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Abstract—In this paper, we propose a modulation-adaptive
acoustic gesture recognition system with smartphones (termed,
MAA), which can achieve a high recognition accuracy under
various modulation schemes and quickly adapt to a new modu-
lation at low cost. Specifically, MAA creates an acoustic channel
model to capture temporal and spatial features, and leverages a
domain adversarial network to eliminate the difference among
modulation schemes when performing the same gesture. The
proposed framework includes a data collection module, a signal
preprocessing module, a channel construction module, and a
domain adaptation module. For data collection, we determine
the appropriate signal length and bandwidth for transmitted
acoustic signals. In the signal preprocessing module, channel
estimation and background noise removal are incorporated.
Then, we develop a tensor reconstruction network and a feature
mapping network in the channel construction module to directly
map features to specific gestures. For domain adaptation, we
train the above two networks in the source domain, and use an
adversarial network to adapt to the target domain. Experimental
results show that the proposed MAA achieves a good performance
on gesture recognition with different modulation schemes, with
better adaptation to new modulation schemes than several state-
of-the-art baselines.

Index Terms—Gesture recognition, acoustic sensing, modula-
tion schemes, domain adaptation, channel model.

I. INTRODUCTION

Recently, Internet of Things (IoT) devices have been used

everywhere in peoples daily lives to offer various sensing ap-

plications, including device-based and device-free schemes. In

general, device-free sensing applications are well received by

users because of their convenience and flexibility in use. Hand

gesture recognition (HGR) is a typical device-free sensing

application that plays an important role in human-computer

interaction (HCI). Radio Frequency (RF) techniques have been

developed for HGR with contactless devices [1], [2]. However,

the existing schemes usually suffer high deployment cost and

and poor adaptability, which hinder their wide deployment

in real world scenarios. Unlike RF-based techniques, acoustic

sensing provides an essential solution to the above problems.

Many IoT devices are equipped with acoustic front-ends, i.e.,

speakers and microphones, which can transmit and receive

acoustic signals for contactless sensing applications [3]–[5].

Various acoustic signal modulation schemes have been

developed for acoustic sensing applications, incorporating

frequency-modulated continuous wave (FMCW), orthogonal

frequency division multiplexing (OFDM), single sine wave,

and other types of acoustic modulation methods. For example,

PDF [6] leveraged the time delay of reflected FMCW signal

to track the trajectory of a moving object. AudioGest [7]

transmited a 19kHz acoustic sine wave from a speaker, which

was received by a microphone, allowing it to accurately

estimate hand in-air time, average waving speed, and hand

moving range. The authors in [8] designed a Zadoff-Chu (ZC)-

based OFDM signal to obtain channel impulse response (CIR)

sequence for extracting the structure-borne component, which

is highly related to the sliding gestures.

The aforementioned works demonstrate that although com-

parable gesture recognition tasks are performed, the signals

acquired are from different environments, distinct users, and

diverse acoustic modulations. As low-cost acoustic sensing

devices continue to proliferate and the rapid development of

deep learning, leveraging deep learning to extract features and

adapt to new domains for acoustic-based gesture recognition

systems is a direction worth exploring. However, there are

currently few public datasets for acoustic sensing, and at

the same time, laborious data collection and labeling are

required for new settings. Insufficient data will affect the

deeper network design, bringing performance and robustness

limitations to the target task. For example, under a certain

modulation, a sufficient amount of data needs to be collected to

ensure the performance of the model. Even though there exists

a dataset collected with a modulation scheme, exploring a

gesture recognition system with a different modulation scheme

requires to collect data and train the model from scratch.

To this end, this paper proposes MAA, a generalized cross-

modulation gesture recognition framework. The key is to build

the HGR system with a limited number of acoustic samples

for a new modulation using the knowledge learned from the

acoustic dataset collected in a known modulation. Thus the

overhead of training data collection can be greatly reduced.

To design such a system, two challenges should be ad-

dressed. Challenge I is how to select appropriate channel

characteristics to accurately model acoustic features shadowed

by a performed gesture for different modulation schemes.

Generally, channel model construction methods mathemati-

cally quantify the relationship between channel characteristics

and certain gestures, which require domain knowledge and
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also result in a high cost to design specific channel modules

for each type of modulation scheme. Challenge II is how to

eliminate the channel characteristic differences among mod-

ulation schemes under the same performed gesture. Acoustic

signals are modulated for transmission, with different time and

frequency resolutions. Thus it is hard to guarantee the same

performance in a unified channel construction method.
In this paper, we propose a Modulation-Adaptive Acoustic

gesture recognition system with smartphones, termed MAA, to

achieve a high recognition accuracy under various modulation

schemes and quickly adapt a new modulation at low cost.

