
DECEMBER 2023 | IEEE VEHICULAR TECHNOLOGY MAGAZINE 1556-6072/23©2023IEEE ||| 35

iming at achieving artificial general
intelligence (AGI) for the metaverse,
pretrained foundation models (PFMs),
e.g., generative pretrained transform-

ers (GPTs), can effectively provide various arti-
ficial intelligence (AI) services, such as
autonomous driving, digital twins (DTs), and
AI-generated content (AIGC) for extended reali-
ty (XR). With the advantages of low latency
and privacy-preserving, serving PFMs of
mobile AI services in edge intelligence is a via-
ble solution for caching and executing PFMs on
edge servers with limited computing resources
and GPU memory. However, PFMs typically
consist of billions of parameters that are com-
putation- and memory-intensive for edge serv-
ers during loading and execution. In this
article, we investigate edge PFM serving prob-
lems for mobile AIGC services of the meta-
verse. First, we introduce the fundamentals of
PFMs and discuss their characteristic fine-
tuning and inference methods in edge intelligence.

Digital Object Identifier 10.1109/MVT.2023.3323757

Date of current version: 3 November 2023

SPARKS OF GENERATIVE
PRETRAINED TRANSFORMERS
IN EDGE INTELLIGENCE
FOR THE METAVERSE

Caching and Inference for Mobile Artificial
Intelligence-Generated Content Services

Minrui Xu , Dusit Niyato ,
 Hongliang Zhang , Jiawen Kang ,
Zehui Xiong , Shiwen Mao ,
and Zhu Han

A

©SHUTTERSTOCK.COM/SABURA

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8203-8146
https://orcid.org/0000-0002-7442-7416
https://orcid.org/0000-0003-3393-8612
https://orcid.org/0000-0002-8218-3490
https://orcid.org/0000-0002-4440-941X
https://orcid.org/0000-0002-7052-0007
https://orcid.org/0000-0002-6606-5822

36 ||| IEEE VEHICULAR TECHNOLOGY MAGAZINE | DECEMBER 2023

Then, we propose a novel framework of joint model cach-
ing and inference for managing models and allocating
resources to satisfy users’ requests efficiently. Further-
more, considering the in-context learning ability of PFMs,
we propose a new metric to evaluate the freshness and
relevance between examples in demonstrations and exe-
cuting tasks, namely the Age of Context (AoC). Finally, we
propose a least-context (LC) algorithm for managing
cached models at edge servers by balancing the tradeoff
among latency, energy consumption, and accuracy.

Introduction
Toward AGI in the metaverse [1], [2], PFMs, e.g., GPTs [3],
with billions of parameters have achieved great success
in a variety of fields in recent years, effectively demon-
strating emergence abilities in downstream tasks with
different data modalities [4]. The pretraining approach
provides reasonable parameter initialization for various
downstream applications, such as object detection,
image generation, and text retrieval. Therefore, PFMs,
including language foundation models (LFMs), visual
foundation models (VFMs), and multimodal foundation
models (MFMs), are in the paradigm of transfer learning
that can generalize to new tasks and domains without
any task-specific data during pretraining.

The metaverse, as a collective virtual shared space,
heavily relies on AI services for seamless interactions
and realistic simulations. AIGC [5] brings life to the meta-
verse by creating content dynamically. Mobile edge com-
puting [6] ensures that these AI services are delivered
with low latency, while PFMs act as the underlying AI
models driving these services. Together, they create an
ecosystem that powers the metaverse. PFMs can empow-
er a multitude of intelligent services for the metaverse,
such as autonomous driving, DTs, and AIGC for XR. For
instance, PFMs can facilitate complex driving decisions
and generate traffic simulations for autonomous driving
[7]. Moreover, PFMs can help understand and respond
to human emotions and behaviors during immersive
human–avatar interactions. For example, based on the
GPT-3 [3], which is an LFM with 175 billion parameters,
ChatGPT (https://openai.com/blog/chatgpt/) enables
long and fluent conversations with humans using world
knowledge and contextual awareness. In addition to
serving PFMs at cloud servers, edge servers equipped
with GPU resources can also support fine-tuning and in-
ference processes of metaverse services, which brings
the sparks of GPTs to mobile edge networks. Therefore,
the deployment of PFMs in black enables the delivery of
localized AI services with low latency.

However, compared to cloud servers, resource-con-
straint edge servers cannot load all PFMs simultaneously
to satisfy the requests of services in the metaverse. Aim-
ing at provisioning mobile AI services in edge networks,
existing works primarily focus on offloading AI services

to cloud servers for remote execution or caching infer-
ence outputs at edge servers for low-latency access [8].
On the one hand, offloading PFMs of AI services to cloud
servers leads to additional latency in the core network,
additional traffic, and privacy risks for users of AI ser-
vices. On the other hand, caching reasoning results on
edge servers is no longer efficient for real-time AI service
delivery. Therefore, direct deployment of PFMs on edge
servers requires effective and fine-grained resource and
request management for AI query execution with the
available computational and energy resources.

Specifically, in contrast to existing works on joint ser-
vice caching and task offloading [9], there are several
unique difficulties for joint PFM caching and inference
to balance the tradeoff among accuracy, latency, and en-
ergy consumption in edge intelligence, as follows [6]:

 ■ Dynamic runtime configuration: During the execution of
PFMs, there are a varying number of requests and per-
formance requirements for downstream tasks, such as
accuracy and latency [8].

