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Abstract— Due to the exponential increase in wireless devices
and a diversification of network services, unprecedented chal-
lenges, such as managing heterogeneous data traffic and
massive access demands, have arisen in next-generation wireless
networks. To address these challenges, there is a press-
ing need for the evolution of multiple access schemes with
advanced transceivers. Millimeter-wave (mmWave) communica-
tion emerges as a promising solution by offering substantial
bandwidth and accommodating massive connectivities. Never-
theless, the inherent signaling directionality and susceptibility
to blockages pose significant challenges for deploying multiple
transceivers with narrow antenna beams. Consequently, beam
management becomes imperative for practical network imple-
mentations to identify and track the optimal transceiver beam
pairs, ensuring maximum received power and maintaining high-
quality access service. In this context, we propose a Contextual
Combinatorial Beam Management (CCBM) framework tailored
for mmWave wireless networks. By leveraging advanced online
probing techniques and integrating predicted contextual informa-
tion, such as dynamic link qualities in spatial-temporal domain,
CCBM aims to jointly optimize transceiver pairing and beam
selection while balancing the network load. This approach not
only facilitates multiple access effectively but also enhances
bandwidth utilization and reduces computational overheads for
real-time applications. Theoretical analysis establishes the asymp-
totically optimality of the proposed approach, complemented
by extensive evaluation results showcasing the superiority of
our framework over other state-of-the-art schemes in multiple
dimensions.

Index Terms— Beam management, mmWave, transceiver pair-
ing, wireless networks, multi-armed bandit, contextual awareness.

I. INTRODUCTION

THERE has been an explosive rise in both the number of
mobile users as well as the proliferation of mobile device
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over the past decade. Such exponential growth is expected to
continue due to the rapid evolution of the Internet of Every-
thing (IoE) and innovative mobile applications. Emerging
technologies such as extended reality (XR) [1], holographic
video [2], and the Internet of Vehicles (IoV) [3] require high
data rates, minimal latency, and support for massive user
access, creating unprecedented demands on wireless networks.
These explosive requirements will overwhelm the connec-
tion capabilities of the existing fourth generation (4G) and
fifth generation (5G) cellular network systems, necessitating
the development of next-generation multiple access (NGMA)
and advanced transceivers. The primary objective of next-
generation (nextG) wireless networks, notably sixth generation
(6G), is to revolutionize the network infrastructure, facilitating
a vast multitude of users and devices to connect with unpar-
alleled efficiency and flexibility over high-frequency spectrum
of radio resources [4], [5], [6]. This evolution promises to
unlock new dimensions of connectivity, seamlessly integrating
advanced applications and radio transceivers into our daily
lives.

As a game-changer, millimeter-wave (mmWave) commu-
nication stands out in next-generation wireless systems,
offering high-bandwidth, low-latency connectivity to address
the increasing demands of densely deployed devices and
bandwidth-intensive applications, particularly in wireless
local-area networks (WLANs). In this domain, beamform-
ing emerges as an advanced transceiver technology due
to its capacity to optimize signal strength and reliability
in high-frequency, directional radio environments. Unlike
traditional omni-directional antennas, which struggle with
higher attenuation and interference in mmWave bands, beam-
forming focuses transmission and reception signals into
narrow beams, effectively enhancing signal strength and
reducing the interference footprints. Moreover, beamform-
ing enables adaptive beam steering among transceivers,
facilitating dynamic communication links and optimizing
spectrum utilization, thus ensuring multiple access in mmWave
systems.

In mmWave network scenarios, the deployment of mul-
tiple transceivers, such as access points (APs), in densely
populated WLAN environments is commonplace to meet the
demands of bandwidth-intensive applications. Beam manage-
ment, therefore, becomes imperative for mmWave transceiver
implementations to identify and track the optimal transceiver
beam pairs, ensuring maximum received power and main-
taining high-quality service. However, managing directional
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beams across numerous transceivers introduces significant
challenges in such high path-loss and blockage-prone contexts.
First, the task entails formidable overhead, escalating linearly
with the number of communication entities. Second, the paired
beams are highly susceptible to both static and dynamic obsta-
cles due to the limited range and poor penetration capabilities
of mmWave signals. Lastly, the uncertain and time-varying
nature of the mmWave channel complicates the adaptive
beamforming process, especially in response to changes in
line-of-sight (LoS) and non-line-of-sight (NLoS) conditions.
This complexity is particularly pronounced in load balancing
scenarios where the objective is to maintain consistent service
levels across multiple access user equipment.

Several solutions have been developed for beam manage-
ment and resource allocation for multiple access [7], [8].
However, a key assumption in these prior works is that
the channel condition is known from the beginning, which
poses a challenge in densely deployed mmWave scenarios
characterized by their time-varying nature. Recently, var-
ious machine learning-based approaches have emerged to
address the uncertainty in beam alignment and selection
among transceivers [9]. For instance, in [10], a deep learning
framework is proposed to predict link quality between beams,
though its implementation on network devices requires sub-
stantial computational resources. Alternatively, a multi-armed
bandit (MAB) based online learning framework appears more
suitable, as it negates the need for offline data collection
and strikes a balance between exploration and exploitation in
uncertain environments. Such online algorithms can adapt in
real-time to changing network conditions, allowing for quick
adjustments based on evolving channel characteristics and user
demands. In essence, the adaptability is crucial in scenarios
where the environment is highly dynamic, such as in mmWave
networks where obstacles and interference levels may vary
rapidly. However, a comprehensive study on a joint transceiver
paring and beam management scheme with load balancing
in an obstacle-rich mmWave network is still lacking. Direct
application of MAB algorithms like Upper Confidence Bound
(UCB) [11], [12] may not fully exploit the characteristics
of this problem’s underlying model, as it overlooks the cor-
relations between nearby beams of transceivers. Given that
nearby beams exhibit high spatial correlation, their signaling
characteristics such as established link quality are also similar.
Therefore, sampling one beam can provide information about
its neighboring beams, potentially expediting the convergence
to optimal configuration.

In our prior works [13], [14], we introduced a regression-
based machine learning framework to predict link quality
between mmWave transceivers, accounting for both static
and dynamic blockages. This framework has demonstrated
an impressive accuracy rate of up to 94%, requiring minimal
environmental data as input. Notably, it seamlessly adapts to
different network scenarios by merely modifying input data,
eliminating the need for additional model training. By utilizing
such link quality predictions as contextual knowledge, the
overhead produced in AP probing and beamforming processes
can be greatly reduced. Intuitively, APs offering high signal
strength at specific locations can be selected for optimal beam
pairing. This prior research forms the basis for our current
beam management investigation, enabling a context-aware

online probing technique tailored to coordination-minimal
wireless transceivers.

In this paper, we present a novel contextual combinatorial
beam management (CCBM) framework designed to tackle the
joint AP and beam selection problem in mmWave wireless
networks, ensuring a balanced load distribution among dense
transceivers for consistent user services with minimum coor-
dination overhead. In CCBM, each beam is treated as an
arm, with the received power serving as reward for selecting
specific beams. The objective is to sequentially choose these
arms to maximize the cumulative rewards within a given
time horizon, particularly allowing user devices to explore
multiple arms and evaluate their rewards before finalizing
the AP-beam selection. This approach significantly minimizes
uncertainty by revealing arm rewards before the decision-
making process, while minimizing the coordination overhead
between transceivers. Additionally, by leveraging link qual-
ity predictions of unknown beam directions from our prior
works [13], [14], the CCBM framework prioritizes APs based
on their predicted link quality at the receiver location. Only
beams associated with higher predicted values from these
APs are considered during the online probing process. This
strategy expedites the assessment of network conditions by
avoiding unnecessary searches among irrelevant candidate
beams, as both the environmental context and arm context
implicitly contribute to the rapid identification of optimal
beams. The main contributions of this work1 are summarized
as follows.
• We innovatively frame the joint transceiver paring and

beam management task as a contextual combinato-
rial MAB problem, naturally leveraging the correlation
between nearby beams and location-aware link qualities
as context information to expedite the beam management
procedure.

