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a b s t r a c t 

Non-orthogonal multiple access (NOMA) can improve both the spectrum efficiency and the number of users in 

wireless communication systems. In the downlink of NOMA, the base station superimposes multiple data flows 

in the power domain and the users decode the information using successive interference cancellation SIC. The 

performance of downlink NOMA systems is highly dependent on the power allocation scheme for all users. This 

paper investigates the max-min fairness problem that maximizes the minimum achievable user rate, aiming to 

ensure fairness for all users in downlink NOMA systems. Although the max-min fairness problem in downlink 

NOMA systems is non-convex, we obtain its closed-form optimal solution in this paper. This result will be useful 

for the analysis and design of future NOMA systems. Numerical results validate the correctness and effectiveness 

of our closed-form optimal solution. 
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. Introduction 

Non-orthogonal multiple access (NOMA) has emerged as a key tech-

ology for the fifth generation (5G) and beyond wireless communication

ystems ( Dai et al., 2015; Ding et al., 2016; Islam et al., 2018; Mad-

ikunta et al., to appear ). NOMA has recently received significant at-

ention since it enables the multiplexing of multiple users’ data on the

ame time and frequency resource, which improves system spectral effi-

iency ( Dai et al., 2015; Islam et al., 2018; Xiao et al., 2018 ). The basic

dea of NOMA is that the base station serves multiple users in the same

hannel resource block (e.g., same time and frequency). In the down-

ink NOMA system, the base station superimposes the signals of different

sers using superposition coding with an appropriate power allocation

n the power domain, and the receivers exploit successive interference

ancellation (SIC) to distinguish each other’s messages and remove the

ulti-user interference. NOMA can improve the spectrum efficiency and

upport a larger number of users in the wireless system. 

Fairness is one of the most important performance metrics in down-

ink NOMA systems. Fairness can be achieved through appropriate

ower allocation of the superimposed, transmitted signals among all

sers. The performance of downlink NOMA systems is highly depen-

ent on the power allocation scheme for all users ( Wang et al., 2016 ).

ax-min fairness is a common performance measure widely adopted in

rior works, which is to maximize the minimum achievable user rate to

chieve fairness among all users. 
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Researchers have investigated the fairness problem of the simple

ase of two users in downlink NOMA systems, such as max-min rate

roportional fairness ( Choi, 2016 ), max-min fairness and proportional

airness ( Zhu et al., 2017 ), and the optimal throughput fairness trade-

ff ( Xing et al., 2018 ). A sub-optimal solution for the joint optimization

f beamforming and max-min fairness in downlink NOMA systems were

roposed in Xiao et al. (2019) . To ensure fairness of multiple users in

ownlink NOMA systems, Timotheou and Krikidis (2015) proposed a

isection-based iterative algorithm to obtain the optimal solution to the

ax-min fairness problem. The algorithm proposed in Timotheou and

rikidis (2015) was implemented with the bisection procedure and re-

uires an unknown number of iterations with a high complexity, which

imits its application in practical situations. 

This paper investigates the problem of max-min fairness among all

sers in downlink NOMA systems. Although the max-min fairness prob-

em is non-convex, we provide a problem formulation and successfully

btain the optimal solution in its closed-form. To the best of our knowl-

dge, there is no such closed-form optimal solution available in the prior

iterature. The derived closed-form solution to the max-min fairness

roblem of downlink NOMA systems can help to quickly and efficiently

llocate the optimal power among all users to maximize the minimum

chievable user rate. It is suitable and useful for analysis and design

f future practical NOMA systems. Our contributions in this paper are

ummarized as follows. We first provide the closed-form optimal solu-

ion to the max-min fairness problem of downlink NOMA systems. The
 November 2021 
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erived closed-form optimal solution is efficient and easy to be imple-

ented in practical situations. We then provide a simulation study and

he numerical results validate our analysis. 

The rest of this paper is organized as follows. We present the system

odel and problem formulation in Section 2 . The closed-form solution

s derived and proven in Section 3 . Numerical results are presented to

emonstrate the effectiveness of the closed-form solution in Section 4 .

inally, conclusions are drawn in Section 5 . 

