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Abstract—In this paper, the problem of vehicle service mode se-
lection (sensing, communication, or both) and vehicle connections
within terahertz (THz) enabled joint sensing and communications
over vehicular networks is studied. The considered network con-
sists of several service provider vehicles (SPVs) that can provide:
1) only sensing service, 2) only communication service, and 3)
both services, sensing service request vehicles, and communication
service request vehicles. Based on the vehicle network topology and
their service accessibility, SPVs strategically select service request
vehicles to provide sensing, communication, or both services. This
problem is formulated as an optimization problem, aiming to
maximize the number of successfully served vehicles by jointly
determining the service mode of each SPV and its associated ve-
hicles. To solve this problem, we propose a dynamic graph neural
network (GNN) model that selects appropriate graph information
aggregation functions according to the vehicle network topology,
thus extracting more vehicle network information compared to
traditional static GNNs that use fixed aggregation functions for
different vehicle network topologies. Using the extracted vehicle
network information, the service mode of each SPV and its served
service request vehicles will be determined. Simulation results
show that the proposed dynamic GNN based scheme can improve
the number of successfully served vehicles by up to 17% compared
to a GNN based algorithm with a fixed neural network model.

I. INTRODUCTION

Since the joint design of wireless sensing and communi-
cations on a single hardware platform can improve spectral
efficiency and reduce hardware complexity, it is considered as
a promising technology to support various vehicular applica-
tions (e.g., autonomous driving and vehicle platooning) [1].
The shortage of wireless spectrum in sub-6 GHz band can
substantially constraint the performance of the joint sensing and
communication services [2], especially for the vehicular appli-
cations where the densely deployed moving vehicles request
frequent joint sensing and communication services. This leads
us to the usage of high frequency band spectrum, especially to
the usage of wider, extra high data rate terahertz (THz) band.
However, the sensing and communication signals transmitted
in THz bands experiences much higher path loss and are
highly vulnerable to blockages [3]. Therefore, deploying THz-
enabled vehicular networks to offer high-reliability sensing
and communication services faces many challenges such as
compensation for severe path loss, reduction of link blockages,
and adaptation to dynamic vehicle network topology.

Recently, several works, such as [4]–[6], have studied the
problems related to the use of radio frequency for both
communications and sensing over vehicular networks. In [4],
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the authors optimized time slot allocations for sensing and
communication services. The work in [5] designed a radar-
assisted beamforming scheme while considering the mobility
of vehicles. In [6], the authors achieved high-efficient commu-
nication and obstacle detection for urban autonomous vehicles
by considering the channel sparsity characteristics of the joint
communication and sensing systems. However, the methods in
[4]–[6] may not be able to capture the dynamics of vehicle
network topologies caused by vehicle movements and dynamic
wireless channels. In fact, vehicle network topology informa-
tion can improve both sensing and communication services
since it includes the connectivity information of all vehicles,
which is crucial for managing the interference between sensing
and communication links. To address this challenge, the works
in [7]–[10] used graph neural networks (GNNs) to extract
topological and geographical location information of dynamic
vehicle networks. However, most of these works [7]–[10]
used a single predefined GNN model for vehicle information
extraction. Hence they did not consider whether the defined
GNN model can process various vehicle network topologies
thus reducing the information extracted by GNNs.

The main contribution of this work is a novel framework that
enables service provider vehicles (SPVs) to efficiently provide
sensing and communication services to service request vehicles
using THz bands. The considered model consists of several
SPVs, communication service request vehicles, and sensing
service request vehicles. SPVs provide sensing, communication,
or both services to service request vehicles. Therefore, the
problem is to determine the service mode (i.e., provide sensing,
communication, or both services) of each SPV and its served
service request vehicles. This problem is formulated as an
optimization problem whose goal is to maximize the total
number of successfully served vehicles. To solve this problem,
we propose a dynamic GNN that selects appropriate graph
information aggregation functions according to the vehicle
network topology, thus extracting more vehicle network in-
formation compared to traditional static GNNs that use fixed
aggregation functions for different vehicle network topology.
Using the extracted vehicle network information, the service
mode of each SPV and its served service request vehicles will
be determined. Simulation results show that the dynamic GNN
scheme can improve the number of successfully served vehicles
by up to 17% compared to a GNN method with a fixed model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a vehicular network that consists of a set M
of M communication service request vehicles, a set N of N
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Fig. 1. Illustration of the considered vehicular network model.

