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Abstract—To efficiently provide coverage for the machines
and robots in remote areas, satellites and unmanned aerial
vehicles (UAVs) can be utilized. In such scenarios, UAVs need
to integrate different functions to support the control tasks of
robots efficiently, while satellites can serve as backhaul to the
cloud. To improve the overall performance of the closed-loop
control tasks of robots, we jointly optimize the communication
and computing resource allocation with data offloading. Specif-
ically, we explore the linear quadratic regulator (LQR) cost to
measure the control performance and formulate a sum LQR
cost minimization problem. An iterative algorithm is proposed to
solve the optimization problem. Simulation results are provided
to demonstrate the superiority of the proposed scheme.

Index Terms—Closed-loop control, linear quadratic regulator
(LQR), satellite, unmanned aerial vehicle (UAV).

I. INTRODUCTION

The future sixth generation (6G) networks are envisioned
to facilitate the operation of machines and robots for their
tasks [1]. When serving robots in post-disaster or remote
areas where terrestrial infrastructures are unavailable, non-
terrestrial infrastructures, such as satellites and unmanned
aerial vehicles (UAVs), can be utilized [2], [3]. Due to the
limited capabilities of individual robots, extra devices should
be deployed on UAVs to assist in task execution. For example,
sensors are required to obtain environmental information,
computing units are required to process data and formulate
robotic actions, and communication modules are required for
information exchanges. Therefore, UAVs can integrate sensors,
base stations, and mobile edge computing (MEC) servers to
efficiently support robots.

Due to the limited capacity of UAVs, the onboard resources
are usually constrained [4]. Therefore, UAVs may need satel-
lites to offload a portion of data to the cloud for processing.
In such cases, the resource allocation and data offloading
strategies should be meticulously designed to maximize re-
source utilization. In the literature, recent research efforts
have focused on improving the communication performance
by optimizing the resource allocation and data offloading. For
example, Hu et al. investigated a UAV-aided MEC system and

jointly optimized the UAV trajectory, the ratio of offloading
tasks, and the user scheduling to minimize the total delays
[5]. Authors in [6] maximized the energy efficiency of a
space-air-ground integrated network by optimizing the UAV
trajectory and resource allocation. In [7], an MEC-assisted
integrated aerial-ground network was investigated considering
the malicious jamming attacks, where the semantic computa-
tion rate was maximized. The above works are valuable for
the satellite-UAV networks. However, most of these works
focus on the communication performance only, such as latency
or energy efficiency. When serving robots for their tasks,
the communication systems are designed to enable control.
Therefore, the control performance may be more important
than merely optimizing communication performance.

Recently, several works have considered the control per-
formance when designing communication systems. Yang et
al. [8] optimized the power and time allocation to maximize
the ratio of the remaining energy to the linear quadratic
regulator (LQR) cost, where the LQR cost is a measure of
the control performance. Reference [9] maximized the spectral
efficiency of a wireless control system by optimizing the
bandwidth and power allocation, while satisfying the control
convergence rate requirement. These studies have made signifi-
cant advances towards control-oriented communication system
designs. However, the sensing, communication, and computing
components in the system need to be jointly considered, as
they cooperate closely to accomplish tasks. Furthermore, MEC
should be integrated into the system to reduce the computation
delay and enhance the control performance.

Motivated by the above issues, we investigate a satellite-
UAV network that serves multiple robots simultaneously. We
innovatively propose a closed-loop-oriented system design
framework, where we focus on the closed-loop control perfor-
mance and holistically consider the sensing, communication,
computing, and control parameters. We utilize the LQR cost to
evaluate the control performance, and formulate an optimiza-
tion problem to minimize the sum LQR cost by optimizing
the communication and computing resource allocation and
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Fig. 1. Illustration of a closed-loop-control-oriented satellite-UAV network.

the data partition. We propose an iterative algorithm to solve
this optimization problem. Simulation results are provided to
demonstrate the superiority of the proposed scheme over the
traditional communication-oriented schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a satellite-UAV network
serving K robots to perform mission-critical tasks. The UAV is
equipped with a sensor, an MEC server, and a communication
module. Due to the limited computing capability of the UAV,
some sensing data is offloaded to the cloud server through the
satellite. The satellite links provide backhaul to the powerful
cloud center, while the UAV achieves edge capabilities such
as sensing, thereby combining the wide coverage of satellites
with the on-demand deployment capabilities of UAVs.