. System model and problem formulation 

We consider a downlink NOMA system where a base station (BS)

erves 𝐾 users, denoted by  𝑘 , 𝑘 ∈  = {1 , 2 , … , 𝐾} . Both the BS and

he users are assumed to be equipped with a single antenna. The signal

ransmitted by the BS can be expressed as 

 = 

𝐾 ∑
𝑘 =1 

√
𝛽𝑘 𝑃 𝑠 𝑘 , (1)

here 𝑠 𝑘 is the symbol of user  𝑘 , 𝑃 is the total transmit power, and

𝑘 is the fraction of total power allocated to user  𝑘 . The 𝛽𝑘 ’s satisfy
𝐾 

𝑘 =1 𝛽𝑘 ≤ 1 . The received signal at user  𝑘 is given by 

 𝑘 = 

𝐾 ∑
𝑘 =1 

√
𝛽𝑘 𝑃 ℎ 𝑘 𝑠 𝑘 + 𝑧 𝑘 , (2)

here ℎ 𝑘 is channel coefficient from the BS to user  𝑘 , and 𝑧 𝑘 ∼
 (0 , 𝜎2 

𝑘 
) is the additive white Gaussian noise. 

Each user applies SIC to decode its signal from the mix. Define 𝑁 𝑘 =
2 
𝑘 
∕ |ℎ 𝑘 |2 , 𝑘 = 1 , 2 , … , 𝐾. Without loss of generality, we assume that 

 1 < 𝑁 2 < … < 𝑁 𝐾 , (3)

.e.,  1 is the strongest user and  𝐾 is the weakest user. Thus,  𝑘 is

ble to first decode the signals of all users  𝑖 for 𝑖 > 𝑘 , and the remove

hem from its received signal, and treats the signals from all users  𝑗 

or 𝑗 < 𝑘 as interference. Therefore, the signal to interference-plus-noise

atio of  𝑘 using SIC is written as 

𝑘 = 

𝛽𝑘 𝑃 ∑𝑘 −1 
𝑖 =1 𝛽𝑖 𝑃 + 𝑁 𝑘 

. (4)

nd the data rate of  𝑘 is given by 

 𝑘 

(
𝛽1 , … , 𝛽𝐾 

)
= 

1 
2 
log 

( 

1 + 

𝛽𝑘 𝑃 ∑𝑘 −1 
𝑖 =1 𝛽𝑖 𝑃 + 𝑁 𝑘 

) 

, 𝑘 = 1 , 2 , … , 𝐾. (5) 

The performance of the NOMA system relies on the power allocation

mong all users. In this paper, we investigate the optimization of power

llocation to ensure max-min fairness, which is to maximize the mini-

um achievable user rate. The max-min fairness problem is formulated

s follows. 

max 
1 ,𝛽2 , …,𝛽𝐾 

min 
𝑘 ∈ 

𝑅 𝑘 

(
𝛽1 , 𝛽2 , … , 𝛽𝐾 

)
s . t. 

∑𝐾 

𝑘 =1 𝛽𝑘 ≤ 1 
𝛽𝑘 ≥ 0 , ∀𝑘 ∈  . 

(6) 

Problem (6) is non-convex, and hence is hard to solve directly using

tandard optimization solvers. Timotheou and Krikidis (2015) proposed

 polynomial-time algorithm to obtain the optimal solution by trans-

orming problem (6) into a sequence of linear programs. However, the

lgorithm proposed in Timotheou and Krikidis (2015) is based on the

isection procedure and requires an unknown number of iterations. In

his paper, we derive the closed-form optimal solution for the max-min

airness problem (6) . 

. Closed-form solution 

The closed-form optimal solution to problem (6) is given in the fol-

owing theorem. 
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heorem 1. The optimal solution to the max-min fairness problem (6) is

iven by 

∗ 
𝑘 
= 

𝜃𝑁 𝑘 

𝑃 
+ 

1 
𝑃 

𝑘 −1 ∑
𝑗=1 

𝑗 ∑
𝑖 =1 

𝐶 

𝑗− 𝑖 
𝑘 − 𝑖 −1 𝑁 𝑖 𝜃

𝑘 − 𝑗+1 , 𝑘 = 1 , 2 , … , 𝐾, (7) 

here 𝐶 

𝑟 
𝑛 
= 

𝑛 ! 
𝑟 !( 𝑛 − 𝑟 )! and 𝜃 is the real positive root of the following equation

f degree 𝐾 with the unknown 𝑋: 

𝐾 

 =1 

( 

𝑘 ∑
𝑗=1 

𝐶 

𝑘 − 𝑗 
𝐾− 𝑗 𝑁 𝑗 

) 

𝑋 

𝐾 − 𝑘 +1 − 𝑃 = 0 . (8)

roof. In order to prove Theorem 1 , we first provide a lemma. 

emma 1. The optimal solution to problem (6) must be obtained at 
𝐾 ∑

𝑘 =1 
𝛽𝑘 =

 . 