Specifically, to tackle challenge I, we design data collection,

signal preprocessing, and channel construction methods. For

different types of modulation schemes, we first determine the

appropriate signal length and bandwidth in data collection,

and then extract channel frequency response (CFR) as the

basic acoustic channel feature in frequency domain, which is

modulation independent. Considering both time and frequency

domain, we use CIR to capture more time domain information.

In the channel construction model, we create a tensor con-

struction network to learn basic channel characteristics with

different weights, and a subsequent feature mapping network

for further improving the gesture recognition accuracy. The

networks are adjusted to make the feature distributions of

different modulation schemes closer. To address challenge
II, our main approach is domain adaptation, which performs

well in adapting to different environments and subjects in

prior works [9], [10]. Combined with the tensor construction

network and feature mapping network in the channel construc-

tion model, we propose a new domain adversarial network,

which preserves the best model of gesture recognition in the

source domain and can be fine-tuned for target domain through

adversarial learning.
To evaluate MAA, we collect acoustic datasets from dif-

ferent modulation schemes and compare the proposed method

with several state-of-the-art methods for domain adaptation.

Experiments results show that our unified channel construction

module can achieve over 92% gesture recognition accuracy on

each type of dataset. More important, our adversarial network

can achieve over 80% accuracy in domain adaptation.
We summarize the key contributions in this paper as follows:

• To the best of our knowledge, MAA is the first

modulation-adaptive acoustic gesture recognition system,

which is designed to achieve a higher HGR accuracy over

different acoustic modulation schemes.

• We construct a unified channel model to process the

received acoustic signals and extract features in both

time domain and frequency domain. We also design a

new domain adversarial learning network, to minimize

the distribution of features in source domain and target

domain. A well-trained model is used to quickly adapt to

a new modulation scheme.

• We develop a prototype of MAA with commercial smart-

phones to demonstrate the robustness of the proposed

system over different modulations and test environments.

By comparing with several state-of-the-art baselines, we

verify MAA can effectively address the domain shift

among modulation schemes.

The remainder of this paper is organized as follows. Sec-

tion II introduces the background and problem formulation.

Section III introduces the MAA design. We present our

experimental study in Section IV and conclude this paper in

Section V.

II. BACKGROUND AND PROBLEM STATEMENT

This section first describes three acoustic signal modulation

schemes utilized for recognition of human gestures. The the

problem formulation is presented for the MAA system design.

A. Modulation Schemes

1) FMCW [11], [12]: The FMCW method is to transmit

and receive acoustic signals reflected by objects. The fre-

quency of the transmitted signal is continuously increasing

or decreasing over the symbol duration. The FMCW scheme

can provide a fine-grained (frequency) resolution. The FMCW

modulated signal is called a chirp, whose bandwidth, min-

imum frequency, and sweeping time span are respectively

denoted by B, fmin, and T . The transmitted signal can be

written as cos(2π(fmin + B
2T )t), where t is the time within

the symbol duration T , i.e., t ∈ (0, T ) [11]. At the receiver,

the received signal is demodulated by first multiplying with

the signal cos(2πfct), where fc is the central frequency, and

then using a low-pass filter to complete the demodulation.

2) GSM [13], [14]: The transmitter generates a 26-bit TSC

that has a good auto-correlation property and modulates it

through up-sampling. Then, the carrier frequency fc is used to

up-convert the TSC before being transmitted by the speaker.

At the receiver, down conversion is performed on the received

signal by multiplying cos(2πfct) and − sin(2πfct), respec-

tively. After using a low pass filter, the real part and imaginary

part of the received base-band signal can be obtained.

3) ZC-based OFDM [8]: Similar to GSM, this scheme

utilizes TSC in the form of a ZC sequence in OFDM, and

interpolates it in the frequency domain rather than in the time

domain. First, fast Fourier transform (FFT) is performed on the

ZC sequence to obtain a frequency sequence xf [n]. Second,

xf [n] and the conjugate of xf [n] are arranged according to

the positive and negative frequency parts, respectively. The

rest part is padded with zero. Finally, inverse fast Fourier

transform (IFFT) is performed on the zero-padded complex

valued sequence. The resulting real part is considered as the

transmitted sequence, since smartphones can only send the real

number signal. The ZC-based OFDM methods share the same

demodulation process as GSM.

As communication technology continues to advance, the

modulation techniques utilized in acoustic sensing are ex-

pected to expand further. To investigate the efficacy of ges-

ture recognition models in response to emerging modulation

schemes, a significant amount of data will be required. How-

ever, the process of collecting and training with such data

is both time-consuming and labor-intensive. Therefore, this
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study endeavors to mitigate the training cost by transfer-

ring the knowledge acquired from datasets under pre-existing

modulation schemes to new modulation schemes. Specifically,

we aim to design a general gesture recognition framework,

to effectively learn features of acoustic signals in different

modulated schemes and eliminate the discrepancies in channel

features (e.g., CFR and CIR) for the same gesture. A new

modulation scheme will be fast deployed on the well-trained

recognition model, thus reducing the training cost as well.