sensing service request vehicles, and a set U of U SPVs. In
this network, each SPV uses the same range of THz bands to
provide: 1) sensing services, 2) communication services, or 3)
both sensing and communication services. As shown in Fig.
1, the wireless links connecting the moving vehicles can be
blocked by buildings, which changes the accessibility of each
SPV at different service request vehicles. Next, to model the
accessibility of the SPVs, we introduce the vehicle blockage
model, communication model, and sensing model.

A. Vehicle Blockage Model
The projection of a building on the ground is modeled

as a quadrilateral. For a given SPV u, the transmission link
between SPV u and communication service request vehicle
m will be blocked when the line segment between SPV u
and communication service request vehicle m intersects with
one of diagonals of the quadrilateral. To have an intersection
of the diagonal and the line segment between SPV u and
communication service request vehicle m, it needs to satisfy i)
SPV u and communication service request vehicle m are on the
different sides of the diagonal, ii) the vertices of the diagonal
are on the different sides of the straight line passing through
SPV u and communication service request vehicle m. Then, we
use a binary variable ρC

um to indicate whether a blockage exists
between SPV u and communication service request vehicle
m: ρC

um = 1 means that the communication link between
SPV u and communication service request vehicle m is LoS;
otherwise, we have ρC

um = 0. Similarly, a binary variable ρS
un

is used to indicate whether a blockage exists between SPV u
and sensing service request vehicle n: ρS

un = 1 means that the
sensing link between SPV u and sensing service request vehicle
n is LoS; otherwise, we have ρS

un = 0.

B. Communication Model
We consider a practical vehicle network where each SPV

may not always provide sensing/communication service, such
that each vehicle has two states: i) active state in which the SPV
can provide services and ii) deactivate state in which the SPV
cannot provide any service. Let ωu be the state of an SPV,
where ωu = 1 indicates that vehicle u can provide sensing,
communication, or both services; otherwise, we have ωu = 0.
The probability of an SPV in the active state is p.

The power transmitted by SPV u and received by communi-
cation service request vehicle m is Sum =

ωuρ
C
umPuA

T
umAR

mu

HF
umHB

um
,

where Pu is the transmit power of SPV u, HF
um is the free

space path gain, HB
um = 1

r(dum) is the molecular absorption
path gain with r (dum) ≈ e−τ(f)dum being the transmittance
of the medium, τ (f) is the overall absorption coefficient of
the medium, f is the operating frequency, and dum is the
distance between SPV u and communication service request
vehicle m. Since the molecular absorption HB

um and free space
path loss HF

um lead to the severe attenuation, higher antenna
gains are required in the THz bands so as to compensate
the severe path loss. The effective THz antenna gain can
be represented as a function of the horizontal and vertical
beamwidths. Let AT

um represent the effective antenna gain of
SPV u transmitting data to communication service request
vehicle m, which can be denoted by AT

um = 4π
(ι+1)Γϱu,ςu

for the main lobe and AT
um = 4πι

(ι+1)(4π−Γϱu,ςu ) for the side
lobes. Similarly, AR

mu represents the effective antenna gain of
communication service request vehicle m served by SPV u,
which can be denoted by AR

mu = 4π
(ι+1)Γϱm,ςm

for the main
lobe and AR

mu = 4πι
(ι+1)(4π−Γϱm,ςm ) for the side lobes. Here,

Γϱu,ςu = 4arcsin
(
tan

(
ϱu

2

)
tan

(
ςu
2

))
, within which ϱu and ςu

represent, respectively, the horizontal and vertical beamwidths
of the antenna of SPV u. ι captures the side lobe power to
main lobe power ration.