The proof of Lemma 1 is given in the Appendix. According to

emma 1 , problem (6) can be rewritten as 

max 
1 ,𝛽2 , …,𝛽𝐾 

min 
𝑘 ∈ 

𝑅 𝑘 ( 𝛽1 , 𝛽2 , … , 𝛽𝐾 ) (9) 

s . t. 
𝐾 ∑

𝑘 =1 
𝛽𝑘 = 1 , 

𝛽𝑘 ≥ 0 , ∀𝑘 ∈  . 

t follows (5) that 

𝑘 = 

(
2 𝑅 𝑘 − 1 

)( 

𝑘 −1 ∑
𝑖 =1 

𝛽𝑖 + 

𝑁 𝑘 

𝑃 

) 

, 𝑘 = 1 , 2 , … , 𝐾. (10) 

or problem (9) , it is obvious that the optimal solution will be obtained

t 

 1 ( 𝛽1 , … , 𝛽𝐾 ) = 𝑅 2 ( 𝛽1 , … , 𝛽𝐾 ) = … = 𝑅 𝐾 ( 𝛽1 , … , 𝛽𝐾 ) . (11)

et 𝑋 = 𝑒 2 𝑅 1 − 1 . Following (11), (10) can be rewritten as 

𝑘 = 

𝑘 −1 ∑
𝑖 =1 

𝑋 𝛽𝑖 + 

𝑋 𝑁 𝑘 

𝑃 
, 𝑘 = 1 , 2 , … , 𝐾. (12) 

hen, we have 

𝑘 = 

𝑘 −1 ∑
𝑗=1 

( 

𝑁 𝑗 

( 

𝑘 − 𝑗 ∑
𝑖 =1 

𝐶 

𝑖 −1 
𝑘 − 𝑗−1 𝑋 

𝑘 − 𝑗− 𝑖 +2 

) ) 

+ 

𝑋𝑁 𝑘 

𝑃 
, 𝑘 = 1 , 2 , … , 𝐾. (13) 

ue to the fact that 
𝐾 ∑

𝑘 =1 
𝛽𝑘 = 1 , we have 

𝐾 

 =1 

( 

𝑘 −1 ∑
𝑗=1 

( 

𝑗 ∑
𝑖 =1 

𝐶 

𝑗− 𝑖 
𝑘 − 𝑖 −1 𝑁 𝑖 

) 

𝑋 

𝑘 − 𝑗+1 + 𝑋𝑁 𝑘 

) 

= 𝑃 . (14)

𝐾 

 =1 

( 

𝑘 ∑
𝑗=1 

𝐶 

𝑘 − 𝑗 
𝐾− 𝑗 𝑁 𝑗 

) 

𝑋 

𝐾 − 𝑘 +1 − 𝑃 = 0 . (15)

The solution 𝑋 = 𝑒 2 𝑅 1 − 1 is optimal to problem (15) , which is an

quation of degree 𝐾 with unknown 𝑋. But problem (15) has 𝐾 solutions

hat may either be positive or negative, real or complex. According to

he constrain 𝛽𝑘 ≥ 0 , ∀𝑘 ∈  , 𝑋 must be real and positive. Fortunately,

he coefficients of the unknown 𝑋 in (15) are 

 𝑘 = 

𝑘 ∑
𝑗=1 

𝐶 

𝑘 − 𝑗 
𝐾− 𝑗 𝑁 𝑗 > 0 , 𝑘 = 1 , 2 , … , 𝐾. (16) 

he number of changes of signs in the sequence { 𝑎 1 , 𝑎 2 , … , 𝑎 𝐾 , − 𝑃 } of

he coefficients of polynomial 
 

𝐾 ∑
𝑘 =1 

( 

𝑘 ∑
𝑗=1 

𝐶 

𝑘 − 𝑗 
𝐾− 𝑗 𝑁 𝑗 

) 

𝑋 

𝐾 − 𝑘 +1 − 𝑃 

) 
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Table 1 

Simulations parameter setting. 