• In our proposed CCBM framework, we incorporate a
novel attention-based selection scheme along with an
early stopping criterion to prevent excessive exploration
during the online probing process. Extensive theoretical
analysis establishes an upper bound on the cumulative
regret, i.e., the gap to the results obtained from an oracle
search, which demonstrates the asymptotic optimality of
our beam management approach.

• We develop a reward function within the MAB algorithm
that explicitly considers load balancing among candidate
APs, guiding receivers in the online probing process to
select a globally optimal transmitter and corresponding
beam for pairing, thereby optimizing both the communi-
cation efficiency and overall network performance.

• Comprehensive evaluations demonstrate the superiority
of our CCBM framework over baseline approaches in
various dimensions, including lower regret, increased user
throughput, and improved load balancing across densely
deployed mmWave APs.

II. RELATED WORKS

Numerous studies have been undertaken to tackle the
unprecedented challenges posed by the next-generation multi-
ple access networks, arising from heterogeneous data traffic,

1A part of this paper was presented at the IEEE International Conference
on Communications [15].
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massive connectivity demands, and the necessity for ultra-high
bandwidth efficiency coupled with ultra-low latency require-
ments [16], [17]. Among these approaches, Non-Orthogonal
Multiple Access (NOMA) has emerged as a promising solu-
tion [16], aimed at surmounting the constraints of traditional
orthogonal multiple access schemes, and allowing multiple
transceivers to share the same resource block through power
domain multiplexing, which allocates different power levels
to encode data signals for various receivers. For instance,
in [18], a novel cluster-free NOMA framework is proposed
for providing scenario-adaptive NOMA communications, uti-
lizing distributed machine learning algorithms for efficient
implementation in both single-cell and multi-cell networks.
Additionally, in [17], a resource allocation algorithm is devel-
oped based on the trust region policy optimization (TRPO)
algorithm, addressing the long-term power-constrained sum
rate maximization problem in NGMA. Moreover, in [19],
a deep neural network (DNN)-based unsupervised learning
algorithm is introduced to improve the sum rate performance
while maintaining a minimum data-rate requirement in power-
domain NOMA setups.

In mmWave networks, beam management plays a crucial
role for implementing multiple access techniques like NOMA,
as it enables dedicated resource allocation and interference
management [20]. Through dynamic adjustments of beam
directions and strengths, beam management optimizes trans-
mission quality for multiple access users, thereby maximizing
spectral efficiency and system capacity. Specifically, a rapid-
discovery approach utilizing multi-resolution beam search
was introduced in [20]. This technique initially explores a
broad beam, progressively refining to narrower beams of a
transceiver to determine the optimal beam. Although this
method is viable, it requires the adjustment of beam res-
olution at each stage. In [21], a potential map of THz
vehicle transmission is developed for autonomous vehicles
to address the blockage of short-range and unstable links.
In [22], the researchers implemented initial access within
clustered mmWave small cells by employing the power delay
profile. Base stations are arranged into clusters and linked
with a backhaul network. They exchange their measurement
reports derived from mobile devices and leverage these shared
measurements to estimate mobile device locations. As a result,
base stations can direct signals towards the estimated locations
of transceivers in LoS scenarios.

Recently, motivated by the remarkable advancements made
by deep learning in computer vision and natural language
processing, researchers have turned their attention to applying
deep learning techniques in the realm of network resource
allocation [23], [24] and beam management [25], [26], [27].
In [28], a deep learning-based beam management and inter-
ference coordination (BM-IC) method is proposed for dense
mmWave networks. In [23], a deep Q learning network
model is utilized to solve resource allocation problem in 5G
architecture. Several DNN models are developed in [29] and
[27] to predict the best serving beams and facilitate beam
training in multiple-input multiple-output (MIMO) systems.
However, a significant drawback of using these deep learning
models to optimize beam management is their reliance on
large volumes of training data. Additionally, when environ-
mental conditions change, the pre-trained models may become

ineffective. Conversely, online learning approaches offer an
adaptive solution by continuously adapting to new incoming
or observed data, thus maintaining effectiveness even when the
operational environment undergoes significant changes [30].
As an efficient online learning scheme, the multi-armed bandit
(MAB) framework has been extensively applied to solve
various online optimization problems in the networking area
such as channel selection [31], [32], and mobility manage-
ment [33]. For example, in the classic MAB model with the
UCB algorithm [34], one arm is played in every round and
its corresponding reward is revealed immediately. Then, the
objective is to maximize the total expected reward accumulated
during T rounds, which can be equivalently formulated as to
minimize the regret, i.e., the difference between the reward of
the optimal selection and the reward from the algorithm.

Due to its adaptivity in dynamic scenarios, several MAB
algorithms have been developed for beam management in
mmWave networks [35], [36]. For instance, [37] adopted
a contextual MAB approach to address the beam selection
problem in mmWave vehicular systems, leveraging coarse
user location information and received data aggregation for
environment adaptation. In [38], the beam alignment problem
was formulated as a stochastic multi-armed bandit problem,
utilizing correlation structure among transceiver beams such
that the information from nearby beams is extracted to identify
the optimal one. Similarly, [39] considered beam correlation
as arm context with a unimodal beamforming algorithm. How-
ever, these existing approaches did not account for practical
mmWave network scenarios with numerous obstacles, nor
did they jointly consider load-balanced resource allocation
in their designs. Notably, [7] addressed resource allocation
partially with a coarse-level AP probing algorithm, extending
the contextual bandit learning framework to handle unknown
link rate distributions. However, it did not manage beam
pairing for each mmWave transceiver. This work aims to
bridge these gaps by jointly considering transceiver paring
and beam management while adaptively balancing the network
load.

III. PRELIMINARIES OF THE CONTEXTUAL KNOWLEDGE
PREDICTION MODEL

Given the significance of contextual knowledge in facil-
itating beam management among mmWave transceivers in
a wireless network, our CCBM mechanism is built upon a
prediction model that dynamically constructs a comprehensive
link quality map of the network environment, considering both
spatial and temporal domains. To ensure precise prediction,
our contextual knowledge prediction model comprises two
components: long-term and short-term link quality prediction.
The long-term prediction aims to forecast a link quality
map under static environmental conditions, while the short-
term prediction captures changes in link quality caused by
environmental dynamics such as moving obstacles.

A. Long-Term Prediction
The long-term prediction model is segmented into LoS and

NLoS prediction components. This division is crucial due to
the significant variation in link quality between these sce-
narios, particularly pronounced in mmWave bands compared
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to lower frequencies. Built upon our prior research [13], the
first step involves identifying LoS and NLoS areas within
the region. To achieve this, we employ geometric analysis
based on [40] to delineate these coverage areas. The process
basically begins by partitioning the entire network space into
a grid of equal-sized 3D cells. Subsequently, each grid cell is
scrutinized to determine if the center of the grid falls within
a shadowing polygon formed by APs and existing obstacles.
In this way, grids devoid of such shadowing polygons are clas-
sified as LoS, while grids intersected by shadowing polygons
are categorized as NLoS.

As widely acknowledged, LoS path component contributes
to the majority of link quality at mmWave frequencies. There-
fore, the link performance under these scenarios is not highly
dependent on the surrounding obstacles, but instead, depends
more on the distance between transceivers. As such, LoS
link-quality predictions can be performed based on a 3GPP
mmWave channel model with parameters chosen for LoS
scenarios [41].

