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iming at achieving artificial general 
intelligence (AGI) for the metaverse, 
pretrained foundation models (PFMs), 
e.g., generative pretrained transform-

ers (GPTs), can effectively provide various arti-
ficial intelligence (AI) services, such as 
autonomous driving, digital twins (DTs), and 
AI-generated content (AIGC) for extended reali-
ty (XR). With the advantages of low latency 
and privacy-preserving, serving PFMs of 
mobile AI services in edge intelligence is a via-
ble solution for caching and executing PFMs on 
edge servers with limited computing resources 
and GPU memory. However, PFMs typically 
consist of billions of parameters that are com-
putation- and memory-intensive for edge serv-
ers during loading and execution. In this 
article, we investigate edge PFM serving prob-
lems for mobile AIGC services of the meta-
verse. First, we introduce the fundamentals of 
PFMs and discuss their characteristic fine- 
tuning and inference methods in edge  intelligence. 
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Then, we propose a novel framework of joint model cach-
ing and inference for managing models and allocating 
resources to satisfy users’ requests efficiently. Further-
more, considering the in-context learning ability of PFMs, 
we propose a new metric to evaluate the freshness and 
relevance between examples in demonstrations and exe-
cuting tasks, namely the Age of Context (AoC). Finally, we 
propose a least-context (LC) algorithm for managing 
cached models at edge servers by balancing the tradeoff 
among latency, energy consumption, and accuracy.

Introduction
Toward AGI in the metaverse [1], [2], PFMs, e.g., GPTs [3], 
with billions of parameters have achieved great success 
in a variety of fields in recent years, effectively demon-
strating emergence abilities in downstream tasks with 
different data modalities [4]. The pretraining approach 
provides reasonable parameter initialization for various 
downstream applications, such as object detection, 
image generation, and text retrieval. Therefore, PFMs, 
including language foundation models (LFMs), visual 
foundation models (VFMs), and multimodal foundation 
models (MFMs), are in the paradigm of transfer learning 
that can generalize to new tasks and domains without 
any task-specific data during pretraining.

The metaverse, as a collective virtual shared space, 
heavily relies on AI services for seamless interactions 
and realistic simulations. AIGC [5] brings life to the meta-
verse by creating content dynamically. Mobile edge com-
puting [6] ensures that these AI services are delivered 
with low latency, while PFMs act as the underlying AI 
models driving these services. Together, they create an 
ecosystem that powers the metaverse. PFMs can empow-
er a multitude of intelligent services for the metaverse, 
such as autonomous driving, DTs, and AIGC for XR. For 
instance, PFMs can facilitate complex driving decisions 
and generate traffic simulations for autonomous driving 
[7]. Moreover, PFMs can help understand and respond 
to human emotions and behaviors during immersive 
human–avatar interactions. For example, based on the 
GPT-3 [3], which is an LFM with 175 billion parameters, 
ChatGPT (https://openai.com/blog/chatgpt/) enables 
long and fluent conversations with humans using world 
knowledge and contextual awareness. In addition to 
serving PFMs at cloud servers, edge servers equipped 
with GPU resources can also support fine-tuning and in-
ference processes of metaverse services, which brings 
the sparks of GPTs to mobile edge networks. Therefore, 
the deployment of PFMs in black enables the delivery of 
localized AI services with low latency.

However, compared to cloud servers, resource-con-
straint edge servers cannot load all PFMs simultaneously 
to satisfy the requests of services in the metaverse. Aim-
ing at provisioning mobile AI services in edge networks, 
existing works primarily focus on offloading AI services 

to cloud servers for remote execution or caching infer-
ence outputs at edge servers for low-latency access [8]. 
On the one hand, offloading PFMs of AI services to cloud 
servers leads to additional latency in the core network, 
additional traffic, and privacy risks for users of AI ser-
vices. On the other hand, caching reasoning results on 
edge servers is no longer efficient for real-time AI service 
delivery. Therefore, direct deployment of PFMs on edge 
servers requires effective and fine-grained resource and 
request management for AI query execution with the 
available computational and energy resources.

Specifically, in contrast to existing works on joint ser-
vice caching and task offloading [9], there are several 
unique difficulties for joint PFM caching and inference 
to balance the tradeoff among accuracy, latency, and en-
ergy consumption in edge intelligence, as follows [6]:

 ■ Dynamic runtime configuration: During the execution of 
PFMs, there are a varying number of requests and per-
formance requirements for downstream tasks, such as 
accuracy and latency [8].

