server;
9: Server records the delay of each client, i,e., set

ρki = 1 and store Gt,k
i on the server for updating

clients and set ρki = ρk−1
i + 1 for non-updating

clients;
10: Server computes Gt,k = 1

m

∑
i∈M G

t,k−ρk
i

i ,
yt,k+1 = yt,k − βt,kG

t,k, and broadcasts yt,k+1;
11: end for
12: Client i computes Ht

i = APHE(xt, yt,K
t−1) and

sends Ht
i to the server;

13: end for
14: Server records the delay of each client, i,e., set τ ti = 1

and store Ht
i on the server for updating clients and

τ ti = τ t−1
i + 1 for non-updating clients;

15: Server computes Ht = 1
m

∑
i∈M H

t−τt
i

i , xt+1 = xt −
ηtH

t, and broadcasts xt+1;
16: end for

Note that AFBO chooses U = m as the server keeps the
most recent updates of all clients, while previous works (e.g.,
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FedMBO, FedNest) usually choose U from {0, ..., m − 1}
uniformly at random for synchronous FBO to keep the com-
munication effective. Then we use these updates to make
all clients ”participate” in all rounds and aggregate ∇f(x)
through ∇f(xt) = (1/m)

∑
i∈M Hi(x

t−τt
i , yt−ρt

i+1), where
τ ti is the time delay of client i’s last communication with
the server in round t. By using the most recent updates of
all clients, the asynchronous bias can be eliminated, which
is proved in Theorem 4.1. In addition, AFBO uses aligned
update (i.e., 1

Et,k
i

∑Et,k
i −1

c=0 ∇ygi,c) to correct the bias from
heterogeneous local iteration numbers. In this way, AFBO
has the most flexibility during the FBO training process.
The key difference between AFBO and FedMBO [5] is that
AFBO allows both inner loop and outer loop asynchronous
communication and does not need to sample participated
clients in each round as the server holds the most recent
updates of all clients.

Algorithm 2 Anarchic Parallel Hyper-gradient Estimator
(APHE)

1: Client i receive yt+1 from server;
2: Client i computes di = ∇xfi(x

t, yt+1; ξi)
3: Server computes and broadcasts pi,0, where pi,0 =

m
lg,1

[
1
N

∑m
j=1 ∇yfj(x

t−τt
j , yt−ρt

j+1; θi)
]
;

4: for Client i ∈ M in parallel do
5: for l = 0 to m do
6: G = I− 1

lg,1

[
1
m

∑m
j=1 ∇2

yygj(x
t−τt

j , yt−ρk
j+1; ζi,l)

]
;

7: pi,l = Gpi,l−1;
8: Wi =

1
m

∑m
j=1 ∇2

xygj(x
t−τt

j , yt−ρt
j+1;ϕi);

9: end for
10: end for
11: Return: Ht

i = di −Wi × pi,N .

C. Procedure of AFBO
In this section, we develop AFBO, which is formally

described in Algorithm 1. We first define two types of clients
in round t: 1) updating clients who have completed both
their local computations and communications of their local
models to the server in round t, so that their local models are
used to update the global model in round t; 2) non-updating
clients who do not participate (i.e., do not perform any
local computation or any communication) in round t, or who
participate but have not completed their local computations or
communications of their local models to the server in round
t.

Then we present the full procedure of AFBO. Specifically,
the server receives the update from updating clients, and
retrieves the most recent local models of non-updating clients
from the server’s memory (since they were lastly updated to
the server when the non-updating clients in this round do their
communication in previous rounds) to aggregate the global
model and broadcasts the latest global model to the updating
clients. After clients receive the global model, clients start
their inner rounds of training. For the client i receiving the

global model, she uses the federated hyper-gradient estimation
method to estimate the Hessian inverse matrix. After she
performs Et,k

i local iterations of inner rounds SGD, she

aligns her local updates (i.e., Gt,k
i = 1

Et,k
i

∑Et,k
i −1

e=0 Gt,k
i,e ), and

computes Ht
i using Algorithm 2, then she sends Ht

i to the
server to update global model. Clients and the server repeat
these processes until the global model converges to an ϵ-
optimal global model.