Forecasting link quality in NLoS areas presents a greater
challenge due to the intricate interplay of signal reflection and
diffraction effects, which complicate predictions based solely
on channel models. Consequently, leveraging deep neural net-
works (DNNs) becomes a solution to address this complexity
and accurately predict link quality between transceivers when
an LoS path does not exist. As introduced in [13], the proposed
DNN model incorporates basic environmental features as
input, formulating the prediction task as a regression-based
problem. The environmental characteristics encompass various
factors, including scenario configuration, obstacle sizes and
positions, material reflectivity information, and the locations of
APs. By integrating this comprehensive set of static features,
the model can effectively capture the nuances of NLoS envi-
ronments and make precise link quality predictions as verified
in our prior work [13]. Specifically, the input feature is firstly
flattened into a vector of size nin, which is then fed into a fully
connected network with 4 hidden layers, resulting in a signal-
to-noise ratio (SNR) value as the output. The model is trained
through the backpropagation rule using a mean-squared error
loss function. In essence, this approach harnesses the power
of machine learning to navigate the intricacies of multi-path
effects between transceivers with paired beams, enabling more
robust and reliable forecasts compared to traditional channel
modeling techniques alone.

B. Short-Term Prediction

Although the long-term link quality map contains informa-
tion about radio signal strength at various locations relative
to the deployed transceivers [42], the prediction model fails
to adequately consider the impact of environment dynamics
caused by moving obstacles. Because of the mmWave link’s
susceptibility to blockages, even a slight variation in the
location of a moving object can lead to significant changes
in the link quality map. This, in turn, affects the beam
pairing process among the transceivers. To solve the problem,
we further apply a spatial-temporal augmentation model [14]
that is able to predict the up-to-date link quality map under
dynamic environments. Fig. 1 depicted the overall framework
of the short-term prediction model.

Fig. 1. Overview of the short-term prediction model framework.

1) Spatial Model: Since the presence of moving obsta-
cles can significantly deteriorate the link quality between
transceivers situated at random locations, it is crucial to
comprehend and model the spatial dependencies that govern
the fluctuations within a link quality map. Specifically, each
receiver can be regarded as a distinct vertex within a graph and
we assume that the neighboring vertices of the receiver share
a high degree of correlation in terms of link quality. We then
add the edges between these neighbouring vertices to further
construct a connected graph, which contains detailed spatial
information. To extract meaningful features that accurately
represent the environment’s impact on link quality, we employ
a two-layer Graph Convolutional Networks (GCN) model
to extract spatial-domain features, taking into account the
graph node and the adjacent links of the node to capture the
correlation between link quality and environment details such
as deployed objects. A multi-layer GCN can be expressed as:

H(l+1) = σ(D̃− 1
2 ÂD̃− 1

2 H(l)θ(l)), (1)

where Â = A+I represents the adjacency matrix of the graph
enhanced by the identity matrix to include self-connections,
ensuring that each node also considers its own state in addition
to its neighbors’. D̃ is the degree matrix with D̃ii =

∑
j Âij

to normalize the graph to account for the varying degrees of
connectivity among nodes. H(l) is the output of layer l. θ(l)

is the parameter of layer l, and σ is the activation function.
2) Temporal Model: To complement the spatial analysis,

we employ a temporal model to understand and predict the
temporal fluctuations in link quality. These variances predom-
inantly arise from the combined multipath effects of static
and dyanmic blockages, which always evolve over the time
horizon. For this purpose, we incorporate a Long Short-
Term Memory (LSTM) layer into our short-term prediction
framework. As a variant of the recurrent neural network,
LSTM is designed to overcome the vanishing gradient problem
and make use of the gate mechanism to capture long- and
short-term dependencies.

In essence, the LSTM model includes three primary gates:
the forget gate, input gate and output gate. These gates work
together within a memory cell, combining the previous link
states and the current environment details to update the hidden
link states. The forget gate decides whether the link quality
information in the previous memory should be discarded or
not. The input gate regulates how much of the new contextual
information should be added to the memory cell, while the
output gate determines how the memory cell’s contents should
influence the hidden states. As such, the LSTM layer can
effectively predict the link quality of the future time steps
and capture the dynamic temporal link variations.

The integration of spatial and temporal prediction mod-
els offers a comprehensive understanding of the complex
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TABLE I
NOTATIONS AND DEFINITIONS

dynamics governing the mmWave wireless communication
between the transceivers. In this setup, the long-term pre-
diction module generates an initial link quality map based
on environmental configurations. Subsequently, the short-term
engine dynamically updates information at volatile transceiver
locations. This synergistic approach ensures a continuous con-
textual knowledge base for the subsequent beam management
process.

IV. PROBLEM FORMULATION

In this section, we elaborate on the process of transforming
the joint transceiver paring and beam selection problem into
a contextual combinatorial MAB problem using link quality
information, and then derive an online probing algorithm
for effective beam management. The choice of MAB over
other learning-based algorithms is driven by two main factors:
First, the MAB algorithm can quickly adapt to changing
environment fast, whereas supervised learning will require
retraining under such conditions. Second, compared to deep
reinforcement learning, the MAB method requires significantly
fewer computational resources, making it more suitable for
real-time applications. Important notations used in the paper
can be found in Table. I.

Let N denote the number of mmWave APs in a wireless
network environment and C represent the number of orthogo-
nal beam patterns associated with each mmWave transmitter.
Additionally, assume that M client receivers are moving
randomly within the space. Let X represent the set of environ-
mental contexts corresponding to the user locations. At each

time step t = 1, . . . , T , where T denotes a predetermined
time horizon, the location xt

m ∈ X of user m at time t
can be observed. Subsequently, the link quality predictions
obtained from Sec. III are utilized to rank APs based on the
maximum signal strength they can offer at each user location.
We establish an AP candidate set with a size of A for each user
location xt

m by selecting the top-A APs. Considering beam
pairing, all the beams from each AP candidate set collectively
form a beam set At

m = {aj
i |i ≤ C, j ≤ A}, where aj

i
represents the i-th beam of the j-th candidate AP.

Based on the above setup, each beam from At
m can be

treated as an arm in an MAB problem. At each time step t,
instead of playing just one arm, a subset of arms St

m ⊂ At
m

will be selected to play. There exists a budget B that limits
the maximum number of arms that can be probed, i.e., |St

m| ≤
B. To choose the optimal subset St

m, we incorporate arm
context information X = {Oa|a ∈ St

m}. Specifically, in our
considered scenario, arm context refers to the direction of each
beam, where the details about arm selection will be introduced
in Sec. V. Here we define the reward of selecting a beam a at
the user location x as corresponding to the signal strength
of the beam alignment process. We denote this reward by
ra|x and its expected value by µa|x = E[ra|x]. To model
the probing overhead and adhere to the load constraint, the
reward of playing a single arm can be further formulated
as K−ka

K ra|x, where the penalty weight K is the maximum
number of users that can be connected to a single beam, ka

is the current number of users that have connected to beam a.
Overall, the design of this reward function effectively guides
the users to select beams of some APs with lower traffic load
while maintaining a relatively high link quality.