 ■ Equivalent model adaptation: Different PFMs are adap-
tively applied to similar downstream tasks in different 
metaverse services [4]. This presents a challenge for 
edge servers, as cached PFMs can be used inter-
changeably for inference to minimize model miss.

 ■ Continuous in-context learning: PFMs, like GPT-3, can 
continuously learn and adapt to new domains and 
tasks based on interactive demonstrations for person-
alization and customization [10]. The ability of in- 
context learning enables cached PFMs to improve 
their performance during inference without parameter 
updates. This increases the complexity of cache 
replacement and deployment decisions by introducing 
a new tradeoff among inference latency, resource con-
sumption, and accuracy.
To address these issues, this article investigates the 

potential but scarcely studied problems of PFM cach-
ing and inference in black. We first introduce the funda-
mentals of PFMs for serving mobile AIGC services of the 
metaverse, and their fine-tuning and inference methods 
in edge networks. Then, we present a joint model cach-
ing and inference framework in edge networks to serve 
PFMs of mobile AI services of the metaverse. Further-
more, we discuss potential applications and challenges 
of serving PFMs for metaverse services. Finally, we pro-
pose a novel metric to indicate the freshness and rele-
vance of examples in demonstrations and current tasks, 
namely the AoC, to balance the tradeoff between infer-
ence latency, resource consumption, and accuracy. The 
AoC follows the nonincreasing utility function that af-
fects the effective examples in context from the entirety 
of demonstrations resulting from historical interactions. 
Based on this metric and the number of examples in 
context, we propose an LC algorithm to manage PFMs 
at edge servers. Experimental results demonstrate that 
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the proposed LC algorithm can reduce the total system 
cost by improving the accuracy of edge-cached PFMs, re-
ducing offloading latency, and utilizing the caching and 
computing resources of edge servers efficiently.

Serving PFMs in Edge Intelligence for the Metaverse

Fundamentals of PFMs
PFMs belong to the transfer learning paradigm that is 
used to initialize parameters for downstream tasks. PFMs 
[4]—such as BERT, GPT-3, Stable Diffusion, CLIP, and Chat-
GPT—leverage large-scale datasets and pretraining tech-
niques to provide reasonable parameter initialization for 
various AI services [4]. As shown in Figure 1, there are pri-
marily three types of PFMs: i.e., LFMs, VFMs, and MFMs.

LFMs
LFMs, also known as large-scale language models, are 
PFMs designed to understand, process, and generate 
human languages. LFMs are trained on massive amounts 
of text data and can develop a broad understanding of 
language, including grammar, syntax, semantics, and 
even some aspects of common knowledge. Two exam-
ples of LFMs are GPT and ChatGPT, which have demon-
strated impressive abilities in natural language 
understanding and generation. GPT-3 can enable conver-
sations with humans based on world knowledge and 
contextual awareness, while ChatGPT is designed to 
generate human-like responses in a chatbot setting. 
LFMs employ self-attention mechanisms to better 
understand the context and relationships between 
words in a given text and can be adopted in various 
downstream tasks, such as sentiment analysis, machine 

translation, text summarization, question answering, and 
text generation.

VFMs
VFMs specialize in understanding and generating com-
plex images and videos, which are designed to process 
visual information and generate target outputs. VFMs 
have shown great potential in advancing the field of 
computer vision, but they are computing-intensive, par-
ticularly during the inference stage. For example, the 
U-Net in Stable Diffusion [11] is a generative model that 
can produce high-quality images by iteratively refining a 
noise vector.

MFMs
MFMs can process multiple types of data—such as text, 
images, and audio—simultaneously. They are trained on 
datasets containing various data modalities to learn the 
relationships, patterns, and structures within and across 
different data types. For instance, CLIP is one of the 
MFMs that classify images based on textual descriptions 
[12], which uses contrastive learning to train on text and 
image pairs, distinguishing between positive and nega-
tive pairs. During inference, the model takes in an image 
and a textual description and outputs a score represent-
ing the likelihood that the image matches the descrip-
tion, calculated through a dot product.