Parameter Value 

Cell radius 1000 m 

Minimum distance form user to BS 35 m 

Carrier frequency 2 GHz 

Path loss model 128 . 1 + 37 . 6 log 10 𝑑 dB , where 𝑑 is in km 

Shadowing Log-normal, 10 dB standard deviation 

Fading Rayleigh fading with variance 1 

Noise power spectral density − 174 dbm/Hz 

System bandwidth 𝑊 5 MHz 

Number of users 𝐾 5, 20 

Total power 𝑃 10 W 
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s equal to 1. According to the Descartes Theorem ( Mignotte, 1992 ),

roblem (15) has only one real positive root. Denote the real positive

oot of (15) as 𝜃. Substituting 𝜃 into (13) , we can obtain the optimal

olution to problem (9) as follows. 

∗ 
𝑘 
= 

𝜃𝑁 𝑘 

𝑃 
+ 

1 
𝑃 

𝑘 −1 ∑
𝑗=1 

𝑗 ∑
𝑖 =1 

𝐶 

𝑗− 𝑖 
𝑘 − 𝑖 −1 𝑁 𝑖 𝜃

𝑘 − 𝑗+1 , 𝑘 = 1 , 2 , … , 𝐾. (17) 

□

. Numerical results 

In this section, we present the numerical results to demonstrate the

ffectiveness of the derived closed-form solution to the max-min fair-

ess problem of downlink NOMA systems. We consider a hexagonal

ell of diameter 1000 m, with one base station located at its center and

users distributed uniformly at random in the cell. The system band-

idth is 𝑊 = 5 MHz. The radio propagation model including path loss,

hadowing, and Rayleigh fading, and the parameters are the same as

n Lou et al. (2020) . The simulation parameters and channel model are

ummarized in Table 1 . We compare the closed-form solution with the

roposed algorithm in Timotheou and Krikidis (2015) . 

We evaluate the closed-form solution and the proposed algorithm

n Timotheou and Krikidis (2015) in our simulations with a system

f 𝐾 = 5 users. The max-min rate of the 5 users is 𝑅 1 = 𝑅 2 = … =
 5 = 8 , 278 , 940 bps, which is calculated directly by the closed-form

olution. The max-min rate of the 5 users obtained by the proposed

lgorithm in Timotheou and Krikidis (2015) is also 𝑅 1 = 𝑅 2 = … =
 5 = 8 , 278 , 940 bps. But the proposed algorithm in Timotheou and

rikidis (2015) obtained the same result with 27 iterations. When the

umber of users is increased to 𝐾 = 20 , the max-min rate of the 20

sers is 𝑅 1 = 𝑅 2 = … = 𝑅 2 0 = 2 , 819 , 367 bps as calculated directly by

he closed-form solution. The proposed algorithm in Timotheou and

rikidis (2015) obtains the same result after 31 iterations. The closed-

olution can compute the same optimal solution but at a greatly reduced

omplexity as compared with the benchmark scheme. 

. Conclusions 

This paper investigated the max-min fairness problem in a down-

ink NOMA system. Although the max-min fairness problem is non-

onvex, we were able to obtain the optimal solution in its closed form.

he closed-form solution of the max-min fairness problem of down-

ink NOMA systems allows quick and efficient allocation of the optimal

ower among users to maximize the minimum achievable user rate, and

s suitable and useful for the analysis and design of practical communi-

ation systems. Numerical results validate the correctness and effective-

ess of the closed-form optimal solution. 
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ppendix A. Proof of Lemma 1 

roof. We use Proof by Contradiction in this proof. Suppose

hat the optimal solution to problem (6) is obtained at 𝛽1 =
̄1 , … , 𝛽𝐾 = 𝛽𝐾 and 

∑𝐾 

𝑘 =1 𝛽𝑘 < 1 . Denote the corresponding user

ates as 𝑅̄ 1 ( ̄𝛽1 , … , 𝛽𝐾 ) , … , 𝑅̄ 𝐾 ( ̄𝛽1 , … , 𝛽𝐾 ) . Let 𝛼 = 1 − 

∑𝐾 

𝑘 =1 𝛽𝑘 and

e have 𝛼 > 0 . Suppose that the maximum of minimum in

 ̄𝑅 1 ( ̄𝛽1 , … , 𝛽𝐾 ) , … , 𝑅̄ 𝐾 ( ̄𝛽1 , … , 𝛽𝐾 )} is 𝑅̄ 𝑙 ( ̄𝛽1 , … , 𝛽𝐾 ) . Now we prove that

here always exists a new power allocation scheme { 𝛾1 , … , 𝛾𝐾 } with 𝛾𝑘 ≥

 , for all 𝑘 , and 
∑𝐾 

𝑘 =1 𝛾𝑘 = 1 , which makes 𝑅 𝑙 ( 𝛾1 , … , 𝛾𝐾 ) > 𝑅̄ 𝑙 ( ̄𝛽1 , … , 𝛽𝐾 )
nd 𝑅 𝑘 ( 𝛾1 , … , 𝛾𝐾 ) = 𝑅̄ 𝑘 ( ̄𝛽1 , … , 𝛽𝐾 ) , for all 𝑘 ≠ 𝑙. 

