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Abstract— Aerial video streaming is a promising application
of unmanned aerial vehicles (UAVs), which extends video service
from ground to three-dimensional (3D) airspaces. However,
high data rates and smooth transmission are required along
with ubiquitous and environment-aware communications. To this
end, we study the quality of experience (QoE) maximization
problem in this paper for aerial video streaming over 3D
cellular networks in urban environments with building avoidance.
Different from the typical channel model based optimization
in prior works, we tackle the joint design of 3D UAV
trajectory and transmission scheduling as well as playback
rate adaption with an environment and channel knowledge
map (ECKM) approach, which provides rich information about
the location-specific channel for enabling environment-aware
communications. Specifically, we first consider the scenario
with perfect ECKM, and propose efficient algorithms to obtain
suboptimal solutions by utilizing two graph models and the
iterative parameter-enabled block coordinate descent method.
For the scenario without such map information, we propose a
dueling Deep Q-learning (DQL) solution with map construction
such that the learning process can be facilitated for path planning.
Simulation results are provided to demonstrate the improvement
in QoE by the proposed solutions over baseline schemes, as well
as a tradeoff between video quality and rate variation.

Index Terms— Aerial video streaming, unmanned aerial vehicle
(UAV), quality of experience (QoE), environment and channel
knowledge map, dueling deep Q-learning.
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I. INTRODUCTION

IN RECENT years, mobile video streaming has gained
rapid development, which encompass a wide variety of

applications, especially video services [1]. The rapid increase
in high-quality video services impose great pressure on the
current cellular network infrastructure, which becomes a
bottleneck for quality of experience (QoE) provisioning to
users. It is expected that the sixth-generation (6G) networks
will provide wide coverage areas, seamless connection,
and low latency, where integrated aerial and terrestrial
architectures becomes an important component [2]. Due to
their high flexibility and low deployment cost, unmanned
aerial vehicles (UAVs) equipped with sensors and cameras
have been widely used in urban environments for various
surveillance tasks, such as security monitoring, aerial filming,
aerial virtual reality and target tracking through aerial video
streaming [3], [4], [5]. However, UAV enabled remote sensing
and surveillance may not be effectively supported by the
existing short range wireless technologies. To this end, cellular
connected UAVs with advanced cellular technologies have
a great potential to achieve beyond visual line of sight
(BVLOS) UAV operations [6], [7], [8], [9]. Meanwhile,
cellular networks can also provide ubiquitous coverage and
low latency communications from base stations (BSs) with
wireless backhauls [10], [11], [12]. In fact, even at the
high attitude, High-definition (HD) video collected by UAVs
can be readily transmitted to BSs within few milliseconds,
by leveraging the 5G high-speed wireless infrastructure [6].

Despite the growing interest in cellular-connected UAVs,
there are still many challenges for aerial video streaming.
First, higher and smoother data rates are required to improve
the QoE of users. Transmission failure may occur with high
quality video due to the dramatic fluctuation of the air-to-
ground (A2G) channel quality during the flight. In [13],
a testbed was developed to measure the practical performance
of video streaming from a UAV to a ground BS through
Long Term Evolution (LTE). To tackle the dynamic fluctuation
of channel quality, Deep Reinforcement Learning (DRL) and
the additive variation bitrate method were adopted in [14]
for dynamic video resolution selection based on network
observations and video playback states. The authors in [15]
and [16] considered freezing time and video rate for UAV
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enabled video streaming to maintain the user QoE, where
video smoothness are ignored in the quality measure.

Second, intelligent path planning is an important issue
which provides a new degree of freedom for UAVs to
improve the streaming performance, especially for more
complex BVLOS remote surveillance scenarios. Note that
many conventional trajectory designs of cellular-connected
UAVs operate in the two-dimensional (2D) space with
the assumption that the UAV flies at a sufficiently high
altitude [17], [18], [19], which may not be practical since the
altitude affect both the channel quality and camera coverage.
In complex environments, such as urban areas, flexible three-
dimensional (3D) trajectory design with obstacle avoidance is
critical for efficient communication and safe UAV operations.

Third, practical environment-aware UAV communications
are required. Most existing studies rely on strong assumptions
such as an isotropic BS antenna pattern and probabilistic
line-of-sight (LoS) channel models, or even the simple
LoS links [19], [20], [21], where conventional convex
optimization techniques are then utilized to tackle the problem.
However, such over-simplified antenna and statistical channel
assumptions only depict the A2G channel in an average
sense, and the practical communication performance may be
degraded due to the lack of site- or location-specific radio
propagation information. In fact, the UAV may easily observe
that the existence of an LoS link with environment-aware
devices (e.g., Radar or camera) by actually checking the
blockage situation by buildings.

To address the above challenges, in this paper, we investi-
gate the QoE maximization problem for aerial video streaming
over 3D cellular networks with building avoidance in complex
urban environments. The measure of QoE is improved by
introducing video smoothness, where a tradeoff between video
quality and rate variation is captured. In addition, the vertical
trajectory of the UAV is exploited in building avoidance to
further improve the streaming performance. Different from
the typical statistical channel based optimization, we store
and utilize the physical environment information in the
form of, e.g., a channel knowledge map (CKM) [22]
or radio map [23], [24], which provides a site-specific
database consisting of rich information about location-specific
channels (e.g., channel gains) for enabling environment-aware
communications. Such information can be acquired by offline
simulation or online/offline measurements in advance [22].
The main contributions of this paper are summarized as
follows:
• First, we develop a framework for aerial video streaming

over 3D cellular networks, where a UAV delivers videos
to ground BSs in an urban environment. The total QoE for
video streaming is maximized by jointly optimizing the
3D UAV trajectory, transmission scheduling, and video
playback rate adaption, where building avoidance and
environment-aware communications are considered.

• Second, unlike the typical statistical model based
optimization in prior works, we first assume a scenario
when a perfect environment and channel knowledge
map (ECKM) is available. Based on the map, graph
algorithms are proposed to obtain the UAV path while

an iterative parameter-enabled block coordinate descent
(PBCD) algorithm is proposed to determine the playback
rate and time allocation along the UAV path.

• Third, we consider the more challenging scenario without
a perfect ECKM, and propose a dueling Deep Q-learning
(DQL) solution for UAV path design. Specifically,
a dueling deep Q-network (DQN) model is utilized and
we only require information about rate measurement
and sensing the physical environment for efficient
path learning, where ECKM related information is
also constructed for simulated experience generation to
facilitate the learning process.

• Finally, extensive simulation results are provided to
validate the effectiveness of the proposed algorithms.
Significant performance gains over baseline schemes are
achieved and the tradeoff between video quality and rate
variation is also demonstrated.

The remainder of this paper is organized as follows. Section
II presents the related work. Section III presents the system
model and problem formulation. Section IV and Section V
describe the details of the ECKM based solution and the DQL
solution without a perfect ECKM, respectively. Section VI
presents simulation results and Section VII concludes this
paper.

II. RELATED WORK

In this section, we introduce the related work on UAV-
enabled video streaming and cellular-connected UAVs as well
as radio map.