Fine-Tuning of PFMs
Fine-tuning refers to the process of improving the perfor-
mance of PFMs to a specific downstream task by updat-
ing its parameters. Since PFMs usually consist of billions 
of parameters, the fine-tuning process is computationally 
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Figure 1 Categories of PFMs and their characteristic fine-tuning and inference methods. (a)–(c) The workflows of LFMs, VFMs, and MFMs. 
(d)–(f) The illustration of parameter-efficient fine-tuning. (g) An example of in-context learning.
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intensive. Therefore, parameter-efficient fine-tuning of 
PFMs is utilized for achieving comparable performance 
to traditional fine-tuning while reducing resource con-
sumption [6]. As shown in Figure 1, parameter-efficient 
fine-tuning can be categorized into three types, including 
addition-based, specification-based, and reparameteriza-
tion-based methods, as follows [13]:

 ■ Addition-based methods involve adding a small num-
ber of parameters to the PFMs and fine-tuning them. 
These methods, which include scalar addition, vector 
addition, and layer addition, add parameters to the 
PFMs that are specific to the fine-tuning data. For 
instance, such parameters include additional layers or 
heads after the output layer of PFMs.

 ■ Specification-based methods modify the architecture of 
PFMs to better suit downstream tasks. These methods, 
such as layer removal, layer replacement, and layer 
scaling, adjust the PFMs’ parameters and architecture 
to improve performance.

 ■ Reparameterization-based methods reduce the number 
of tunable parameters in PFMs by reparameterizing 
their parameters. These methods, such as low-rank 
factorization, matrix decomposition, and subspace 
projection, reparameterize the PFMs to reduce the 
number of tunable parameters while preserving the 
PFMs’ expressiveness.
In edge networks, due to resource constraints, fine-

tuning and inference methods prioritize efficiency. Tech-
niques like early stopping or using a subset of data might 
be adopted [6]. In cloud servers, with abundant resourc-
es, the focus is on achieving the highest accuracy, even 
if it requires more extensive fine-tuning and larger data-
sets. Depending on applications such as the metaverse, 
the fine-tuning methods can be selected adaptively de-
pending on the resource and performance requirements.

Inference of PFMs
Different from fine-tuning that updates the parameters of 
PFMs, the inference is to make predictions on input 

service requests without changing the parameters. 
Instead of injecting or updating neural modules in AI 
models, PFMs can provide accurate output for the task 
that does not exist in the training, fine-tuning, and infer-
ence from instructions and demonstrations from interac-
tion without parameter updates. As shown in Figure 2, 
there are three scenarios during the inference of PFMs 
[3], including zero-shot, one-shot, and few-shot learning.

First, zero-shot learning refers to the PFMs that are 
evaluated on a task for which it has not been explicit-
ly trained. Then, one-shot learning indicates the PFMs 
need to perform the inference for a new task based on 
only one example of that task. Finally, few-shot learning 
implies that a few demonstrations are provided before 
the inference of the new task. Based on the few-shot 
learning, the PFMs can perform a metagradient in the 
self-attention layer for adaptation to the new task. Dif-
ferent from fine-tuning, few-shot learning or in-context 
learning can perform metagradient in the attention 
layers during inference without changing its model pa-
rameters. Therefore, few-shot learning can improve the 
model performance based on examples in instructions 
and/or demonstrations. However, extra computation 
consumption and latency are required by processing the 
examples that depend on the size of the context window 
in PFMs. These learning techniques can be applied in 
different applications where the model is expected to 
perform inference on classes that have never been seen 
during training (i.e., zero-shot learning), and is provided 
with just one or very few examples of a new class (i.e., 
one-shot learning), or is provided with a small dataset 
of a new class and is expected to generalize well on that 
class (i.e., few-shot learning).

Joint Model Caching and Inference Framework
To serve PFMs in edge intelligence for the metaverse, we 
developed a framework of joint model caching and infer-
ence to satisfy service-level objectives by utilizing cach-
ing, computing, and communication resources in black. 
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Figure 2 An illustration of the performance of zero-, one-, and few-shot accuracy under different model caching settings [3].
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Unlike content caching in content delivery networks 
(CDNs), such as text, images, and videos, the cached 
models have different cache structures. The cache struc-
ture in CDNs is static, with fixed cache sizes and inde-
pendent of computation resources [9].