B. Problem Formulation
The aim of the proposed MAA system is to construct an

appropriate acoustic channel model for different modulation

schemes and eliminate the differences in channel character-

istics for the same performed gesture. We denote the MAA

model as Zζ , which includes four components, including (i)

the tensor reconstruction network PΘ, (ii) the feature mapping

network Qγ , (iii) the gesture predictor network Gϑ, and (iv)

the domain adaptation network Aξ, which are respectively

parameterized by Θ, γ, ϑ, and ξ. Specifically, PΘ is used to re-

construct the input tensor, and Qγ aims to extract features from

the reconstructed input tensor. The two components are termed

as the channel construction model Zζ1 parameterized by ζ1.

Zζ1 is then wrapped into a domain adversarial framework

Zζ2 parameterized by ζ2, which can be generalized to a new

modulation scheme. Zζ2 includes Gϑ and Qγ . In summary,

MAA Zζ consists of the channel construction model Zζ1 and

the domain adversarial framework Zζ2 , where ζ = ζ1 ∪ ζ2.
The process of training Zζ is as follows. The received acous-

tic signal collected for three different modulation schemes is

denoted by D = {D1, D2, D3}, where D1 is for FMCW, D2

is for GSM, and D3 is for ZC-based OFDM. We train the

parameters Zζ to learn how to adapt to a new modulation

scheme. In particular, we sample the source and target domain

data from D, denoted as DS and DT , respectively, where

DS , DT � D,DS , DT �= ∅, and DS ∩ DT = ∅. The

source domain data and the target domain data are denoted

by DS = {xS
i , y

S
i }Ki=1 and DT = {xT

i , y
T
i }Ki=1, respectively,

where xS
i and xT

i are the complex frequency response matrix

collected from the source domain and the target domain,

respectively, ySi and yTi are the corresponding gesture labels

and K is the number of gesture categories. The labels of the

target domain are only used to validate the performance of

domain adaptation.
Due to the different data distributions of the source domain

and the target domain, the distributions of their obtained

features are also different. The objective function of MAA Zζ

is to minimize the gap in distributions so that a well-performed

classifier Gϑ trained on DS can perform well for classifying

samples on DT , which is formulated as

ζ∗(DS , DT ) = argmin
ζ

∥∥∥∥∥∥
1

nS

nS∑

i=1

φ(xS
i )−

1

nT

nT∑

j=1

φ(xT
j )

∥∥∥∥∥∥
Zζ1

,

(1)

where ‖·‖ is the metric of the difference between the proba-

bility distributions of DS and DT , φ is the mapping function

with x → Zζ1 , nS and nT are the number of samples in the

source and target domain, respectively. We will elaborate on

the MAA design in the next section on how to achieve the

above goal to have a modulation-adaptive acoustic HGR.

III. MAA SYSTEM DESIGN

MAA is a general acoustic-based HGR framework to adapt

to different acoustic signal modulation schemes. Fig. 1 shows

an overview of the MAA system, with data collection, signal

preprocessing, channel model construction, and domain adap-

tation. For data collection, we sample a set of gestures using

acoustic signals in different signal modulation schemes. In

signal preprocessing, background noise removal and channel

estimation are performed on the received raw acoustic signal

to extract the basic features (e.g., CFR and CIR). Then, we use

the construct channel model to augment the features. Finally,

by utilizing domain adaptation, we achieve a modulation-

adaptive acoustic sensing HGR, which can quickly adapt to

various modulation schemes. The MAA system modules are

discussed in detail in the following.

A. Data Collection
In the data collection module, acoustic signals in different

modulation formats are transmitted. We use three modulation

schemes as introduced in Section II-A. To generate an inaudi-

ble sound signal, the transmission frequency is set between

18kHz and 22kHz with a sampling rate Fs of 48kHz. The final

transmitted signals are denoted by S = {S1, S2, S3}, where

the length of signal is set as N = 480. The sound speed is

c = 343m/s, and the sensing range for N = 480 is within
cN
2Fs ≈ 1.72m. Such a setting is sufficient for the proposed

system. Signals in different modulation formats are repeated

by the transmitter. To avoid interference between frames, there

is a guard interval between adjacent symbols. When data

section is set with a length of 312 samples, it will occupy

6.5ms in the time domain. When the speed of finger motion

is below 0.5m/s, its coherence time is 8.5ms, which is longer

than 6.5ms (moving speed and coherence time are inversely

proportional to each other [15]). Thus, the acoustic channel in

MAA can be viewed as linear time invariant (LTI) system. At

the receiver, acoustic signals reflected from gestures and other

surrounding objects are received with the same sampling rate

as the transmitter. As shown in Fig 2, the received acoustic

signal can be segmented into M frames, and the frame length

is the same as the transmitted signal length N .