During the periodic control process, the onboard sensor
monitors the state of the controlled object. Next, the acquired
data is analyzed on the servers to generate control commands.
The communication module then transmits these commands
to robots to guide their actions. The whole process consti-
tutes a closed loop of sensing, communication, computing,
and control components, which is referred to as a sensing-
communication-computing-control (SC3) loop. The system
enables K SC3 loops to simultaneously serve K robots.

As described above, different components in the SC3 loops
cooperate closely to accomplish tasks. Considering the cou-
pling of the components, we propose treating the sensing,
computing, and communication modules on the UAV as a
unified entity. As a center of the task-related information,
this entity can be referred to as an edge information hub
(EIH) [10]. This allows us to comprehensively consider the
influence of the components on the closed-loop performance.
Next, we present models of these components in SC3 loops.

In this paper, we model each robot and its corresponding
object as a linear control system. The discrete-time system
equation of the k-th control system in cycle t is given by [11]

xk,t+1 = Akxk,t +Bkuk,t + vk,t, (1)

where t denotes the cycle index, xk,t ∈ Rnk and uk,t ∈ Rmk

represent the system state and the control input, nk and mk

denote their dimensions, vk,t ∈ Rnk denotes the Gaussian
noise with mean zero and covariance ΣV

k , and Ak and Bk are
nk × nk and nk ×mk parameter matrices, respectively.

We utilize the LQR cost to evaluate the control performance
of the SC3 loop, which is formulated as [11]

lk ≜ lim
N→∞

E

[
1

N

N∑
t=1

(
xT
k,tQkxk,t + uT

k,tRkuk,t

)]
, (2)

where Qk and Rk are semi-positive definite weight matrices.
The term xT

k,tQkxk,t denotes the deviation of the system
from zero state, and the term uT

k,tRkuk,t represents the
control energy consumption. The LQR cost is a comprehensive
measure of the state convergence and energy consumption. A
small LQR cost indicates a good control performance.

The sensing process is also linear, and the observation
equation can be written as

yk,t = Ckxk,t +wk,t, (3)

where yk,t ∈ Rqk is the sensing output with qk denoting
its dimension, Ck ∈ Rqk×nk is the observation matrix, and
wk,t ∈ Rqk is the Gaussian sensing noise with mean zero and
covariance ΣW

k .
After the sensing process, the acquired data is analyzed by

the computing modules to generate control commands. Due
to the limited computing capability of the MEC server, some
of these data is transmitted to the cloud server through the
satellite. We assume that these data can be arbitrarily split into
three parts: the first part is completely processed on the MEC
server, the second part is pre-processed on the MEC server to
extract semantic features and then sent to the cloud for further
processing, and the third part is completely processed on the
cloud. The data sizes of these three parts are denoted as Dk,1,
Dk,2 and Dk,3 in bits. We have

Dk,1 +Dk,2 +Dk,3 = Dk, (4)

where Dk is the size of data in the k-th SC3 loop.
These three parts of data are processed in parallel as

data streams. We next analyze the processing time of each
data stream. The computing capabilities of the MEC server
allocated to the first part and second part of data in SC3 loop
k are denoted as fk,1 and fk,2, respectively. The backhaul rates
from the UAV to the satellite for the second part and third part
of data are denoted as Rk,2 and Rk,3, respectively. We have
the following resource constraints

K∑
k=1

(fk,1 + fk,2) ≤ Fmax, (5)

K∑
k=1

(Rk,2 +Rk,3) ≤ RU2S
max , (6)

where Fmax denotes the computing capability of the MEC
server, and RU2S

max denotes the satellite-backhaul rate constraint.
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The computation time for the first part of data is

T comp
k,1 =

αDk,1

fk,1
, (7)

where α denotes the number of CPU cycles for processing the
first part of data per bit.