As mentioned earlier, in our context, we probe a subset of
arms St

m ⊂ At
m to assess the qualities of these arms. We then

select the arm that yields the highest reward in St
m. Let r =

{ra|x}a∈St
m

denote the collection of rewards of arms in the
probing set. The reward of probing St

m can then be formulated
as R(St

m, r), signifying that the reward is jointly determined
by the selection of the subset and the individual reward of
each arm in the subset:

R(St
m, r) = max

a∈St
m

{K − ka

K
ra|xt

m
}. (2)

It is worth noting that the max function in Eq. (2) is a
submodular function [7], which is featured by the diminishing
returns property, i.e. given the arm sets A and B, where
A ⊆ B, for all arms m /∈ B, if R is a submodular function,
we have:

R(A ∪m, r)−R(A, r) ≥ R(B ∪m, r)−R(B, r). (3)

We prove this with the following theorem:
Theorem 1: The max function R in Eq. (2) is a submodular

function
Proof: Suppose the maximum element in A and B are α

and β, respectively. Since A ⊆ B, we will have α ≤ β. For an
element m /∈ B, there can be three conditions to be discussed.
If m > β, we have R(A∪m, r)−R(A, r) = m−α, which is
greater than R(B ∪m, r)−R(B, r) = m− β. If α ≤ m ≤ β,
we will have R(B ∪ m, r) = R(B, r) and R(A ∪ m, r) −
R(A, r) > 0. The condition still holds. Finally, if m < α,
we have R(A∪m, r)−R(A, r) = R(B∪m, r)−R(B, r) = 0.
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Therefore, we can conclude that the max function will always
satisfy the diminishing returns property and is a submodular
function.
This property of the reward function aligns well with our
formulated contextual combinatorial MAB problem, which is
specifically tailored for submodular functions.

Given the above property, an online probing method with
known expected rewards is outlined in Algorithm 1, which
is a greedy algorithm that always selects the arm to maxi-
mize the marginal reward (lines 4-5). The primary objective
is to maximize the cumulative reward expectation over T
rounds, i.e.,

∑T
t=1

∑M
m=1 E[R(St

m), r]. Assuming an optimal
algorithm could consistently select the best arm set S∗,tm

at every round t for each user m, the performance of our
algorithm can be measured by the expected cumulative regret
in Eq. (4), which quantifies the expected cumulative differ-
ence between the maximum reward achieved by the optimal
algorithm and the reward obtained by Algorithm 1.

Reg(T ) =
T∑

t=1

M∑
m=1

E[R(St,∗
m , r)−R(St

m, r)]. (4)

It is worth noting that there is no gap between the transition of
these two evaluation metrics. As the algorithm that provides
the best cumulative reward will definitely yield a smaller
difference to the optimal reward. Hence, the objective of
maximizing the expected cumulative reward is equivalent to
minimizing the expected regret in our problem.

It has been proven that maximizing a submodular set func-
tion with known reward expectation is NP-hard [43]. However,
a greedy probing algorithm has been proposed in [44] that
guarantees achieving no less than (1 − 1/e) of the optimal
solution. Therefore, as described in Algorithm 1, beams can
be sequentially selected based on their marginal reward to
ensure an asymptotic optimality. Given that no polynomial
time algorithm can achieve a better approximation for the
submodular function maximization problem, our objective is to
find an algorithm that achieves sublinear (1− 1

e )-approximation
regret, as formulated in Eq. (5):

Reg(T ) = (1− 1
e
) ∗

T∑
t=1

M∑
m=1

E[R(St,∗
m ), r]

−
T∑

t=1

M∑
m=1

E[R(St
m, r)]. (5)

Algorithm 1 Online Probing Algorithm
Input: arm set A, reward function R, budget B
Output: super arm S

1: S ← ∅;
2: i = 0;
3: while i ≤ B do
4: m = argmax

m∈A\S
R(S ∪ {m}, r)−R(S, r);

5: S = S ∪ {m};
6: i = i + 1;
7: end while

Fig. 2. Workflow of CCBM procedure.

V. CONTEXTUAL COMBINATORIAL BEAM MANAGEMENT

Built upon the problem formulation as discussed in Sec. IV,
this section introduces a novel contextual combinatorial MAB
approach for beam management in mmWave wireless net-
works. In practical scenarios, it will be infeasible to obtain
prior knowledge of the expected rewards for arms. Con-
sequently, direct application of Algorithm 1 is not viable.
Instead, we aim to learn the expected values of arms using
a contextual combinatorial MAB framework as illustrated in
Sec. IV. Such a framework was originally designed for gen-
eral bandit problems with submodular reward function [11].
However, our approach differs by incorporating both the
arm context (beam correlation) and the environment context
(location-aware link qualities). Additionally, we subtly inte-
grate a beam selection scheme to enhance rewards during the
exploration period.

Algorithm 2 summarizes our CCBM framework using
online probing to achieve the expected rewards for beam
arms. The overall workflow is shown in Fig. 2. Initially, the
environment context space X is divided into a uniform grid set
X ′ = {x1, x2, . . . , xn}, with n representing the total number
of grids into which the space is partitioned. At each time step
t, when a user location xt

m is observed, it is mapped to the
corresponding grid x in X ′ to which it belongs (Lines 4-
5). In addition to managing the environment context space,
we partition the arm context space X = [0, 2π], where it is
first normalized to [0, 1], and then divided into hT hypercubes,
each with a size of 1

hT
.

Specifically, at each time step t, for each user m, the
algorithm observes the environment context xt

m (e.g., the
user’s location) and then maps it to the corresponding grid
x ∈ X ′. Later, the link quality prediction model in Sec. III is
utilized to predict link quality of each AP given the position
information. The candidate APs are chosen based on their
ranking of the predicted link quality values. Then, the beams
from all the candidate APs form the arm set At

m (Lines 6-7).
For each arm a in At

m with arm context Oa, the algorithm
determines a hypercube pa ∈ X such that Oa ∈ pa holds.
The collection of hypercubes at time slot t is denoted as pt =
paa∈At

m
(Lines 12-13). Subsequently, the algorithm identifies

Authorized licensed use limited to: Auburn University. Downloaded on February 28,2025 at 03:00:51 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: CCBM VIA ONLINE PROBING FOR MULTIPLE ACCESS mmWave WIRELESS NETWORKS 965

the hypercubes pa ∈ pt that are explored less frequently based
on the following criteria:

Pue,t = {pa ∈ pt|x ∈ X ′, a ∈ At, Ct(pa|x) < K(nx)}, (6)

where Ct(pa|x) is a counter that keeps track of the number of
times the arms within the hypercube pa are selected when the
receiver location is mapped to x during time periods 1, 2, .., t−
1. K(nx) is a deterministic, monotonically increasing control
function, and nx represents the number of times grid x has
been visited in the previous time periods.

Next, the algorithm determines whether to explore or exploit
based on the number of arms located in under-explored
hypercubes. If the set of under-explored arms is non-empty,
the algorithm enters an exploration phase. Let q be the size of
under-explored arm set. If the under-explored arm set contains
at least B arms, i.e., q ≥ B, we employ an arm selection
scheme called attention-based selection (Lines 31-37) instead
of randomly selecting arms as in prior MAB works.

A. Attention-Based Selection

Let Z be the set of arms in the under-explored arm set
with Ct(pa|x) = 0, indicating that at grid x, the hypercube
to which arm a belongs to has never been chosen until time
period t − 1. If |Z| ≥ B, then randomly select B arms
from Z . If 0 < |Z| < B, select all the arms in set Z
and randomly select other under-explored arms. The rationale
behind this step is intuitive: If we only randomly select arms
without attentions, there is a possibility that certain hypercubes
providing good rewards may not be identified in the initial
rounds, leading to suboptimal exploration. To be specific,
when |Z| = 0, indicating that the under-explored hypercubes
have been chosen at least once, our algorithm first identifies the
arm at−1

m chosen for the user m in the last time step t−1. Since
we are considering a continuous movement (action space), for
a single user, the location at time step t should be close to
the location at time step t− 1. Therefore, we can still assume
at−1

m is a good candidate arm that can provide satisfactory
rewards at round t, and it will be included in the probing set
St

m, while the other arms are chosen randomly. In this way,
we strategically incorporate attention-based exploitation into
the exploration phase.