0 N-1

M

1

2

0 N-1

M

1

2

Fig. 2. Illustration of the received signal matrix.
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Domain Discriminator

Gesture Predictor

Fig. 1. Overview of the proposed modulation-adaptive acoustic gesture recognition system with smartphones.

B. Signal Preprocessing

Due to the environment noise, the received acoustic signals

cannot be directly used to construct an acoustic channel

model. Instead, we implement a signal preprocessing method

to acquire more robust sensing information.
1) Channel Estimation: To adapt to different modulation

schemes, we estimate CFR that can reflect the FSF in the

frequency domain from the received signal. The received

signal spectrum Rf can be represented by Rf = Sf ∗ Hf ,

where Sf is the spectrum of the transmitted signal, Hf is the

CFR in the LTI system. Note that CFR (i.e., channel infor-

mation) is the ratio of the received and transmitted spectrum,

which is independent to modulation [16]. Specifically, CIR

can be obtained through an IFFT of CFR, which captures the

corresponding environment information (e.g., the multi-path

effect) in the time domain. Assume there are K paths in the

sensing area and path i has a time delay τi, an amplitude decay

ai, and a phase offset θi. The CIR H(τ) is given by

H(τ) =

K∑

i=1

aie
−jθδ(τ − τi), (2)

where τ is the period of transmitted signal, and δ (·) is

the Dirac function. The acoustic channel response in the

frequency and time domain can be represented by CFR and

CIR, respectively. When a subject performs a gesture, people

in the surroundings may cause interference. Thus, we also use

the difference between two consecutive CIR profiles at time

t and t − 1 (i.e., dCIR) to further cancel such interference

and extract dynamic components in the time domain. These

three basic channel features (CFR, CIR, and dCIR) serve as

the input to the channel construction model.
2) Background Noise Removal: To remove the out-of-band

noise in each frame, we first apply a bandpass filter to the

received signal. Then, we perform FFT on the denoised signal

to calculate CFR. To mitigate the background interference (i.e.,

from static objects), we regard the first five received frames

(occupying 0.05ms) as a static state (i.e., no gestures would be

performed) in our system. Since the signals reflected by the

static objects occupy most of the reflected signal, and their

frequencies will not change, we compute the average value of

(b) Denoised signal

(c) Impulse response (d) Impulse response (denoised)
Sec Sec

T
ap

 i
n
d
ex

T
ap

 i
n
d
ex

Samples Samples

V
al

u
es

V
al

u
es

(a) Received raw signal (b) Denoised signal

(c) Impulse response (d) Impulse response (denoised)
Sec Sec

T
ap

 i
n
d
ex

T
ap

 i
n
d
ex

Samples Samples

V
al

u
es

V
al

u
es

(a) Received raw signal

Fig. 3. Signal preprocessing workflow using GSM as an example.

the first five frames in the frequency domain of the received

signal and subtract this value from each frame.

To demonstrate the efficacy of our signal preprocessing

model, we perform a push-pull gesture in front of the smart-

phone and use the GSM modulation as a example, while

other modulation schemes share the same workflow. In Fig. 3,

the received raw signal becomes smoother and exhibits better

signal characteristics after removing out-of-band noise. Thus,

the denoised signals are more suitable for the next process of

feature extraction.

C. Channel Model Construction

We utilize both CFR and CIR to construct a tensor that

represents information in time and frequency domains for each

signal modulation scheme, and leverage dCIR to enrich time

domain features. In the channel construction model, we first

simply concatenate the CFR, CIR, and dCIR matrices, which

are extracted from received signals in different modulation for-

mats. We reconstruct a tensor reconstruction network, which

is suitable to be generalized and will also be helpful for the

subsequent domain adversarial network. The output is fed into

the other network to extract temporal and spatial features. The

two networks used for tensor construction are PΘ and feature

mapping Qγ . Finally, the channel construction model Zζ1 can
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be formulated as Zζ1(x) = Qγ(PΘ(x)), where x denotes the

matrices of CFR, CIR, and dCIR.