Model Caching Configuration
The configuration of each cached PFM consists of the fol-
lowing information:

 ■ Frequency of use for PFMs refers to the rate at which a 
particular model is executed for services in the meta-
verse. It can be measured in terms of the number of 
requests per second, the total time spent on process-
ing each request, and other metrics that measure how 
often a PFM is being utilized.

 ■ Model size indicates the number of parameters, 
weights, and other necessary components of PFMs, 
which affects the latency and energy cost of edge serv-
ers for loading and executing PFMs [8].

 ■ Runtime GPU memory measures how much random 
access memory (RAM) or video RAM is needed by 
loading the PFM to execute on a given edge/cloud 
server with its current configuration settings. The run-
time GPU memory not only depends on the model 
sizes but also the runtime precision configuration of 
the precision. Therefore, there is a tradeoff between 
model precision and GPU memory usage.

 ■ Model speed of PFMs refers to the time complexity or 
speed at which a particular model can process infer-
ence requests. It is usually measured in terms of in -
ference times, i.e., how long it takes for a PFM to 
complete its task given certain inputs and parameters. 
Model speed also has implications on accuracy, 
as faster processing often leads to lower accuracy 
due to less computation power being available for 
each request.

 ■ Model accuracy of PFMs refers to the degree of correct-
ness or precision with which a model can predict out-
comes. For PFMs, model accuracy has implications on 
speed as higher accuracy often requires more compu-
tation power for each request, leading to longer pro-
cessing times overall.

 ■ Number of examples in context: Cached PFMs can accu-
mulate instructions and demonstrations while process-
ing inference requests. The number of examples in 
context represents the number of related examples in 
demonstrations the PFMs have gathered. Due to the in-
context learning ability of PFMs, the number of examples 
in context can also impact the accuracy of the models.

Model Caching and Eviction
Since the cache structure of PFMs is more complicated 
than traditional web/content caching, the model caching 
and eviction are also more intractable. Model caching 
and eviction mainly consist of two types of operations, 

i.e., the passive and active operation as well as binary 
and partial operation.

 ■ Passive and active caching and eviction: Passive cach-
ing is a reactive approach where models are evicted 
from the cache only when there is not enough GPU 
memory to load a requested model. Additionally, 
active caching is a proactive approach where models 
are evicted and loaded into GPU memory based on 
predictions of future demand. Active caching can be 
more efficient than passive caching [8], but requires 
more sophisticated prediction algorithms and can be 
less responsive to sudden changes in demand.

 ■ Binary and partial caching and eviction: Binary caching 
involves loading the entire model into GPU memory 
before starting inference. In contrast, with partial 
caching, only a portion of the model is loaded into 
memory, and inference can begin using that portion. 
This approach provides a lower level of inference but 
can be useful when memory resources are limited. 
When additional memory becomes available, the 
remaining portions of the model can be loaded into 
memory, improving inference quality.

Collaborative Mobile Edge–Cloud Caching  
and Inference
As shown in Figure 3, collaborative resource allocation 
among heterogeneous mobile edge–cloud infrastruc-
tures is critical in paving the way toward AGI at the edge.

Mobile Caching and Inference
Pedestrians and vehicles can process the services to 
cache and execute PFMs with their local computing 
resources on mobile devices or devices nearby. This 
solution can be useful in situations where Internet con-
nectivity is limited or unreliable.

Edge Caching and Inference
When the local resources of mobile devices and vehicles 
are not enough for executing PFMs, offloading these ser-
vices to edge servers via radio access networks becomes 
an alternative solution for enabling AI services on edge 
servers with limited resources. However, due to the limit-
ed GPU resources of edge servers, they can only cache 
several PFMs to react to the user’s request. If the edge 
server does not cache the model requested by the user, it 
can migrate the user’s request to the cloud for execution 
via core networks or load the model and then execute the 
model requested by the user. This approach can improve 

Pedestrians and vehicles can Process the 
services to cache and execute PFMs with 
their local coMPuting resources on Mobile 
devices or devices nearby.
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response time and reduce the load on the cloud infra-
structure, making it more scalable and cost-effective.

Cloud Caching and Inference
Cloud caching and inference solutions involve the utiliza-
tion of powerful cloud servers to provide almost all PFMs 
for serving users’ requests. However, offloading services 
to cloud servers incurs additional core network latency, 
which might cause congestion in core networks if there 
are too many service requests.

