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Abstract
As a form of artificial intelligence (AI) tech-

nology based on interactive learning, deep 
reinforcement learning (DRL) has been widely 
applied across various fields and has achieved 
remarkable accomplishments. However, DRL 
faces certain limitations, including low sample effi-
ciency and poor generalization. Therefore, in this 
article, we show how to leverage generative AI 
(GAI) to address these issues and enhance the 
performance of DRL algorithms. We first intro-
duce several classic GAI and DRL algorithms and 
demonstrate the applications of GAI-enhanced 
DRL algorithms. Then, we discuss how to use GAI 
to improve DRL algorithms from the data and 
policy perspectives. Subsequently, we introduce 
a framework that demonstrates an actual and 
novel integration of GAI with DRL, that is, GAI-en-
hanced DRL. Additionally, we provide a case 
study of the framework for UAV-assisted integrat-
ed near-field/far-field communication to validate 
the performance of the proposed framework. 
Moreover, we present several future directions. 
Finally, the related code is available at: https://
xiewenwen22.github.io/GAI-enhanced-DRL.

Introduction
Deep Reinforcement Learning (DRL) is a trans-
formative approach in the field of Artificial Intel-
ligence (AI) that offers promising solutions to 
complex decision-making problems in various 
domains. DRL incorporates the principles of deep 
learning and reinforcement learning, where the 
introduction of neural networks has made DRL 
be capable of efficiently dealing with high-dimen-
sional state and action spaces. Additionally, a DRL 
agent is able to learn directly from raw inputs with-
out the need for artificial features and iteratively 
refine their strategies through trial-and-error inter-
actions with an environment. This breakthrough 
capability has led to the extensive applications of 
DRL across diverse domains such as controlling 
robotic systems in dynamic environments.

Despite its remarkable achievements, tradition-
al DRL algorithms suffer from certain limitations. 
One of the main challenges is the low sample effi-
ciency for training deep neural networks in rein-
forcement learning environments. As the process 

of learning optimal policies often requires long 
and extensive interaction with an environment, 
data collection for DRL may be costly or impracti-
cal in the real world. Moreover, DRL models typ-
ically exhibit limited generalization capabilities, 
making it difficult to extend learned policies to 
unseen environments or tasks.

Fortunately, Generative AI (GAI) can offer a 
promising solution to the challenges faced by 
DRL. Unlike discriminative AI, which aims to learn 
boundaries between different data categories, 
GAI can learn the distribution of data to capture 
its latent structure. Therefore, GAI is widely used 
in content analysis and creation domains. For 
example, ChatGPT (https://openai.com/index/
chatgpt) has revolutionized human-computer 
interaction by leveraging large language mod-
els (LLMs). Additionally, the recently introduced 
video generation model Sora (https://openai.
com/index/sora) has sparked a trend in the field 
of video generation. The widespread adoption of 
GAI can be attributed to several key advantages 
over other AI methods.

High-quality Data Generation Ability: GAI 
can generate new credible data samples by learn-
ing the distribution of the data, which helps to 
solve the problem of data scarcity.

Feature Extraction Ability: GAI can extract useful 
features or representations from raw data by learn-
ing the distribution and latent structure of the data, 
which helps to improve the data analysis ability.

Generalization Ability: GAI can effectively 
apply the knowledge and representations learned 
from one task to other tasks, which accelerates 
the learning process and improves the perfor-
mance in new environments.

Benefiting from the aforementioned advantag-
es, GAI can be utilized to enhance DRL algorithms 
due to higher sample efficiency, stronger general-
ization capabilities, and robustness to environ-
mental changes. For instance, a DRL agent may 
struggle in some specific environments, where 
the agent is not allowed to engage in extensive 
trial-and-error interactions within the environment. 
In this case, GAI can learn from limited training 
data to generate synthetic data for DRL training, 
which contributes to alleviating data scarcity and 
accelerating the learning process. Additionally, 
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GAI can provide potential representations of data, 
which helps a DRL agent explore the environment 
more efficiently and generalize a policy better to 
unknown states. Therefore, the introduction of 
GAI brings new opportunities to DRL.

The combination of GAI and DRL is not 
straightforward and faces certain key issues. Spe-
cifically, GAI contains a variety of models that 
adept in solving different problems. Therefore, 
how to select an appropriate GAI model and inte-
grate it with a specific DRL algorithm to solve cer-
tain problems is important and challenging. This is 
because the process involves the need for exten-
sive studies and experimental validation of the 
compatibility between different models and algo-
rithms to unleash full potential of GAI and DRL.

Motivated by this, we attempt to propose a 
comprehensive tutorial. To the best of our knowl-
edge, this is the first work to comprehensively 
summarize how DRL algorithms can be enhanced 
using various GAI models. The contributions can 
be summarized as follows:
•	 We present the principles of important and 

widely used GAI models and DRL algorithms. 
Then, we briefly describe several applications 
of DRL enhanced with GAI.

•	 We explore different integration of GAI in DRL, 
focusing on how DRL can be enhanced from 
a data and strategy perspective. Moreover, we 
comprehensively summarize the advantages 
and disadvantages of the GAI-enhanced DRL 
algorithm.

•	 We propose a novel framework which deeply 
demonstrates the integration process of sev-
eral common GAI models individually in the 
DRL algorithm. Moreover, we show the role of 
integrating multiple GAI models simultaneous-
ly in DRL to solve different challenges in DRL 
algorithms. Furthermore, we construct a case 
study to demonstrate the effectiveness of the 
proposed framework.