 ■ Equivalent model adaptation: Different PFMs are adap-
tively applied to similar downstream tasks in different
metaverse services [4]. This presents a challenge for
edge servers, as cached PFMs can be used inter-
changeably for inference to minimize model miss.

 ■ Continuous in-context learning: PFMs, like GPT-3, can
continuously learn and adapt to new domains and
tasks based on interactive demonstrations for person-
alization and customization [10]. The ability of in-
context learning enables cached PFMs to improve
their performance during inference without parameter
updates. This increases the complexity of cache
replacement and deployment decisions by introducing
a new tradeoff among inference latency, resource con-
sumption, and accuracy.
To address these issues, this article investigates the

potential but scarcely studied problems of PFM cach-
ing and inference in black. We first introduce the funda-
mentals of PFMs for serving mobile AIGC services of the
metaverse, and their fine-tuning and inference methods
in edge networks. Then, we present a joint model cach-
ing and inference framework in edge networks to serve
PFMs of mobile AI services of the metaverse. Further-
more, we discuss potential applications and challenges
of serving PFMs for metaverse services. Finally, we pro-
pose a novel metric to indicate the freshness and rele-
vance of examples in demonstrations and current tasks,
namely the AoC, to balance the tradeoff between infer-
ence latency, resource consumption, and accuracy. The
AoC follows the nonincreasing utility function that af-
fects the effective examples in context from the entirety
of demonstrations resulting from historical interactions.
Based on this metric and the number of examples in
context, we propose an LC algorithm to manage PFMs
at edge servers. Experimental results demonstrate that

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

https://openai.com/blog/chatgpt/

DECEMBER 2023 | IEEE VEHICULAR TECHNOLOGY MAGAZINE ||| 37

the proposed LC algorithm can reduce the total system
cost by improving the accuracy of edge-cached PFMs, re-
ducing offloading latency, and utilizing the caching and
computing resources of edge servers efficiently.

Serving PFMs in Edge Intelligence for the Metaverse

Fundamentals of PFMs
PFMs belong to the transfer learning paradigm that is
used to initialize parameters for downstream tasks. PFMs
[4]—such as BERT, GPT-3, Stable Diffusion, CLIP, and Chat-
GPT—leverage large-scale datasets and pretraining tech-
niques to provide reasonable parameter initialization for
various AI services [4]. As shown in Figure 1, there are pri-
marily three types of PFMs: i.e., LFMs, VFMs, and MFMs.

LFMs
LFMs, also known as large-scale language models, are
PFMs designed to understand, process, and generate
human languages. LFMs are trained on massive amounts
of text data and can develop a broad understanding of
language, including grammar, syntax, semantics, and
even some aspects of common knowledge. Two exam-
ples of LFMs are GPT and ChatGPT, which have demon-
strated impressive abilities in natural language
understanding and generation. GPT-3 can enable conver-
sations with humans based on world knowledge and
contextual awareness, while ChatGPT is designed to
generate human-like responses in a chatbot setting.
LFMs employ self-attention mechanisms to better
understand the context and relationships between
words in a given text and can be adopted in various
downstream tasks, such as sentiment analysis, machine

translation, text summarization, question answering, and
text generation.

VFMs
VFMs specialize in understanding and generating com-
plex images and videos, which are designed to process
visual information and generate target outputs. VFMs
have shown great potential in advancing the field of
computer vision, but they are computing-intensive, par-
ticularly during the inference stage. For example, the
U-Net in Stable Diffusion [11] is a generative model that
can produce high-quality images by iteratively refining a
noise vector.

MFMs
MFMs can process multiple types of data—such as text,
images, and audio—simultaneously. They are trained on
datasets containing various data modalities to learn the
relationships, patterns, and structures within and across
different data types. For instance, CLIP is one of the
MFMs that classify images based on textual descriptions
[12], which uses contrastive learning to train on text and
image pairs, distinguishing between positive and nega-
tive pairs. During inference, the model takes in an image
and a textual description and outputs a score represent-
ing the likelihood that the image matches the descrip-
tion, calculated through a dot product.

Fine-Tuning of PFMs
Fine-tuning refers to the process of improving the perfor-
mance of PFMs to a specific downstream task by updat-
ing its parameters. Since PFMs usually consist of billions
of parameters, the fine-tuning process is computationally

(g) In-Context Learning(d) Addition Fine-Tuning (e) Specification Fine-Tuning (f) Reparameterization
Fine-Tuning

Transformer

Feed-Forward Networks

Self-Attention

(a) LFM (b) VFM (c) MFM

Sentence

Answer

LFM

Prompts

Decodes

e.g., Q: How to
cook a pumpkin

(in 10 words)

A: Bake, boil, or
microwave pumpkin
until soft. Scoop out
flesh.