Similarly, the time for pre-processing the second part of
data is formulated as

T proc
k,2 =

βDk,2

fk,2
, (8)

where β denotes the number of CPU cycles for pre-processing
the second part of data per bit. We assume that the semantic
compression ratio of the features-extracting process is ρ, i.e.,
ρDk,2-bits features will be sent to the cloud server. The
transmission latency from the UAV to satellite is

T trans
k,2 =

ρDk,2

Rk,2
. (9)

We assume that the downlink transmission latency from the
satellite to the cloud and the computation time on the cloud
server are negligible compared with T trans

k,2 and T proc
k,2 , due to the

typically large downlink transmission data rate and computing
capability of the cloud. In addition, since the output data size is
much smaller than the input data size, the transmission latency
of the output data is also assumed negligible. In this case, the
overall processing time of the second part of data is

T comp
k,2 =

{
0, if Dk,2 = 0,

max
{
T proc
k,2 , T trans

k,2

}
+ 4τ, if Dk,2 > 0,

(10)

where τ is the propagation latency between the ground and the
satellite. Since the pre-processing and transmission processes
are in parallel, we consider the maximum of these times as
the overall latency.

Similarly, the time for processing the third part of data can
be calculated by

T comp
k,3 =


0, if Dk,3 = 0,

Dk,3

Rk,3
+ 4τ, if Dk,3 > 0.

(11)

Based on the above analysis, the overall computation time
is the maximum time for processing the three parts of data as

T comp
k = max

{
T comp
k,1 , T comp

k,2 , T comp
k,3

}
. (12)

After analyzing the data, control commands will be trans-
mitted to the corresponding robots. The commands are trans-
mitted through orthogonal (e.g., in frequency) channels, so we
assume that there is no interference among the links. The data
rate from the UAV to robot k can be calculated as

RU2G
k (pk) = log2

(
1 +

gkpk
σ2

)
, (13)

where pk denotes the transmit power of SC3 loop k, gk
represents the channel power gain, and σ2 denotes the channel
noise power. The channels between the UAV and robots are
assumed to be dominated by line-of-sight (LoS) links, so we

have gk = γ0

d2
k

, where dk denotes the distance between the
UAV and robot k, and γ0 is the reference channel power gain
at a distance of one meter. We have

K∑
k=1

pk ≤ Pmax, (14)

where Pmax represents the transmit power constraint.
Denoting the transmission time for the control commands

as T commu
k , we have

T comp
k + T commu

k ≤ Tk, (15)

where Tk is the time resource reserved for the computing and
communication processes in each cycle of SC3 loop k.

To improve the control performance, we optimize the re-
source allocation and data offloading. Next, we establish the
relationship between the control performance and the com-
munication capability. According to [11], to achieve a certain
LQR cost lk, the average data throughput transmitted through
channel k per cycle must satisfy the following constraint

BT commu
k RU2G

k (pk) ≥ ek (lk) , (16)

where the left side of (16) denotes the information entropy
transmitted per cycle, and

ek (lk) ≜ hk +
nk

2
log2

(
1 +

nk|detNkMk|
1

nk

lk − lmin,k

)
(17)

denotes the minimum entropy to achieve the LQR cost lk,
hk ≜ log2 |detAk| is the intrinsic entropy rate of object
k, lmin,k = tr

(
ΣV

kSk

)
+ tr

(
ΣkA

T
kMkAk

)
denotes the lower

bound of the LQR cost, Nk, Mk and Sk are the solutions to
the matrix equations shown in [11], which are related to the
control parameters, i.e., Ak, Bk, Rk, Qk, ΣV

k , and ΣW
k .