The interference of communication service request vehicle
m served by SPV u is

ZC
um (α,β) =

∑
i∈U\{u}

∑
m′∈M

ωiρ
C
im′ρC

imαim′PiA
T
imAR

mi

HB
imHF

im

+
∑

i∈U\{u}

∑
n′∈N

ωiρ
S
in′ρC

imβin′PiA
T
imAR

mi

HB
imHF

im

+
∑
n′∈N

ωuρ
S
un′ρC

umβun′PuA
T
umAR

mu

HB
umHF

um

,

(1)

where α = [α1, · · · ,αM ] is communication service vehicle
connection indicator matrix with αm = [α1m, · · · , αUm], and
β = [β1, · · · ,βN ] is sensing service vehicle connection indi-
cator matrix with βn = [β1n, · · · , βUn]. αim = 1 represents
that SPV i is selected to serve communication service request
vehicle m in the communication mode; otherwise, αim = 0.
Similarly, βin = 1 represents that SPV i is selected to detect
sensing service request vehicle n in the sensing mode; other-
wise, βin = 0. Notice that the first two terms of (1) capture,
respectively, the interference caused by other communication
services, and the interference caused by other sensing services.
The third term is the interference caused by the current SPV
when it simultaneously provides sensing services. Here, we
assume that the transmitter and receiver antenna arrays of an
SPV are appropriately designed and achieve isolation as low
as −70 dB, hence, the interference caused by communication
transmitting antenna to sensing receiving antenna of the same
SPV can be ignored [11].

The signal-to-interference-plus-noise ratio (SINR) of com-
munication service request vehicle m served by SPV u
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is λC
um (α,β) = Sum

ZC
um(α,β)+εum

, where εum = ε0 +∑
i∈U\{u} ωiρ

C
imPiA

T
imAR

mi (1− r (dim)) /HF
im with ε0 being

the Johnson-Nyquist noise power. εum is caused by thermal agi-
tation of electrons and molecular absorption. Therefore, the data
rate of the link between SPV u and the communication service
request vehicle m is EC

um (α,β) = B log2
(
1 + λC

um (α,β)
)

with B being the bandwidth.

C. Sensing Model
The interference of sensing service request vehicle n served

by SPV u is

ZS
un (α,β) =

∑
i∈U\{u}

∑
m′∈M

ωiρ
C
im′ρS

iuαim′PiA
T
iuA

R
ui

HB
iuH

F
iu

+
∑

i∈U\{u}

∑
n′∈N

ωiρ
S
in′ρS

iuβin′PiA
T
iuA

R
ui

HB
iuH

F
iu

+
∑

i∈U\{u}

∑
m′∈M

ωiρ
C
im′ρS

inαim′PiA
T
inA

R
nuκinc

2

(4π)3f2d2ind
2
unH

B
inH

B
un

+
∑

i∈U\{u}

∑
n′∈N

ωiρ
S
in′ρS

inβin′PiA
T
inA

R
nuκinc

2

(4π)3f2d2ind
2
unH

B
inH

B
un

,

(2)

where κin is the radar cross section when SPV i provides
sensing service for vehicle n. In (2), the first term indicates the
interference caused by other SPVs providing communication
services with line-of-sight transmission links. The second term
indicates the interference caused by other SPVs providing
sensing services with line-of-sight transmission links. The third
term indicates the interference caused by other SPVs providing
communication services via scattering paths. The last term
indicates the interference caused by other SPVs providing
sensing services via scattering paths. From (1) and (2), we
see that a sensing service request vehicle is interfered by the
scattering path interference caused by other service request
vehicles. However, the scattering path interference will not
interfere communication service request vehicles since sensing
services are more sensitive to scattered sensing signals [4].
Given (2), the SINR of sensing service request vehicle n served
by SPV u is λS

un (α,β) =
PuA

T
unA

R
nu(H

S
un)

−1(HB
un)

−1

ZS
un(α,β)+εun

with

HS
un =

(4π)3f2d4
un

κunc2
being the spreading loss.