IV. CONVERGENCE ANALYSIS OF AFBO

A. Assumptions

Definition 4.1: A function h : R → R is Lipschitz continu-
ous with constant L, if ∥h(x)− h(y)∥ ≤ L ∥x− y∥ , ∀x, y ∈
R.

Definition 4.2: A function h : R → R is strongly convex
with constant µ, if h(y) − h(x) ≥ ⟨∇h(x), y − x⟩ + µ

2 ||y −
x||2, ∀x, y ∈ R.

Definition 4.3: A solution x is ϵ-accurate stationary point if
E
[
∥∇f(x)∥2

]
≤ ϵ, where x is the output of an algorithm.

Let z = (x, y) ∈ Rp+q denote all parameters. Throughout
this paper, we make the following assumptions on inner/outer
objectives.

Assumption 4.1: (Lipschitz properties) For all i ∈ M: fi(x),
∇fi(z), ∇gi(z), ∇2gi(z) are lf,0, lf,1, lg,0, lg,1, lg,2-Lipshitz
continuous, respectively.

Assumption 4.2: (Strong convexity) For all i ∈ M: gi(x, y)
is µg-strongly convex in y for any fixed x ∈ N q .

Assumption 4.3: (Unbiased estimators) For all i ∈ M:
∇fi(z; ξ), ∇gi(z; ζ), ∇2gi(z; ζ) are unbiased estimators of
∇fi(z), ∇gi(z), ∇2gi(z), respectively.

Assumption 4.4: (Bounded local SGD variances).
For all i ∈ M: there exist constants σ2

f , σ2
g,1,

and σ2
g,2, such that Eξ

[
∥∇fi(z; ξ)−∇fi(z)∥2

]
≤

σ2
f , Eζ

[
∥∇gi(z; ξ)−∇gi(z)∥2

]
≤ σ2

g,1,

Eζ

[∥∥∇2gi(z; ξ)−∇2gi(z)
∥∥2] ≤ σ2

g,2.
Assumption 4.5: (Bounded global variances) There exists a

constant σg , such that E
[
∥∇gi(z)−∇g(z)∥2

]
≤ σ2

g , where
the expectation E is taken over the client index i.

Assumption 4.6: (Bounded maximum delay) There exists a
constant τM and ρM , such that all clients must participate in
training at least every τM round for the outer loop and every
ρM round for the inner loop.

These assumptions are common in the bilevel optimization
literature [1], [19], [28]. Assumption 4.1 requires that the
inner and outer functions are well-behaved. Assumption 4.2
supposes the strong convexity of the inner objective, im-
plying a unique solution to the inner minimization in (1).
Assumption 4.6 is necessary in many asynchronous works,
such as [29], [30].

B. Convergence Analysis

Next, we present a theoretical performance guarantee for
the AFBO algorithm via convergence analysis.
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Theorem 4.1: Suppose Assumption 4.1 to 4.6 hold, and
pick ηt ≤ min{a1, T

2lg,1a2
} and βt,k < a2ηt

T , where a1 =

1

2Lf+4MfLy+
2MfLyx

Lyα

and a2 =
5MfLy

µg
+

αLyxD̂fa1

2µg
. Let

W t := f(xt) +
Mf

Ly
∥yt − y∗(xt)∥2, V t = ∥xt − x∗∥2 +

Lf

µf
∥y∗(xt)− yt∥2 and W ∗ is the optimal point of function

W . Then, the sequence generated by the AFBO algorithm
satisfies:

If {fi(x)}i∈M are µf -strongly convex, then

E[V T ] = (1− ηtµf )
TE[V 0] + C

1− (1− ηtµf )
T−1

ηtµf
,

where C = 2ηt

µf
b2 +

6η2
t

m (D̂f

∑m
i=1 τ

t
i + σ̂f + 4D̂f ) + (2η2t +

LfU1

µf
) D̂m +

4LfU2(σ
2
g+σ2

g,1)

mµfEt

∑Kt−1
k=0 β2

t,k +
LfU3

µf
σ̂f .