Using (16), we minimize the sum LQR costs by jointly
optimizing the transmit power p = {pk}, the computing
capability f = {fk,1, fk,2}, the satellite transmission rate R =
{Rk,2, Rk,3}, and the data partition D = {Dk,1, Dk,2, Dk,3}.
The optimization problem is formulated as

min
p,f ,R,D

K∑
k=1

lk (18a)

s.t.
K∑

k=1

pk ≤ Pmax, (18b)

Dk,1+Dk,2+Dk,3 = Dk, k = 1, 2, · · · ,K, (18c)
K∑

k=1

(fk,1 + fk,2) ≤ Fmax, (18d)

K∑
k=1

(Rk,2 +Rk,3) ≤ RU2S
max , (18e)

T comp
k + T commu

k ≤ Tk, k = 1, 2, · · · ,K, (18f)

BT commu
k RU2G

k (pk) ≥ ek (lk) , k = 1, 2, · · · ,K.
(18g)

Problem (18) is difficult to solve due to the non-convex and
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non-continuous expression of T comp
k as in (12). Next, we will

recast this problem to a more tractable form and propose an
iterative algorithm to solve it.

III. JOINT RESOURCE ALLOCATION AND DATA
OFFLOADING

In this section, we will solve the optimization problem (18)
by proposing an iterative algorithm based on the successive
convex approximation (SCA) method.

A. Problem Simplification

From (18), we can find that the data partition parameters of
each SC3 loop will be decoupled if the computing capability
allocation and satellite-backhaul rate allocation are given. As
lk is monotonically decreasing with the transmission time
T commu
k , the optimal offloading scheme to minimize the LQR

cost also minimizes the computing time. Therefore, the opti-
mal data partition scheme in SC3 loop k, given the computing
capability allocation and satellite-backhaul rate allocation, can
be obtained by solving the following optimization problem

min
Dk,fk,Rk

max
{
T comp
k,1 , T comp

k,2 , T comp
k,3

}
(19a)

s.t. Dk,1+Dk,2+Dk,3 = Dk, (19b)
fk,1 + fk,2 ≤ fk, (19c)
Rk,2 +Rk,3 ≤ Rk, (19d)

where fk and Rk denote the computing capability and satellite-
backhaul rate allocated to SC3 loop k, respectively, and the
variable vectors to be optimized are Dk = [Dk,1, Dk,2, Dk,3],
fk = [fk,1, fk,2] and Rk = [Rk,2, Rk,3].

Once the problem (19) is solved, the optimal resource
allocation can be obtained via the following problem

min
p,f ′,R′,l

K∑
k=1

lk (20a)

s.t.
K∑

k=1

pk ≤ Pmax, (20b)

K∑
k=1

fk ≤ Fmax, (20c)

K∑
k=1

Rk ≤ RU2S
max , (20d)

T comp,∗
k (fk, Rk) + T commu

k ≤ Tk, k = 1, 2, · · · ,K,
(20e)

BT commu
k RU2G

k (pk)≥ek (lk) , k = 1, 2, · · · ,K,
(20f)

where l = [l1, l2, · · · , lK ], f ′ = {fk} and R′ = {Rk}. The
function T comp,∗

k (fk, Rk) denotes the minimal computation
time of loop k when fk and Rk are given, which is the optimal
value of the objective function of (19).

To solve (20), we give the closed-form expression of
T comp,∗
k (fk, Rk) by solving (19) in the following proposition.

Proposition 1: T comp,∗
k (fk, Rk) is given by the piece-wise

function shown in (21) on the next page.

Proof: If fk ≥ αDk

4τ , we have αDk

fk
< 4τ , indicating that

the time to process all the data locally will be less than the
propagation delay 4τ . In such a case, all the data should be
processed on the MEC, and we have T comp

k = T comp
k,1 = αDk

fk
.