Overview of GAI and DRL
In this section, we introduce the basics of GAI 
and DRL.

GAI Models
The rapid development of GAI relies on several 
promising techniques, and we focus on the most 
commonly used Generative Adversarial Network 
(GAN), Generative Diffusion Model (GDM), Vari-
ational Autoencode (VAE), and Transformer. We 
summarize the technical details of GAI models 
and their comparison in Fig 1.

GAN: GAN is a deep learning model com-
posed of a generator and a discriminator. The for-
mer aims to generate samples similar to real data, 
while the latter attempts to distinguish between 
samples generated by the generator and real 
data. By adversarially training these two networks, 
the credibility of generated samples is gradual-
ly enhanced. The applications of GAN include 
image generation and style transfer.

GDM: The training of GDM consists of for-
ward process and reverse process. Specifically, 
GDM destructs training data by gradually add-
ing Gaussian noise in the forward process, then 
reverses this process to generate the desired data 
from the noise, which simulates the evolution of 
the data. The applications of GDM include image 
restoration and solving optimization problems.

VAE: VAE consists of an encoder and a decod-
er. The former maps input data to a probability 
distribution in the latent space, while the latter 
reconstructs samples from the latent space into 
the original data. Clearly, the higher the similarity 
between the original and reconstructed samples, 
the higher the model accuracy. VAE is widely 
applied in fields such as image generation and 
feature learning.

Transformer: Transformer is a deep learning 
model based on the self-attention mechanism, con-
sisting of an encoder and a decoder. Specifically, the 

FIGURE 1. Summary of typical GAI models.

Model Components Pros and Cons Applications Capabilities to improve DRL
 Generator : Generate 

fake data that is similar 
to real data  

 Discriminator : Judge 
the authenticity of data

   Generate high-quality 
and realistic data samples
   Don't require a large 
amount of annotated data
   Mode collapse

 Video generation
 Image restoration
 Virtual reality
 Super resolution

Generative Capability: GAI can facilitate the 
generation of diverse data samples for DRL, 
which can effectively mitigate the challenge 
of data scarcity, particularly in certain specific 
scenarios where obtaining sufficient real-
world data is difficult or expensive. 
Exploratory Capability: GAI can enhance 
the policy network of DRL, which can help 
the DRL agent explore the environment more 
comprehensively and make more informed 
and effective decisions.
Extraction Capability: GAI can extract 
useful features to provide DRL with richer 
and more informative input data, which helps 
to reduce the learning difficulty of DRL in 
high-dimensional scenarios. As such, This 
process can enhance the efficiency of the 
learning process.
Adaptability: GAI can learn shared features 
and patterns across different tasks and 
transfer this knowledge to new tasks in DRL, 
which can improve the learning efficiency.

 Forward : Gradually 
inject noise into input   

 Denoising : Remove 
noise to approach real 
distribution

   Easy to understand and 
implement
   Capture true distribution 
   Enhanced denoising
   Long inference time

 Image denoising
 Image generation
 Data augmentation
 Provide high quality 

solutions for problem

 Encoder : Encode the 
input data into a latent 
space representation   

 Decoder : Decode the 
latent space 

   Learning the latent 
space of data
   Suitable for denoising 
and reconstruction
   Training instability

 Speech synthesis
 Image reconstruction 
 Unsupervised learning
 Feature learning
 Dimension reduction

 Encoder : Encode the 
input to capture 
semantic information   

 Decoder : Convert the 
hidden representation 
to the target sequence

   Parallel processing of 
input sequences
   Highly interpretable
   Efficient multi-modal 
interaction
   High computational cost

 Machine translation

 Text generation

 Language modeling

 Speech recognition

 Sentiment analysis
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principle of the Transformer is to capture the depen-
dencies between different positions in a sequence 
through self-attention mechanism, while enhancing 
representational ability of the model through multi-
head attention mechanism. Transformer is widely 
used in the field of natural language processing, 
such as machine translation, language modeling.

DRL Algorithms
Reinforcement Learning (RL) is a machine learn-
ing method that aims to enable an agent to max-
imize cumulative rewards through trial-and-error 
learning during their interaction with the envi-
ronment. Specifically, the agent learns to make 
optimal decisions in a given environment based 
on the state and feedback rewards of the envi-
ronment. Note that traditional RL algorithms use 
tables to estimate the Q-function that helps the 
agent to improve policy. However, it is clearly not 
suitable for high-dimensional and large state and 
action spaces. As such, DRL combining deep neu-
ral networks (DNN) and RL has been proposed, 
where DNN is used as an approximator of the 
Q-function. We summarize several representative 
DRL algorithms, namely, deep Q-network (DQN), 
deep deterministic policy gradient (DDPG), twin 
delayed deep deterministic policy gradient (TD3), 
proximal policy optimization (PPO), and soft 
actor-critic (SAC). The details of the DRL algo-
rithms above are shown in Table 1.

Considering the ability of DRL to handle 
dynamic problems and find optimal solutions 
in the absence of information, it has achieved 
remarkable results in data communications and 
networking. However, DRL still has some limita-
tions that may be mitigated by GA.

Sample Inefficiency: DRL typically requires an 
extensive interaction with the environment to learn 
effective policy. In this case, GAI (e.g., GAN) can 
help generate synthetic data to augment training 
dataset, which improves sample efficiency [1].

Challenges in Complex Environment: A DRL 
agent may fall into local optima or struggle to 
explore large and complex environments efficient-
ly. In this instance, GAI (e.g., VAE) enables the 
agent to analyze the underlying data distribution 

and perform feature extraction, which helps to 
accurately model the environment and improve 
the stability of training process [2].