Image/Video

Answer

LFM

Prompts

Decodes

Sentence

Answer

MFM

Prompts

Decodes

e.g., Q:

A: Pumpkin

e.g., Q: Please
draw a photo of a

green pumpkin

A:

(Q1, A1) (Q2, A2)

Forward
Computation

Demonstration Examples in Context

Meta
Gradients

(Q, ?)
Current Example

N
N

s

N
N

s

N
N

s

N
N

s

N
N

s

NNs: Neural Networks

: Tunable Parameters : Frozen Parameters

N
N

s

N
N

s

N
N

s

N
N

s

N
N

s

N
N

s

N
N

s

N
N

s

N
N

s

N
N

s

Figure 1 Categories of PFMs and their characteristic fine-tuning and inference methods. (a)–(c) The workflows of LFMs, VFMs, and MFMs.
(d)–(f) The illustration of parameter-efficient fine-tuning. (g) An example of in-context learning.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

38 ||| IEEE VEHICULAR TECHNOLOGY MAGAZINE | DECEMBER 2023

intensive. Therefore, parameter-efficient fine-tuning of
PFMs is utilized for achieving comparable performance
to traditional fine-tuning while reducing resource con-
sumption [6]. As shown in Figure 1, parameter-efficient
fine-tuning can be categorized into three types, including
addition-based, specification-based, and reparameteriza-
tion-based methods, as follows [13]:

 ■ Addition-based methods involve adding a small num-
ber of parameters to the PFMs and fine-tuning them.
These methods, which include scalar addition, vector
addition, and layer addition, add parameters to the
PFMs that are specific to the fine-tuning data. For
instance, such parameters include additional layers or
heads after the output layer of PFMs.

 ■ Specification-based methods modify the architecture of
PFMs to better suit downstream tasks. These methods,
such as layer removal, layer replacement, and layer
scaling, adjust the PFMs’ parameters and architecture
to improve performance.

 ■ Reparameterization-based methods reduce the number
of tunable parameters in PFMs by reparameterizing
their parameters. These methods, such as low-rank
factorization, matrix decomposition, and subspace
projection, reparameterize the PFMs to reduce the
number of tunable parameters while preserving the
PFMs’ expressiveness.
In edge networks, due to resource constraints, fine-

tuning and inference methods prioritize efficiency. Tech-
niques like early stopping or using a subset of data might
be adopted [6]. In cloud servers, with abundant resourc-
es, the focus is on achieving the highest accuracy, even
if it requires more extensive fine-tuning and larger data-
sets. Depending on applications such as the metaverse,
the fine-tuning methods can be selected adaptively de-
pending on the resource and performance requirements.

Inference of PFMs
Different from fine-tuning that updates the parameters of
PFMs, the inference is to make predictions on input

service requests without changing the parameters.
Instead of injecting or updating neural modules in AI
models, PFMs can provide accurate output for the task
that does not exist in the training, fine-tuning, and infer-
ence from instructions and demonstrations from interac-
tion without parameter updates. As shown in Figure 2,
there are three scenarios during the inference of PFMs
[3], including zero-shot, one-shot, and few-shot learning.

First, zero-shot learning refers to the PFMs that are
evaluated on a task for which it has not been explicit-
ly trained. Then, one-shot learning indicates the PFMs
need to perform the inference for a new task based on
only one example of that task. Finally, few-shot learning
implies that a few demonstrations are provided before
the inference of the new task. Based on the few-shot
learning, the PFMs can perform a metagradient in the
self-attention layer for adaptation to the new task. Dif-
ferent from fine-tuning, few-shot learning or in-context
learning can perform metagradient in the attention
layers during inference without changing its model pa-
rameters. Therefore, few-shot learning can improve the
model performance based on examples in instructions
and/or demonstrations. However, extra computation
consumption and latency are required by processing the
examples that depend on the size of the context window
in PFMs. These learning techniques can be applied in
different applications where the model is expected to
perform inference on classes that have never been seen
during training (i.e., zero-shot learning), and is provided
with just one or very few examples of a new class (i.e.,
one-shot learning), or is provided with a small dataset
of a new class and is expected to generalize well on that
class (i.e., few-shot learning).

Joint Model Caching and Inference Framework
To serve PFMs in edge intelligence for the metaverse, we
developed a framework of joint model caching and infer-
ence to satisfy service-level objectives by utilizing cach-
ing, computing, and communication resources in black.

: GPU Memory
: Unloaded Model
: Loaded Model
: Fine-Tuned Model

Time

Accuracy

AoC

Time

: Example Generate
: Demonstration Update

K
KNo Model Caching and

Zero-Shot Learning

Short-Term Model Caching and
One-Shot Learning

Long-Term Model Caching and Few-Shot Learning
a2

a1

a0

c0 c1 c2 c3 c4e2 e3 e4

∆t0 ∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6 ∆t7 ∆t8

l 2 l 3 l4 f 4e0 e1

Figure 2 An illustration of the performance of zero-, one-, and few-shot accuracy under different model caching settings [3].

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

DECEMBER 2023 | IEEE VEHICULAR TECHNOLOGY MAGAZINE ||| 39

Unlike content caching in content delivery networks
(CDNs), such as text, images, and videos, the cached
models have different cache structures. The cache struc-
ture in CDNs is static, with fixed cache sizes and inde-
pendent of computation resources [9].

Model Caching Configuration
The configuration of each cached PFM consists of the fol-
lowing information:

 ■ Frequency of use for PFMs refers to the rate at which a
particular model is executed for services in the meta-
verse. It can be measured in terms of the number of
requests per second, the total time spent on process-
ing each request, and other metrics that measure how
often a PFM is being utilized.

 ■ Model size indicates the number of parameters,
weights, and other necessary components of PFMs,
which affects the latency and energy cost of edge serv-
ers for loading and executing PFMs [8].

 ■ Runtime GPU memory measures how much random
access memory (RAM) or video RAM is needed by
loading the PFM to execute on a given edge/cloud
server with its current configuration settings. The run-
time GPU memory not only depends on the model
sizes but also the runtime precision configuration of
the precision. Therefore, there is a tradeoff between
model precision and GPU memory usage.