If {fi(x)}i∈M are non-convex, then

1

T

T−1∑
t=0

E
[∥∥∇f(xt)

∥∥2]
≤ 2

η̄T

[
E[W 0]− E[W ∗]

]
+ b2

+
8

η̄T

T−1∑
t=0

(
MfU2

Ly
+ ηtM

2
f )(σ

2
g + σ2

g,1)

Kt−1∑
k=0

β2
t,k

+
1

η̄T

T−1∑
t=0

(
3η2tLf

m
+

MfU3σ̂f

Ly
)σ̂f

+
1

η̄T

T−1∑
t=0

(

m∑
i=1

τ ti + 4)
3Lfη

2
t D̂f

m
,

where U2 = 1 + 4MfLyηt +
αLyxD̂

2
fη

2
t

2 , U3 =
L2

yη
2
t

m +
Lyxη

2
t

2αm

for any α > 0, b = κglf,1(1 − 1
κg

)N , η̄ = 1
T

∑T−1
t=0 ηt, τ ti is

the asynchronous delay of the outer loop.
Proof: Due to the space limit, we provide all the proofs in our
technical report [31].

Remark 1: It shows that the convergence error bound for
the strongly convex case consists of two parts: a vanishing
term that decreases and goes to 0 as the number of rounds
T increases, and the non-vanishing (constant) term depending
on the parameters of the problem instance and are indepen-
dent of T . The vanishing term decreases much faster in the
strongly convex case than in the non-convex case. For the
non-vanishing term, all components are controlled by stepsize
(ηt), which means it is unbiased. Note that the convergence
error bound for the non-convex case consists of five parts:
a vanishing term and four non-vanishing (constant) terms.
The first non-vanishing term depends on the Hessian inverse
approximation accuracy. The first non-vanishing term relates
to the total number of participating clients (m), SGD variances
of the lower level (σg,1), and the variance of local and global
gradients (σg). The third non-vanishing term depends on SGD
variances (σ̂f ) and the total number of clients (m). The
last non-vanishing term depends on the upper bound of the
estimation of the overall objective gradient (D̂f ), the average
asynchronous delay ( 1

m

∑m
i=1 τ

t
i ), and the total number of

clients (m). The decay rate of the vanishing term matches
that of the typical SGD methods.

Remark 2: We observe that the first non-vanishing term
involves both the variance of the local and the global gradient
in the lower-level (σg) and the lower-level local gradient
variance (σg,1), and depends on the total number of clients
(m). This error term is due to the variance of stochastic
gradients, and it increases as the SGD variance increases and
decreases as the total number of clients increases. In addition,
the lower non-IID heterogeneity can decrease the error bound
of this term. If we run more inner loops, then the error of the
first term will decrease. It is also highly affected by the stepsize
of the inner loop, which requires us to choose a sufficiently
small learning rate. The second term only depends on the
rounds of Hessian-vector calculation. The third term is related
to the SGD variance of the overall objective (σ̂f ) and depends
on the total number of clients (m). The last term of the non-
vanishing term involves the bound of the SGD variance of
the overall objective (D̂f ), the total number of clients (m),
and the average asynchronous delay ( 1

m

∑m
i=1 τ

t
i ). The smaller

average asynchronous delay decreases the bound of the last
term. It can be found that the upper bound of the convergence
rate is increasing as the average outer loop delay for all
rounds and all clients increases. Although there are 4 non-
vanishing terms, only the last term involves the asynchronous
delay (i.e., 1

η̄T

∑T−1
t=0 (

∑m
i=1 τ

t
i + 4)

3Lfη
2
t D̂f

m ). When it turns
to a synchronous FBO (i.e., τ ti = 1), the convergence bound
becomes 1

η̄T

∑T−1
t=0 (

3(m+4)Lfη
2
t

m )D̂f , which matches previous
works [1], [6]. When the asynchronous delay (τ ti ) increases,
we need to choose a smaller step size to keep a similar
convergence bound. Intuitively, we need to use a smaller step
size to make the delayed gradients affect less global gradients.
To make all the non-vanishing terms small, sufficiently small
learning rates ηt and βt,k, a large number of inner loops,
and a large number of clients should be chosen. Based on
Theorem 4.1, we obtain the following convergence rate for
the proposed AFBO algorithm with a proper choice of the
learning rate.