Instability and Low Learning Efficiency: DRL 
may suffer from instability and balance of explo-
ration-exploitation trade-off. In this situation, GAI 
(e.g., GDM) can be used to improve the policy 
network of DRL, which helps to enhance the sta-
bility of exploration [3].

Applications of GAI-Enhanced DRL
Thanks to the excellent generative and analytical 
capabilities of GAI, it has been widely applied to 
enhance DRL in various fields. We have summa-
rized typical applications.

Signal Processing: Training an agent to solve 
control tasks directly from multimodal signals has 
been shown to be difficult. In [4], a framework 
combining Transformer and DRL is proposed, 
where Transformer is used for feature extraction 
of multimodal data, which can better integrate 
important information carried by different signals to 
assist the agent in making more accurate decisions.

Wireless Communications: GAI can be uti-
lized to ameliorate the problem of high training 
cost and low sample efficiency against DRL in 
wireless environments. In [5], the authors pro-
posed a GAN-based auxiliary training mechanism 
that reduces the overhead of interacting with the 
real-world by generating environment states for 
offline training.

Edge-Based AIGC Service: GAI combined with 
DRL is utilized to provide edge-based AIGC ser-
vices. For example, the authors in [3] proposed 
a diffusion model based approach to generate 
optimal AIGC service provider selection decisions 
and combined it with SAC algorithm to improve 
the efficiency and effectiveness of the algorithm.

Sensor Networks: GAI can be utilized to 
improve the accuracy of DRL decision making 
for cognitive internet of things network. In [6], 
GAI is employed to enhance the value network 
of DRL by improving the stability and accuracy of 
action value estimation through adversarial train-
ing, thereby enhancing the decision-making per-
formance of DRL.

TABLE 1. The analysis of different DRL algorithms.

DRL 
Algorithm

Analysis

Policy Key Features Pros & Cons

DQN Off-policy Estimating Q-function using DNN and handle 
discrete action space

 Simple to implement  
 Good generality  
 Training instability

DDPG Off-policy Deterministic policy gradient method  Good stability  
 Poor convergence

TD3 Off-policy Dual-Q network and delayed policy network 
updates

 Improved training stability  
 Reduced overfitting  
 Hyperparameter sensitivity

PPO On-policy Limiting the magnitude of policy network 
updates

 High stability  
 High training efficiency  
 Low sample efficiency

SAC Off-policy Entropy regularization terms and dual-policy 
networks

 Explore action space more fully  
 Insensitive to parameters  
 High training complexity
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Lesson Learned: From the above analysis of the 
algorithms and applications, we observe that GAI 
models can effectively address the limitations of 
DRL. Specifically, the data generation capability 
of GAN contributes to tackling the data scarcity 
issue in certain scenarios. VAE can be employed 
for extracting features of high-dimensional data. 
Moreover, the exploration capability of GDM 
can be utilized to enhance the policy network of 
DRL, thereby improving the quality and stability of 
decision-making. The proficiency of Transformers 
in handling multimodal and variable-length data 
expands the scope of applications for DRL.

GAI-Enhanced DRL
In this section, we introduce how GAI can improve 
DRL from the data and policy perspective. The 
summary of improvements are shown in Fig. 2.

From Data Perspective
Based on aforementioned unique features, GAI 
can effectively address the data-related challenges 
to improve the convergence speed and solution 
accuracy of DRL.

Data Augmentation: In most DRL training pro-
cesses, agents sample experiences stored in an 
experience replay buffer randomly or in a specific 
way (e.g., prioritized experience replay) and utilize 
these experiences to update neural networks for 
better performance. Simultaneously, it is challeng-
ing for agents to output high-quality actions based 
on unobserved states or with limited data in such 
training approach. Adopting GAI to augment data 
can be a solution. For example, in [7], the authors 
proposed a GAN-powered multi agent DDPG 
(MADDPG) framework for joint optimizing termi-
nal-cooperative caching and offloading for virtual 
reality tasks. Specifically, given high costs and priva-
cy risk issues associated with collecting data from 
multiple users in a decentralized network, GANs 

are used to learn the distribution of real data and 
generate appropriate data for each agent based 
on the state. Then, each agent inputs the corre-
sponding state samples generated by GAN into 
the actor-critic network and stores the resulting 
experiences in the experience buffer for sharing, 
which augments the agent with limited samples 
of real virtual reality data. Numerical results indi-
cate a 5.32% enhancement in energy efficiency for 
GAN-MADDPG compared with MADDPG trained 
on a real environment, with similar performance in 
terms of task completion latency.

Adaptation to Variable State: DRL with a 
standard deep neural network typically deals 
with fixed-length state spaces, which makes 
it challenging to handle problems with vari-
able-length state spaces. However, in certain 
scenarios such as edge computing and task 
offloading, dynamic state spaces are relatively 
common, which limits the applicability of DRL in 
such contexts. Note that GAI is excellent in deal-
ing with variable-length inputs, especially Trans-
former. A Transformer-based multi-agent DRL 
framework for scalable multi-unmanned aerial 
vehicle (UAV) area coverage was proposed [8]. 
In such a scenario, a deep neural network based 
on a fixed-dimension multilayer perceptron 
(MLP) is no longer applicable. This is because 
when the number of UAVs varies, some dimen-
sions of the state space are blank, which may 
lead to neural network errors. In this case, Trans-
former is adopted to encode the state space 
and assign different weights to deal with variable 
input dimensions through a self-attention mech-
anism, which can mitigate the effect of blank 
states on decision making. Meanwhile, there is 
a large amount of heterogeneous information in 
multi-UAV scenarios, where the importance of 
this information varies. The self-attention mech-
anism can dynamically learn the importance of 

FIGURE 2. Summary of data and policy performance improved by GAI in DRL.