Deploying PFMs in mobile edge networks involves op-
timizing the models to meet the constraints of edge serv-
ers. Techniques like model pruning, quantization, and 
knowledge distillation can be used to reduce the model’s 
size without significantly compromising performance. 
Once optimized, the models can be deployed on edge 
servers, close to the end-users, ensuring low latency re-
sponses.

Model Caching and Eviction Policy
To design the model caching and eviction policy, three 
issues should be considered carefully:

 ■ Reducing model miss rate: Actively preloading models 
and optimizing GPU utilization through dynamic 
scheduling of AI models can minimize latency and 
model miss rates, streamlining memory use and 
request handling.

 ■ Addressing model misses: Handling model misses at 
edge servers involves offloading service requests to 
cloud servers, incurring extra core network latency, or 
loading missing models, leading to switching costs, 

such as additional latency and energy consumption for 
allocating resources as well as hardware wear-and-tear.

 ■ Timing model cache decisions: Making cache decisions 
when the model is first loaded and upon receiving new 
requests enables dynamic adjustments based on cur-
rent conditions and usage patterns, promoting effi-
cient caching and lower latency responses.
Therefore, an effective and efficient caching algorithm 

in this framework should address these three questions 
properly. Then, we can summarize two remarks for serv-
ing PFMs of mobile AI services as follows:

 ■ Remark 1: Different from traditional edge content cach-
ing in CDNs, whose cache structures are static and 
independent from computation, the cache structures 
can be dynamic based on the service runtime con-
figuration, such as batch size. This makes the cache 
loading and eviction of AI services more complex, 
which requires not only the consideration of user pref-
erences but also the prediction of the intensity of 
future service requests.

 ■ Remark 2: Unlike traditional computation and task 
offloading in mobile edge networks, where different 
computation tasks are independent, the inference 
tasks of PFM-related services are in-contextual. There-
fore, before performing these inference tasks, the AIGC 
model needs to be preloaded into the edge servers’ 
GPU memory, which can cache a limited number of 
models to provide AI services. Furthermore, as more 
in-context examples are collected during the interac-
tion, the performance of cached services can be fur-
ther improved [3].

Potential Applications  
and Challenges

Applications

Autonomous Driving
Autonomous driving in the meta-
verse necessitates AI services, such 
as traffic and driving simulation, 
which are dependent on compu-
tationally intensive PFMs [7]. To 
enable this on resource-limited edge 
servers, model caching and effi-
cient inference scheduling are 
essential. In autonomous driving, 
active model switching can enhance 
traffic efficiency and safety by 
adapting to changing road condi-
tions or traffic patterns.

DTs
DTs, virtual representations of physi-
cal objects or systems, utilize PFMs 
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Figure 3 An illustration of the collaborative mobile edge-cloud computing architecture for 
serving PFMs for the metaverse.
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for AI capabilities like predictive maintenance, anomaly 
detection, and optimization. While PFMs have shown 
great success in natural language processing applica-
tions, their vast parameter space and adaptability allow 
them to model complex systems, a feature that can be 
leveraged in DTs. DTs, being virtual replicas of physical 
entities, can benefit from PFMs’ ability to predict and 
simulate physical systems under various scenarios.

Semantic Communication
Semantic communication, a novel paradigm that employs 
semantic representations, can transform wireless commu-
nication systems’ design and operation. Its device-to-
device pattern enables efficient and secure communication 
without centralized cloud infrastructure. However, this 
pattern necessitates advanced model caching algorithms 
to manage edge servers’ limited resources while ensuring 
cached models’ quality and consistency.

AIGC for XR
AIGC is generated by AI methods that utilize PFMs to cre-
ate content that resembles human-produced content [6]. 
To provide AI-generated XR services, multiple PFMs are 
integrated to handle different types of data and produce 
relevant and meaningful 3D immersive content. The 
model caching algorithm ensures that the PFMs work 
smoothly together, maintaining seamless and immersive 
experiences for metaverse users.

Challenges

Dynamic User Service Requests 
and Objectives
Joint caching and inference servic-
es at edge servers face challenges 
due to dynamic user requests and 
objectives, such as service latency 
and accuracy. To tackle these chal-
lenges, edge servers must efficient-
ly manage limited resources, ensure 
cached model quality and consis-
tency, and design joint caching 
and inference policies to satisfy 
users’ objectives, considering fac-
tors like model size, frequency of 
use, and accuracy.