 ■ Model speed of PFMs refers to the time complexity or
speed at which a particular model can process infer-
ence requests. It is usually measured in terms of in -
ference times, i.e., how long it takes for a PFM to
complete its task given certain inputs and parameters.
Model speed also has implications on accuracy,
as faster processing often leads to lower accuracy
due to less computation power being available for
each request.

 ■ Model accuracy of PFMs refers to the degree of correct-
ness or precision with which a model can predict out-
comes. For PFMs, model accuracy has implications on
speed as higher accuracy often requires more compu-
tation power for each request, leading to longer pro-
cessing times overall.

 ■ Number of examples in context: Cached PFMs can accu-
mulate instructions and demonstrations while process-
ing inference requests. The number of examples in
context represents the number of related examples in
demonstrations the PFMs have gathered. Due to the in-
context learning ability of PFMs, the number of examples
in context can also impact the accuracy of the models.

Model Caching and Eviction
Since the cache structure of PFMs is more complicated
than traditional web/content caching, the model caching
and eviction are also more intractable. Model caching
and eviction mainly consist of two types of operations,

i.e., the passive and active operation as well as binary
and partial operation.

 ■ Passive and active caching and eviction: Passive cach-
ing is a reactive approach where models are evicted
from the cache only when there is not enough GPU
memory to load a requested model. Additionally,
active caching is a proactive approach where models
are evicted and loaded into GPU memory based on
predictions of future demand. Active caching can be
more efficient than passive caching [8], but requires
more sophisticated prediction algorithms and can be
less responsive to sudden changes in demand.

 ■ Binary and partial caching and eviction: Binary caching
involves loading the entire model into GPU memory
before starting inference. In contrast, with partial
caching, only a portion of the model is loaded into
memory, and inference can begin using that portion.
This approach provides a lower level of inference but
can be useful when memory resources are limited.
When additional memory becomes available, the
remaining portions of the model can be loaded into
memory, improving inference quality.

Collaborative Mobile Edge–Cloud Caching
and Inference
As shown in Figure 3, collaborative resource allocation
among heterogeneous mobile edge–cloud infrastruc-
tures is critical in paving the way toward AGI at the edge.

Mobile Caching and Inference
Pedestrians and vehicles can process the services to
cache and execute PFMs with their local computing
resources on mobile devices or devices nearby. This
solution can be useful in situations where Internet con-
nectivity is limited or unreliable.

Edge Caching and Inference
When the local resources of mobile devices and vehicles
are not enough for executing PFMs, offloading these ser-
vices to edge servers via radio access networks becomes
an alternative solution for enabling AI services on edge
servers with limited resources. However, due to the limit-
ed GPU resources of edge servers, they can only cache
several PFMs to react to the user’s request. If the edge
server does not cache the model requested by the user, it
can migrate the user’s request to the cloud for execution
via core networks or load the model and then execute the
model requested by the user. This approach can improve

Pedestrians and vehicles can Process the
services to cache and execute PFMs with
their local coMPuting resources on Mobile
devices or devices nearby.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

40 ||| IEEE VEHICULAR TECHNOLOGY MAGAZINE | DECEMBER 2023

response time and reduce the load on the cloud infra-
structure, making it more scalable and cost-effective.

Cloud Caching and Inference
Cloud caching and inference solutions involve the utiliza-
tion of powerful cloud servers to provide almost all PFMs
for serving users’ requests. However, offloading services
to cloud servers incurs additional core network latency,
which might cause congestion in core networks if there
are too many service requests.

Deploying PFMs in mobile edge networks involves op-
timizing the models to meet the constraints of edge serv-
ers. Techniques like model pruning, quantization, and
knowledge distillation can be used to reduce the model’s
size without significantly compromising performance.
Once optimized, the models can be deployed on edge
servers, close to the end-users, ensuring low latency re-
sponses.

Model Caching and Eviction Policy
To design the model caching and eviction policy, three
issues should be considered carefully:

 ■ Reducing model miss rate: Actively preloading models
and optimizing GPU utilization through dynamic
scheduling of AI models can minimize latency and
model miss rates, streamlining memory use and
request handling.

 ■ Addressing model misses: Handling model misses at
edge servers involves offloading service requests to
cloud servers, incurring extra core network latency, or
loading missing models, leading to switching costs,

such as additional latency and energy consumption for
allocating resources as well as hardware wear-and-tear.

 ■ Timing model cache decisions: Making cache decisions
when the model is first loaded and upon receiving new
requests enables dynamic adjustments based on cur-
rent conditions and usage patterns, promoting effi-
cient caching and lower latency responses.
Therefore, an effective and efficient caching algorithm

in this framework should address these three questions
properly. Then, we can summarize two remarks for serv-
ing PFMs of mobile AI services as follows:

 ■ Remark 1: Different from traditional edge content cach-
ing in CDNs, whose cache structures are static and
independent from computation, the cache structures
can be dynamic based on the service runtime con-
figuration, such as batch size. This makes the cache
loading and eviction of AI services more complex,
which requires not only the consideration of user pref-
erences but also the prediction of the intensity of
future service requests.

 ■ Remark 2: Unlike traditional computation and task
offloading in mobile edge networks, where different
computation tasks are independent, the inference
tasks of PFM-related services are in-contextual. There-
fore, before performing these inference tasks, the AIGC
model needs to be preloaded into the edge servers’
GPU memory, which can cache a limited number of
models to provide AI services. Furthermore, as more
in-context examples are collected during the interac-
tion, the performance of cached services can be fur-
ther improved [3].