 Data Augmentation
 Method: learn data distributions and generate data samples [7].
 Pros: GAI enhances DRL by expanding the dataset and 

addressing unseen states, which can boost the robustness 
and generalization of DRL model.

 Adapt to Variable State
 Method: Utilize self-attention mechanism 

to encode state space [8].
 Pros: GAI processes the variable-length 

state space of DRL, which can enhance 
the ability to learn complex patterns.

 Feature Extraction
 Method: Learn latent representation based 

on encoder and decoder [2].
 Pros: GAI extracts features from high-

dimensional inputs in DRL, which can 
enhance model efficiency and preserve 
critical information.

 Environment Simulation
 Method: Mimic data distribution [9].
 Pros: GAI simulates DRL environments by creating virtual 

representations of real-world scenarios, which can reduce risks 
and accelerate learning.

 Improved Policy Network
 Method: Generate solutions based on denoising network [3].
 Pros: Diffusion model replaces the policy network to 

improve decision-making of DRL, which enhances 
exploration and robustness.

 Transfer Learning
 Method: Transfer of knowledge [13].
 Profs: GAI enhances DRL transfer learning by using 

generalization ability, which improves the learning 
performance of agents in different environments.

 Handling Hybrid Action
 Method: Find latent relationship of hybrid 

space based on encoder and decoder [12].
 Pros: VAE encodes hybrid action space, 

which can boost the rationality of discrete 
and continuous actions of policy outputs.

 Multimodal Learning
 Method: Multimodal fusion transformer 

architecture [4].
 Pros: GAI enhances the data integration 

capability of DRL by utilizing multimodal 
data processing capabilities, which 
improves decision accuracy.Adapt to Variable State
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different positions in the input sequence, which 
empowers the agent to extract most relevant 
information. Experimental results show that 
Transformer-based DDPG achieves the best net-
work performance. Compared with the expert 
coverage-first algorithm, the Transformer-based 
DDPG algorithm improves the average coverage 
score by 39.7% and the fairness index by 45.3%.

Feature Extraction: When dealing with high-di-
mensional data, DRL requires a significant amount 
of resources and time. Therefore, it is important 
for DRL to reduce the dimension of data without 
losing important information. Fortunately, GAI can 
analyze the latent relationships in data and perform 
feature extraction. Therefore, GAI can be used to 
process input data of DRL to alleviate the limita-
tions of DRL when facing high-dimensional data. 
For instance, in [2], the authors proposed an envi-
ronment perception framework for autonomous 
driving, where VAE is combined with SAC to focus 
on uninterrupted and reasonably safe autonomous 
driving. Specifically, VAE is used to process input 
driving environment images for feature extraction, 
which improves sample efficiency and facilitates 
learning processes with fewer samples but higher 
robustness. Simulation results on the DonKey sim-
ulator demonstrate the VAE-SAC method enables 
an autonomous vehicle to remain on track for 
the maximum time in a given timeframe. Note 
that although both VAE and Transformer can be 
used to handle the state space of an agent, their 
focuses are different. VAE [2] primarily aimes at 
improving sample efficiency by extracting features 
to reduce the dimensionality of inputs. Conversely, 
Transformer [8] is not used explicitly for dimension-
ality reduction, and its main purpose is to handle 
variable-length state spaces through focusing on 
important parts of the input sequence.

Environment Simulation: Agent-environment 
interaction is a crucial aspect of DRL training pro-
cesses. However, in certain scenarios, an agent 
are not allowed to perform trial-and-error training 
in real environments. Therefore, considering that 
GAI is able to learn and model data distribution, 
it can be harnessed to simulate the environment 
of DRL. For example, the authors in [9] proposed 
a primary-user-friendly dynamic spectrum anti-jam-
ming framework. Note that it is inevitable for a 
second user (SU) to interfere the primary user 
(PU) even DRL is used by the SU to optimize 
spectrum access, which is undesirable in overlay 
cognitive radio network. Therefore, a GAN-based 
virtual environment (VE) is utilized to accurately 
simulate the spectrum environment. Subsequent-
ly, a channel decision network (CDN) based on 
DRL learns an optimal spectrum access strategy 
in VE through offline training. Experimental results 
show that the proposed framework converges 
much faster than the scheme that trains CDNs in 
the spectrum environment from scratch.

Lesson Learned: From the studies above, we 
summarize the uses of GAI to improve DRL from 
the data perspective as follows.

Data Generation: Given the powerful ability 
to mimic data distributions and generate credible 
data samples, GAI can be used to expand training 
datasets and anticipate unknown situations [7, 9].

Data Processing: GAN can be used to pro-
cess dynamic data and high-dimensional data with 
unique analyzing and learning capabilities [2, 8].

From Policy Perspective

By fully leveraging its ability to extract latent pat-
terns and adapt to various data types, GAI can 
enhance the decision-making capability of DRL, 
enabling it to tackle complex tasks more efficient-
ly and flexibly.