In some cases, if the under-explored arm set contains fewer
than B elements, i.e., q ≤ B, then the algorithm selects
all q arms (Lines 17-18). The remaining arms are selected
sequentially by exploiting the estimated rewards as follows:

a = argmax
a∈At

m\St
m

R(St
m ∪ {m}, r̂)−R(St

m, r̂), (7)

where r̂ is used to denote the sampled reward of each arm
a. If there are no under-explored arms, all B arms will be
selected based on Eq. (7).

Since we consider an mmWave wireless network scenario
with fixed APs, it is intuitive that after a certain number of
rounds of exploration, we can have a relatively comprehensive
knowledge of the network condition. Thus, it will be more
rewarding to perform exploitation after a certain time step.
To this end, we incorporate a early stopping criterion to guide
the algorithm into an exploitation phase (Lines 9-10).

Algorithm 2 Contextual Combinatorial Beam Management
Input: user number M , arm set At

m, reward function R,
budget B, time horizon T , control function K(nx), arm
context space X , grid set X

Initialization: ∀x ∈ X, nx = 0
∀pa ∈ X , Ct(pa|x) = 0, r̂(pa|x) = 0

1: for t = 1, 2, . . . , T do
2: for m = 1, 2, . . . ,M do
3: St

m = ∅;
4: Receive the client position information xt

m;
5: Map the position context to grid x← xt

m;
6: Predict link quality based on the positions of APs;
7: Determine arm set At

m based on the predicted AP
link quality;

8: nx = nx + 1;
9: if t > tτ then

10: St
m ← select B

2 arms based on Eq. (7);
11: else
12: Find pt, such that ∀a ∈ At

m, Oa ∈ pa, pa ∈ X ;
13: Compute the under-explored hypercubes Pue,t

using Eq. (6);
14: if Pue,t = ∅ then
15: St

m ← select B arms based on Eq. (7);
16: else
17: if number of unexplored arms q < B then
18: St

m ← select all q arms and the other B − q
arms based on Eq. (7);

19: else
20: run Attention-based Selection(void);
21: end if
22: end if
23: end if
24: for each arm a ∈ St

m do
25: observe the quality ra|x of a;

26: update r̂(pa|x) = r̂(pa|x)Ct(pa|x)+ra|x
Ct(pa|x)+1 ;

27: update counter Ct(pa|x) = Ct(pa|x) + 1;
28: end for
29: end for
30: end for
Function: Attention-based Selection(void):
31: if |Z| ≥ B then
32: St

m ← randomly select arms from Z;
33: else if 0 < |Z| < B then
34: St

m ← select all arms in Z and other arms randomly;
35: else
36: St

m ← {at−1
m }∪{B − 1 arms randomly selected};

37: end if

B. Early Stopping Criterion

We assume that after a time threshold tτ the algorithm
enters a pure exploitation period. Since arms yield different
rewards in terms of different grids x, if all the grids have
been visited by users several times, the network condition can
be well revealed. Thus, we set tτ equal to the number of grids
n across the space. It is also worth noting that we reduce
the size of the probing set to B

2 during the pure exploitation
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period. Numerical results in Sec. VII will show that this added
criterion greatly reduces the beam search overhead while
maintaining a competitive reward.

VI. THEORETICAL ANALYSIS

In this section, we provide a rigorous theoretical analysis
of the regret bound using our CCBM approach to achieve
the optimal beam paring among mmWave transceivers. The
upper bound is derived under the principle that arms belonging
to similar context space should have similar expected reward
values.

Assumption 1: (Bounded Reward) The reward of each arm
is bounded by 0 < r < rmax.

Assumption 2: (Lipschitz-continuous) There exists C >
0 such that for any arm a, a′ with arm context Oa, Oa′ ∈ X ,
we have |ra − ra′ | ≤ C||Oa −Oa′ ||1.

It is worth noting that these two assumptions are mild
assumptions. As the reward of selecting each arm refers to
the signal strength at each arm, it is easy to follow that the
reward is bounded. For Assumption 2, since the arm context
represents the orientation of beams and the reward is bounded,
we can always find C such that the Lipschitz-continuous
assumption holds.

We set the hT = ⌈T 1
4 ⌉ for the arm context partition

and K(nx) = n
1
2
x log(nx) as the control function to identify

the under-explored arm hypercubes. Then, the regret can be
bounded as follow:

Theorem 2: Let hT = ⌈T 1
4 ⌉ and K(nx) = n

1
2
x log(nx),

if Assumptions 1 and 2 hold true, the regret R(T ) is bounded
by:

R(T ) ≤ (1− 1
e
)Brmax

(
2M(M

1
2 T

3
4 log(MT ) + T

1
4 )
)

+
(

1− 1
e

)
·MB2rmax

(
Mmax

B

)
π2

3

+
(

3BL +
8
3
B(rmax + L)

)
T

3
4 . (8)

Proof: The regret here is the same as we introduced
before, which is the expected cumulative difference between
the maximum reward achieved by the optimal algorithm and
the reward obtained by proposed algorithm. The regret R(T )
can be divided into the following summands:

E[R(T )] = E[Rexplore(T )] + E[Rexploit(T )],

where the term E[Rexplore(T )] is the regret due to the explo-
ration process, and the term E[Rexploit(T )] corresponds to the
regret in the exploitation phase. We first derive a bound on
E[Rexplore(T )]. According to Algorithm 2, the set of under-
explored hypercubes P ue,t

T is non-empty during the exploration
phase, which implies that there exists at least one hypercube
p with Ct(p|x) ≤ K(nx) = n

1
2
x log(nx). Because we only

explore in the first tτ rounds, nx < Mtτ < MT holds.
Certainly, there can be a maximum of ⌈(MT )

1
2 log(MT )⌉

exploration phases in which p is under-explored. Given hT

hypercubes in the partition and a total of M users, the upper
limit for the exploration phases is hT M⌈(MT )

1
2 log(MT )⌉.

Owing to the submodularity of reward function and its
bounded nature, the maximum regret for an incorrect selection

in one exploration phase is constrained by (1 − 1/e)Brmax.
Therefore, we have

E[Rexplore(T )]

≤ (1− 1
e
)BrmaxhT M⌈(MT )

1
2 log(TM)⌉

= (1− 1
e
)BrmaxM⌈T 1

4 ⌉⌈(MT )
1
2 log(TM)⌉.

Given ⌈T 1
4 ⌉ ≤ 2T

1
4 , we can further bound the maximum

regret as:

E[Rexplore(T )]≤(1− 1
e
)Brmax2M(M

1
2 T

3
4 log(MT )+T

1
4 ).

Prior to establishing the limit on the expected value
of E[Rexploit(T )], we first introduce some auxiliary
functions. For each hypercube p, we define µ̄(p) =
supO∈p µ(O) and µ(p) = infO∈p µ(O) to represent the
best and worst expected quality over all contexts O ∈ p.
Furthermore, the context at center of a hypercube p is defined
as Ôp and its expected quality is µ̂(p) = µ(Ôp). Let
µ̄t

p = [µ̄(pt
1), . . . , µ̄(pt

hT
)], µt

p
= [µ(pt

1), . . . , µ(pt
hT

)], µ̃t
p =

[µ̃(pt
1), . . . , µ̃(pt

hT
)], and define S̃∗,t(pt) as:

S̃∗,t(pt) = arg max
S⊆At

m,|S|≤B

R(S, µ̃t
p).