Potential Applications
and Challenges

Applications

Autonomous Driving
Autonomous driving in the meta-
verse necessitates AI services, such
as traffic and driving simulation,
which are dependent on compu-
tationally intensive PFMs [7]. To
enable this on resource-limited edge
servers, model caching and effi-
cient inference scheduling are
essential. In autonomous driving,
active model switching can enhance
traffic efficiency and safety by
adapting to changing road condi-
tions or traffic patterns.

DTs
DTs, virtual representations of physi-
cal objects or systems, utilize PFMs

Autonomous
Driving AIGC for XR

Semantic
Communication

AGI

PFM Layer

Mobile Edge-Cloud Layer

Service Request
Management

Model Caching
and Inference

Resource
Allocation

Infrastructure

Device

Server
Cached
PFMs

DT

Metaverse Service Layer

ChatGPT

Uniformer

CLIP
Stable

Diffusion

GPT

Figure 3 An illustration of the collaborative mobile edge-cloud computing architecture for
serving PFMs for the metaverse.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

DECEMBER 2023 | IEEE VEHICULAR TECHNOLOGY MAGAZINE ||| 41

for AI capabilities like predictive maintenance, anomaly
detection, and optimization. While PFMs have shown
great success in natural language processing applica-
tions, their vast parameter space and adaptability allow
them to model complex systems, a feature that can be
leveraged in DTs. DTs, being virtual replicas of physical
entities, can benefit from PFMs’ ability to predict and
simulate physical systems under various scenarios.

Semantic Communication
Semantic communication, a novel paradigm that employs
semantic representations, can transform wireless commu-
nication systems’ design and operation. Its device-to-
device pattern enables efficient and secure communication
without centralized cloud infrastructure. However, this
pattern necessitates advanced model caching algorithms
to manage edge servers’ limited resources while ensuring
cached models’ quality and consistency.

AIGC for XR
AIGC is generated by AI methods that utilize PFMs to cre-
ate content that resembles human-produced content [6].
To provide AI-generated XR services, multiple PFMs are
integrated to handle different types of data and produce
relevant and meaningful 3D immersive content. The
model caching algorithm ensures that the PFMs work
smoothly together, maintaining seamless and immersive
experiences for metaverse users.

Challenges

Dynamic User Service Requests
and Objectives
Joint caching and inference servic-
es at edge servers face challenges
due to dynamic user requests and
objectives, such as service latency
and accuracy. To tackle these chal-
lenges, edge servers must efficient-
ly manage limited resources, ensure
cached model quality and consis-
tency, and design joint caching
and inference policies to satisfy
users’ objectives, considering fac-
tors like model size, frequency of
use, and accuracy.

Heterogeneous Model
Configuration and
Computing Resources
Heterogeneous model configuration
and computing resources present
challenges in proposing joint model
caching and inference algorithms. In
detail, PFMs’ structure and available

edge servers result in varying GPU memory and compute
resource requirements, which is typically formulated as an
NP-hard mixed-integer programming problem, complicat-
ing the optimization of caching and inference policies.
Moreover, distinct model architectures and computation
requirements add complexity.

Context-Aware Caching and Inference Algorithms
Codesigning caching and inference algorithms considering
contextual information in mobile AI services at edge serv-
ers is challenging due to the indirect correlation between
model caching and inference duration. Joint policies need
to optimize resource allocation according to each model
and inference requests’ specific requirements while consid-
ering user objectives, model size, usage frequency, and
accuracy. By codesigning caching and inference algorithms
considering the number of examples in context, as shown
in Figure 4, edge servers can utilize extra computation
resources to improve the accuracy of PFMs.

Translation - GPT3-13B
Translation - GPT3-175B
Basic Arithmetic - GPT3-13B
Basic Arithmetic - GPT3-175B
SuperGLUE - GPT3-13B
SuperGLUE - GPT3-175B

0 10 20 30 40 50 60
Number of Examples in Context (K)

0

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y

15.45 + 11.8 ⋅ log2(1 + K0.092322)

22.03 + 7.59 ⋅ log2 (1 + K0.156539)

3.79 + 12.19 ⋅ log2 (1 + K –0.0501291)

25.99 + 14.72 ⋅ log2 (1 + K0.181314)

58.2 + 10.7 ⋅ log2 (1 + K 0.143168)

54.4 + 9.89 ⋅ log2 (1 + K 0.0969454)

One-Shot

Figure 4 The accuracy in downstream tasks of GPT3-13B/175B versus number of examples in
context. The few-shot accuracy a2 = a0 + a1 log2 (1 + Ka), where a0 is zero-shot accuracy, a1 is
one-shot accuracy, and a is coefficient.

when the local resources oF Mobile devices
and vehicles are not enough For executing
PFMs, oFFloading these services to edge
servers via radio access networks becoMes
an alternative solution For enabling
ai services on edge servers with
liMited resources.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

42 ||| IEEE VEHICULAR TECHNOLOGY MAGAZINE | DECEMBER 2023

Security and Privacy
PFM services encounter various security and privacy
challenges. Data leakage can result from disclosing infor-
mation about PFM’s training data, while adversarial
attacks can cause incorrect outputs. Moreover, PFMs
might perpetuate biases inherent in the training data,
which can have implications for privacy and fairness.