Corollary 4.1: Let Ktβ2
t ≤ 1

T and N = O(logT ).

For the strongly convex case, picking the stepsize ηt =
√

1
T ,

then it yields

E
[∥∥xt − x∗∥∥2] = O(

1

T
), E

[∥∥y∗(xt)− yt
∥∥2] = O(

1

T
).

For the non-convex case, picking the stepsize ηt =
√

m
T ,

then it yields

1

T

T−1∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ O(
1√
mT

+
1

m
√
mT

+
1

T
).

Remark 3: Corollary 4.1 implies that to achieve an ε-optimal
solution for both the lower-level and upper-level problems
for the convex case, the sample complexity of AFBO is
O(ε−2), which matches the previous results in FedNest [6],
and BA [1]. A synchronous FL algorithm under the convex
setting usually achieves a convergence rate of O( 1

T ) (e.g.,
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FedAvg-non-IID [32]), which matches that of the existing
synchronous algorithms for convex learning.

Remark 4: It has been shown that asynchronous FL algo-
rithms under the non-convex setting can achieve a convergence
rate of O(1/

√
T ) (e.g., AFA-CD [29]). As our asynchronous

algorithm can reach a convergence rate of O(1/
√
T ), it

matches that of the existing asynchronous algorithms. In
addition, the major term in the upper bound O(1/

√
mT ),

which shows it achieves a linear speedup. Compared with
FedNest [6], our complexity has the same dependence on ϵ,
but a better dependence on m due to the linear speedup.

C. Proof Sketch
In this subsection, we highlight the key steps of the proof

towards Theorem 4.1 as well as the differences between our
analysis and the existing results. The challenges of our proof
mainly lie in obtaining an upper bound for the errors of the
asynchronous local gradient and the global gradient. Due to
the space limitation, we defer the proof of the convex case in
the appendix.

To prove Theorem 4.1, we find the difference between two
continuous Lyapunov functions, which is

E[W t+1]− E[W t] = f(xt+1)− f(xt) (3)

+
Mf

Ly
(
∥∥yt+1 − y∗(xt+1)

∥∥2 − ∥∥yt − y∗(xt)
∥∥2).

The difference in (3) consists of two terms: the first term
quantifies the descent of the overall objective function [f(x)];
the second term characterizes the descent of the lower-level
errors [yt − y∗(xt)] and [yt+1 − y∗(xt+1)]. Our proof can be
summarized as the descent of the overall objective function,
and the upper bound of the lower-level problem.

Lemma 4.1: Suppose Assumptions 4.1, 4.2, 4.3, and 4.4
hold. We have

E[f(xt+1)]− E[f(xt)]

≤(Lfη
2
t −

ηt
2
)E

[∥∥H(xt, yt+1)
∥∥2]− ηt

2

∥∥∇f(xt)
∥∥2

+ ηtM
2
fE

[∥∥yt+1 − y∗(xt)
∥∥2]+ ηtb

2

+
3Lfη

2
t

m
(D̂f

m∑
i=1

τ ti + σ̂f + 4D̂f ).

Lemma 4.1 shows that the gradient descent of the over-
all objective function is related to the delay of all clients
(
∑m

i=1 τ
t
i ). It is because we use the most recent updates of all

clients to compensate for the bias of asynchronous communi-
cation. If we use synchronous communication (τ ti = 1), the
above result can match the general synchronous FBO works.

Lemma 4.2: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5
hold. Letting βt ≤ 1

2lg,1
, we have

E
[∥∥yt+1 − y∗(xt)

∥∥2] ≤ 4(σ2
g + σ2

g,1)

Kt−1∑
k=0

β2
t,k

+

Kt−1∏
k=0

(1− βt,kµg)

E
[∥∥yt − y∗(xt)

∥∥2] .

Lemma 4.2 shows that the error of the two consecutive
inner-loop rounds is arbitrarily smaller when we select the
appropriate inner-loop step size.