A. UAV-Enabled Video Streaming

In the literature, there are a flurry of recent works on
UAV enabled video streaming. In [25], the minimum peak
signal-to-noise ratio (PSNR) among users was maximized
with UAVs, which served as aerial BSs in a pseudo-analog
video broadcast system. By leveraging UAVs for providing
computation and communication services, the authors in [26]
proposed a UAV assisted mobile edge computing network for
360◦ video virtual reality (VR) applications, where the QoE
for mobile VR users were maximized. By using reinforcement
learning (RL), a UAV anti-jamming video transmission scheme
with video compression selection was proposed in [27]. The
work in [28] proposed a machine learning based scheduling
solution to support UAV-based live omnidirectional (i.e., 360◦)
video streaming. A multi-group cell-free broadcast network
was developed in [29] for real-time VR video transmission
in a sports event, such that the experience of VR users
can be enhanced. The authors in [15] studied the problem
of bandwidth and transmit power allocation in UAV relay
networks for multiuser video streaming, where the total long-
term QoE of users are maximized.

The unstable transmission and heavy load problem were
investigated for UAV-based streaming media transmission
in [30], where a cross-layer design of routing, load balancing,
and multi-link concurrent transmission were studied. The work
in [31] employed a UAV as an aerial BS for multiuser
video streaming, where the 3D aerial trajectory design and
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resource allocation were jointly optimized. A statistical error-
rate and delay bounded quality of service (QoS) provisioning
scheme was proposed in [32] for capacity maximization over
UAV-enabled 6G wireless networks. In summary, UAVs were
leveraged as aerial communication platforms in the above
work, such as relays or BSs [33], [34], to serve ground video
users. Another emerging scenario is that UAVs are regarded
as aerial users of cellular networks for providing aerial video
services, such as video surveillance with cellular-connected
UAVs [35].

B. Cellular-Connected UAVs

Cellular-connected UAVs have gained increasingly interest
due to their BVLOS operations over wide areas. Furthermore,
with the existing authentication mechanisms and high capacity
cellular networks, cellular-connected UAVs are expected to
achieve better security, reliability, and higher throughput
for A2G communications. In [18], an integrated scheduling
method of control, communication, and sensing was proposed
for mmWave communications from UAV to ground BSs.
The performance of two-hop 3D cellular networks was
analyzed in [36] with realistic antenna patterns, where both
UAVs and BSs coexist to serve ground users. A novel
closed-loop control scheme was developed in [37] for open
Radio Access Networks (RANs) to support UAV enabled
video streaming over commercial 5G cellular networks. The
authors in [38] developed an aerial video surveillance system
in a noisy environment to perform monitoring of a set
of points of interest at the city scale with multi-UAV
relays.

Trajectory planning is another important research topic
for aerial video services. The work in [39] investigated
UAV enabled covert video surveillance with trajectory
planning, where energy efficiency and visual covertness were
considered. The UAV’s energy consumption was minimized
in [11] for aerial video surveillance under QoS constraints. The
work in [40] studied the coverage-aware navigation problem
with cellular-connected UAVs by minimizing the weighted
sum of communication outage duration and completion
time. However, only 2D trajectory design was considered
in the above work where the UAV always flies at a
sufficiently high altitude. The authors in [41] jointly optimized
the data collection scheme and 3D flight trajectory over
UAV-assisted Internet of Things (IoT) networks with a
DRL technique. Radio map based 3D path planning for
cellular-connected UAVs was proposed in [23] for mission
completion time minimization with signal-to-interference-
plus-noise ratio (SINR) constraints during the flight. In [42],
dual-UAV-assisted secure communication was studied by
jointly optimizing 3D trajectory and time switching allocation
under energy constraints. However, the characteristics of
video streaming have not been taken into account. Unlike
the aforementioned studies, we study the QoE maximization
problem of aerial video streaming in complex urban envi-
ronments with 3D trajectory design and environment-aware
communications.

C. Radio Map

Radio map, which contains rich information of the radio
propagation environment for every location in a geographic
area, has been employed for emerging UAV communications,
spectrum management, interference control, and resource
allocation [43], [44], [45]. In [43], a multi-UAV target
searching scheme was proposed based on radio maps, which
contain abundant information about received signal strength
(RSS). A low complexity inter-cell interference coordination
scheme was proposed in [44] for BSs equipped with massive-
MIMO, where the coordination decision is made based on
radio environment maps (REMs). The work in [45] proposed
an A2G energy and information delivery framework based on
binary channel feature map (CFM) by joint optimizing aerial
platforms’ positions and transmit parameters, where the binary
CFM contains knowledge of the propagation environment in
the flying area.

Although there are some research focusing on radio map
construction from spatially distributed measurements, such
measurements are performed at predetermined locations in
general. A spectrum surveying scheme was proposed in [46],
where UAVs were employed to collect radio measurements
to construct a power map. The authors in [47] studied radio
mapping with an efficient trajectory design for radio-aware
UAVs, where performance enhancement were illustrated in
terms of localization, connectivity, and sensing. The work
in [48] proposed an emitter radio map disaggregation-based
approach, where the emitters’ radio maps are constructed
by deep neural networks (DNNs). In [49], radio occupancy
maps were estimated using DNNs, where the spatial structure
of the propagation environment is learned from a dataset
with measurements in other environments. Different from the
above works, we employ an ECKM for environment-aware
communications for aerial video streaming over complex
urban environments, where both environment and channel
information are utilized to facilitate 3D trajectory design,
and the ECKM related information can also be constructed
for simulated experience generation to facilitate the learning
process.

Notations: In this paper, scalar variables and vectors are
denoted by italic letters and boldface italic letters, respectively.
In addition, ∥·∥ denotes the Euclidean norm and [·]T denotes
transpose. E[·] denotes the expectation. Rm×n denotes the
space of m×n real matrices, and |X| denotes the cardinality
of a set X .

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, an aerial video streaming scenario is first
introduced. Then, we present a 3D UAV flight model over
urban areas, the A2G 3D communication model, and the video
streaming model, based on which the optimization problem
is formulated. The main notations used in this paper are
summarized in Table I.

A. 3D UAV Flight Model Over Urban Areas

We consider an aerial video streaming scenario, where a
rotary-wing UAV flies from an initial location to a destination
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TABLE I
SUMMARY OF MAIN NOTATIONS AND DEFINITIONS

Fig. 1. Video transmission in a UAV-assisted surveillance application.

with an on-board camera capturing videos along the route.
Denote qs = [xs, ys, zs]T ∈ R3×1 and qf = [xf , yf , zf ]T ∈
R3×1 as the 3D location of the starting and ending positions,
respectively. The video captured by the UAV is delivered to the
ground BSs, which is then streamed to ground users through
cellular backhaul links with high capacity. We assume that
the capacity for cellular links from the BSs to ground video
user are sufficient and the communication bottleneck for the
video streaming only lies on the A2G links [10], [50]. For
example, a ground VR user who takes VR helmets near the
BS can share the views of the UAV along the flight, and would
like to enjoy a journey with high QoE, as shown in Fig. 1.
The cellular network consists of M terrestrial BSs, denoted
by M = {s1, s2, . . . , sM}. We consider an urban area C ⊆
R3×1 with a large number of buildings, which may block not
only the LoS communication links with the BSs, but also the
UAV’s moving path. Such physical environment is assumed
to be sensed by the UAV (e.g., with Radar or camera) with
a maximum sensing distance dmax. The 3D coordinate of BS
sm is represented by gm ∈ R3×1. Let T denote the total UAV
operation time. Then, the 3D location of the UAV at time
instant t is denoted as q(t) = [x(t), y(t), z(t)]T ∈ R3×1,∀t ∈

[0, T ], where q(0) = qs and q(T ) = qf . Following the aerial
regulations, the UAV should fly at an altitude ranging from
Hmin to Hmax, i.e., Hmin ≤ z(t) ≤ Hmax,∀t. Furthermore,
we define v(t) ≜ q̇(t) as the UAV velocity at time t, and then
we have ∥v(t)∥ ≤ Vmax,∀t, with Vmax denoting the maximum
UAV speed. We model the building height as a function b(x, y)
with respect to any horizontal coordinate [x, y]T ∈ R2×1 in the
considered area C. Thus, we obtain the feasible region for UAV
trajectory q(t) as F = {[x, y, z]T ∈ C|max{Hmin, b(x, y)} ≤
z ≤ Hmax} such that building avoidance can be ensured.