Use Case of Serving GPTs in Edge Intelligence
for the Metaverse

Mobile AIGC Service Serving Model
We consider an intelligent transportation system in the
metaverse system with a remote cloud center, an edge
server, and multiple vehicles, serving different meta-
verse services, including autonomous driving, DTs, and
AIGC-based XR, based on various PFMs. For instance,
pedestrians and passengers can immerse themselves in
the metaverse with XR by creating and interacting with
AI-generated XR content synthesized by PFMs. When

users do not have enough resources on their devices
and onboard units for executing PFMs, they need to
offload requests to edge servers or cloud servers for
remote execution. Usually, an AIGC service requires mul-
tiple PFMs to work in synergy to satisfy the user’s
requirements in the metaverse. For example, the Stable
Diffusion services consist of three types of PFMs [11],
including a variational autoencoder that compresses
images into a smaller dimensional latent space, a pre-
trained CLIP ViT-L/14 for conditioning, and a U-Net block
that denoises the output from forward diffusion back-
ward to obtain a latent representation.

The detailed parameters and performance of PFMs that
need to be considered in intelligent transportation systems
of the metaverse are listed in Table 1, including GPT3-13B
[3], GPT3-175B [3], Uniformer-S [14], Uniformer-B [14], CLIP-
ViT-L/14 [12], and CLIP-ViT-H/14 [12]. As we can observe,
only LFMs are large enough to have in-context learning
ability, while VFMs and MFMs are relatively small. As
shown in Figure 4 and Table 1, PFMs utilize metagradients

table 1 Detailed parameters and performance of PFMs.

Model Performance Score

Models Downstream Tasks
Model
Size (M) GFLOPs K Zero-Shot One-Shot Few-Shot

LFMs

GPT3-13B [3]

Translation

12,850 26.54

64 15.45 26.12 30.83

Basic arithmetic 50 3.79 15.98 14.34

SuperGLUE 32 54.4 64.3 66.9

GPT-3-175B [3]

Translation

174,600 354.03

64 22.03 29.63 33.77

Basic arithmetic 50 25.99 40.71 49.55

SuperGLUE 32 58.2 68.9 73.2

VFMs

UniFormer-S [14]

Image classification 22 3.6

—

82.9 — —

Video classification 22 167 82.8 — —

Object detection and
instance segmentation

41 269 45.6 — —

Semantic segmentation 25 247 46.6 — —

Pose estimation 25 4.7 74 — —

UniFormer-B [14]

Image classification 50 8.3

—

83.9 — —

Video classification 22 389 84 — —

Object detection and
instance segmentation

69 399 47.4 — —

Semantic segmentation 54 471 48 — —

Pose estimation 54 9.2 75 — —

MFMs

CLIP-ViT-L/14 [12]

Classification

428 175.5 —

75.20 — —

Image retrieval 71.08 — —

Text retrieval 84 — —

CLIP-ViT-H/14 [12]

Classification

986 381.9 —

77.97 — —

Image retrieval 73.43 — —

Text retrieval 86.04 — —

K: number of examples in context.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

DECEMBER 2023 | IEEE VEHICULAR TECHNOLOGY MAGAZINE ||| 43

to learn from context and improve performance as the user
interacts with them. Then, the few-shot accuracy can be fit
using the data in Table 1. Therefore, contextual informa-
tion has a corresponding impact on the quality of service
provided by AIGC, such as the accuracy of PFMs. Although
the introduction of context in PFMs can improve the model
performance, the size of the context window also affects
the resource consumption and latency during the infer-
ence of the model. As shown in Figure 2, the freshness and
relevance of the examples in demonstrations decrease
over time until it is no longer pertinent to the current gen-
eration task, which is rarely measured in previous work.

AoC and LC Algorithm
Therefore, we propose the AoC for evaluating the rele-
vance and freshness of examples in demonstrations that
affect the quality of services of PFMs in currently execut-
ing downstream tasks. During inference of PFMs, the
questions and answers can be recorded in the context
windows as examples in demonstrations and instructions.
These examples can be leveraged to improve the accura-
cy of PFMs as they can perform metagradient to fit these
examples. However, the metagradient might have positive
or negative effects on the accuracy, which depends on
their quality, relevance, and timeliness. Similar to the age
of information [8], the AoC indicates the relevance and
timeliness of historical contextual examples in demon-
strations to the cached PFM and the current inference
task. As shown in Figure 2, the AoC follows the nonin-
creasing age utility function, factoring with a vanishing
coefficient of context. Based on the AoC, the number of
examples in content can be calculated as the weighted
sum of the number of examples in demonstrations. Then,
the accuracy of PFMs can be obtained by some function
with respect to the number of examples in context as the
functions demonstrated in Figure 4.

Finally, we propose the LC algorithm, based on the
AoC, to manage PFMs for mobile AIGC services efficient-
ly. The LC algorithm tracks the number of examples
in context, calculating them and removing the cached
PFM with the least contexts, i.e., number of examples
in context, when GPU memory is needed for loading a
new PFM. This approach is effective for large numbers
of PFMs on edge servers with limited GPU memory, pri-
oritizing the removal of the least-relevant PFM for the
current inference task. Consequently, the accuracy of
PFMs of mobile AIGC services is improved by leveraging
more contextual information during inference.