D. Successfully Served Vehicles
A successfully served vehicle must have its communica-

tion or sensing service requirement satisfied. Let Qm be the
size of the information requested by communication service
request vehicle m, the transmission delay between commu-
nication service request vehicle m and its associated SPV
is Qm∑

u∈U αumEC
um(α,β)

. Then, the set of successfully served
communication service request vehicles is given by

B = {m| Qm∑
u∈U αumEC

um (α,β)
≤ Dmax,∀m ∈M}, (3)

where Dmax is the maximum tolerable delay of the communi-
cation service. The set of successfully served sensing service
request vehicles is

O = {n|
∑
u∈U

βunλ
S
un (α,β) ≥ λmin,∀n ∈ N}, (4)

where λmin is the minimum SINR threshold required by the
sensing service.

E. Problem Formulation
The goal is to optimize the service mode (i.e., providing

sensing, communication, or both services) of each SPV and
its associated vehicles to maximize the number of successfully
served vehicles. This optimization problem is formulated as

max
α,β

|B|+ |O| (5)

s.t. (3)− (4), (5a)∑
u∈U

αum = 1, αum ∈ {0, 1},∀m ∈M, (5b)∑
u∈U

βun = 1, βun ∈ {0, 1},∀n ∈ N , (5c)

where |B| is the number of successfully served communication
service request vehicles, and |O| is the number of successfully
served sensing service request vehicles. In (5), constraint (5b)
requires a communication service request vehicle to be served
by only one SPV. Constraint (5c) requires a sensing service
request vehicle to be served by only one SPV.

Problem (5) is hard to solve due to the following reasons.
Traditional optimization methods require accurate channel in-
formation to obtain the free space path gain HF

um and molecular
absorption path gain HB

um to solve problem (5). However, only
periodically reported channel information can be obtained in
highly dynamic THz-enabled vehicular networks, which leads
to low efficiency in service mode selection and service vehicle
connection. To solve this problem, we use a dynamic GNN
model [12] to extract each vehicle’s graph information related
to its location, connection, and interference, rather than simply
using the inaccurate channel information.

III. DYNAMIC GNN BASED SOLUTION

In this section, a dynamic GNN based algorithm is introduced
to solve problem (5). We first introduce graph representation
of the considered vehicular networks. Then, we present the
components of the GNN based algorithm and the training
process. Finally, we provide the entire procedure of using
the proposed algorithm to select vehicle service mode and
determine the service request vehicle connection.

A. Graph Representation for Vehicular Networks
We first introduce the representation of the considered vehic-

ular network using a graph. Each vehicle is modeled as a node
while each connected link (e.g., sensing link, communication
link, and interference link) between two vehicles is modeled as
an edge. Let G = (V, E) represent a graph with node features
f ∈ RP×|V|, where V and E represent the node and edge
sets, respectively. The node set V = U ∪ M ∪ N contains
three types of vehicles, |V| = U +M +N is the number of
vehicles, and P = U + 2(M + N) is the dimension of node
features. Specifically, the node features can be defined by
f = [f1, · · · ,fV ] with fv = [ev1, . . . , evM ′ , gv1, . . . , gvV ]

⊤

being the node feature for vehicle v ∈ V , where evm′ is
the number of SPVs within the LoS link between vehicle v
and vehicle m′, gvv′ =

(
HB

vv′HF
vv′

)−1
is the free space and

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 18:22:17 UTC from IEEE Xplore.  Restrictions apply. 



Neighbor Sampling

First Hop Neighbors

Second Hop Neighbors

Third Hop Neighbors

u

v1 v2

v3

v6 v7

v5

v8 v9

v4

Fig. 2. Neighbor sampling process of vehicle u.

molecular absorption path gain between vehicle v and v′, and
M′ =M∪N is the set of service request vehicles. Moreover,
we assume that there is an edge between SPV u and service
request vehicle m′ when ωuρum′ = 1, which guarantees that
the SPV u is working in an active state and the connected link
between SPV u and service request vehicle m′ is not blocked.
Since the locations and working state of vehicles vary over
time, the edge set E will change dynamically in different vehicle
topologies.