Improved Policy Network: The structure of 
a DRL policy network can affect quality of the 
output action. Currently, GAI has been used to 
enhance DRL policy network, especially in diffu-
sion model. In [3], the authors proposed a diffu-
sion model-based SAC algorithm to generate an 
optimal AIGC service provider (ASP) selection 
decision for better and broader AIGC services in 
wireless networks. Specifically, the diffusion model 
is utilized to replace the policy network of SAC to 
generate action distributions based on observed 
states. It is worth noting that optimization prob-
lems in wireless networks usually are difficult to 
achieve optimal solutions. Thus, only the reverse 
process of the diffusion model is employed to 
construct the policy network for SAC. Extensive 
experimental results demonstrate the effectiveness 
of the proposed diffusion model-based algorithm, 
which outperforms seven representative DRL 
algorithms (e.g., PPO) in both the ASP selection 
problem and various standard control tasks.

Multimodal Learning: DRL is typically limited 
to handling a single type of data, which restricts 
its applicability. The GAI’s ability of processing 
multimodal data can be employed to enhance 
DRL. In [4], the authors proposed a Transform-
er-based DDPG to solve autonomous vehicle 
decision problem in complex scenarios. Multi-
modal Transformer is utilized to handle different 
types of data, that is, LiDAR point cloud and imag-
es. Then, DDPG is employed to complete the 
subsequent autonomous driving decision-making 
task based on the extracted features. The exper-
imental results indicate that the DDPG based on 
multimodal Transformer achieves higher rewards 
than DDPG that uses only images, which suggests 
that multimodal Transformer plays a significant 
role in extracting key multi-modal features.

Handling Hybrid Action: DRL is typical-
ly used to deal with hybrid action spaces con-
taining both discrete and continuous actions, 
especially for optimization problems involving 
scheduling. Current common practices either 
approximate the hybrid space by discretiza-
tion or relax it into a continuous set. However, 
continuous actions and discrete actions typi-
cally interact with each other in general, while 
the aforementioned discretization or relaxation 
methods ignore this intrinsic relationship and 
leads to information loss. In this case, GAI con-
structs latent space representations and analyze 
the dependencies of hybrid action space. The 
authors in [10] proposed a novel VAE-based 
DRL framework called HyAR. The main idea of 
the proposed framework is to construct a unified 
and decodable representation space for the orig-
inal discrete-continuous hybrid action, in which 
the agent learns a latent strategy. Then, the 
selected latent action is decoded back into the 
original hybrid action space to interact with the 
environment. The results show that HyAR has 
advantages over the baseline (e.g., PADDPG), 
especially in high-dimensional action space.

By fully leveraging its 
ability to extract latent 
patterns and adapt to 
various data types, GAI 
can enhance the deci-
sion-making capability 
of DRL, enabling it to 
tackle complex tasks 
more efficiently and 
flexibly.
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Transfer Learning: One of the major dilemmas 
of DRL is that if the structure of network states 
change dramatically, we have to reformulate the 
problem and retrain the model from scratch. For-
tunately, GAI can be used for knowledge transfer, 
which can alleviate the limitations. For example, in 
[11], the authors proposed a diffusion model-based 
transfer learning method to solve the limited data 
problem in image generation tasks. The proposed 
method trains a diffusion model with an adversar-
ial noise selection and a similarity-guided strategy, 
which improves the efficiency of the transfer learn-
ing process. Extensive experiments in the context 
of few-shot image generation tasks demonstrate 
that the proposed transfer learning method is not 
only efficient but also excels in terms of image 
quality and diversity. Inspired by this work, we can 
adopt GAI model (e.g., diffusion model and GAN) 
to design transfer learning for DRL.

Lesson Learned: We find that the GAI 
approaches to improve policy performance can 
be summarized into two aspects.

Independent Strategy: GAI can be regarded 
as an independent strategy to preprocess the 
inputs of DRL, which can enhance the training 
efficiency of DRL [4].

Integrated Strategy: GAI can be integrated 
into DRL architecture to enhance the solution 
capability of DRL [3].

Discussion
From the applications shown in Table 2, we can 
find that integrating GAI into DRL can significantly 
improve the performance of DRL, which can be 
summarized as follows.

Improved Data Diversity: The generative and 
learning capability of GAI can increase the diversity 
of training data for DRL to alleviate the data scar-
city problem in certain particular scenarios, which 

can improve the speed of DRL training. In addition, 
the multimodal data processing capability of GAI 
greatly broadens the application scope of DRL.

Enhanced Analysis Ability: Some GAI models, 
such as VAEs, are particularly effective for high-di-
mensional data, as it can eliminate the influence 
of redundant information and enhance the speed 
of DRL training.

Improved Decision Ability: The reverse pro-
cess of the diffusion model is well-suited to the 
policy networks of DRL, where multi-round itera-
tions and denoising processes help agents explore 
better actions. Additionally, GAI has inspired the 
implementation of transfer learning in DRL to 
facilitate interactions across similar domains.

Although incorporating GAI into DRL address-
es some issues faced by DRL, it also introduces 
the following disadvantages.

High Computation Complexity: Integrating 
GAI models into DRL algorithms may introduce 
additional computational costs, such as tuning the 
network architecture of GAI models and a large 
number of hyperparameters, which can increase 
computational overhead during training. More-
over, the training process of GAI models requires 
iterative optimization, which leads to an increase 
in the overall training time of DRL.

High Resource Demand: GAI models typi-
cally require substantial memory to store model 
weights, parameters, and intermediate results, 
which is particularly pronounced in data-intensive 
applications. Moreover, GAI models often have 
complex structures and require high-performance 
computing resources to support their training 
when performing computationally intensive tasks.