In the experiment, we compare the proposed LC algo-
rithm with random, cloud-only, first-in-first-out (FIFO),
and least-frequently used (LFU) baselines. With the ob-
jective of minimizing service latency and accuracy loss,
the system cost is calculated as the sum of the switching
cost, the total accuracy cost, the edge inference latency,
the edge offloading latency, and the cloud computing

cost. As listed in Table 2, the performance of the pro-
posed LC algorithm can achieve minimum total system
cost while maintaining a high edge execution ratio, which
indicates that most of the services are executed at edge
servers. Especially, compared with the LFU algorithm,
the LC algorithm can achieve a lower average service ac-
curacy cost by efficiently leveraging the in-context learn-
ing ability of PFMs and contextual information.

Conclusions
In the article, we have studied edge caching and infer-
ence for serving PFMs in edge intelligence for the meta-
verse. We have proposed a joint model caching and
inference framework for bringing the sparks of GPTs to
mobile edge networks, toward achieving AGI. Specifical-
ly, we have proposed a new metric for evaluating the
relevance and freshness of contextual examples and
currently executing tasks. Furthermore, we have pro-
posed the LC algorithm for cache replacement to
improve the utilization of historical contextual informa-
tion and thus to increase the accuracy of mobile AIGC
services. The experimental results demonstrate that
the LC algorithm can reduce system costs and improve
the execution ratio at edge servers. In future work, we
will extend this framework to a more general version
for the evolving PFM services, such as the mixture
-of-expert inference structure of GPT4.

Acknowledgment
This work is supported by the National Science Founda-
tion of China under Grants 62102099, U22A2054, and
62101594; the Pearl River Talent Recruitment Program
under Grant 2021QN02S643; the Guangzhou Basic

table 2 Detailed system performance comparison for
different caching algorithms.

Random Cloud FIFO LFU LC

System cost 25.67 7.29 27.51 5.93 4.88

Switching
cost

18.72 0 23.28 .37 .32

Total accuracy
cost

.13 0 .52 0.36 .44

Average
accuracy
cost

.0151 0 .0085 .0083 .0076

Inference
latency

.12 0 1.30 1.32 1.26

Offloading
latency

.04 0 0.35 0.24 .31

Cloud cost 6.63 7.29 2.05 3.63 2.52

Edge
execution
ratio

9.8% 0% 70.7% 49.4% 65%

Bold entries indicate the best performance in comparison.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

44 ||| IEEE VEHICULAR TECHNOLOGY MAGAZINE | DECEMBER 2023

Research Program under Grant 2023A04J1699; the
National Research Foundation, Singapore; Infocomm
Media Development Authority under its Future Commu-
nications Research & Development Programme; DSO
National Laboratories under the Artificial Intelligence
Singapore Programme (AISG Award AISG2-RP-2020-019);
the Energy Research Test-Bed and Industry Partnership
Funding Initiative; Energy Grid 2.0 Programme; Des-
Cartes and the Campus for Research Excellence and
Technological Enterprise (CREATE) Programme; and
Ministry of Education Tier 1 (RG87/22). This work is par-
tially supported by National Science Foundation CNS-
2107216, CNS-2128368, CMMI-2222810, ECCS-2302469; the
U.S. Department of Transportation; Toyota; and Amazon.
S. Mao’s work is supported in part by National Science
Foundation Grant CNS-2148382. Jiawen Kang is the cor-
responding author of this article.

Author Information
Minrui Xu (minrui001@e.ntu.edu.sg) is
currently working toward his Ph.D. degree
in the School of Computer Science and
Engineering, Nanyang Technological Uni-
versity, 639798 Singapore. He received the
B.S. degree from Sun Yat Sen University in

Guangzhou, China in 2021. His research interests include
mobile edge computing, deep reinforcement learning, and
incentive mechanism design.

 Dusit Niyato (dniyato@ntu.edu.sg) is a
professor in the School of Computer Sci-
ence and Engineering, Nanyang Techno-
logical University, 639798 Singapore. He
received the Ph.D. degree in electrical and
computer engineering from the University

of Manitoba in Canada in 2008.His research interests
include the Internet of Things (IoT), machine learning,
and incentive mechanism design.

 Hongliang Zhang (hongliang.
zhang92@gmail.com) is an assistant pro-
fessor in the School of Electronics at
Peking University, Beijing 100084, China.
He was the recipient of the 2021 IEEE Com-
Soc Heinrich Hertz Award.
 Jiawen Kang (kjwx886@163.com) is a
professor at Guangdong University of
Technology, Guangdong 510006, China. He
received the Ph.D. degree from Guang-
dong University of Technology in China,
and was a postdoc at Nanyang Technologi-

cal University in Singapore. His research interests include
blockchain, security, and privacy protection in wireless
communications and networking.
 Zehui Xiong (zehui_xiong@sutd.edu.sg) is an assis-
tant professor at Singapore University of Technology and
Design, Singapore 487372. He received the Ph.D. degree

in computer science and engineering at
Nanyang Technical University in Singa-
pore, where he was a researcher with the
Alibaba Nanyang Technical University
Joint Research Institute. His research
interests include wireless communica-

tions, network games and economics, blockchain, and
edge intelligence.

 Shiwen Mao (smao@ieee.org) is a pro-
fessor and Earle C. Williams Eminent
Scholar, and director of the Wireless Engi-
neering Research and Education Center
at Auburn University, Auburn, AL 36849
USA. He received the Ph.D. in electrical

and computer engineering from Polytechnic University in
Brooklyn, NY, USA. His research interests include wireless
networks and multimedia communications.