For each vehicle u, we define three types of vehicles as
follows: 1) the first hop vehicles which can directly connect
to vehicle u are represetned by S1 (u) = {v ∈ V| (u, v) ∈ E}
with |S1(u)| being the number of vehicles in set S1 (u), 2) the
second hop vehicles which can connect to vehicle u via the first
hop vehicles are represented by S2 (u) = {S1 (v) |v ∈ S1 (u)}
with |S2(u)| being the number of vehicles in S2 (u), and 3) the
third hop vehicles which can connect to vehicle u via the second
hop vehicles are represented by S3 (u) = {S1 (v) |v ∈ S2 (u)}
with |S3(u)| being the number of vehicles in S3 (u). For
the example shown in Fig. 2, we have S1 (u) = {v1, v2},
S2 (u) = {v3, v4, v5}, and S3 (u) = {v6, v7, v8, v9}.

B. Components of the GNN based Algorithm

As shown in Fig. 3, the components of the proposed GNN
based algorithm are [12]: 1) input layer, 2) hidden layer hidden
layer I, 3) hidden layer II, 4) hidden layer III, 5) hidden layer IV,
6) hidden layer V-VII, and 7) output layer. These components
are specified as follows:

• Input: The input of the proposed GNN model is connected
to two paralleled fully connected layers (FCLs). The input
of the first fully connected layer is h0

u = fu ∈ RP×1

and the input of the second fully connected layer is h1
L ∈

RP×1, where

h1
L =

1

|S1 (u) |
∑

v′∈S1(u)

h0
v′ , (6)

with h0
v′ = fv′ ∈ RP×1.

• Hidden Layer I: This layer consists of two paralleled FCLs
and it is used to extract the graph information of first hop
vehicles of each vehicle u. The output of this layer is

h1
u = σ

([
w1h

0
u∥w2h

1
L

])
, (7)

where σ (·) is the rectified linear unit function, ·∥· being
the vector concatenation, w1 ∈ R(Ω0/2)×P and w2 ∈
R(Ω0/2)×P are the weight parameters of the two FCLs,
and Ω0 is the dimension of graph information vector. We
define (6) and (7) as a node aggregation function that is
used to extract the graph information of vehicle u. We can
also consider other types of node aggregation functions
as shown in Table XI of [12]. Since (6) and (7) extract
the graph information of only vehicle u and we need the
graph information h1

v′ of all sampled first hop vehicles to
optimize mode selection and vehicle connection, we need
to implement (6) and (7) for |S1(u)| times.

• Hidden Layer II: This layer consists of two paralleled
FCLs and it is used to extract the graph information of
second hop vehicles of each vehicle u. The input of the
first fully connected layer is h1

u ∈ RΩ0×1 and the input of
the second fully connected layer is h2

L ∈ RΩ0×1, where

h2
L =

1

|S1 (u) |
∑

v′∈S1(u)

h1
v′ . (8)

Then, the output of this layer is

h2
u = σ

([
w3h

1
u∥w4h

2
L

])
, (9)

where h2
u ∈ RΩ0×1, w3 ∈ R(Ω0/2)×Ω0 and w4 ∈

R(Ω0/2)×Ω0 are the weight parameters of the two FCLs,
respectively. Similarly, (8) and (9) are also a node aggrega-
tion function that is used to extract the graph information
of vehicle u and its second hop neighbors. To obtain the
the graph information h2

v′ of all sampled vehicles in S1 (u)
to optimize mode selection and vehicle connection, we
need to implement (8) and (9) for |S1(u)| times.