Let S̃∗,t(pt) be the optimal set and S̃t(pt) be the set that is
chosen by Algorithm 1. We will have R(S̃t(pt), µ̃t

p) ≥ (1 −
1/e)·R(S∗,t(pt), µ̃t

p). The arm set S̃t(pt) assists in identifying
the subsets of arms which are sub-optimal. Let

Lt(pt)

= {G ⊆ At
m, |G| = B : R(S̃t(pt), µt

p
)−R(G, µ̄t

p) ≥ Anθ
x}

be the collection of suboptimal subsets of arms for hypercubes
pt, where A > 0 and θ < 0. A subset G of arms in Lt(pt)
is considered suboptimal for pt, since the sum of the worst
expected reward in S̃t(pt) is at least an amount Anθ

x higher
than the sum of the best expected reward for subset G. Subsets
in St

B\Lt(pt) is regarded as near-optimal for pt, where St
B

denotes the set of all B-element subsets of arm set M t. Then,
E[Rexploit(T )] can be divided into

E[Rexploit(T )] = E[Rs(T )] + E[Rn(T )]

where E[Rs(T )] is the regret due to suboptimal choices,
i.e., the subsets of arms from Lt(pt) are selected; E[Rn(T )]
is the regret due to near-optimal choices, i.e., the subsets of
arms from St

B\Lt(pt) are selected. We will prove the bound
of each term in the following. We first derive the bound for
E[Rs(T )].

For time slot 1 ≤ t ≤ T , denote W t = {Pue,t = ∅} as
the scenario where slot t is an exploitation phase. According
to the definition of Pue,t, under this condition, it holds that
Ct(pt

m) > K(nx) = n
1
2
x log(nx), ∀p ∈ pt. Define V t

G as the
occurrence that subset G ∈ Lt(pt) is selected at time slot t.
Then, it holds that

Rs(T ) =
T∑

t=1

M∑
m=1

∑
G∈Lt(pt)

I{V t
G,W t}

×
(

(1− 1
e
)R(S∗,t(xt), rt)−R(G, rt)

)
,
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where for each slot, we assess the performance decrement
resulting from opting for a non-ideal set of arms G ∈ Lt(pt).
Since the maximal potential performance drop by choosing G
is bounded by (1− 1

e )Brmax, we have

Rs(T ) ≤ (1− 1
e
)Brmax

T∑
t=1

∑
G∈Lt(pt)

I{V t
G,W t}.

The expected regret is constrained by

E[Rs(T )] ≤ (1− 1
e
)Brmax

T∑
t=1

∑
G∈Lt(pt)

E[I{V t
G,W t}]

= (1− 1
e
)Brmax

T∑
t=1

∑
G∈Lt(pt)

Prob{V t
G, W t}.

In the situation where event V t
G takes place, according to the

algorithm, the reward for choosing arms in G surpasses or
equals that of selecting arms in S̃t(pt), signifying R(G, r̂t

p) ≥
R(S̃t(pt), r̂t

p). Consequently, we have:

Prob{V t
G, W t} ≤ Prob

{
R(G, r̂t

p) ≥ R(S̃t(pt), r̂t
p)
}

The condition on the right-hand side indicates the occurrence
of at least one of the subsequent events for any H(nx) > 0:

E1 = {R(G, r̂t
p) ≥ R(G, µ̄t

p, ) + H(nx), W t}
E2 = {R(Ŝt(pt), r̂t

p) ≤ R(Ŝt(pt), µt
p
)−H(nx), W t}

Hence, for the original event, it follows that:{
R(G, r̂t

p) ≥ R(Ŝt(pt), r̂t
p)
}
⊆ E1 ∪ E2

We assess the probabilities of the two events E1 and E2

distinctly. We will first start by bounding E1. Recall that the
best expected quality for arms within the set p is defined by
µ̄(p) = supO∈p µ(O). Hence, the expected quality of arm m
in G is constrained by

E[r̂(pt
m)] = E

 1
|Et(pt

m)|
∑

(τ,k):OT
k ∈pT

m,n∈ST

r (Oτ
k)


=

1
|Et(pt

m)|
∑

(τ,k):OT
k ∈pT

m,n∈ST︸ ︷︷ ︸
|Et(pt

m)|summands

µ (Oτ
k)︸ ︷︷ ︸

≤µ̄(pt
m)

≤ µ̄(pt
m).

This deduction suggests that

Prob{E1}
= Prob{R(G, r̂t

p) ≥ R(G, µ̄t
p) + H(nx), W t}

≤ Prob{r̂(pt
m) ≥ µ̄(pt

m) +
H(nx)

B
,∃m ∈ G, W t}

≤ Prob{r̂(pt
m) ≥ E[r̂(pt

m)] +
H(nx)

B
,∃m ∈ G, W t}

=
∑
m∈G

Prob{r̂(pt
m) ≥ E[r̂(pt

m)] +
H(nx)

B
, W t}.

The rationale behind the first inequality lies in the propo-
sition that {R(G, r̃t

p) ≥ R(G, µ̄t
p) + H(nx)} ⊆ {r̂(pt

m) ≥
µ̄(pt

m) + H(nx)
B ,∃m ∈ G}. This assertion can be confirmed

through a direct application of contradiction and the principle
of submodularity. Now, we can apply the Chernoff-Hoeffding
bound using Lemma 1:

Lemma 1: Let X1, X2, . . . , Xn be independent random
variables bounded by the interval [0, 1], i.e., 0 ≤ Xi ≤ 1 for
all i = 1, 2, . . . , n. Let X̄ = 1

n

∑n
i=1 Xi be the sample mean

and let µ = E[X̄] be the expected value of the sample mean.
Then, for any ϵ > 0, the following bounds hold:

1) Upper Tail: Pr(X̄ − µ ≥ ϵ) ≤ exp
(
−2nϵ2

)
.

2) Lower Tail: Pr(X̄ − µ ≤ −ϵ) ≤ exp
(
−2nϵ2

)
.

Note that according to assumption 1, the estimated quality of
each arm is bounded by rmax and recognizing that the occur-
rence of event W t suggests that a minimum of n

1
2
x log(nx)

samples were drawn. We have

Prob{E1} =
∑
m∈G

Prob{r̂(pt
m) ≥ E[r̂(pt

m)] +
H(nx)

B
, W t}

=
∑
m∈G

Prob{r̂(pt
m)− E[r̂(pt

m)] ≥ H(nx)
B

, W t}

=
∑
m∈G

Prob{ r̂(p
t
m)

rmax
− E[r̂(pt

m)]
rmax

≥ H(nx)
Brmax

, W t}

≤
∑
m∈G

exp

(
−2H(nx)2n

1
2
x log(nx)

B2(rmax)2

)
.

In the third equality, both sides are divided by rmax to
ensure that the range of r̂(pt

m)
rmax and E[r̂(pt

m)]
rmax are both within

[0, 1], satisfying the conditions of Lemma 1. Therefore,
Lemma 1 can be directly applied, where ϵ is set to H(nx)

Brmax .
Similarly, for event E2, the estimation follows

Prob{E2}
= Prob{R(S̃t(pt), r̂t

p) ≥ R(S̃t(pt), µt
p
)−H(nx), W t}.