On the contrary, if fk < αDk

4τ , we have

T comp
k,1 = T comp

k,2 = T comp
k,3 , (22)

T proc
k,2 = T trans

k,2 . (23)

Otherwise, we can adjust the data partition or the resource
allocation within SC3 loop k, to keep the overall comput-
ing time non-increasing. In addition, as the latency is non-
increasing with respect to fk,1, fk,2, Rk,1 and Rk,2, we have
fk,1 + fk,2 = fk and Rk,2 +Rk,3 = Rk. Based on the above
equations, we have fk,1 = fk − fk,2, Rk,2 = ρ

β fk,2, and
Rk,3 = Rk − ρ

β fk,2. Substituting these variables into (19b)
and (22), we can formulate T comp

k as

T comp
k =

αβDk − 4βτfk + 4βτfk,2
(α− αρ− β) fk,2 + βfk + αβRk

+ 4τ. (24)

In (24), we formulate T comp
k as a fractional linear function

of fk,2. Therefore, T comp
k is monotonic with respect to fk,2.

If 4βτRk − (α− αρ− β)Dk + 4 (1− ρ) τfk ≥ 0, it can be
proved that T comp

k is increasing with respect to fk,2. In such
case, fk,2 = 0 must hold to minimize T comp

k , and we have

T comp
k =

αDk − 4τfk
fk + αRk

+ 4τ. (25)

Similarly, if 4βτRk − (α− αρ− β)Dk + 4 (1− ρ) τfk ≤
0, fk,2 should be as large as possible. With the constraints
fk,1 ≥ 0 and Rk,3 ≥ 0, we can obtain the optimal value of
fk,2, and calculate the corresponding computing time, which
completes the proof. More detailed proof can be found in our
extended paper [10]. □

B. Iterative Algorithm to solve (20)
Although we recast the original problem (18) to a more

tractable form (20), it is still difficult to solve it as it is a non-
convex optimization problem. In this subsection, we propose
an iterative algorithm to solve (20) based on the SCA method.

First, in order to address the non-convexity of constraint
(20f), we include the communication time {T commu

k } as vari-
ables to be optimized, and rewrite (20) as

min
p,f ′,R′,l,Tcommu

K∑
k=1

lk (26a)

s.t.
K∑

k=1

pk ≤ Pmax, (26b)

K∑
k=1

fk ≤ Fmax, (26c)

K∑
k=1

Rk ≤ RU2S
max , (26d)
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T comp,∗
k (fk, Rk)=



T 1
k (fk, Rk)≜

βDk

βRk+(1−ρ) fk
+4τ, (fk, Rk) ∈ S1 ≜

{
(f,R) | 0 ≤ f ≤ min

{
(α− αρ− β)Dk − 4βτR

4 (1− ρ) τ
,
βR

ρ

}}
T 2
k (fk, Rk)≜

ραDk−4ρτfk+4βRkτ

ρfk + (α− β)Rk
+4τ, (fk, Rk) ∈ S2 ≜

{
(f,R) | βR

ρ
≤ f ≤ (α− αρ− β)Dk − 4βτR

4 (1− ρ) τ
,R ≥ 0

}
T 3
k (fk, Rk)≜

αDk − 4τfk
fk + αRk

+ 4τ, (fk, Rk) ∈ S3 ≜

{
(f,R) | (α− αρ− β)Dk − 4βτR

4 (1− ρ) τ
≤ f ≤ αDk

4τ
, f ≥ 0, R ≥ 0

}
T 4
k (fk, Rk)≜

αDk

fk
, (fk, Rk) ∈ S4 ≜

{
(f,R) | f ≥ αDk

4τ
,R ≥ 0

}
(21)

T
comp,∗
k (fk, Rk|fk0, Rk0) =


max

{
T 1
k (fk, Rk) , T

2

k (fk, Rk|fk0, Rk0)
}
, (fk0, Rk0) ∈ S1 ∪ S2

T
3

k (fk, Rk|fk0, Rk0) , (fk0, Rk0) ∈ S3

T 4
k (fk, Rk) , (fk0, Rk0) ∈ S4

(29)