• Hidden Layer III: This layer consists of two paralleled
FCLs and it is used to extract the graph information of
third hop vehicles of each vehicle u. The input of the first
fully connected layer is h2

u ∈ RΩ0×1 and the input of the
second fully connected layer is h3

L ∈ RΩ0×1, where

h3
L =

1

|S1 (u) |
∑

v′∈S1(u)

h2
v′ . (10)

Then, the output of this layer is

h3
u = σ

([
w5h

2
u∥w6h

3
L

])
, (11)

where h3
u ∈ RΩ0×1, w5 ∈ R(Ω0/2)×Ω0 and w6 ∈

R(Ω0/2)×Ω0 are the weight parameters of the two FCLs,
respectively. Similarly, (10) and (11) are also a node
aggregation function that is used to extract the graph
information of vehicle u and its third hop neighbors.

• Hidden Layer IV: This layer consists of three paralleled
FCLs and it is used to combine the output of hidden layers
I-III (i.e., h1

u, h2
u, and h3

u). The output of the this layer
is the graph information vector h4

u ∈ Rλ0×1 of vehicle u,
which can be expressed as

h4
u = σ

([
w7h

1
u∥w8h

2
u∥w9h

3
u

])
, (12)

where w7 ∈ R(Ω0/3)×Ω0 , w8 ∈ R(Ω0/3)×Ω0 , and w9 ∈
R(Ω0/3)×Ω0 are the weight parameters for the output of
hidden layers I-III , respectively. Here, the output h4

u can
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Fig. 3. Structure of the proposed GNN model.

be considered as the final graph information of vehicle u,
since it includes the graph information of sampled first
hop, second hop, and third hop vehicles. We define (12)
as a layer aggregation function that is used to combine the
output of the node aggregation functions in (7), (9), and
(11) for vehicle u. We can also consider other types of
layer aggregation functions as shown in Table I of [12].

• Hidden Layer V-VII: This layer consists of three cascaded
FCLs. It is used to find the relationship between the graph
information vector h4

u and the probability distribution of
vehicle u providing service for each service request vehicle
in the corresponding sensing or communication mode.

• Output: The output is the probability distribution of ve-
hicle u serving M + N service request vehicles in the
corresponding sensing or communication mode and it is
represneted by yu =

[
y1u, · · · , yM+N+1

u

]
. It includes the

case that SPV u does not serve any service request vehi-
cles, and hence, we have yu ∈ R(M+N+1)×1. Based on the
probability distribution yu of each vehicle u, the service
mode selection and service request vehicle connection of
each SPV is determined by selecting the vehicle with the
highest probability. Here, the designed GNN model can
be applied for a network in which M and N are constant.
If M or N in the network changes, we only need to train
hidden layers V-VII. This is because hidden layers I-IV
are used a fixed number of vehicles to extract the feature
of each vehicle.

C. Training the GNN based Algorithm

Next, we first introduce the process of finding appropriate
aggregation functions for the proposed GNN based method.
Then, we define the loss function and explain the entire training
procedure. To find the appropriate node and layer aggregation
functions for different vehicle topologies, we define a trainable
vector θ ∈ R(KA1+A2)×1, which represents the probabilities of
selecting each node aggregation function and layer aggregation
function, where A1 is the number of the node aggregation
functions that the GNN can select, A2 is the number of the
layer aggregation functions that the GNN can select, and K is
the number of node aggregation functions used in the proposed
GNN based method. From the definition of θ, it is actually
used to select K node aggregation functions and one layer
aggregation function. We then use binary cross entropy (BCE)

to capture the difference between the predicted and actual
service request vehicle connection results, which is

J (w,θ) =

M+N+1∑
i=1

−ziu log δ
(
yiu (w,θ)

)
−
(
1− ziu

)
log

(
1− δ

(
yiu (w,θ)

))
,

(13)

where δ (·) is the sigmoid function, ziu is the label of vehicle
u in class i which indicates that vehicle u is selected to
serve service request vehicle i, and w is a vector of all GNN
parameters.