There are two cases that need to be considered. 

CASE I 𝑅̄ 𝑙 ( ̄𝛽1 , … , 𝛽𝐾 ) is the only minimum rate in

 ̄𝑅 1 ( ̄𝛽1 , … , 𝛽𝐾 ) , … , 𝑅̄ 𝐾 ( ̄𝛽1 , … , 𝛽𝐾 )} , i.e., 𝑅̄ 𝑘 ( ̄𝛽1 , … , 𝛽𝐾 ) > 𝑅̄ 𝑙 ( ̄𝛽1 , … , 𝛽𝐾 ) ,
or all 𝑘 ≠ 𝑙. 

If 𝑙 = 𝐾, let 𝛾𝑙 = 𝛾𝐾 = 𝛽𝐾 + 𝛼 and 𝛾𝑘 = 𝛽𝑘 , for all 𝑘 ≠ 𝑙. Then we have 

 𝑘 ( 𝛾1 , … , 𝛾𝐾 ) = 𝑅̄ 𝑘 ( ̄𝛽1 , … , 𝛽𝐾 ) , ∀𝑘 ≠ 𝑙 (18) 

 𝐾 

(
𝛾1 , … , 𝛾𝐾 

)
= 

1 
2 log 

( 

1 + 

( ̄𝛽𝐾 + 𝛼) 𝑃 ∑𝐾−1 
𝑖 =1 𝛽𝑖 𝑃+ 𝑁 𝐾 

) 

> 

1 
2 log 

( 

1 + 

𝛽𝐾 𝑃 ∑𝐾−1 
𝑖 =1 𝛽𝑖 𝑃+ 𝑁 𝐾 

) 

= 𝑅̄ 𝐾 

(
𝛽1 , … , 𝛽𝐾 

)
. 

(19) 

his is a contradiction to that 𝑅̄ 𝑙 ( ̄𝛽1 , … , 𝛽𝐾 ) is the maximum of minimum

n { ̄𝑅 1 ( ̄𝛽1 , … , 𝛽𝐾 ) , … , 𝑅̄ 𝐾 ( ̄𝛽1 , … , 𝛽𝐾 )} . 
If 𝑙 < 𝐾, set 

= 

𝛼

𝐾− 𝑙 ∏
𝑚 =1 

{ 

𝑙+ 𝑚 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙+ 𝑚 

} { 

𝑙+ 𝑚 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙+ 𝑚 

} −1 , (20) 

𝑘 = 𝛽𝑘 , 𝑘 = 1 , 2 , … , 𝑙 − 1 , (21) 

𝑙 = 𝛽𝑙 + 𝜉, (22) 

𝑙+ 𝑛 = 𝛽𝑙+ 𝑛 + 𝜉

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛽𝑙+ 𝑛 𝑃 

𝑙+ 𝑛 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙+ 𝑛 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑛 −1 ∏
𝑚 =1 

𝑙+ 𝑚 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙+ 𝑚 

𝑙+ 𝑚 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙+ 𝑚 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 𝑛 = 1 , 2 , … , 𝐾 − 𝑙. 

(23) 

hen, we have 

 𝑘 

(
𝛾1 , … , 𝛾𝐾 

)
= 𝑅̄ 𝑘 

(
𝛽1 , … , 𝛽𝐾 

)
, 𝑘 = 1 , 2 , … , 𝑙 − 1 , (24) 

 𝑙 ( 𝛾1 , … , 𝛾𝐾 ) = 

1 
2 
log 

( 

1 + 

( ̄𝛽𝑙 + 𝜉) 𝑃 ∑𝑙−1 
𝛽𝑖 𝑃 + 𝑁 𝑙 

) 
𝑖 =1 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004543
https://doi.org/10.13039/100000001
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=

=

T  

i

 

{  

i  

𝑅

𝜇

𝜃

𝜃

𝜃

𝑛

T

𝑅

𝑅

=

=

𝜇

𝜃

𝜃

𝜃

T

𝑅

𝑅

𝑅

𝑅

𝑅

𝑅

𝑅

𝜃

∑
𝑘

I

𝑅

𝑅

𝜃

∑
𝑘

T  

m

 ∑
> 

1 
2 
log 

( 

1 + 

𝛽𝑙 𝑃 ∑𝑙−1 
𝑖 =1 𝛽𝑖 𝑃 + 𝑁 𝑙 

) 