T comp,∗
k (fk, Rk) + T commu

k ≤ Tk,

k = 1, 2, · · · ,K,
(26e)

BRU2G
k (pk) ≥

ek (lk)

T commu
k

, k = 1, 2, · · · ,K,

(26f)

where Tcommu = {T commu
k }. It can be shown that the func-

tion ek(lk)
T commu
k

is convex with respect to (lk, T
commu
k ). Therefore,

constraint (26f) describes a convex set. Next, we handle the
non-convexity of the function T comp,∗

k (fk, Rk) in (26e).
To solve (26), we propose an iterative algorithm based on

the SCA method. First, we introduce the following proposition
in order to approximate T comp,∗

k (fk, Rk).

Proposition 2: For any x > 0, y > 0, x0 > 0 and y0 > 0,
we have the following inequality

1

xy
≥ 1

x0y0

(
3− x

x0
− y

y0

)
. (27)

The equality holds when x = x0 and y = y0.

Proof: Using the Hessian matrix, it can be shown that 1/xy
is convex with x > 0, y > 0. The inequality in (27) can
be obtained immediately through the first-order condition of
convex functions [12, Section 3.1.3]. □

Substituting x = 1/u, y = au + bv, x0 = 1/u0, and y0 =
au0 + bv0 into (27), we have

u

au+ bv
≥ u0

au0 + bv0

(
3− u0

u
− au+ bv

au0 + bv0

)
, (28)

where a > 0, b > 0, u > 0, and v > 0. Based on
(28), we approximate T comp,∗

k (fk, Rk) by a convex function
T

comp,∗
k (fk, Rk|fk0, Rk0), which is formulated as (29) at the

top of this page. The functions T
2

k (fk, Rk|fk0, Rk0) and
T

3

k (fk0, Rk0) in (29) are two functions that approximate
T 2
k (fk, Rk) and T 3

k (fk, Rk) based on (28), respectively, as
shown in (30) and (32) on the next page.

The following proposition gives the properties of T
comp,∗
k .

Proposition 3: The function T
comp,∗
k (fk, Rk|fk0, Rk0) shown

in (29) is convex, and satisfies the following inequality

T
comp,∗
k (fk, Rk| fk0, Rk0) ≥ T comp,∗

k (fk, Rk) , (34)

where fk0 and Rk0 are non-negative constants, and the
equality holds when fk = fk0, and Rk = Rk0.

Proof: First, as T 1
k , T

2

k, T
3

k and T 4
k are reciprocal functions

of the linear combination of fk and Rk, we can obtain the
convexity of T

comp,∗
k (fk, Rk|fk0, Rk0).

Next, by comparing the values of T i
k (fk, Rk) for i ∈

[1, 2, 3, 4], we can establish the relationship among the four
functions when (fk, Rk) is in different regions as

T 4
k (fk, Rk) > T 3

k (fk, Rk) > T 1
k (fk, Rk) , (fk, Rk) ∈ S1, (35a)

T 4
k (fk, Rk) > T 3

k (fk, Rk) ≥ T 2
k (fk, Rk) , (fk, Rk) ∈ S2, (35b)

T 1
k (fk, Rk) ≥ T 2

k (fk, Rk) ≥ T 3
k (fk, Rk) , (fk, Rk) ∈ S3, (35c)

T 4
k (fk, Rk) ≥ T 3

k (fk, Rk) , (fk, Rk) ∈ S3, (35d)

T 2
k (fk, Rk) ≥ T 3

k (fk, Rk) > T 4
k (fk, Rk) , (fk, Rk) ∈ S4. (35e)

Therefore, if (fk0, Rk0) ∈ S1 ∪ S2, we have

T
comp,∗
k (fk, Rk| fk0, Rk0) (36a)

=max
{
T 1
k (fk, Rk) , T

2

k (fk, Rk|fk0, Rk0)
}

(36b)

≥max
{
T 1
k (fk, Rk) , T

2
k (fk, Rk)

}
(36c)

≥T comp,∗
k (fk, Rk) , (36d)

where (36d) can be obtained from (35) by examining the cases
separately where (fk, Rk) belongs to different regions.