Heterogeneous Model 
Configuration and  
Computing Resources
Heterogeneous model configuration 
and computing resources present 
challenges in proposing joint model 
caching and inference algorithms. In 
detail, PFMs’ structure and available 

edge servers result in varying GPU memory and compute 
resource requirements, which is typically formulated as an 
NP-hard mixed-integer programming problem, complicat-
ing the optimization of caching and inference policies. 
Moreover, distinct model architectures and computation 
requirements add complexity.

Context-Aware Caching and Inference Algorithms
Codesigning caching and inference algorithms considering 
contextual information in mobile AI services at edge serv-
ers is challenging due to the indirect correlation between 
model caching and inference duration. Joint policies need 
to optimize resource allocation according to each model 
and inference requests’ specific requirements while consid-
ering user objectives, model size, usage frequency, and 
accuracy. By codesigning caching and inference algorithms 
considering the number of examples in context, as shown 
in Figure 4, edge servers can utilize extra computation 
resources to improve the accuracy of PFMs.
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when the local resources oF Mobile devices 
and vehicles are not enough For executing 
PFMs, oFFloading these services to edge 
servers via radio access networks becoMes 
an alternative solution For enabling  
ai services on edge servers with  
liMited resources.
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Security and Privacy
PFM services encounter various security and privacy 
challenges. Data leakage can result from disclosing infor-
mation about PFM’s training data, while adversarial 
attacks can cause incorrect outputs. Moreover, PFMs 
might perpetuate biases inherent in the training data, 
which can have implications for privacy and fairness.

Use Case of Serving GPTs in Edge Intelligence  
for the Metaverse

Mobile AIGC Service Serving Model
We consider an intelligent transportation system in the 
metaverse system with a remote cloud center, an edge 
server, and multiple vehicles, serving different meta-
verse services, including autonomous driving, DTs, and 
AIGC-based XR, based on various PFMs. For instance, 
pedestrians and passengers can immerse themselves in 
the metaverse with XR by creating and interacting with 
AI-generated XR content synthesized by PFMs. When 

users do not have enough resources on their devices 
and onboard units for executing PFMs, they need to 
offload requests to edge servers or cloud servers for 
remote execution. Usually, an AIGC service requires mul-
tiple PFMs to work in synergy to satisfy the user’s 
requirements in the metaverse. For example, the Stable 
Diffusion services consist of three types of PFMs [11], 
including a variational autoencoder that compresses 
images into a smaller dimensional latent space, a pre-
trained CLIP ViT-L/14 for conditioning, and a U-Net block 
that denoises the output from forward diffusion back-
ward to obtain a latent representation.

The detailed parameters and performance of PFMs that 
need to be considered in intelligent transportation systems 
of the metaverse are listed in Table 1, including GPT3-13B 
[3], GPT3-175B [3], Uniformer-S [14], Uniformer-B [14], CLIP-
ViT-L/14 [12], and CLIP-ViT-H/14 [12]. As we can observe, 
only LFMs are large enough to have in-context learning 
ability, while VFMs and MFMs are relatively small. As 
shown in Figure 4 and Table 1, PFMs utilize metagradients 

table 1 Detailed parameters and performance of PFMs.

Model Performance Score 

Models Downstream Tasks 
Model  
Size (M) GFLOPs K Zero-Shot One-Shot Few-Shot

LFMs

GPT3-13B [3] 

Translation

12,850 26.54

64 15.45 26.12 30.83

Basic arithmetic 50 3.79 15.98 14.34

SuperGLUE 32 54.4 64.3 66.9

GPT-3-175B [3] 

Translation

174,600 354.03

64 22.03 29.63 33.77

Basic arithmetic 50 25.99 40.71 49.55

SuperGLUE 32 58.2 68.9 73.2

VFMs

UniFormer-S [14] 

Image classification 22 3.6

—

82.9 — —

Video classification 22 167 82.8 — —

Object detection and 
instance segmentation

41 269 45.6 — —

Semantic segmentation 25 247 46.6 — —

Pose estimation 25 4.7 74 — —

UniFormer-B [14] 