1) Tensor Construction PΘ: We define the outputs of CFR,

CIR, and dCIR from the signal preprocessing method as xcfr,

xcir, and xdcir, respectively, which all have the same size

of N × M . In order to explore a more reasonable feature

presentation for each signal collected from different modu-

lation schemes, we construct a generalized tensor with size

3 ×N ×M . Different from simply overlapping or providing

them a fixed weight, the key idea of our work is to consider

channel estimation information from the three matrices as

different colors, i.e., RGB values in an image, and assume

they have different weights. By setting different weights to

the three channels, the tensor can be reconstructed for better

gesture recognition or allow a low-cost domain adversarial

learning during the training process of Zζ . This process is

achieved by

ratiok
i (R) = fk

i (R) /
K∑

k=1

fk
i (R), (3)

R′ = Conv2d(R, ratio(R)), (4)

where R is the simply concatenated matrix of xcfr, xcir, and

xdcir, fk
i (R) is the response value of time slot i in channel k,

i ∈ [0,M ], and R′ is the final reconstructed tensor.

2) Feature Mapping Qγ: The reconstructed tensor R′

serves as input to the feature mapping network Qγ , param-

eterized by γ. To better learn the influential features from the

channel characteristics of general modulation schemes, we aim

to extract deep temporal and spatial features, instead of a sim-

ple, single feature. We employ state-of-the-art convolutional

neural networks (CNNs) for exploring spatial features F spa

and leverage gate recurrent unit (GRU) and efficient channel

attention (ECA) for generating temporal features F tem.

For spatial feature extraction, R′ is regarded as an image

with three input channels, with N as the height and M as

the width of input planes in pixels. We directly feed R′ into a

Resnet-18 network [17]. And then rectified linear unit (ReLU)

is employed in the model to incorporate non-linear factors for

better learning. Finally, a high level representation of R′ can be

achieved, which is denoted by F spa. Note that if we separate

them into three channels and then feed them into Resnet-18,

the total time will become very high. Table I provides the

execution time of one epoch for different numbers of channels.

The execution time will increase by over 2 seconds for just

one epoch from one channel to three channels.

We then partition R′ into x1, x2, and x3, corresponding to

xcir, xdcir, and xcfr, respectively, and use low-time consum-

ing networks to extract time-frequency features. We extract

xtime and xfre by passing the concatenation of x2 and x3, and

x1 into the GRU, respectively. GRU has a better performance

for time series prediction, while beging lightweight than long-

short term memory (LSTM). Further, we exploit ECA for

learning channel attention for its simplicity and efficacy [18].

Subsequently, for producing a time-frequency joint feature,

we employ ReLU activated, concatenated layers to combine

TABLE I
EXECUTION TIME OF ONE EPOCH FOR DIFFERENT NUMBERS OF

CHANNELS (IN SECONDS)

Number of Channels 1 2 3

Extract 0.8569 1.7695 2.8806
Extract and update 0.9002 1.8178 2.9858

TABLE II
THE COSINE SIMILARITIES BETWEEN DOMAINS

ModT1 ModT2 ModT3 ModF1 ModF2 ModF3

ModT1 1.00 0.66 0.58 0.45 0.40 0.38

ModT2 0.66 1.00 0.78 0.50 0.51 0.54

ModT3 0.58 0.78 1.00 0.55 0.57 0.57

ModF1 0.45 0.50 0.55 1.00 0.64 0.66

ModF2 0.40 0.51 0.57 0.64 1.00 0.72

ModF3 0.38 0.54 0.57 0.66 0.72 1.00

xtime and xfre, and the final output is F tem. At last, by

using similar concatenated layers, a fused temporal and spatial

channel characteristic F is obtained for classification.

D. Domain Adaptation

Through the proposed signal preprocessing method and the

channel construction model, high-level characteristics can be

obtained for implementing high accuracy gesture recognition.

The question is whether a well trained network on one dataset
will work well on another dataset in a different modulation
format. Similar to [19], we evaluate the similarities between

domains (i.e., modulation schemes) by calculating the cosine

similarity. Let {ModTi }3i=1 and {ModFi }3i=1 represent the

impulse response matrices xcir
i and frequency response matri-

ces xcir
i for modulation i, respectively. The cosine similarity

values are presented in Table II. We find Mod2 and Mod3 are

the two most similar domains, but their similarity is still less

then 0.75. Most of the other similarity values are less than 0.6.

These results show that a well trained network, without any

modification, will not be effective for an unknown domain.

Our approach is to explore the domain adversarial frame-

work Zζ2 to address the above problem. The domain adap-

tation module is presented in Fig. 4. The data of the source

domain and target domain are fed into different tensor recon-

struction networks while they share the same feature map-

ping network. The method of applying PΘ and Qγ for the

domain adaptation module is that the parameters Θ and γ
in the network can be updated for better learning the useful

features for the classifier, specifically for the source domain.

In the target domain, both networks are initialized with the

parameters, which are learned in the source domain while only

Θ is updated for domain adversarial learning for reduced cost.

The gesture predictor Gϑ and the domain discriminator Aε

of Zζ2 are first introduced as follows. In the next subsections

on domain adversarial learning, we will discuss how the pro-

posed network addresses the domain shift problem. Essentially,
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Fig. 4. Overview of the domain adaptation module.