Following a similar procedure, it can be proven that
T

comp,∗
k (fk, Rk| fk0, Rk0) ≥ T comp,∗

k (fk, Rk) when
(fk0, Rk0) ∈ S3 and (fk0, Rk0) ∈ S4.

Finally, since T
2

k (fk0, Rk0|fk0, Rk0) = T 2
k (fk0, Rk0) and

T
3

k (fk0, Rk0|fk0, Rk0) = T 3
k (fk0, Rk0), the equality condi-

tion in Proposition 3 is obtained. □

By approximating T comp,∗
k (fk, Rk) to

T
comp,∗
k (fk, Rk|fk0, Rk0), the approximate optimization
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T
2

k (fk, Rk|fk0, Rk0) ≜
ραDk

ρfk + (α− β)Rk
+ 4

ατ

α− β
−

4ρατ
α−β fk0

ρfk0 + (α− β)Rk0

[
3− fk0

fk
− ρfk + (α− β)Rk

ρfk0 + (α− β)Rk0

]
(30)

≥ ραDk

ρfk + (α− β)Rk
+ 4

ατ

α− β
−

4ρατ
α−β fk

ρfk + (α− β)Rk
= T 2

k (fk, Rk) (31)

T
3

k (fk, Rk|fk0, Rk0) ≜
αDk

fk + αRk
+ 4τ − 4τfk0

fk0 + αRk0

[
3− fk0

fk
− fk + αRk

fk0 + αRk0

]
(32)

≥ αDk

fk + αRk
+ 4τ − 4τfk

fk + αRk
= T 3

k (fk, Rk) (33)

Algorithm 1: Iterative algorithm for solving problem
(20)
Input : System parameters Pmax, Fmax, Rmax,

etc; the convergence tolerance ϵ.
Initialization: Calculate a feasible f ′0 and R′0 based

on (20c) and (20d), and set i = 0
1 repeat
2 Set i = i+ 1;
3 Update pi, f ′i and R′i by solving (37), denote the

value of the objective function as Lt;
4 until Li−1−Li

Li−1 < ϵ;
Output : The optimal resource allocation pi, f ′i,

R′i, and the sum LQR cost Li.

problem of (26) is formulated as

min
p,f ′,R′,l,Tcommu

K∑
k=1

lk (37a)

s.t. T
comp,∗
k

(
fk, Rk|f (i−1)

k , R
(i−1)
k

)
+T commu

k ≤Tk,

k = 1, 2, · · · ,K,
(37b)

(26b) − (26d), (26f), (37c)

where i is the iteration index, and f
(i−1)
k and R

(i−1)
k

denote the solutions in the (i− 1)-th iteration. As
T

comp,∗
k (fk, Rk|fk0, Rk0) is a convex function, problem

(37) is convex, which can be solved efficiently by convex
optimization tools [12].

By solving (37) iteratively, Algorithm 1 is proposed to solve
(20). Denoting the optimal solution to problem (37) in the i-th
iteration as

(
pi, f ′i,R′i, li,Tcommu,i

)
, we have

T
comp,∗
k

(
f
(i−1)
k , R

(i−1)
k |f (i−1)

k , R
(i−1)
k

)
+ T commu

k (38a)

= T comp,∗
k

(
f
(i−1)
k , R

(i−1)
k

)
+ T commu

k (38b)

≤ T
comp,∗
k

(
f
(i−1)
k , R

(i−1)
k |f (i−2)

k , R
(i−2)
k

)
+ T commu

k (38c)

≤ Tk, (38d)

where (38c) follows from (34), and (38d) holds because f ′i−1

and R′i−1 are the optimal solutions to (37) in the (i− 1)-
th iteration and should satisfy the constraint (37b). Therefore,

(
p(i−1), f ′(i−1),R′(i−1), l(i−1),Tcommu,(i−1)

)
is also feasible

to the optimization problem (37) in the i-th iteration, indi-
cating that the objective function is non-increasing during the
iteration. Therefore, Algorithm 1 converges.