B. 3D Communication Model

Denote hm(t) as the channel coefficient of A2G channel
between the UAV and ground BS sm at time t. Specifically,
hm(t) =

√
Gm(t)βm(t)h̃m(t), where Gm(t), βm(t), h̃m(t)

account for the BS antenna gain, the large-scale channel gain,
and the small-scale fading, respectively. The UAV is assumed
to be equipped with a unit gain isotropic antenna. According to
the 3GPP [51], each BS is equipped with directional antennas.
Specifically, a uniform linear array (ULA) of 8 elements is
placed vertically, while the sectorization technique is applied
horizontally such that each BS consists of three sectors. Each
array element is characterized by its half-power beamwidths
ϕ3dB and ψ3dB along the horizontal and vertical dimensions,
respectively, where ψ3dB = ϕ3dB = 65◦. Thus, the 3D
antenna element gain Ae of BS sm can be obtained with
given vertical and horizontal angles (ψm(t), ϕm(t)), where
such angles depend on the UAV location q(t), i.e.,

Ae(ψm(t), ϕm(t)) = Gmax

−min{−[Ae,v(ψm(t))
+Ae,h(ϕm(t))], Av}, (1)

where Ae consists of both vertical and horizontal radiation
patterns and Gmax = 8 dBi is the maximum directional

gain. Ae,v = −min{12
(
ψm(t)−90
ψ3dB

)2

, SLAv}, where
SLAv = 30 dB, denotes the side-lobe level limit. Ae,h =

−min{12
(
ϕm(t)
ϕ3dB

)2

, Av}, where Av = 30 dB, denotes
the front-back ratio. Thus, the total antenna gain along the
direction between the UAV and BS sm at time t is Gm(t) =
Ae +AF , where AF is the array factor given in [52].

According to the 3GPP model for urban Macro (UMa) [53],
the A2G channel between the UAV and ground BS sm at time
t is an LoS channel when no obstacle exists between the UAV
and BS sm at time t, where the path loss measured in dB is

PLLm(t) = 28.0 + 22 log10(dm(t)) + 20 log10(fc), (2)

with fc denoting the carrier frequency and dm(t) ≜
∥q(t)− gm∥ denoting the 3D distance between the UAV and
BS sm at time t. Otherwise, it is classified as an NLoS channel
and the path loss is

PLNm(t) = −17.5 + (46− 7 log10 z(t)) log10(dm(t))

+ 20 log10(
40πfc

3
), (3)

where z(t) is the UAV’s altitude at time t. Denote cm(t) as
the channel blocking state at time t, with cm(t) = 1 denoting
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the LoS state while cm(t) = 0 denoting the NLoS state.
In practice, cm(t) can be exactly determined at location q(t)
via checking whether the LoS path between the UAV and BS
sm is blocked or not. Therefore, we have

βm(t) = cm(t)10
P LL

m(t)
10 + (1− cm(t))10

P LN
m(t)
10 . (4)

We assume that all BSs keeps active during the UAV’s flight,
since all BSs may be potentially associated with the UAV
during its flight. Define αm(t) ∈ {0, 1} as the indicator of
transmission scheduling and association for BS sm at time t.
If the UAV decides to transmit video data to BS sm at time t,
then we have αm(t) = 1; otherwise, αm(t) = 0. We assume
that at most one BS is scheduled for transmission at each time
t, then we have

∑M
m=1 αm(t) ≤ 1, t ∈ [0, T ]. Denote Rm(t)

as the achievable rate between the UAV and BS sm at time
t, given by Rm(t) = B log2

(
1 + P |hm(t)|2

σ2

)
, where P is the

UAV’s maximum transmit power; B and σ2 denote the channel
bandwidth and noise power, respectively. Similar to [54],
we assume that a sufficiently long channel code is employed
such that the effect of small-scale fading has been averaged
out, and then Rm(t) ≈ B log2

(
1 + Pβm(t)Gm(t)

Γσ2

)
≜ R̃m(t),

where Γ > 1 reflects the gap between the theoretical Gaussian
signaling and practical modulation-and-coding scheme.

C. Video Streaming Model

Suppose that dynamic adaptive streaming over HTTP
(DASH) is adopted for video streaming and the video rate can
be dynamically adapted to the channel condition [16], [55].
We assume that cellular users have sufficiently large playback
buffers to store the received video data. Let r(t) be the
video playback rate for the video user at time t, who shares
the UAV’s view based on the videos transmitted from the
UAV. Then we have r(t) ≥ r̃,∀t, where r̃ denote the
minimum required rate of video user. QoE is adopted as
the performance metric, which is mainly influenced by video
quality, video rate variation, and rebuffering [55]. To avoid
video rebuffering, the information-causality constraints have
been introduced; i.e., at any time t, only the video data
which has already been received can be played at user, i.e.,∫ t
0

∑M
m=1 αm(τ)R̃m(τ)dτ ≥

∫ t
0
r(τ)dτ,∀t ∈ [0, T ].

The video quality for video user at time t is evaluated
through a logarithmic function with the property of diminish-
ing returns [31], i.e., ϖ log υr(t)

r̃ , where ϖ and υ are positive
constant parameters. We evaluate the video rate variation at
time t as the squared difference between the current and time
averaged playback rate, i.e., |r(t)− 1

T

∫ T
0
r(t)dt|2. As a result,

we define the QoE at time t as

U(t) = ϖ log
(
υr(t)
r̃

)
− λ|r(t)− 1

T

∫ T

0

r(t)dt|2, (5)

where λ is a positive factor to balance the tradeoff between
video quality and video rate variation. Note that video rate
variation is negative since the QoE will be impaired by
frequent changes of playback rate.

D. Problem Formulation

In this work, our objective is to maximize the total QoE
over the 3D aerial cellular network by jointly optimizing the
3D UAV trajectory {q(t)}, transmission scheduling {αm(t)},
as well as playback rate allocation {r(t)}, subject to the
UAV’s mechanical constraints as well as information-causality
constraints. The optimization problem can be mathematically
formulated as

(P1) : max
{q(t)},{αm(t)},{r(t)}

∫ T

t=0

U(t)dt

s.t. αm(t) ∈ {0, 1},∀m,∀t ∈ [0, T ], (6)
M∑
m=1

αm(t) ≤ 1,∀t ∈ [0, T ], (7)

∫ t

0

M∑
m=1

αm(τ)R̃m(τ)dτ ≥
∫ t

0

r(τ)dτ,∀t ∈ [0, T ], (8)

r(t) ≥ r̃,∀t ∈ [0, T ], (9)
q(t) ∈ F ,∀t ∈ [0, T ], (10)
∥v(t)∥ ≤ Vmax,∀t ∈ [0, T ], (11)
q(0) = qs,q(T ) = qf . (12)

In general, the optimal solution to (P1) is difficult to obtain due
to the existence of binary constraints in (6) and the non-convex
feasible region F , as well as the complicated expression of
R̃m(t). Since the generic path loss depends on the frequent
variations of LoS/NLoS links and the practical BS antenna
pattern consists of many non-continuous operations, R̃m(t)
is not a continuous function generally, which is difficult to
optimize.