Zζ2 can be written as

Zζ2(x
S , xT ) = (Gδ(Zζ1(x

S)), Aξ(Zζ1(x
S),Zζ1(x

T ))). (5)

1) Gesture Predictor Gϑ: As introduced in Section III-C,

a high level feature F is obtained through network Qγ . In this

paper, we choose the few-shot classifier, which performs well

on recognizing novel classes for predicting hand gestures [2].

We only use its training network of base classes as our gesture

predictor. The predicted results are given by

Gϑ(Zζ1(x)) = softmax(W1*(Zζ1(x)) + b1), (6)

where W1 and b1 are the weight matrix and the bias of the

gesture predictor network, respectively.

2) Domain Discriminator Aε: Similar to the gesture pre-

dictor, (F )T (i.e., the transpose of F ) is the input and used

for classification. But the domain discriminator Aε performs

binary classification, which only needs to judge whether (F )T

is from the source or the target domain. The network of domain

discriminator is the same as that in the gesture predictor, but

having different parameters. The domain discrimination result

is given by

Aξ(Zζ1(x)) = softmax(W2*(Zζ1(x))
T + b2), (7)

where W2 and b2 are the weight matrix and the bias of the

domain discriminator, respectively.

3) Domain Adversarial Learning Zζ2 : To extract domain-

independent features, domain adversarial learning is used to

discard the specific features of modulation schemes, while

retaining the common features useful for gesture recognition.

In particular, our domain adversarial learning involves Zζ1 ,

which is trained with the gesture predictor to map specific

hand gestures to features extracted from received signals. Our

method adjusts parameters ζ1, Zζ1 = Θ ∪ γ to better work

with our proposed adversarial learning network Zζ2 .

The process of training includes two phases. In the first

phase, we aim to find an optimal model for gesture recognition

for the source data DS . We will then store the model for

the source domain, which is subsequently used in the second

training phase Zζ2 . In addition, we use the standard cross-

entropy function to calculate the loss between the predicted

class label and the ground truth, given by

L1(x, y) =

n∑

i=1

yi log(yi)−
n∑

i=1

Gϑ(Zζ1(x)) log(y
i). (8)

In the second phase, we first use the above parameters of

the model to initialize Θ and γ in the target domain. Then,

adversarial learning is used for training, which drives the data

features from the target domain close to that from the source

domain, based on (1). Similarly, the extracted features could

confuse the domain discriminator, while the predictor network

can effectively tell the input features are from the source or the

target domain. Through adversarial learning, we can obtain a

well-trained model that can adapt to the target domain through

fine-tuning the saved model from the source domain. The

training process is guided by two loss functions, which are

given by

LD(DS , DT ,ZS
ζ1 ,Z

T
ζ1
) = −ExS∼DS [log(Aξ(Zζ1(x

S))]

− ExT∼DT [log(1−Aξ(Zζ1(x
T )))], (9)

LF (D
S , DT , Aξ) = −ExT∼DT [log(Aξ(Zζ1(x

T )))]. (10)

where LD and LF represent the cross-entropy losses of the

domain discriminator and the gesture predictor, respectively.

The total loss function L2 in the second phase is defined as

L2 = LD + LF . (11)

Overall, we first optimize L1 over ζ1 and Gϑ by training using

the source domain data. Sine we choose to learn Zζ1(D
T )

by leveraging the saved Zζ1(D
S), we can then optimize

L2 without revisiting the first phase. Specifically, Zζ1(D
T )

includes PΘ and Qγ . Updating all the parameters Θ, γ will

have a high cost of computation, because Qγ is a complex

network. Since the source domain and the target domain share

the same feature mapping network, we reconstruct the input

tensor of target domain through updating parameters Θ in

the network PΘ while parameters γ in Qγ remain the same.

The training goal is to minimize L1 and L2, and then the

distribution of the source and target domain will be minimized.

IV. IMPLEMENTATION, EXPERIMENT AND EVALUATION

In this section, the system implementation and setup are first

introduced. Then the overall evaluation of MAA is presented,

including hand gesture recognition results and domain adap-

tation results. We will also present a micro-benchmark study

and an ablation study.

A. System Implementation and Experiment Setup
1) Data Collection: Our datasets are collected from ten

volunteers (numbered from 1 to 10). Each volunteer performs

six kinds of hand gestures (i.e., push (G1), slide up (G2),

slide left (G3), click (G4), clockwise (G5), and spread (G6))

under three different modulation schemes (domains). Fig. 5

illustrates the scenarios of our experiment. Fig. 5(a) shows a

data collection scenario where a subject sits on a chair per-

forming hand gestures in front of a smartphone. A computer is

used for real-time data processing. Figs. 5(b)(c)(d) show three

indoor environments where data was collected, i.e., a meeting

room, a study room, and an office. We implement our system

on a smartphone (i.e., OnePlus 6). The microphone of the

smartphone records the received acoustic signal data, which is

sent to the computer for processing and recognition.
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(a) Collection example (b) Meeting room (E1)

(c) Study Room (E2)
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Fig. 5. Data collection scenario and the three indoor environments.