V. NUMERICAL EXPERIMENTS

In this section, we conduct experiments on hyper-parameter
optimization tasks in the distributed setting to evaluate the per-
formance of the proposed AFBO and validate our theoretical
results. All experiments are implemented in Matlab 2023a on
an ASUS laptop with an Nvidia GeForce GTX GPU. Note
that the current experiments and the results in other related
works are all simulations on a single laptop and simulated for
distributed communication. The linear speedup improvement
can be shown by implementing the model and the algorithms
on a distributed setting with multiple machines.

To prove the efficiency of the proposed AFBO algorithm, we
use a similar setting in [12].

A. Data Hyper-Cleaning Task

Following [19], [33], the proposed AFBO algorithm is com-
pared with ADBO [12] and distributed bilevel optimization
method FedNest [6] on the distributed data hyper-cleaning
task [34] on MNIST datasets. Data hyper-cleaning involves
training a classifier in a contaminated environment where each
training data label is changed to a random class number with
a probability (i.e., the corruption rate). In addition, we further
consider the effect of heterogeneous data distribution on
the training performance. The distributed data hyper-cleaning
problem can be expressed as,

minF (ϕ,ω) =

m∑
i=1

1

|Dval
i |

∑
(xj ,yj)∈Dval

i

L(xT
j ω, yj)

s.t. ω = argmin
ω′

f(ϕ,ω′)

=

m∑
i=1

1

|Dtr
i |

∑
(xj ,yj)∈Dtr

i

σ(ϕj)L(x
T
j ω

′, yj) + ∥ω′∥2

where Dtr
i and Dval

i denote the training and validation datasets
on i-th client, espectively. (xj , yj) denotes the j-th data and
label. σ(.) is the sigmoid function, L is the cross-entropy loss,
and m is the number of clients in the distributed system. In
the MNIST dataset, we set m = 18 and τ = 10. As in [35],
we assume that the communication delay of each client obeys
the heavy-tailed distribution. The proposed AFBO is com-
pared with the state-of-the-art distributed bilevel optimization
method FedNest, ADBO and SDBO (Synchronous Distributed
Bilevel Optimization, i.e., ADBO without asynchronous set-
ting). The test accuracy results of the 4 algorithms with IID
and non-IID datasets are shown in Fig. 1 and Fig. 2. We can
observe that the proposed AFBO is the most efficient algo-
rithm. Since the asynchronous setting is considered in AFBO,
the server can update its variables once it receives updates
from updating clients, It allows multiple local iterations, which
makes full use of clients’ computing resources.
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B. Regularization Coefficient Optimization Task

Following [28], we compare the performance of AFBO
with baseline algorithms FedNest, SDBO, and ADBO on the
regularization coefficient optimization task using Covertype
datasets. The distributed regularization coefficient optimization
problem is defined as,

minF (ϕ,ω) =

m∑
i=1

1

|Dval
i |

∑
(xj ,yj)∈Dval

i

L(xT
j ω, yj)

s.t. ω = argmin
ω′

f(ϕ,ω′)

=

m∑
i=1

1

|Dtr
i |

∑
(xj ,yj)∈Dtr

i

L(xT
j ω

′, yj) +

n∑
j=1

ϕj(ω
′
j)

where ϕ ∈ Rn, ω ∈ Rn and L, respectively denote the
regularization coefficient, model parameter, and logistic loss,
and ω′ = [ω′

1, ..., ω′
n]. In the regularization coefficient

optimization task with the Covertype dataset, we set N = 18
and τ = 10. We also assume that the delay of each client
obeys the heavy-tailed distribution. Firstly, we compare the
performance of the proposed AFBO, ADBO, SDBO, and
FedNest in terms of test accuracy on the Covertype dataset.
The results on the Covertype dataset are shown in Fig. 3, which
shows that AFBO achieves the best performance among all the
schemes. Next, we assume there are at most five stragglers
in the distributed system, and the mean of (communication
+ computation) delay of stragglers is five times the delay of
normal clients. The result is shown in Fig. 4. It is found that the
efficiency of the synchronous distributed algorithms (FedNest
and SDBO) has been significantly affected, while the proposed
AFBO and ADBO suffer slightly from the straggler problem
since they are asynchronous methods and only consider the
updating clients.