To tackle the above challenges, we first consider the
scenario with a perfect ECKM, where both location-specific
environment and channel information are available prior to
the UAV’s flight, including the large-scale channel gain and
antenna gain as well as the building height function b(x, y).
With ECKM, two graph algorithms with different complexities
are proposed to obtain the UAV path, while an iterative
PBCD algorithm is proposed to determine the playback rate
and time duration allocation. Next, we consider the scenario
without ECKM. We propose a dueling DQL solution for UAV
path design, where the ECKM related information is also
constructed for simulated experience generation to facilitate
the learning process.

IV. PROPOSED SOLUTION WITH PERFECT ECKM

In this section, we first assume a scenario with a perfect
ECKM, and then reformulate the problem into a more tractable
form by analyzing the structure of the optimal solution, based
on which graph algorithms are proposed to obtain the UAV
path while an iterative PBCD algorithm is proposed to obtain
the playback rate and time allocation along the UAV path.

With the ECKM, we can easily obtain the optimal transmis-
sion scheduling strategy of (P1) as αm∗(t) = 1 and αm′(t) =
0,∀m′ ̸= m∗, where m∗ = arg maxm∈{1,2,...,M} R̃m(t). Let
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R̃max(t) ≜ max1≤m≤M R̃m(t). Then (P1) is simplified as

(P2) : max
{q(t)},{r(t)}

∫ T

t=0

U(t)dt

s.t. (9)− (12),∫ t

0

R̃max(τ)dτ ≥
∫ t

0

r(τ)dτ,∀t ∈ [0, T ]. (13)

Note that R̃max(t) depends on the location-specific channel
knowledge hm(t), which is relevant to the UAV’s 3D location
q(t). As such, the location specific channel knowledge can be
acquired from the CKM, such as the large-scale channel gain
and antenna gain [22], [23], [24].

A. ECKM Based Reformulation

Different from CKM, in this paper, we construct an
ECKM which provides not only channel knowledge but also
environment information.

Definition 1: (ECKM): The ECKM for each BS sm over the
considered region C can be expressed as Mm = {Mm(q)}.
For any reachable location q ∈ F , Mm(q) = Gm(q)βm(q).
Otherwise, Mm(q) = −∞. βm(q) and Gm(q) denote the
large-scale channel gain and antenna gain between the UAV
and BS sm at location q, respectively.
Due to definition 1, if Mm(q) = −∞, then we know that the
location q is not a reachable location. Thus, the environment
information about building distribution is also implied in the
ECKM. In practice, the data used to construct an ECKM could
be acquired via offline numerical simulation or online/offline
measurements [22]. However, since the storage of each BS
is limited, storing the entire data of ECKM for all locations
is infeasible. As such, we consider a truncated 3D rectangle
region, denoted by Ĉ ⊆ C. In particular, the UAV’s altitude
ranges from Hmin to Hmax, and the UAV’s horizontal location
can be assumed to be within a square region with a sufficiently
large edge length L, e.g., L ≥

√
(xf − xs)2 + (yf − ys)2,

such that all possible horizontal locations during the flight can
be covered. The region Ĉ is discretized into a D×D×Z grid
with granularity ∆, where D = ⌈ L∆⌉ and Z = ⌈Hmax−Hmin

∆ ⌉,
and there are ZD2 grid points in total. Denote the set of all
grid points as ĈG. Let qi,j,k be the (i, j, k)-th location in ĈG,
i, j ∈ {1, 2, . . . , D}, k ∈ {1, 2, . . . , Z}, then qi,j,k = [i −
1
2 , j−

1
2 , k−

1
2 ]T∆. The grid points corresponding to the UAV’s

initial and final locations qs and qf are denoted as gs and gf ,
respectively.

Definition 2: (Discretized ECKM): Based on the above 3D
grid model, the discretized ECKM for each BS sm is denoted
by matrix Mm. Let [Mm]i,j,k be the (i, j, k)-th element in
Mm. Then [Mm]i,j,k = Gm(qi,j,k)βm(qi,j,k) if qi,j,k ∈
ĈG
⋂
F ≜ FG; and [Mm]i,j,k = −∞, otherwise.

The granularity ∆ is chosen to be sufficiently small such
that Gm(q̃) ≈ Gm(qi,j,k), βm(q̃) ≈ βm(qi,j,k), ∀m, for
any 3D location q̃ in the (i, j, k)-th grid cell. In this section,
we assume that the perfect discretized ECKM {Mm} for all
M BSs are available prior to the UAV’s flight. In practice,
such information can be downloaded off-line from the cellular
network. As such, we can construct a so-called maximum

rate map (MRM) that characterizes the maximum achievable
rate R̃max(t) at each grid point. Denote the achievable rate
between the UAV and BS sm when it is at location qi,j,k
as R̃m(qi,j,k) ≜ B log2

(
1 + PGm(qi,j,k)βm(qi,j,k)

Γσ2

)
. Then

the maximum achievable rate at qi,j,k can be written as
R̃max(qi,j,k) = max

m
R̃m(qi,j,k).

Definition 3: (MRM): The MRM for the truncated region Ĉ
is denoted by a 3D matrix R ∈ RD×D×Z , while the (i, j, k)-th
element in R is [R]i,j,k = R̃max(qi,j,k) if qi,j,k ∈ FG; and
[R]i,j,k = 0, otherwise.
In summary, the overall complexity of constructing the
discretized ECKM {Mm} and MRM R over all locations
in Ĉ is given by O(D2ZM). Similarly, we can construct
a BS association map (BAM) as A ∈ RD×D×Z that
characterizes the optimal BS association at each grid point,
where the (i, j, k)-th element in A can be calculated
as [A]i,j,k = arg max

m
R̃m(qi,j,k) if qi,j,k ∈ FG, and

[A]i,j,k = 0 otherwise.
With the given MRM R, we adopt the path disretization

technique [56] to make (P2) more tractable. Specifically,
we divide the UAV path into N line segments with
N + 1 adjacent grid points, and approximate the UAV
trajectory as the grid points {qn} and time duration {τn},
where τn represents the time duration along line segment
between qn and qn+1, ∆

Vmax
≤ τn, 1 ≤ n ≤ N .

With the 3D grids, the moving direction along the n-
th line segment v⃗n can be selected from the finite
set V = {[0, 0, 1]T, [0, 0,−1]T, [0, 1, 0]T, [0,−1, 0]T, [1, 0, 0]T,
[−1, 0, 0]T}. The UAV can take turns along two consecutive
line segments if their directions are different with sufficiently
large UAV acceleration. The disretized form of R̃m(t),
R̃max(t), r(t), U(t) are denoted as R̃mn, R̃max

n , rn, Un,
respectively. In particular, R̃mn is approximated by the
achievable rate for BS sm at location qn, R̃max

n =
max
m

R̃mn, and Un = ϖ log υrn

r̃ − λ|rn − 1
T

∑N
n=1 rnτn|2.

The optimization problem (P2) can be discretized as:

(P3) : max
N,{qn},{τn},{rn},{v⃗n}

N∑
n=1

Unτn

s.t. qn ∈ FG, v⃗n ∈ V,∀n, (14)
qn+1 = qn + ∆v⃗n,∀n, (15)
q1 = gs,qN+1 = gf , (16)
n∑

n′=1

R̃max
n′ τn′ ≥

n∑
n′=1

rn′τn′ ,∀n, (17)

rn ≥ r̃,∀n, (18)
∆/Vmax ≤ τn,∀n, (19)
N∑
n=1

τn = T. (20)

Although MRM R is given, (P3) is still a mixed-integer non-
convex optimization problem.