Given (13), we then show how to train the proposed GNN
model. The proposed GNN method is trained with an iterative
method that consists of two steps: 1) Joint optimization of θ
and w, and 2) optimization of w given θ. Specifically, the two
steps are elaborated as follows:

1) Joint optimization of θ and w: Let Jtra (w,θ) and
Jval (w,θ) denote the training and the validation loss, respec-
tively. Then, the goal of optimizing θ and w is expressed as

min
θ

Jval (w
∗(θ),θ) (14)

s.t. w∗(θ) = argminw Jtra(w,θ). (14a)

Due to the difficulty in finding a closed-form solution for
(14a), we solve (14) and (14a) in an iterative manner. Firstly,
we explain the process of optimizing θ based on validation
data. To reduce the computational overhead for obtaining
∇θJval (w

∗(θ),θ) in (14), we use a gradient based approx-
imation method [12] to approximate ∇θJval (w

∗(θ),θ) by
adapting w using only a single training step, which is

∇θJval (w
∗(θ),θ) ≈ ∇θJval (w − ξ∇wJtra(w,θ),θ) , (15)

where ξ is the learning rate. Then, θ and GNN parameters w
are updated by using a standard gradient descent method

By iteratively updating θ and w until convergence, problem
(14) can be solved and the well-trained θ∗ can be obtained.

2) Optimization of w given θ∗: Based on θ∗, the node
aggregation functions and layer aggregation function for the
GNN are determined. Then, the GNN parameters w is tuned
on the validation data to further improve the performance of
the proposed method. The update process of w is [13]

w ← w − µ∇wJval(w,θ∗), (16)

where µ is the learning rate. By updating (16) until conver-
gence, the well-trained w∗ can be obtained. Finally, based on
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Fig. 4. The number of successfully served vehicles as the vehicle topology
varies (Ω0 = 64, |S1(u)| = |S2(u)| = |S3(u)| = 10, p = 0.9, U = 10,
M = N = 2, and Q = 20MB).
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Fig. 5. The number of successfully served vehicles as the number of vehicles
varies (U = 10, M and N vary from 1 to 5).

the well-trained w∗, the optimal probability distribution yu

of determining the service mode selection and service vehicle
connection for each SPV can be obtained.

IV. SIMULATION RESULTS AND ANALYSIS

In our simulations, we consider an urban region with the
diameter of 100 m. The requirements of sensing and commu-
nication services are set as λmin = 3dB and Dmax = 3ms,
respectively. Other parameters refer to Table II in [3]. The
vehicle network topologies are obtained from a Taxi dataset
of Shanghai [14]. For comparison, we consider a baseline that
uses a standard GNN model with a fixed neural network model.

Fig. 4 shows how the number of successfully served vehicles
changes as the vehicle topology varies. From Fig. 4, we see
that the proposed scheme improves the number of successfully
served vehicles by up to 17% compared to baseline. This is
because the proposed scheme selects appropriate aggregation
functions for different vehicle network topologies, hence, better
graph information vectors can be learned.

Fig. 5 shows how the number of successfully served vehicles
changes as the number of vehicles varies. From this figure, we
see that, as the number of service request vehicles increases,
the number of successfully served vehicles increases since
more sensing and communication links are established. Fig. 5
also shows that the proposed scheme can increase the number
of successful served vehicles by up to 19.79% compared to
baseline. This is because the proposed scheme uses a dynamic
GNN model to extract more vehicle network information.

V. CONCLUSIONS

In this paper, we have designed a novel framework that
uses THz for joint communication and sensing in vehicular
networks. Our goal was to maximize the number of suc-
cessfully served vehicles by jointly determining the service
mode of each SPV and the service request vehicles served
by each SPV. We formulated an optimization problem that
jointly considers service mode, service vehicle connection, THz
channel particularities, and dynamic vehicle network topology.
To solve this problem, we have designed a novel GNN based
method which enables a GNN to select appropriate graph
information aggregation functions for different vehicle network
topologies thus extracting more vehicle network information
and improving the service mode and service request vehicle
connection strategy of each SPV. Simulation results verified
that the proposed dynamic GNN based method can achieve
significant gains compared to the standard GNN based solution.
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