Next, we analyze the computational complexity of Algo-
rithm 1. Optimization problem (37) is a convex problem,
which can be solved by interior point method with the
complexity of O

(
K3.5 log (1/ϵ0)

)
, where ϵ0 is the solution

accuracy [13]. Therefore, the computational complexity of the
proposed algorithm is O

(
I1K

3.5 log (1/ϵ0)
)
, where I1 is the

iteration number of Algorithm 1.

IV. SIMULATION RESULTS

In this section, simulation results are provided to evaluate
the proposed joint resource allocation and data offloading
scheme. The number of robots is set as K = 5. The robots
are assumed to be randomly distributed in a circular area with
a radius of 5000 m, where the UAV is at the center of the
circular area with a height of 100 m. We set B = 5 kHz,
τ = 5 ms, β0 = −60 dB, and σ2 = −110 dBm [14]. For
the computing parameters, we set Dk = 300 Mb, ρ = 0.2,
α = 100 CPU cycles/bit, and β = 50 CPU cycles/bit. Unless
otherwise specified, the resource constraints are set as Tk = 70
ms, Fmax = 5 GHz, Pmax = 10 dBW and RU2S

max = 50 Mbps.
For the control parameters, the state matrices Ak are as-

sumed to be 50×50 diagonal matrices with diagonal elements
randomly selected in [−10, 10]. The covariance matrices of the
control system noise and sensing noise are ΣV

k = σ2
V,k × In

and ΣW
k = σ2

W,k × In, with n = 50, σ2
V,k = σ2

V = 0.01, and
σ2

W,k = σ2
W = 0.001. The observation matrices and the LQR

weight matrices are set as Ck = In, Qk = In,Rk = 0.
To evaluate the proposed algorithm, we compare it with the

following benchmark schemes.

• Closed-loop-oriented power allocation: optimizing trans-
mit power allocation to minimize the sum LQR cost as
in [15], where the computing capability and the satellite-
backhaul rate are allocated equally to the loops.

• Communication-oriented scheme: optimizing the com-
puting capability allocation to minimize the sum com-
putation time [16], where the satellite-backhaul rate is
allocated equally to the loops, then the transmit power
allocation is optimized to maximize the data throughput.
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Fig. 2. LQR cost achieved by different schemes, varying with the transmit
power constraint.
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Fig. 3. LQR cost achieved by different schemes, varying with the computing
capability constraint.

Fig. 2 shows the LQR cost achieved by the three schemes
under different transmit power constraints. Note that the
control system with the communication-oriented scheme is
unstable when the power constraint is lower than 12 dBW, so
the LQR cost is infinite. It is seen that the LQR cost decreases
with increased power constraint. This is because more exact
control commands can be transmitted as the transmit power
increases, leading to an improved control performance. In
addition, the proposed scheme achieves the lowest LQR cost
among the three schemes, showing its superiority.

In Fig. 3, we show the LQR cost under different com-
puting capability constraints. We can see that the proposed
scheme achieves lower LQR cost than the benchmark schemes.
Similar to Fig. 2, it is shown that the LQR cost decreases
with increased Fmax, as the time available for communication
increases with the increase of the computing capability.

V. CONCLUSION

In this paper, we investigated a satellite-UAV network serv-
ing multiple robots for control tasks. In order to improve the
overall performance of the tasks, we formulated a sum LQR
cost minimization problem by jointly optimizing resource
allocation and data offloading. We recast the problem and
proposed an iterative algorithm to solve it. Simulation results
demonstrated the superiority of the proposed scheme.
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