Therefore, GAI-enhanced DRL is suitable for 
solving the issues of low sample efficiency and 
insufficient exploration by generating diverse train-
ing data and high-quality actions with sufficient 

TABLE 2. The use of GAI for various DRL algorithms.

GAI
DRL

GAI Models
Anaylsis

Transformer GDM GAN VAE

DQN

• Introduce the 
  transformer structure 
  into policy neural 
  networks.

• Model in-support 
  trajectory sequences. 

• Apply the GAN 
  structure to actor 
  and critic networks 
  [12].

• Capture the low 
  dimensional latent states 
  for facilitating DQN 
  agent learning.

Potential Benefits: 

Expressiveness: GAI is able 
to learn complex sample 
distributions well, which 
enables it to be integrated 
into the policy network of 
DRL for decision-making. 
 
Sample Quality: GAI 
has strong imitation 
and generation abilities, 
allowing it to generate 
highly credible new 
samples based on existing 
samples to expand the 
training dataset of DRL. 
 
Flexibility: The ability of GAI 
to model diverse behaviors 
is particularly useful in DRL, 
where the agent needs 
to adapt to a variety of 
situations and tasks. 

DDPG

• Process multimodal 
  data [4].  
• Handle variable state 
  space [8].

• Introduce the GDM 
  structure into policy 
  networks [13].

• Generate complete 
  dataset including not 
  appeared states [7].

• Provide the extracted 
  feature state as input for 
  policy network [2].

TD3
• Introduce 
  transformer module 
  to the actor network.

• Approximate actions 
  by noise networks to 
  improve the speed of 
  training.

• Generate 
  environment states 
  for offline training of 
  TD3 agent [5].

• Provide the latent 
  representation of 
  continuous-discrete 
  hybrid action space [10].

PPO
• Employ transformer 
  structure as the 
  police network.

• Generate samples.
• Generate new 
  training data based 
  on historical data [1].

• Encode input video 
  to reduce the state 
  dimension.

SAC

• Extract latent 
  features.  
• Encode historical 
  information and 
  hybrid space.

• Apply GDM structure 
  to policy network [3].  
• Simulate expert 
  behavior to generate 
  optimal policy.

• Provide a simulated 
  environment for 
  SAC agent [9].

• Map high-dimensional 
  states into the latent 
  vectors.
• Encode tasks and infer 
  tasks.
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computational resources.

Case Study: GAI-Enhanced DRL in  
Near-field Communication

In this section, we first propose a novel frame-
work for GAI-enhanced DRL. We then introduce 
a case study to demonstrate effectiveness of the 
proposed framework.

Proposed Framework
As shown in Fig. 3, we investigate an integration 
of various GAI models into DRL algorithms to 
enhance the performance in different ways.

GAN-Enhanced DRL: We enhance the critic 
network of DRL by using GAN. Specifically, the 
generator network outputs estimated action val-
ues, while the target generator network obtains 
the target action values. The discriminator net-
work attempts to minimize the distance between 
the estimated action values and the target action 
values calculated by the Bellman operator. Intro-
ducing adversarial learning mechanism inherent 
in GAN to approximate the action-value distribu-
tion avoids the negative impact of randomness on 
rewards, which enhances the stability of DRL.

VAE-Enhanced DRL: We use VAE to reduce 
the dimensionality of the high-dimensional state 
space in DRL. Specifically, we input the high-di-
mensional state data into the encoder of the VAE 
to extract a lower-dimensional latent variable. 
Subsequently, the decoder attempts to recon-
struct the original state data from the latent vari-
able. By minimizing the discrepancy between the 
reconstructed data and the original data, the VAE 
is able to maintain the quality of the lower-dimen-
sional latent variable while performing dimension-
ality reduction. Additionally, VAE can construct a 
latent representation space for continuous param-
eters conditioned on state and embedding of dis-
crete actions to handle hybrid actions.

Transformer-Enhanced DRL: We enhance 
the actor network of DRL by using Transformer. 
Specifically, we replace the MLP with a network 

based on the attention mechanism of Transformer 
to analyze the current state in the environment. 
This enables Transformer-enhanced DRL to more 
effectively capture long-range dependencies 
within sequences, making it well-suited for deci-
sion-making tasks that require long-term memory 
or complex historical information.

GDM-Enhanced DRL: We improve the policy 
network of DRL by employing the reverse process 
of GDM. Specifically, we consider the policy net-
work as a denoiser, progressively adding denois-
ing noise to the initial Gaussian noise to recover 
or discover the optimal actions. Benefiting from 
the generative ability and expressiveness of GDM, 
it can generate diverse and high-quality actions, 
which makes it suitable for improving DRL algo-
rithms with limited exploration capabilities.

Scenario Description
Large-scale antenna array has demonstrated an 
important enhancement in the spectrum efficien-
cy of wireless systems. It is noteworthy that with 
the significant increase in carrier frequency and 
the number of antennas, the well-known Rayleigh 
distance expands to tens or even hundreds of 
meters. In this context, near-field communication 
becomes more prominent [14]. Unlike traditional 
far-field communication where the electromag-
netic field is simply modeled by plane waves, the 
electromagnetic field in near-field communica-
tion needs to be accurately modeled by spheri-
cal waves. Therefore, we can exploit this unique 
channel characteristic to achieve flexible beam-
forming, concentrating the beam energy at spe-
cific spatial locations rather than focusing it in a 
specific direction as in traditional far-field com-
munication. The characteristic above provides 
near-field communication with distinct advantages 
in improving signal quality, especially in densely 
populated urban areas.