Image classification 50 8.3

—

83.9 — —

Video classification 22 389 84 — —

Object detection and 
instance segmentation

69 399 47.4 — —

Semantic segmentation 54 471 48 — —

Pose estimation 54 9.2 75 — —

MFMs

CLIP-ViT-L/14 [12] 

Classification

428 175.5 —

75.20 — —

Image retrieval 71.08 — —

Text retrieval 84 — —

CLIP-ViT-H/14 [12] 

Classification

986 381.9 —

77.97 — —

Image retrieval 73.43 — —

Text retrieval 86.04 — —

K: number of examples in context.
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to learn from context and improve performance as the user 
interacts with them. Then, the few-shot accuracy can be fit 
using the data in Table 1. Therefore, contextual informa-
tion has a corresponding impact on the quality of service 
provided by AIGC, such as the accuracy of PFMs. Although 
the introduction of context in PFMs can improve the model 
performance, the size of the context window also affects 
the resource consumption and latency during the infer-
ence of the model. As shown in Figure 2, the freshness and 
relevance of the examples in demonstrations decrease 
over time until it is no longer pertinent to the current gen-
eration task, which is rarely measured in previous work.

AoC and LC Algorithm
Therefore, we propose the AoC for evaluating the rele-
vance and freshness of examples in demonstrations that 
affect the quality of services of PFMs in currently execut-
ing downstream tasks. During inference of PFMs, the 
questions and answers can be recorded in the context 
windows as examples in demonstrations and instructions. 
These examples can be leveraged to improve the accura-
cy of PFMs as they can perform metagradient to fit these 
examples. However, the metagradient might have positive 
or negative effects on the accuracy, which depends on 
their quality, relevance, and timeliness. Similar to the age 
of information [8], the AoC indicates the relevance and 
timeliness of historical contextual examples in demon-
strations to the cached PFM and the current inference 
task. As shown in Figure 2, the AoC follows the nonin-
creasing age utility function, factoring with a vanishing 
coefficient of context. Based on the AoC, the number of 
examples in content can be calculated as the weighted 
sum of the number of examples in demonstrations. Then, 
the accuracy of PFMs can be obtained by some function 
with respect to the number of examples in context as the 
functions demonstrated in Figure 4.

Finally, we propose the LC algorithm, based on the 
AoC, to manage PFMs for mobile AIGC services efficient-
ly. The LC algorithm tracks the number of examples 
in context, calculating them and removing the cached 
PFM with the least contexts, i.e., number of examples 
in context, when GPU memory is needed for loading a 
new PFM. This approach is effective for large numbers 
of PFMs on edge servers with limited GPU memory, pri-
oritizing the removal of the least-relevant PFM for the 
current inference task. Consequently, the accuracy of 
PFMs of mobile AIGC services is improved by leveraging 
more contextual information during inference.

In the experiment, we compare the proposed LC algo-
rithm with random, cloud-only, first-in-first-out (FIFO), 
and least-frequently used (LFU) baselines. With the ob-
jective of minimizing service latency and accuracy loss, 
the system cost is calculated as the sum of the switching 
cost, the total accuracy cost, the edge inference latency, 
the edge offloading latency, and the cloud computing 

cost. As listed in Table 2, the performance of the pro-
posed LC algorithm can achieve minimum total system 
cost while maintaining a high edge execution ratio, which 
indicates that most of the services are executed at edge 
servers. Especially, compared with the LFU algorithm, 
the LC algorithm can achieve a lower average service ac-
curacy cost by efficiently leveraging the in-context learn-
ing ability of PFMs and contextual information.

Conclusions
In the article, we have studied edge caching and infer-
ence for serving PFMs in edge intelligence for the meta-
verse. We have proposed a joint model caching and 
inference framework for bringing the sparks of GPTs to 
mobile edge networks, toward achieving AGI. Specifical-
ly, we have proposed a new metric for evaluating the 
relevance and freshness of contextual examples and 
currently executing tasks. Furthermore, we have pro-
posed the LC algorithm for cache replacement to 
improve the utilization of historical contextual informa-
tion and thus to increase the accuracy of mobile AIGC 
services. The experimental results demonstrate that 
the LC algorithm can reduce system costs and improve 
the execution ratio at edge servers. In future work, we 
will extend this framework to a more general version 
for the evolving PFM services, such as the mixture 
-of-expert inference structure of GPT4.
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