≤
∑

m∈St(pt)

exp

(
−2H(nx)2n

1
2
x log(nx)

B2(rmax)2

)

By far, the analysis is conducted with an arbitrary H(nx) >

0. We will select H(nx) = Brmaxn
− 1

4
x

√
1− log(B)

2 log(nx) . Then,
we have

Prob{E1} ≤ B exp

(
−2H(nx)2n

1
2
x log(nx)

B2(rmax)2

)
≤ B exp(−2 log(nx)− log(B)
≤ n−2

x ≤ t−2

and similarly

Prob{E2} ≤ n−2
x ≤ t−2

To sum up,

Prob{V t
G, W t} ≤ Prob{E1 ∪ E2}

≤ Prob{E1}+ Prob{E2} ≤ 2t−2.
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Given this, we have:

E[Rs(T )]

≤
(

1− 1
e

)
Brmax ×

T∑
t=1

M∑
m=1

∑
G∈L(pt)

Prob{V t
G, W t}

≤
(

1− 1
e

)
Brmax

(
|At

m|
B

)
M

T∑
t=1

2t−2

≤
(

1− 1
e

)
B(rmax)

(
|At

m|
B

)
· 2M

∞∑
t=1

t−2

≤
(

1− 1
e

)
B(rmax)M

(
|At

m|
B

)
π2

3
,

where
(
|At

m|
B

)
denotes the maximum number of unique

subsets of size B can be chosen from |At
m|. For the last step,

we have:
∞∑

t=1

t−2 =
π2

6
.

This can be proven by using Taylor series expansion of sin(t):

sin(t) = t− t3

3!
+

t5

5!
− t7

7!
+ · · · .

Since sin(t) has zeros at t = 0,±π,±2π,±3π, . . ., it can be
also represented as:

sin(t) = t
∞∏

n=1

(
1− t2

n2π2

)
By expanding the infinite product and comparing the coeffi-
cient of t3 from both the product and the Taylor series, the
above equation can be proven.

The regret for E[Rn(T )] can be bounded by

E [Rn(T )] ≤
T∑

t=1

(
3BLT−

1
4 + Atθ

)
≤ 3BLT

3
4 +

A

1 + θ
T 1+θ.

the detailed proof is attached in appendix.
Combining the above results, the regret R(T ) is bounded

by

R(T ) ≤ (1− 1
e
)Brmax2M(M

1
2 T

3
4 log(MT ) + T

1
4 )

+
(

1− 1
e

)
B2rmaxM

(
|At

m|
B

)
π2

3

+ 3BLT
3
4 +

A

1 + θ
T 1+θ

In order to balance the leading orders, we select the param-
eters z, γ, A, θ as following: z = 1

2 , γ = 1
4 , θ = − 1

4 , and
A = 2Brmax + 2BL. Thus, the regret R(T ) reduces to

R(T ) ≤ (1− 1
e
)Brmax2M(M

1
2 T

3
4 log(MT ) + T

1
4 )

+
(

1− 1
e

)
·MB2rmax

(
Mmax

B

)
π2

3

+
(

3BL +
8
3
B(rmax + L)

)
T

3
4

In summary, to derive the upper bound for the regret,
we calculate the regret bounds for both exploration and
exploitation phase. During the exploration phase, we leverage
the bounded nature of submodular function to establish the
upper bound. For the exploitation phase, we further divide
regret into components arising from suboptimal and near-
optimal choices. The Chernoff-Hoeffding bound is applied to
determine the upper regret bound associated with suboptimal
choices. Lastly, we use Lipschitz-continuous to derive the
bound for near-optimal choices. The leading order of the
cumulative regret is O(T

3
4 log(T )), indicating a sublinear

growth over the time horizon T . This implies that our CCBM
scheme exhibits asymptotic optimality and converges toward
the optimal strategy.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our CCBM
approach through extensive numerical evaluation. We begin
by outlining the simulation setup, followed by a comparison
of our algorithm with several baseline schemes in terms of
multiple performance metrics.

A. Network Settings
We consider a 3-D indoor network scenario with a size of

40m×40m×3m, consisting of wooden tables, wooden chairs,
metal cabinets, and 15 humans randomly moving at a speed of
0.8m/s to emulate dynamic obstacles. In this setup, we place
four 60 GHz mmWave APs randomly in the space at a height
of 2.9m. Specifically, each AP as the wireless transmitter is
equipped with 8 orthogonal beam patterns with equal beam
widths, covering a 360◦ azimuth. The environment context X
is uniformly divided into 1600 (40×40) small grids, each mea-
suring 1m2. In particular, the neighbouring beams are regarded
as arms with the similar context, hence the beams from the
same transmitter are categorized into 4 hypercubes, resulting in
a total of 16 hypercubes. We employ the commercial ray tracer
Wireless Insite® [45] to generate realistic network environ-
ments and mmWave signal profiles. Additionally, we introduce
noise following a normal distribution N (0, 5 dB) into the
obtained received signal strength (RSS) values to account
for potential measurement errors in the context information,
mirroring the conditions encountered in practical scenarios.

B. Baseline Schemes
We conduct a thorough performance analysis by comparing

our approach with the following baseline schemes:
• Optimal scheme. This algorithm relies on an oracle

search, indicating a priori knowledge of the expected
reward µa|x for each arm a within At

m at grid x. It always
selects an optimal subset S∗ to probe the best beam at
each time step, offering an upper-bound performance for
comparison with other feasible schemes.

• UCB-based scheme. This state-of-the-art scheme, pro-
posed in [7], employs an upper confidence bound
approach. In each time step, it strategically selects B arms
with the highest estimated upper confidence bounds on
their expected rewards.

• CC-MAB scheme: We add the basic contextual MAB
algorithm from [11] as the comparison point. The key
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Fig. 3. Comparison of regret among different schemes.

distinction with our CCBM approach lies in the fact
that CC-MAB incorporates a completely randomized arm
selection process during the exploration phase.

C. Cumulative Regret for Beam Selection

To evaluate the disparity between the total reward achieved
by a practical probing algorithm and the optimal reward
attainable by consistently selecting the best beam, Fig. 3
shows the cumulative regret over time for three distinct
algorithms. It is worth noting that cumulative regret is a
metric to show the expected cumulative difference between
the reward achieved by the optimal algorithm and the designed
algorithm. Obviously, our proposed CCBM exhibits a superior
performance compared to the two baselines. Specifically, the
UCB-based scheme exhibits the highest regret, consistently
maintaining a curve above the others throughout the time
horizon. This can be attributed to the fact that it does not
account for the properties of a submodular reward function.
Further, our CCBM scheme achieves a lower regret than CC-
MAB, which demonstrates the effectiveness of incorporating
exploitation into the exploration phase via our attention-based
selection. Furthermore, a noticeable turning point occurs at
time step around 1,600, corresponding to the implementation
of our early stopping criterion that prevents extensively useless
searches.

D. Beam Management Overhead and Network Throughput

In this section, we evaluate the performance in terms of
beam management overhead and average user throughput
in mmWave networks. First, we consider both CCBM and
its variant, CCBM-C, based on the rewards obtained under
different probing budgets B. The higher B implies a potential
manegement overhead. The only difference between the two
schemes is that CCBM-C constantly probes beams with a
budget of B while CCBM searches a subset of beams with
a size of B

2 in early stopping phase. As depicted in Fig. 4,
an increase in the budget leads to an augmentation in rewards
for all the three algorithms. This trend is attributed to the fact
that a larger budget enhances the probability of encompassing
the optimal beam, thereby increasing the likelihood of identify-
ing the most advantageous beam. Under different budgets, the
CCBM-C algorithm consistently secures the highest rewards.
Concurrently, CCBM achieves rewards marginally lower than
those of CCBM-C while utilizing only half of the budget.
This demonstrates how efficiently the CCBM algorithm can

Fig. 4. Reward under different beam probing budgets.