In the case study, we considered a UAV-assist-
ed ground communication, where the UAV serves 
as a relay to transmit data from a base station (BS) 
equipped with a large-scale antenna array to the 

FIGURE 3. Proposed Framework of GAI-enhanced DRL on UAV-assisted integrated near-field/far-field communication.
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distant ground user. Here, the UAV is deployed 
and located in the near-field region of BS while 
the ground users are in the far-field region of the 
UAV. In this case, we aim to maximize the trans-
mission rate and minimize the power consump-
tion by jointly optimizing the trajectory of the 
UAV and the power allocation of BS and UAV.

Result Analysis
Analysis of Different Types of Action Spaces: We 
explore the performance of GAI-enhanced DRL 
in continuous action space (i.e., continuous UAV 
trajectory design and power allocation), discrete 
action space (i.e., way-point discrete UAV trajec-
tory design and power allocation), and hybrid 
action spaces (i.e., discrete UAV trajectory design 
and continuous power allocation).

Continuous Action Space: Figure 4a, b, and c 
show the convergence curves of reward, transmis-
sion rate and power consumption in continuous 
action space, respectively. As an improved ver-
sion of DDPG, TD3 significantly enhances policy 
stability and performance through the use of twin 
Q-networks and delayed policy updates. There-
fore, in our case study, we select TD3 as the foun-
dational DRL algorithm. We can observe that the 
GAN-enhanced TD3 algorithm shows significant 
improvements over the original TD3 algorithm, 
and this improvement is due to the novel adver-
sarial training of the critic and target critic net-
works, which enhances the process of state-action 
value estimation. However, it is unable to effec-
tively learn the constraints on power within the 
continuous solution space, resulting in penalties 
that cause fluctuations in the reward. Moreover, 
we observe that VAE improves the performance 
of the TD3 algorithm, which is attributed to the 

capability of VAE to reduce the dimensionality of 
the high-dimensional state space to extract critical 
information. However, the process of transform-
ing the high-dimensional state space into a low-di-
mensional latent space inevitably results in loss of 
information and leads to instability.. Furthermore, 
we find that the Transformer-enhanced TD3 
algorithm barely improves the performance of 
the original TD3 algorithm. This may be because 
Transformer is better suited for handling long-
range problems, which may not align well with 
the current optimization problem. In addition, we 
observe that GDM-enhanced-TD3 achieves the 
best reward values and transmission rates com-
pared to other algorithms. This is because GDM 
can accurately capture the underlying data distri-
bution, providing a more effective representation 
of the environment. Moreover, the unique struc-
ture of GDM, which involves a diffusion process, 
offers a more stable and efficient learning process.

Discrete Action Space: The convergence 
curves of reward, transmission rate and power con-
sumption in the discrete action space are shown 
in Fig. 4e, f, and g, respectively. Unlike its perfor-
mance in continuous action space, GAN-enhanced 
GAI demonstrates superior convergence speed 
and quality in all of metrics above. This is because 
the discrete action space we designed inherently 
satisfies the power constraints of the optimization 
problem, eliminating the need for GAN to learn 
these constraints. However, this also indirectly 
highlights the weakness of GAN in learning con-
straint conditions directly related to optimization 
variables. Moreover, the convergence curves of 
VAE-enhanced GAI in discrete space are relatively 
unstable. This could be due to the fact that in dis-
crete action spaces, the decision boundaries are 

FIGURE 4. The convergence curves of rewards, rates, and power consumption, as well as the training time, of the case study under three different action 
spaces. Specifically, the results in continuous action space are shown in a), b), c), and d), respectively. The results in discrete action space are shown in e), f), 
g), and h), respectively. The results in hybrid action space are shown in i), j), k), and l), respectively.
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usually more complex and require precise state 
information to make correct action choices. How-
ever, the latent space obtained after dimensionality 
reduction by the VAE model may not provide suf-
ficiently accurate information to correctly distin-
guish different discrete actions, leading to decision 
biases. Furthermore, we observe from the figure 
that the GDM-based algorithm still achieves the 
excellent performance, which indicates that it can 
handle discrete actions well.

Hybrid Action Space: Figure 4i, j, and k show 
the convergence curves of reward, transmission 
rate and power consumption in hybrid action 
space, respectively. We can observe that the 
GDM-enhanced TD3 is optimal in terms of the 
convergence speed and stability on the hybrid 
action space, and it converges to the best val-
ues with regard to reward, transmission rate, and 
power consumption. In the hybrid action space, 
the discrete and continuous actions are not 
independent, and different discrete actions cor-
respond to different optimal continuous actions 
[10]. Therefore, to make the best hybrid action 
decisions, it is essential to explore the latent 
relationships between discrete and continuous 
actions. Evidently, the strong capability of GDM in 
learning the underlying data relationships enhanc-
es the accuracy and stability of TD3 decisions, 
enabling GDM-enhanced TD3 to achieve out-
standing performance in the hybrid action space.

Analysis of Multiple GAI Models Combination: 
We further combine multiple GAI models in TD3 
to explore their performance on the above-men-
tioned three action spaces. Specifically, we pro-
pose the GDM-GAN-enhanced TD3 algorithm, 
which introduces GAN into the GDM-enhanced 
TD3 algorithm to improve the critic network. Based 
on this, we design the GDM-GAN-Transformer-en-
hanced TD3 algorithm, which improves the denois-
ing network of GDM by using Transformer. Finally, 
the GDM-GAN-Transformer-VAE-enhanced TD3 
algorithm is proposed, which introduces VAE into 
the GDM-GAN-Transformer-enhanced TD3 to 
reduce the dimensionality of the state space. The 
results are shown in Fig. 4, and th corresponding 
results analysis is listed below.