B. Proposed Solution

With the feasible grid set FG, we can construct a graph
G(V,E) as follows:
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Definition 4: Graph G(V,E) is defined as: V ≜ {q|q ∈
FG}, and E ≜ {(q,q′)| ∥q− q′∥ = ∆,q ∈ V,q′ ∈ V }.
Thus, each feasible UAV path to (P3) corresponds to a path
from gs to gf in graph G. Due to (19) and (20), we have
N ≤ TVmax

∆ . Note that all the paths from gs to gf in G
with N ≤ TVmax

∆ can be obtained by using existing graph
algorithms, e.g., the depth-first search (DFS) method with
complexity O(|V |!) [57]. If no such path is found, then (P3)
will be infeasible. Note that for each feasible path from
gs to gf in G, the UAV path {N, {qn}, {v⃗n}} is exactly
determined, and then the maximum rate {R̃max

n } along such
path is also determined. As a result, the optimal solution to
(P3) can be obtained by searching all such paths and selecting
the one with the maximum objective value. Thus, in the
following, we only consider QoE maximization with given
{N, {qn}, {v⃗n}, {R̃max

n }}, which is written as

(P4) : max
{τn},{rn}

N∑
n=1

Unτn

s.t. (17)− (20).

By introducing slack variables {yn}, we obtain

(P5) : max
{τn},{rn},{yn}

N∑
n=1

(ϖ log
υrn
r̃
− yn)τn

s.t. (17)− (20),

λ|rn −
1
T

N∑
n=1

rnτn|2 ≤ yn,∀n, (21)

which is equivalent to (P4) since yn can always be decreased to
achieve a larger objective value if the strict inequality holds
in (21). By partitioning the optimization variables into two
sets, i.e., {{rn}, {yn}} and {τn}, we propose an efficient
PBCD algorithm for solving problem (P5). Specifically, with
any given {τn}, (P5) can be reduced to

(P6) : max
{rn},{yn}

N∑
n=1

(ϖ log
υrn
r̃
− yn)τn

s.t. (17), (18), (21),

which is a convex optimization problem and thus can be
effectively solved by existing solvers such as CVX [58]. With
any given {{rn}, {yn}}, (P5) can be reduced to

(P7) : max
{τn}

N∑
n=1

(ϖ log
υrn
r̃
− yn)τn

s.t.(17), (19)− (21),

which is also a convex optimization problem. The conventional
block coordinate descent (BCD) method [54] alternately
optimizes (P6) and (P7) in each iteration until convergence is
achieved, which, however, may fail to update the time duration
{τn} effectively. Specifically, with any given {τn} which
satisfy (20), since (P6) aims to increase QoE by decreasing
yn, then equality holds in (21) after solving (P6) in each
iteration. As a result, for optimizing the time duration in (P7),
τn needs to be increased to improve the total QoE, and the
optimization freedom for τn is severely limited due to the

Algorithm 1 PBCD Algorithm for Solving Problem (P5)

1: Initialize ρini = N∆
VmaxT

and Imax. Let l = 0, ρl = ρini,
and ρstep = 1−ρini

Imax
.

2: repeat
3: Solve the convex problem (P6) with given {τn}l, and

denote the optimal solution as {{rn}l+1, {yn}l+1};
4: ρl+1 = min{1, ρl + ρstep};
5: Solve the convex problem (P8) with given
{{rn}l+1, {yn}l+1, ρl+1}, and denote the optimal
solution as {τn}l+1;

6: Update l = l + 1;
7: until The fractional increase of the objective value is

below a threshold κ;

equality constraints (20) and (21), which may cause ineffective
update of time duration in each iteration.

To tackle such an issue, we propose a new PBCD method.
It can be proved by contradiction that the optimal solution to
(P5) is the same as that with a relaxed constraint

∑N
n=1 τn ≤

T . A temporary parameter ρ ≤ 1 is employed on the right-
hand-side of the above relaxed constraint and we obtain

(P8) : max
{τn}

N∑
n=1

(ϖ log
υrn
r̃
− yn)τn

s.t. (17), (19), (21),
N∑
n=1

τn ≤ ρT. (22)

The main idea of PBCD is to solve (P8) with the newly
introduced temporary parameter ρ ≤ 1 instead of directly
solving (P7). Specifically, ρ is gradually increased before
solving problem (P8) in each iteration, until ρ = 1 is achieved.
Then, the constraint (22) is relaxed after each iteration due
to the increase of ρ, which thus permits a more effective
time duration update compared to the conventional BCD.
We summarize the details of the PBCD method in Algorithm 1.
Denote Imax as the number of iterations required from the
initial parameter ρini to 1. Due to (19) and (22), we have
ρ ≥ N∆

VmaxT
. Thus, the initial parameter is set as ρini = N∆

VmaxT
.

Theorem 1: With Algorithm 1, the sequence of objective
values is monotonically non-decreasing with iteration number
l, and thus Algorithm 1 is convergent.

Proof: Let {{rn}l, {yn}l, {τn}l} be the solutions
obtained in iteration l and the resulting objective value
is ηl. In iteration l + 1, the optimal solution to (P6) is
first obtained with given {τn}l, and we have ηl+1

(P6) ≥ ηl.
Then, the relaxed problem (P8) is optimized with the given
{{rn}l+1, {yn}l+1, ρl+1} and constraint (22) is further relaxed
after Step 4. The optimal solution to (P6) is always a feasible
solution to (P8), and (P8) yields an objective value that
improves upon that obtained in (P6), i.e., ηl+1 = ηl+1

(P8) ≥
ηl+1
(P6). By combining the above arguments, we have ηl+1 ≥
ηl. Moreover, since the objective function is upper bounded,
Algorithm 1 is convergent.
In Algorithm 1, (P5) is solved by solving a sequence of convex
optimization problems (P6) and (P8) using the convex solver

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:20:44 UTC from IEEE Xplore.  Restrictions apply. 



ZHAN et al.: AERIAL VIDEO STREAMING OVER 3D CELLULAR NETWORKS: AN ECKM APPROACH 1439

Algorithm 2 DFS Based Algorithm for Solving Problem (P3)
1: Construct a grid graph G(V,E) based on Definition 4 and

initialize η∗ = 0;
2: Find all paths P from gs to gf over graph G(V,E) with

the DFS method;
3: for each path p⃗ ∈ P do
4: Obtain {N, {qn}, {v⃗n}, {Rmax

n }} based on p⃗ and
MRM R;

5: Solve problem (P5) with Algorithm 1 to obtain
objective value η and solution {{τn}, {rn}};

6: if η > η∗ then
7: η∗ = η; {N∗, {qn}∗, {v⃗n}∗, {τn}∗, {rn}∗} =
{N, {qn}, {v⃗n}, {τn}, {rn}};

8: end if
9: end for

based on the interior-point method, and hence the overall
complexity of Algorithm 1 is O(N3.5 log2 1

κ ) [54], where
κ > 0 is the required accuracy. Thus, the algorithm for solving
problem (P3) can be given as Algorithm 2.