2) Baseline Methods: We compare our method with seven

state-of-the-art learning models for HGR, which are described

as follows:

• KNN: KNN [20] is a simple but effective method for

classification, which is trained using the data of source

domain and then used for testing in the target domain.

• CNN: CNN [21] is a model that can effectively extract

2D spatial features from input data. We use the same

method as in the case of KNN.

• TCPR: TCPR [22] develops a domain-adaptive classifier,

which does not rely on restrictive assumptions.

• FLDA: FLDA [23] can adapt to the differences in the

marginal probability of features in the source and the

target domain.

• DANN: DANN [24] induces the adversarial theory into

domain adaptation and it aims at generating features that

represent both the source domain and target domain.

• CORAL: CORAL [25] is a simple unsupervised domain

adaptation method that uses a linear transformation to

align the source and target distributions.

• ADDA: ADDA [26] is an domain-adversarial method,

which combines the discriminative model, untied weight

sharing, and a GAN loss.

We use a public platform [27], where we can send acoustic

data between the PC and the smartphone in real time. Our data

processing, model training, and other operations are done on

the PC, which is equipped with 16GB memory, Intel i7-10700

CPU @2.90GHz, and the Nvidia GTX 1660 Graphics Card.

3) Metric: We choose the recognition accuracy to quantify

the performance of MAA, which represents the percentage

of the number of correctly recognized samples in the total

testing samples in the target domain, which is calculated as

Acc = Numcorrect/Numtotal.

B. Overall Evaluation

We first evaluate the performance of MAA from two major

perspectives: (i) the results of hand gesture recognition, and

(ii) the results of domain adaptation. We verify whether the
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Fig. 6. HGR performance on each domain.

channel construction model is suitable for various modulation

schemes to extract hand movement features and then validate

if the domain adaptation model can quickly adapt to a new

modulation scheme, while still achieving a relatively accept-

able recognition accuracy in the target domain.

1) Hand Gesture Recognition Results: We show the accu-

racy of hand gesture recognition by using MAA on each kind

of dataset collected from different modulation schemes, and to

verify the efficacy of our channel construction model, which

is the key contributor to accurate classification.

In the first training phase of MAA, we aim to find the best

classification model for the source domain. Fig. 6 presents

the recognition results using the dataset collected from one

of the three modulation schemes. We can see that the gesture

recognition accuracy of each modulation scheme is over 90%

(the lighter the color, the higher the accuracy), while Mod1
has the poorest performance on recognizing gesture “click”

and Mod2 best recognizes gesture “push.” Overall, all of these

three modulation schemes can well classify “push” than the

other gestures.

2) Domain Adaptation Results: Our domain adaptation

design aims to make the model fast adapt to a new domain at a

low cost. According to the proposed training process, we first

train the channel construction model and the gesture predictor

in the source domain, save this model, and then fine-tune it

for the target domain. The training in the target domain is to

minimize (9) and (10).

Table III shows the performance of domain adaptation of

MAA and the state-of-the-art methods when choosing one

dataset as source domain and another one in the remaining

datasets as target domain. Our proposed MAA scheme outper-

forms all the baseline methods in this experiment. The average

recognition accuracy of KNN is 63.51%, being the poorest

performance. Among the baselines, ADDA has the closest

performance to MAA, which is 73.55%. This validates the

superiority of using different feature extractors for the source

domain and target domain. DANN is the model leveraging a

feature extractor to extract domain-independent feature, and

its average accuracy is 65.41%, which is lower than ADDA

and MAA. Fig. 7 shows the experimental results of leaving

one dataset as target domain and others as source domain. We
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TABLE III
HAND GESTURE RECOGNITION PERFORMANCE (% ACCURACY ON

TARGET DOMAIN) OF DOMAIN ADAPTATION

Accuracy 1-2 1-3 2-1 2-3 3-1 3-2 Avg.

KNN 57.75 58.73 63.82 70.38 62.42 68.01 63.51

CNN 59.67 70.28 60.01 70.94 61.27 74.11 66.04

TCPR 68.07 72.05 65.29 69.14 66.61 68.46 68.27

FLDA 59.08 63.13 72.48 69.92 61.29 70.10 66.00

DANN 59.86 62.29 61.38 70.61 63.92 74.42 65.41

CORAL 62.05 70.90 62.29 79.67 60.84 78.49 69.04

ADDA 69.37 72.89 72.81 78.02 71.34 76.92 73.55

MAA 72.13 75.46 71.47 82.09 79.63 85.61 77.73
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Fig. 7. Domain adaptation performance on a multi-source domain and a target
domain.