Results of GDM-GAN-Enhanced TD3 Algorithm: 
As can be seen, the GDM-GAN-enhanced TD3 algo-
rithm slightly outperforms the GDM-enhanced TD3 
algorithm. This is because the GAN further enhances 
the quality of the estimation of state-action values by 
the critic network, which is beneficial for the agent 
to explore more effective actions.

Results of GDM-GAN-Transformer-Enhanced 
TD3 Algorithm: Introducing the Transformer does 
not lead to significant changes in the performance 
of the GDM-GAN-enhanced TD3 algorithm. 
This is because Transformer is more suitable for 
addressing long-range optimization problems and 
it does not provide substantial performance gains 
in our considered case study.

Results of GDM-GAN-Transformer-VAE-En-
abled TD3 Algorithm: Adopting VAE results in 
the performance decline of the GDM-GAN-Trans-
former-enhanced TD3 algorithm. This decline 
results from the information loss caused by the 
dimensionality reduction of state data using VAE, 
which negatively impacts the GAN-based critic 
network that relies on detailed state information, 
leading to an overall performance decrease.

Training Time: The training time is also newly 
recorded in Fig. 4, and it can be seen from the figure 
that the introduced additional improved factors, that 
is, the GAI models, inevitably increases training time. 
Moreover, we can observe that the training time of 
GDM-enhanced TD3 is significantly higher than that 
of the original TD3 algorithm. This is because the 
denoising time step in GDM leads to an increase 
in the training time of the neural network, while this 
also leads to a notable performance improvement. 
Similarly, although the training time of GDM-GAN-
enhanced TD3 is slightly higher than that of the 
GDM-enhanced TD3, the former achieves better 
results, which is particularly beneficial for scenarios 
that require high decision accuracy.

Ultimately, all the GAI models are able to 
improve the performance of the original TD3 
algorithm for dealing with the optimization prob-
lem in the case study. Moreover, more integra-
tion combination of GAI models in DRL can be 
explored in the future work.

Future Directions
In this section, we present some future directions 
for GAI-enhanced DRL.

Efficiency Enhancement of GAI-Enhanced DRL
Although GAI models can improve the perfor-
mance of DRL algorithms significantly, these 
models inevitably increase the computational 
complexity of the original DRL algorithms, which 
requires longer training time. Therefore, it is cru-
cial to enhance the computational efficiency of 
GAI-enhanced DRL algorithms. One approach is 
to decompose the complex task into multiple sim-
pler sub-tasks and distribute these sub-tasks across 
multiple machines or processors during the train-
ing process. This approach enhances efficiency by 
focusing on smaller and more manageable issues.

GAI-Assisted Reward Design
As a key component of DRL, the quality of reward 
function design significantly impacts the perfor-
mance of DRL. However, reward functions are 
usually manually set, and finding an appropriate 
reward function often requires multiple trials. In this 
context, the LLM integrated with retrieval-augment-
ed generation (RAG) technique can offer a novel 
approach to improve the reward function design 
process. Specifically, the RAG model retrieves rel-
evant information from existing reward function 
databases and research papers about DRL. Sub-
sequently, the retrieved information is combined 
with the LLM to adjust and fine-tune the reward 
function for specific tasks or environments, thereby 
enhancing the accuracy of reward design.

GAI-Improved Transfer Learning
If the application scenarios of DRL change, we usu-
ally have to retrain the DRL models from scratch, 
which results in a waste of computational resourc-
es. Notably, GAI shows great potential to solve 
this issue. Specifically, GAI can transfer the learned 
knowledge across different domains by identifying 
and exploiting common underlying structures that 
unify the distribution of newly generated data to 
a given distribution. Therefore, leveraging GAI to 
identify meta-knowledge that can be transferred 
across various domains helps bridge the gaps 
among different application scenarios of DRL [15].

Although GAI mod-
els can improve the 
performance of DRL 
algorithms significantly, 
these models inevitably 
increase the compu-
tational complexity of 
the original DRL algo-
rithms, which requires 
longer training time. 
Therefore, it is crucial 
to enhance the com-
putational efficiency 
of GAI-enhanced DRL 
algorithms.
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Exploration of More GAI Models for DRL
Different GAI models possess distinct charac-
teristics and focuses. Therefore, it is essential to 
explore the integration of more GAI models into 
DRL algorithms to address various challenges 
faced by different DRL algorithms and improve 
the decision-making process. Based on this, 
refining the criteria for GAI model selection can 
ensure that the most suitable GAI model can be 
quickly chosen to address specific application sce-
narios and challenges within DRL. Moreover, it 
is necessary to develop appropriate evaluation 
metrics to assess the impact of GAI models on 
the performance of DRL algorithms.

Conclusion
In this article, we have introduced how GAI can 
be applied to DRL to improve the performance. 
Specifically, we have first introduced the basic prin-
ciples of several GAI models and DRL algorithms. 
Subsequently, we have discussed how GAI enhanc-
es DRL algorithms from both the data and policy 
perspectives. Then, we have proposed a frame-
work to explore the improvement of DRL algorithm 
by four typical GAI models, namely GAN, GDM, 
VAE, and Transformer. Moreover, we have con-
structed a case study on near-field communication 
to validate the effectiveness of GAI-enhanced DRL. 
Experimental results have demonstrated that GDM 
shows the most significant enhancement for DRL. 
Finally, we have introduced four future directions 
to advance the wider application of GAI in DRL.
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