Note that finding all paths from gs to gf could be
time consuming. In the following, a low-complexity heuristic
algorithm is proposed for (P3) based on a weighted graph.
Intuitively, we would like to find a path with a larger QoE
along that path. Considering the special case of (P3) with
R̃max
n = rn,∀n, then the constraint (17) is always satisfied

and we have R̃max
n ≥ r̃,∀n, due to (18). Then, Un can be

approximated as Un ≈ ϖ log υR̃max
n

r̃ −λ|R̃max
n −R̃max

n−1|2 ≜ Ũn,
where quality variation is approximated as |R̃max

n − R̃max
n−1|2.

Denote R̃max as the maximum rate among MRM R, i.e.,
R̃max ≜ max{R̃max(qi,j,k)|qi,j,k ∈ FG}. A weighted graph
Ĝ(V̂ , Ê) is constructed as follows:

Definition 5: Graph Ĝ(V̂ , Ê) is defined as: V̂ ≜ {q|q ∈
FG, R̃max(q) ≥ r̃}, Ê ≜ {(q,q′)| ∥q− q′∥ = ∆}. w : E →
R, where w is a weight function. In particular, w(q,q′) =
ϖ log υR̃max

r̃ −ϖ log υR̃max(q)
r̃ + λ|R̃max(q)− R̃max(q′)|2.

Note that |V̂ | ≤ |V | and each edge weight is non-negative,
where a smaller weight corresponds to a larger QoE along
that edge. Inspired by such observation, we find the shortest
weighted path over Ĝ by utilizing Dijistra Algorithm [57]
with complexity O(|V̂ |2), and apply Algorithm 1 to optimize
time duration and playback rate allocation. The details are
summarized in Algorithm 3. Note that MRM R is given
in advance with the perfect ECKM, which is fully utilized
in the graph based algorithms. When the perfect ECKM is
unavailable, then MRM R is unknown in advance, which
makes (P3) more difficult to solve. To tackle such issue,
a DQL based solution with MRM mapping is proposed in the
following section, where no perfect ECKM is required. Thus,
the performances of the proposed algorithms with perfect
ECKM serve as upper bounds for that of the DQL based
solution without such information. The flow chart structure
of the proposed solutions is shown in Fig. 2.

V. PROPOSED SOLUTION WITHOUT PERFECT ECKM

In this section, we consider the more practical scenario
when the perfect ECKM is unavailable. By reformulating the

Algorithm 3 Weighted Graph Algorithm for Solving (P3)

1: Construct a weighted graph Ĝ(V̂ , Ê) as in Definition 5;
2: Find the shortest weighted path p⃗ from gs to gf over

graph Ĝ(V̂ , Ê) with Dijistra Algorithm;
3: Obtain {N, {qn}, {v⃗n}, {R̃max

n }} based on p⃗ and MRM;
4: Solve problem (P5) with Algorithm 1 to obtain solution
{{τn}, {rn}};

problem as an MDP, a model-free DRL algorithm is proposed,
where the UAV intelligently makes the most advantageous
decisions by only local observations of environment and
sampled rate measurements. In addition, the ECKM related
information is also constructed for simulated experience
generation to facilitate the learning process.

A. Problem Reformulation

By discretizing the airspace into 3D grids, the original
problem (P2) is discretized as in (P3). Different from
Section IV, in this section, {R̃max

n } is unavailable due to the
lack of ECKM prior the flight. However, the UAV can sense
the surrounding physical environment within distance dmax

and perform rate measurements during the flight, which can be
used to learn the optimized solution. Inspired by Algorithm 3,
we decompose problem (P3) into two subproblems, i.e., UAV
path optimization, as well as time duration and playback rate
allocation. With a given UAV path {N, {qn}, {v⃗n}} as well
as measured {Rmax

n } along such path, the time duration and
playback rate allocation can be obtained by solving (P5) with
Algorithm 1. Thus, in the following, we will focus on the UAV
path optimization problem, given by

(P9) : max
N,{qn}{v⃗n}

N∑
n=1

Ũn

s.t. (14)− (16),

R̃max
n ≥ r̃,∀n, (23)

N ≤ TVmax/∆, (24)

where we maximize
∑N
n=1 Ũn by omitting the time duration

and leave it in the time duration optimization subproblem (P5).
Constraint (23) is imposed to ensure (17) and (18), while (24)
is imposed to ensure (19) and (20). In practice, R̃max

n can be
measured at qn by adopting an existing handover mechanism
with continuous reference signal received power (RSRP)
measurements [40]. Recall that the physical environment can
be sensed by the UAV with a maximum sensing distance dmax.
Thus, the UAV can determine whether a 3D location within its
sensing range is feasible location or not during its flight. As a
result, problem (P9) can be modeled as an MDP (S,A,R),
where S is the state space which consists of all possible states
of the UAV at each time slot; A is the action space which
consists of the UAV’s available actions at each time slot; R is
the reward function which maps the UAV’s state spaces as well
as action spaces at the current time slot to its expected reward.
In particular, the UAV is treated as an agent that interacts with
the environment. At each time step n, the UAV observes state
qn; based on which it chooses the action v⃗n. Then the state
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Fig. 2. A flow chart for illustration of the proposed solutions.

turns into qn+1 and the UAV receives reward R̂n based on the
calculation of Ũn and the rate measurement rate R̃max

n+1. In the
following, we define the above elements.
• State: We define the state space by the feasible 3D

location of UAV as S = F ⊆ R3×1, where the state
of the UAV at time step n is defined as qn ∈ S . qs is
the initial state while qf is the final state.

• Action: The UAV at state qn can choose an action v⃗n
from the action space at time step n. By dividing the
airspace into 3D grids, the action space can be defined
as A = V , and the states of the UAV are finite district
grids.

• Reward function: We define a reward function
R = {R̂n}, which awards the UAV for reaching
its destination with a larger

∑N
n=1 Ũn, and penalizes the

UAV for moving or violating constraints (14) and (23),
i.e.,

R̂n =


R̂des, qn+1 = qf ,
−R̂out, qn+1 /∈ F ,
µ1Ũn − µ2In+1 − µ3, otherwise.

(25)

where In+1 = 1 when R̃max
n+1 < r̃, and In+1 = 0 otherwise.

µ1, µ2, and µ3 are positive weighting factors.
In the following, we propose a dueling DQL solution with

environment information mapping to construct MRM, which
can be used for simulated experience generation in DQL to
reduce the required actual agent-environment interactions. Our
proposed DQL consists of an offline training process and
an online execution process. During the training process, we
collect training data and train the DQN models offline. After
the training process, we execute the well-trained DQN models
to learn the optimized flying strategy for the UAV according
to its current state.

B. Proposed Solution

Denote Qζ(s, a) as the Q-value of the UAV, which is defined
as the accumulated reward when the UAV takes action a in
state s and follows its policy ζ afterwards, i.e., Qζ(s, a) =
Eζ [
∑∞
k=0 γ

kR̂n+k|qn = s, v⃗n = a], where γ is the discount
factor reflecting the importance of immediate and future
rewards. In (P9), the objective function corresponds to γ = 1,
which means that all rewards are equally important. At each
state s, the optimal policy of the UAV is to select the action
that can maximize its Q-value, i.e., ζ∗(s) = arg max

a∈A
Qζ(s, a).

As a result, we should specify the Q-function Qζ(s, a) to
find the optimal policy ζ∗(s). Due to the infinite state-action
space, it is impossible to obtain exact Q-functions for the

UAV. Instead, in the following we adopt a DQN with the
dueling network architecture [59], also named dueling DQN,
to approximate the state-action value Q(s, a) with weights θ.