C. Convergence under Different Delays

In the previous sections, we assume there are only outer loop
asynchronous delays, it shows that AFBO performs similarly
to the ADBO and AFBO performs better than other algo-
rithms. In this section, we allow there exists both inner loop
and outer loop asynchronous delays. In the MNIST dataset,
we set m = 18, τ = 10, and ρ = 10. In the regularization
coefficient optimization task with the Covertype dataset, we
set N = 18, τ = 10, and ρ = 10. As in [35], we assume
that the communication delay of each client obeys the heavy-
tailed distribution. We first compare AFBO, ADBO, SDBO,
FedNest, and Prometheus [36] algorithms’ performance on the
IID MINIST dataset, then we conduct the experiments on the
non-IID MINIST dataset and the Covertype dataset.

Fig. 5, and Fig. 6 show that AFBO performs best among
all algorithms. In addition, it shows that all algorithms expect
AFBO to suffer an obvious convergence degeneration as there
exists an inner loop asynchronous delay. Among them, syn-
chronous algorithms (e.g., SDBO, FedNest, and Prometheus)
degenerate more than AFBO and ADBO. Moreover, from
Fig. 5, we can find that convergence degeneration is much
more obvious in the non-IID MINIST dataset than in the IID

MINIST dataset. This is because the bias of using the most
recent update of a client is much larger in the non-IID MINIST
dataset case than in the IID MINIST dataset case. Intuitively, a
reusing of past gradients inducts a new bias of SGD, as some
of the SGD gradients use more than others. Finally, Fig. 5
and Fig. 6, show that the convergence degeneration in the
Covertype dataset is slighter than in the MINIST dataset.

D. Comparison with AFL

In this subsection, we compare the performance of AFL [29]
and AFBO. We use AFL and AFBO to perform the data
hyper-cleaning task in IID and non-IID MINIST datasets. We
set m = 18, τ = 10, and ρ = 10 for AFBO algorithm
and set m = 18 and τ = 10 for AFL algorithm. From
Fig 7, and Fig 8, we can see that AFL performs worse in
FBO tasks. This is because AFL does not design a distributed
estimator for the hyper-parameter (∇Φ). The difference be-
tween 1

M

∑M
i=1

∂Fi(x,y)
∂y

∂y
∂x and ∂F (x,y)

∂y
∂y
∂x leads to the low

training accuracy of AFL performing FBO tasks. From the
training loss aspect, it shows that the convergence rates and
speeds of AFBO and AFL are similar. The reason is that both
AFL and AFBO use the most recent gradients stored in the
server memory, and both algorithms can achieve linear speed-
up. Moreover, both AFL and AFBO consider the effect of
the dataset’s non-IID degree, thus Fig 7 and Fig 8 show that
there is little convergence degeneration as the dataset’s non-
IID degree increases.

VI. CONCLUSION
In this paper, we proposed a double-loop scheme Anarchic

Federated Bilevel Optimization (AFBO) algorithm, which en-
ables clients to flexibly participate in federated bilevel opti-
mization training according to their heterogeneous and time-
varying computation and communication capabilities, and also
efficiently by improving utilization of their computation and
communication resources. We provided a convergence analy-
sis, which shows that the performance of AFBO matches that
of the existing benchmarks. We also conducted simulations
using real-world datasets to demonstrate the efficiency of
AFBO.
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Fig. 1. Test accuracy on IID MINIST.
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Fig. 2. Test accuracy on non-IID
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Fig. 3. Test accuracy on Covertype.
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Fig. 4. Test accuracy on Covertype.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Time (s)

0.2

0.4

0.6

0.8

T
e
s
t 
A

c
c
u
ra

c
y

AFBO

ADBO

SDBO

FedNest

Prometheu
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IID MINIST for heterogenous delays.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Time (s)

0.2

0.3

0.4

0.5

0.6

0.7
T

e
s
t 
A

c
c
u
ra

c
y

AFBO

ADBO

SDBO

FedNest

Prometheu

Fig. 6. Test accuracy vs time on
Covertype for heterogenous delays.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Time (s)

0.2

0.4

0.6

0.8

T
e
s
t 
A

c
c
u
ra

c
y

AFBO

AFL
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