Fig. 5. Comparison of average user throughput among different schemes.

leverage limited resources to optimize rewards. In this regard,
we conclude that both CCBM and CCBM-C can obtain a
higher reward at lower overhead, indicating that CCBM is
effective in achieving high performance with a constrained
beam search budget.

Fig. 5 compares the average user throughput of our proposed
CCBM against the UCB-based scheme from [7] and the
Optimal method with an oracle search. We apply a sliding
window to smooth the evaluation results, making them more
readable. The throughput performance is tested over 500 time
steps, where at each time step, the user moves to another grid,
and the approximate duration for each time step is around
30 ms. We observe that the throughput of the Optimal scheme
is always the highest, benefiting from its priori knowledge
about the expected reward of each arm. Consistently, the
throughput of CCBM is maintained at a relatively high level,
close to the optimal results and significantly surpassing the
results of the UCB-based scheme. Additionally, the throughput
of CCBM exhibits a lower variance than that of UCB-
based scheme, signifying its greater stability. Such consistently
higher throughput performance underscores the robustness
and efficiency of our CCBM scheme in dynamic network
environments. It is worth noting that localization error is con-
sidered throughout the experiments. We simulate this error by
introducing white noise that follows a Gaussian distribution.
Additionally, the user’s location is ultimately mapped into the
grids with non-negligible ranges, which inherently provides a
degree of error tolerance in our method.

Lastly, load balancing is another critical aspect addressed
by our CCBM approach. To evaluate the load balancing
performance, we utilize the maximum load utilization Lmax

as the metric to qualitatively reflect network congestion [46],
where a higher Lmax indicates more server congestion and
unbalanced resource usage. The value of Lmax corresponds
to the maximum load among all beams in the network.
Fig. 6 shows the average Lmax across randomly located users.
As expected, the Optimal scheme achieves the lowest Lmax
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Fig. 6. Comparison of Lmax among different schemes.

Fig. 7. Beam selection reward and network load balancing vs. penalty
weights.

value, while our CCBM approach performs closely to the
optimal results. It is observed that the gap is especially smaller
under higher density of users in the network, which validates
the load balancing capability owing to the strategical reward
function.

E. Balancing Link-Level and Network-Level Performance

As introduced in Sec. IV, we designate a penalty weight K
to denote the maximum number of users that can be connected
to a single beam. This weight serves as a penalizing factor,
guiding users to pair with an AP with lower load while main-
taining relatively high link quality. Consequently, selecting an
optimal value for K is crucial to strike a balance between link
quality for each pair of transceivers and the overall network
load among all transceivers. In essence, a smaller K value
restricts the number of users that can connect to the same
beam of an AP, thereby reducing its traffic load. However,
this limitation may also prevent a user from accessing an AP
with the optimal beam for a superior link quality. Conversely,
choosing a larger value for K boosts the overall reward
of the MAB algorithm, as one beam can serve more users
simultaneously. Nevertheless, this approach may degrade the
load balancing performance.

As shown in Fig. 7, we investigate the relationship between
beam selection reward and Lmax across various penalty weight
values. It is unsurprising that with increasing K values, the
reward rises accordingly as more users can connect to the
same beam of an AP, albeit at the expense of the overall load
on that AP. Particularly, we observe that the optimal penalty
weight is 9 in this evaluation, as evidenced by a sharp increase
in reward when K transitions from 2 to 9, accompanied by
only a marginal increase in AP load. However, setting K to
excessively large values results in a sharp rise in Lmax as
shown in Fig. 7, indicating a failure to balance the traffic load

over the network. On the other hand, the increase in reward
becomes quite marginal when increasing K to a higher value.
Therefore, an optimal penalty weight, approximately around 9,
successfully strikes a balance between link-level performance
and overall network load balancing.

VIII. CONCLUSION

This paper presented a contextual combinatorial beam man-
agement scheme for joint transceiver paring and beam selec-
tion in mmWave wireless networks. Specifically, we explored
an early stopping criterion and an attention-based mechanism
to mitigate excessive beam search during the online probing
phase. Theoretical analysis established its asymptotic optimal-
ity by setting an upper bound on cumulative regret of the
MAB algorithm. Additionally, a carefully designed reward
function accounted for load balancing among deployed APs
within the network, facilitating the selection of a globally
optimal AP and beam combination, thereby enhancing overall
network performance across multiple dimensions. Through a
comprehensive series of evaluations and theoretical analyses,
our CCBM has demonstrated superiority over other baseline
schemes in optimizing beam management in dense mmWave
wireless networks, thus paving the way for the development
of next-generation multiple access and advanced transceivers.

APPENDIX

Here we derive a bound for E[Rn(T )]. For each time slot
1 ≤ t ≤ T , the regret of selecting near-optimal subsets can be
expressed as

Rn(T ) =
T∑

t=1

I{W t,St∈Sb\Lt(pt)}

×
((

1− 1
e

)
·R(S∗,t(xt), rt)−R(St, rt)

)
.

Define Qt = W t∩{St ∈ Sb\Lt(pt)} to signify the event that
a near-optimal arm set is selected. Then, we have

E[Rn(T )] =
T∑

t=1

E[I{Qt}

×
(

(1− 1
e
) ·R(S∗,t(xt), rt)−R(St, rt)

)
].

By applying the principle of conditional expectation, this is
equivalent to

E[Rn(T )]

=
T∑

t=1

Prob{Q(t)}

· E
[(

1− 1
e

)
·R(S∗,t(xt), rt)−R(St, rt)

∣∣∣∣Q(t)
]

≤
T∑

t=1

E

[(
1− 1

e

)
·R(S∗,t(xt), rt)−R(St, rt)

∣∣∣∣Q(t)
]

.

When Q(t) holds true, which means that the algorithm
enters an exploitation phase and define J ∈ Sb\Lt(pt).
By the definition of Pue,t, it holds that Ct(pt

m) > K
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(nx) = n
1
2
x log(nx) for all pt

m ∈ pt. Moreover, given that
J ∈ Sb\Lt(pt), it holds

R(S̃t(pt), µt
p
)−R(J, µ̄t

p) < Anθ
x

To establish an upper bound on the regret, we consider this
expression

T∑
t=1

E
[(

1− 1
e

)
·R(S∗,t(xt), rt)−R(J, rt)

∣∣∣∣Q(t)
]

=
T∑

t=1

(
(1− 1

e
) ·R(S∗,t(xt), µt)−R(J, µt)

)
.

Through application of the Lipschitz-continuous condition,
we have:(

1− 1
e

)
·R(S∗,t(xt), µt)−R(J, µt)

≤
(

1− 1
e

)
·R(S∗,t(xt), µ̃t

p) + BLh−1
T −R(J, µt

x)

≤
(

1− 1
e

)
·R(µ̃t

p, S
∗,t(pt)) + BLh−1

T −R(J, µt
x)

≤ R( ˜St(pt), µ
t

p) + BLh−1
T −R(J, µt

x)

≤ R( ˜St(pt), µ
t

p) + 2BLh−1
T −R(J, µt

x)

≤ R( ˜St(pt), µ
t

p) + 3BLh−1
T −R(J, µt

x)

≤ 3BLh−1
T + Anθ

x ≤ 3BLh−1
T + Atθ,

where the third inequality follows the definition of S̃∗,t(pt)
and S̃t(pt). Using h−1

T = ⌈T 1
4 ⌉−1 ≤ T−

1
4 , we further have

E
[
R(S∗,t(xt), rt)−R(J, rt)|Q(t)

]
≤ 3BLT−

1
4 + Atθ.

Therefore, the regret can be bounded by

E [Rn(T )] ≤
T∑

t=1

(
3BLT−

1
4 + Atθ

)
≤ 3BLT

3
4 +

A

1 + θ
T 1+θ.
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