 Zhu Han (zhuhan22@gmail.com) is a
professor in the Electrical and Computer
Engineering Department at the University
of Houston, Houston, TX 77204 USA. He is
an American Association for the Advance-
ment of Science Fellow and received the

IEEE Kiyo Tomiyasu Award in 2020.

References
[1] S. Bubeck et al., “Sparks of artificial general intelligence: Early ex-

periments with GPT-4,” Mar. 2023, arXiv:2303.12712.
[2] P. Zhou et al., “Vetaverse: Technologies, applications, and visions

toward the intersection of metaverse, vehicles, and transportation
systems,” Oct. 2022, arXiv:2210.15109.

[3] T. Brown et al., “Language models are few-shot learners,” in Proc.
Adv. Neural Inf. Process. Syst., Dec. 2020, vol. 33, pp. 1877–1901.

[4] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2021, arXiv:2108.07258.

[5] H. X. Qin and P. Hui, “Empowering the metaverse with generative AI:
Survey and future directions,” Hong Kong Univ. Sci. Technol., Guang-
zhou, China, 2023. [Online]. Available: https://www.researchgate.
net/profile/Hua-Xuan-Qin/publication/370132434_Empowering_the
_Metaverse_with_Generative_AI_Survey_and_Future_Directions/
links/6442b55376364938df622b08/Empowering-the-Metaverse-with
-Generative-AI-Survey-and-Future-Directions.pdf

[6] M. Xu et al., “Unleashing the power of edge-cloud generative ai in mobile
networks: A survey of AIGC services,” Mar. 2023, arXiv:2303.16129.

[7] M. Xu et al., “Generative AI-empowered simulation for autono-
mous driving in vehicular mixed reality metaverses,” IEEE J. Sel.
Topics Signal Process., early access, Jul. 10, 2023, doi: 10.1109/JST-
SP.2023.3293650.

[8] M. Xu et al., “Joint foundation model caching and inference of gener-
ative AI services for edge intelligence,” May 2023, arXiv:2305.12130.

[9] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offload-
ing for mobile edge computing in dense networks,” in Prof. IEEE
Conf. Comput. Commun., Honolulu, HI, USA, May 2018, pp. 207–215,
doi: 10.1109/INFOCOM.2018.8485977.

[10] Q. Dong et al., “A survey for in-context learning,” Jan. 2023,
arXiv:2301.00234.

[11] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Proc. IEEE/CVF Conf. Comput. Vision Pattern Recognit., New Orleans,
LA, USA, Jun. 2022, pp. 10,684–10,695, doi: 10.1109/CVPR52688.
2022.01042.

[12] M. Cherti et al., “Reproducible scaling laws for contrastive lan-
guage-image learning,” Dec. 2022, arXiv:2212.07143.

[13] N. Ding et al., “Parameter-efficient fine-tuning of large-scale pre-
trained language models,” Nature Mach. Intell., vol. 5, no. 3, pp.
220–235, Mar. 2023, doi: 10.1038/s42256-023-00626-4.

[14] K. Li et al., “UniFormer: Unifying convolution and self-attention for vi-
sual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 10,
pp. 12,581–12,600, Oct. 2023, doi: 10.1109/TPAMI.2023.3282631.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 16:16:32 UTC from IEEE Xplore. Restrictions apply.

mailto:minrui001@e.ntu.edu.sg
mailto:dniyato@ntu.edu.sg
mailto:hongliang.zhang92@gmail.com
mailto:hongliang.zhang92@gmail.com
mailto:kjwx886@163.com
mailto:zehui_xiong@sutd.edu.sg
mailto:smao@ieee.org
mailto:zhuhan22@gmail.com
https://www.researchgate.net/profile/Hua-Xuan-Qin/publication/370132434_Empowering_the_Metaverse_with_Generative_AI_Survey_and_Future_Directions/links/6442b55376364938df622b08/Empowering-the-Metaverse-with-Generative-AI-Survey-and-Future-Directions.pdf
https://www.researchgate.net/profile/Hua-Xuan-Qin/publication/370132434_Empowering_the_Metaverse_with_Generative_AI_Survey_and_Future_Directions/links/6442b55376364938df622b08/Empowering-the-Metaverse-with-Generative-AI-Survey-and-Future-Directions.pdf
https://www.researchgate.net/profile/Hua-Xuan-Qin/publication/370132434_Empowering_the_Metaverse_with_Generative_AI_Survey_and_Future_Directions/links/6442b55376364938df622b08/Empowering-the-Metaverse-with-Generative-AI-Survey-and-Future-Directions.pdf
https://www.researchgate.net/profile/Hua-Xuan-Qin/publication/370132434_Empowering_the_Metaverse_with_Generative_AI_Survey_and_Future_Directions/links/6442b55376364938df622b08/Empowering-the-Metaverse-with-Generative-AI-Survey-and-Future-Directions.pdf
https://www.researchgate.net/profile/Hua-Xuan-Qin/publication/370132434_Empowering_the_Metaverse_with_Generative_AI_Survey_and_Future_Directions/links/6442b55376364938df622b08/Empowering-the-Metaverse-with-Generative-AI-Survey-and-Future-Directions.pdf

	035_18mvt04
	036_18mvt04
	037_18mvt04
	038_18mvt04
	039_18mvt04
	040_18mvt04
	041_18mvt04
	042_18mvt04
	043_18mvt04
	044_18mvt04