The proposed algorithm employs the following techniques
for stabilizing and improving the performance of the neural
network. Experience replay buffer: Replay buffer B is utilized
to store the transitions for supporting the neural network to
overcome potential instability. When B is full, a mini-batch of
samples is randomly selected for training the networks. Due to
the finite buffer size of B, the content in buffer B is always up-
to-date and then the neural networks can learn from the new
samples. Dueling neural network: To improve the convergence
rate and stability, the dueling neural network is employed [59],
which combines two streams of the advantage function and
value function. In particular, the Q-function can be obtained
by combining the two streams’ outputs as

Q(q, v⃗; θ,θA,θV ) = V(q; θV )

+

(
G(q, v⃗; θA)− 1

A
∑
v⃗′

G(q, v⃗′; θA)

)
,

(26)

where V(q; θV ) is the value function estimated by one of
the streams with a fully-connected layer. Advantage function
G(q, v⃗; θA) depicts the importance of each state related
action, and G(q, v⃗′; θA) is output by the other stream, with
θA and θV denoting the parameters of the corresponding
networks. Target networks: To stabilize the training, a target
network Q′ with parameters θ′ is employed for target value
estimation [60]. θ′ will be updated by the parameters of
original neural network Q, i.e., θ, after a number of iterations.
The update of neural network parameters are performed by
minimizing the loss function defined as

L(θ) = Eq,v⃗,R̂,q′

[(
yDQL −Q(q, v⃗; θ,θA,θV )

)2]
, (27)

where yDQL = R̂+ maxv⃗′∈AQ
′(q′, v⃗′; θ′,θA,θV ).

Environment Information Mapping: To reduce the number
of agent-environment interactions such as location determina-
tion, obstacle sensing, and rate measurements, environment
information mapping is employed. In particular, the UAV
can only measure the rate of the location where it actually
visits. Note that it is a supervised learning problem to predict
the rate R̃max(q),∀q ∈ C with any finite measurements
{qn, R̃max(qn)}. A feedforward fully-connected artificial
neural network (ANN) with parameters ξ is adopted for MRM
estimation. The obtained R̃max(q) based on rate measurement
can not only be used as new input data to improve the MRM
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estimation, but also be used for determining the next UAV
flying direction v⃗. Although the estimated MRM R might
be initially inaccurate, its accuracy will be improved with
more accumulated real experiences, based on which the UAV
can predict the estimated return for each trajectory it would
take, without actual agent-environment interactions. Therefore,
more simulated experiences can be generated based on R,
where the UAV can update its policy by using both real
experience and simulated experience.

We summarize the details of the learning algorithm in
Algorithm 4. We would like to clarify that Algorithm 4 is
a learning algorithm, which can be performed at the ground
station with the measured rate acquired from the UAV. Once
the DQN is well trained and properly loaded to the mission
UAV, the mission UAV only needs to select the best action
as shown at Step 5. To further reduce the actual UAV
flight requirement, the system may first pre-train the policy
offline with the offline collected rate measurements, or with
simulation-generated rate samples based on the available
knowledge on the radio propagation environment, and then
further refine the policy by actual UAV flight with online
learning. This thus alleviates the requirement for actual UAV
flight, and renders the proposed algorithm more practical for
training. On the other hand, our paper focus on designing a
learning algorithm specifically for the given scenario, where
the generalization ability for different cities will be left as
future work. In Algorithm 4, Ψmax denotes the maximum
number of episodes, and Nmax = ⌊TVmax

∆ ⌋. At step 5, the
UAV selects the optimal action with probability 1 − ϵ and
chooses a random action with probability ϵ. Algorithm 4
adopts the MRM learning operations and the estimated MRM
is updated in step 10 by using the actual rate measurement
data, where MRM is also used in step 12 for simulated
experience generation. For each actual UAV experience, Ñ
steps will be taken in the simulated trajectory. Regardless of
real or simulated experience, the same action-value update
based on dueling DQL is performed, which is guaranteed to
converge [59]. The complexity of Algorithm 4 is given by
O(ΨmaxN2

maxÑ).

VI. PERFORMANCE EVALUATION

In this section, we provide the system settings and evaluate
the performance of the graph based PBCD algorithm with
a perfect ECKM and the dueling DQL algorithm without
perfect ECKM through simulations. We also study the impact
of different parameters on the performance of the proposed
algorithms.

A. Simulation Setting

As shown in Fig. 3(a), we consider an aerial video streaming
scenario with a cellular-connected UAV and M = 6 ground
BSs, which are uniformly distributed in a square urban area
with width 1.0 km. A ground video user located near an BS
operates the UAV and shares the UAV’s view based on the
videos transmitted from the UAV, as shown in Fig. 1. All
BSs are assumed to be at the same altitude of HG = 25 m.
The locations and heights of the buildings in the urban area

Algorithm 4 The Dueling DQL Algorithm for Problem (P9)
With MRM Mapping

1: Initialize the neural network Q and the target network Q′

with the parameters, θ and θ′, respectively; Initialize the
replay memory pool B;

2: for episode = 1 to Ψmax do
3: Randomly initialize the state q1. Set n = 1;
4: while qn ̸= qf and n ≤ Nmax do
5: Obtain the action v⃗n of the UAV based on the ϵ-

greedy mechanism;
6: Execute the action v⃗n and observe the next state

qn+1, estimate the reward R̂n according to (25);
7: Store the transition (qn, v⃗n, R̂n,qn+1) in B; Ran-

domly select a mini-batch of transitions (qj , v⃗j , R̂j ,qj+1)
from B;

8: Obtain the Q-value function in (26); Update the
network parameters by using gradient descent for loss
function minimization defined in (27);

9: n = n+ 1;
10: Add the measured rate (qn+1, R̃

max(qn+1)) to
database B′; Sample random minibatch from B′ and
update the network parameter ξ for estimated MRM R;

11: for ñ = 1 to Ñ do
12: Perform similar operations as steps 3-9 for the

simulated experience with reward calculating based on
estimated MRM R;

13: end for
14: Update the target network parameters as θ′ = θ

after a number of iterations;
15: end while
16: end for

are generated based on the model given by the International
Telecommunication Union (ITU) [61], as shown in Fig. 3(b).
For the DQL algorithm, we set Ψmax = 2000, R̂des = 200,
R̂out = 104, µ1 = 0.1, µ2 = 40, µ3 = 1, ϵ = 0.5, and
Ñ = 10. There are 5 hidden layers in the dueling DQN
in Algorithm 4, where the numbers of neurons of the first
4 hidden layers are 512, 256, 128, and 128, respectively.
Unless otherwise stated, the other parameters related to the
simulations are set as follows: ϖ = 0.8, υ = 400, β0 =
−60 dB, Γσ2 = −110 dBm, Vmax = 20 m/s, Hmin = 50 m,
Hmax = 200 m, fc = 2 GHz, P = 0.1 W, B = 1 MHz,
∆ = 10 m, Imax = 5, dmax = 50 m, κ = 10−5, r̃ = 5 Mbps,
T = 100 s. With the specific locations and heights of the
buildings, the ECKM is generated based on 3GPP channel
models as specified in Section III-A for any location in the
service area. To evaluate the performance of the proposed
algorithms, we consider the following benchmarks for com-
parisons: 1) Time minimization benchmark, which minimizes
the mission completion time with SINR requirement based
on a given radio map as in [23]; 2) DRL benchmark without
mapping, which is the state-of-the-art DRL benchmark without
MRM mapping as in [11] and [41]; 3) 2D benchmark with
mapping, where DRL with radio mapping is utilized and the
UAV flies at a sufficiently high altitude to avoid buildings as
in [40]. Note that a radio map is given in the time minimization

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:20:44 UTC from IEEE Xplore.  Restrictions apply. 