Fig. 8. Performance on changed en-
vironments.

Fig. 9. Performance on within users
and leave one out.

Fig. 10. Performance on different
testing scenarios.

Fig. 11. Performance on different
types of noise.

can see the similar trend as in Table III, which demonstrates

the advantage of MAA on multiple dimensions.

C. Micro-benchmark

The following experiment is conducted to study the impact

of system environments on the robustness of MAA for HGR.

1) Impact of Environments: We evaluate the MAA per-

formance in different environments or for different subjects.

Three environments are shown in Fig. 5. Some of them are

surrounded by desks, computers, and small objects with rich

multi-path effect. We train our model in one environment

and test it in another environment. The experiment results are

described in Fig. 8. We can see that even though with a new

environment, the recognition accuracy is quite stable, which

are 93.30%, 92.54%, and 92.62%. This is because the features

we used are resilient to interference from the surrounding

environment. Our signal preprocessing could better reduce the

interference of static objective and background noise, which

are affected by the environment.

2) Impact of Subjects: For examining the impact of differ-

ent subjects, data collected from nine users are used to train

our model, which is then tested on the data collected from the

remaining subject. As shown in Fig. 9, we can see that the

overall accuracy decreases to 87.90%, while the accuracy is

93.67% when testing on known subjects. This is because of

the different gesture speeds of different subjects.

3) Impact of Distance: We explore the impact of testing

scenarios, including line-of-sight (LOS) and non-line-of-sight

(NLOS) on the systems. The NLOS scenario is created by

adding obstacles between the subject and smartphone. Ex-

perimental results are shown in Fig. 10. We find that the

gesture recognition accuracy in LOS scenarios is quite sat-

isfactory, which is 92.21%. In NLOS scenarios, the accuracy

becomes lower, probably due to the inconspicuous magnitude

of input CIR matrix. We also normalize the input matrix,

and find that the average recognition accuracy values in the

two testing scenarios become similar after being normalized,

which are 93.33% and 92.82%, respectively. Specially, we also

consider the situation where subjects perform gestures sitting

at different distances away from the smartphone. We find that

the magnitude of signal in some modulation schemes will be

seriously reduced when the distance is beyond 50cm. Hence,

we consider LOS and NLOS scenarios when the distance

between the subject and the smartphone is within 50cm.

4) Impact of Noise Level: We also verify the impact of

noise by considering two situations, which is denoted as P1
and P2. P1 is to play music at a distance of 0.6 ∼ 1.0m

(around 65dB) when collecting data, while P2 is to introduce

white noise to the signal before transmission. Fig. 11 shows

that the average accuracy under background music is 93.17%,

which is higher than that of P2, which drops down to 88.90%.

This experiment shows that our signal preprocessing module

can filter out the music noise, whose frequency is much higher

than that of the acoustic signals used in our system. Moreover,

the poorer performance in P2 may result from the minor

vibration when the smartphone is making sound.

D. Ablation Study

Our system contains several components: signal prepro-

cessing, tensor construction, feature mapping, and domain

adversarial learning. To evaluate the contribution to MAA’s

performance from each of them, we conduct an ablation study.
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TABLE IV
ABLATION STUDY OF MAA: ‘S’ , ‘R’, ‘F’, AND ‘D’ RESPECTIVELY

REPRESENT SIGNAL PREPROCESSING, TENSOR RECONSTRUCTION,
FEATURE MAPPING, AND ADVERSARIAL LEARNING NETWORK

S R F D Accuracy

42.56%
� 69.47%
� � 76.89%
� � � 80.23%
� � � � 85.61%

In particular, we directly use the received raw signals without

using our designed signal preprocessing methods, use a simply

concatenated matrix of CFR, CIR and dCIR to replace our

constructed tensor, and the convolution or full connect network

for other networks. Table IV summarizes the ablation study

results. We can see that our signal preprocessing, feature

mapping, and adversarial learning network modules make a

big contribution to the recognition performance, while other

components also help to enhance the performance of MAA.

V. CONCLUSIONS

In this paper, we proposed an MAA system to minimize

the difference between different acoustic modulation schemes

when performing the same gesture and fast adapt to unseen

modulation schemes. First, we introduced three modulation

schemes used in our system, Then, we formulated the problem

and discussed in detail the four modules of MAA, including

data collection, signal preprocessing, channel construction

model, and domain adaptation module. Finally, we validated

the proposed MAA system on our collected datasets. The

results demonstrated that our proposed method could effec-

tively achieve a superior performance on gesture recognition

over several state-of-the-art methods, with great adaptability

to unseen modulation schemes.
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