1442 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 2, FEBRUARY 2024

Fig. 3. The urban scenario considered in our evaluation.

benchmark, while such information is unavailable in the other
two benchmarks.

B. Convergence of the Proposed Algorithms

Fig. 4(a) depicts the convergence behaviour of Algorithm 1
and the conventional BCD algorithm. It can be seen that
the conventional BCD algorithm converges within 2 iterations
with its objective value almost unchanged. For the proposed
PBCD Algorithm, although it converges after 12 iterations
with a low starting point, it can achieve a higher objective
value than that of the conventional BCD. The reason is that
although the starting point is low, since the initial parameter
ρini is less than 1, a larger search space is provided for each
iteration with the increase of parameter ρ, resulting in more
flexible optimization compared with BCD.

Fig. 4(b) depicts the moving average return per episode for
the proposed DRL-based Algorithm, where the length of the
moving window is 200 episodes. From Fig. 4(b), we can see
that the average return increases with the training episode and
saturates after sufficiently large episodes, which demonstrates
the convergence of the proposed Algorithm 4. The UAV can
learn from its experience for improving the long-term reward,
which is upper-bounded by the accumulated QoE for moving
from qs to qf .

We first consider the performance with a given perfect
ECKM. The optimized trajectories with different values of the

Fig. 4. Convergence behaviour of the proposed Algorithms.

Fig. 5. Optimized trajectories with perfect ECKM.

balancing factor λ are shown in Fig. 5. Fig. 5 also describes
the coverage map of the considered area, where the yellow
areas denote the areas in which the UAV can achieve a
maximum rate no less than r̃, while the blue areas denote
that with maximum rate less than r̃. In addition, the red areas
denote the obstacle areas with buildings where the UAV can
not reach. It is observed that the coverage map varies with
different heights, which is as expected due to the complex
antenna pattern and building distribution. From Fig. 5, we can
see that the UAV tries to move to the destination within the
yellow areas for larger rates while avoiding the red and blue
areas. As λ increases, the UAV tends to fly with less video
rate variation. Intuitively, decreasing video rate variation will
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Fig. 6. The tradeoff curve.

Fig. 7. Performance comparisons with perfect ECKM.

restrict the increase of video quality, which is verified in Fig. 6.
Fig. 6 shows the total video rate variation versus the total video
quality with different values of λ. Thus, the QoE maximization
should balance the tradeoff between decreasing video rate
variation and increasing the video quality, which has already
been captured by our proposed algorithms.

We compare the performance of the proposed algorithms
in Fig. 7(a) and Fig. 7(b) with the perfect ECKM. The
results for running time are obtained by solving the formulated
problems efficiently through Matlab R2021b tools and CVX
with solver SDPT3 over a computer with Quad core CPU
1.60 GHz. For fair comparison, we also consider a distance
minimization approach, which minimizes the flying distance

Fig. 8. UAV trajectories with different schemes without perfect ECKM.

by finding the shortest path over unweighted graph G but
optimizes time duration and playback rate allocation with
our proposed Algorithm 1. It is observed that Algorithm 2
achieves the largest QoE with the highest running time. This
is expected since it selects the maximum QoE value from all
paths in G, which is time consuming. Algorithm 3 achieves
a larger QoE than the distance minimization approach since
more heuristic information are utilized for path selecting. It is
also observed that Algorithm 3 can achieve a comparable QoE
as Algorithm 2 but with much less execution time. Thus,
Algorithm 3 is more preferred than the other schemes with
the perfect ECKM.

C. Performance When the Perfect ECKM Is Unavailable

Next, we consider the practical scenario and evaluate
the performance of the proposed DQL-based solution when
the perfect ECKM is unavailable and λ = 0.1. From
Fig. 8, we can see that with the DQL-based solution, even
without the perfect ECKM, the UAV is able to fly to
the destination with larger achievable rates by successfully
avoiding the red and blue areas, such that the buildings
can be avoided and higher QoE can be achieved. This is
because the UAV can intelligently make the most advantageous
decisions of moving with the dueling DQN neural network
by leveraging surrounding environment sensing and rate
measurements. As more learning experience is accumulated,
better performance can be achieved by exploiting of the
learned MRM for path planning. Furthermore, with the
simulated experience generation in Algorithm 4, fewer agent-
environment interactions are required. To validate the quality
of MRM estimated by Algorithm 4, Fig. 9 shows the
mean error ratio of the learned MRM, which is calculated
by comparing the predicted rates using the learned MRM
versus their actual values given a set of randomly selected
locations. Although the mean error ratio is initially large,
it decreases rather quickly with the increase of episode number
as more rate measurements are accumulated, which validates
the effectiveness of Algorithm 4 for learning with MRM
estimation.

Note that Algorithm 2 and Algorithm 3 are based on the
perfect ECKM, which can serve as upper bounds for the
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Fig. 9. The mean error ratio of MRM estimation.

Fig. 10. Performance comparisons with the DQL-based solution.

Fig. 11. The impact of handover penalty.

DQL-based solution without such information. It is observed
in Fig. 10 that the performance gaps between the proposed
DQL-based solution and the upper bounds are small, and thus
the effectiveness of the DQL-based solution is demonstrated.
Furthermore, the proposed DQL-based solution outperforms
the other benchmarks, where the performance gains are
more pronounced with a larger UAV operation time T . The
additional gain is brought by the joint design of 3D UAV
path as well as time duration and playback rate allocation.
Although the time minimization benchmark is also based
on a given radio map, it leads to a lower QoE since only
time is minimized and the QoE requirements for aerial

video streaming are ignored. Although radio mapping is also
employed in 2D benchmark with mapping, its achieved QoE
is lower than that of our proposed solution, since the flexibility
of 3D flight is fully utilized in our proposed solution.

To investigate the impact of handovers, we introduce
handover penalty factor ϱ ∈ [0, 1] as in [62], where smaller
value of ϱ corresponds to a bigger performance impact.
If handover event occurs at location qn, then the normalized
maximum achievable rate for the UAV at location qn can be
expressed as ϱR̃maxn . Fig. 11 shows the total QoE for different
schemes with different values of handover penalty factor ϱ.
As expected, the total QoE decreases with the decrease of ϱ,
since smaller value of ϱ corresponds to a bigger performance
impact over achievable rate. However, the performance impact
is limited. From Fig. 11, we can see that the performance
degradation ratio with handover effect is below 3% even with
ϱ = 0. This is because in the considered scenario, the total
handover duration is very small compared to the whole time
duration T . As such, it is reasonable to assume that the
overall performance degradation is negligible by employing
appropriate handover procedure [8].

VII. CONCLUSION

In this paper, a data driven framework of video streaming
over aerial 3D cellular networks was proposed. The total
QoE of video streaming was maximized in a complex urban
scenario by jointly optimizing 3D UAV trajectory, transmis-
sion scheduling, and playback rate adaption with building
avoidance. To overcome the difficulties of environment-
aware communications, we proposed a novel ECKM based
approach. Specifically, efficient algorithms were proposed
based on a perfect ECKM to obtain performance upper
bounds by utilizing graph models and the iterative PBCD
method. For the more practical scenario without an accurate
ECKM, we proposed a dueling DQL solution with MRM
construction to facilitate the learning based path design. The
design framework is also applicable to the scenario with
3D beamforming with beamforming design for interference
mitigation. In addition, the corresponding problem with
accurate handover effect model will be left as future work.
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