= 𝑅̄ 𝑙 ( ̄𝛽1 , … , 𝛽𝐾 ) , (25) 

𝑅 𝑙+ 𝑛 ( 𝛾1 , … , 𝛾𝐾 ) 

 

1 
2 
log 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
1 + 

𝛽𝑙+ 𝑛 𝑃 + 𝜉𝑃 

⎛ ⎜ ⎜ ⎜ ⎝ 
𝛽𝑙+ 𝑛 𝑃 

𝑙+ 𝑛 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙+ 𝑛 

⎞ ⎟ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎜ ⎝ 

𝑛 −1 ∏
𝑚 =1 

𝑙+ 𝑚 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙+ 𝑚 

𝑙+ 𝑚 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙+ 𝑚 

⎞ ⎟ ⎟ ⎟ ⎠ 
𝑙+ 𝑛 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙+ 𝑛 + 𝜉𝑃 + 𝜉𝑃 
𝑛 −1 ∑
𝑡 =1 

⎛ ⎜ ⎜ ⎜ ⎝ 
𝛽𝑙+ 𝑡 𝑃 

𝑙+ 𝑡 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙+ 𝑡 

⎞ ⎟ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎜ ⎝ 

𝑡 −1 ∏
𝑚 =1 

𝑙+ 𝑚 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙+ 𝑚 

𝑙+ 𝑚 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙+ 𝑚 

⎞ ⎟ ⎟ ⎟ ⎠ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
 ̄𝑅 𝑙+ 𝑛 ( ̄𝛽1 , … , 𝛽𝐾 ) , 𝑛 = 1 , 2 , … , 𝐾 − 𝑙. (26) 

his is a contradiction to that 𝑅̄ 𝑙 ( ̄𝛽1 , … , 𝛽𝐾 ) is the maximum of minimum

n { ̄𝑅 1 ( ̄𝛽1 , … , 𝛽𝐾 ) , … , 𝑅̄ 𝐾 ( ̄𝛽1 , … , 𝛽𝐾 )} . 
CASE II There are 𝐿 ( 𝐿 > 1) equal minimums in

 ̄𝑅 1 ( ̄𝛽1 , … , 𝛽𝐾 ) , … , 𝑅̄ 𝐾 ( ̄𝛽1 , … , 𝛽𝐾 )} . Let the 𝐿 equal minimums

n { ̄𝑅 1 ( ̄𝛽1 , … , 𝛽𝐾 ) , … , 𝑅̄ 𝐾 ( ̄𝛽1 , … , 𝛽𝐾 )} be 𝑅̄ 𝑙 1 
( ̄𝛽1 , … , 𝛽𝐾 ) = … =

̄
 𝑙 𝐿 
( ̄𝛽1 , … , 𝛽𝐾 ) and 𝑙 1 < … < 𝑙 𝐿 . Let 𝜆 = 𝛼∕ 𝐿 and set 

1 = 

𝜆

𝐾− 𝑙 1 ∏
𝑚 =1 

{ 

𝑙 1 + 𝑚 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙 1 + 𝑚 

} { 

𝑙 1 + 𝑚 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙 1 + 𝑚 

} −1 , (27) 

1 
𝑘 
= 𝛽𝑘 , 𝑘 = 1 , 2 , … , 𝑙 1 − 1 , (28) 

1 
𝑙 1 
= 𝛽𝑙 1 

+ 𝜇1 , (29) 

1 
𝑙 1 + 𝑛 

= 𝛽𝑙 1 + 𝑛 + 𝜇1 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛽𝑙 1 + 𝑛 𝑃 

𝑙 1 + 𝑛 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙 1 + 𝑛 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑛 −1 ∏
𝑚 =1 

𝑙 1 + 𝑚 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙 1 + 𝑚 

𝑙 1 + 𝑚 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃 + 𝑁 𝑙 1 + 𝑚 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, (30) 

 = 1 , 2 , … , 𝐾 − 𝑙 1 . (30) 

hen we have 

 𝑘 ( 𝜃1 1 , … , 𝜃1 
𝐾 
) = 𝑅̄ 𝑘 ( ̄𝛽1 , … , 𝛽𝐾 ) , 𝑘 = 1 , 2 , … , 𝑙 1 − 1 , (31) 

 𝑙 1 
( 𝜃1 1 , … , 𝜃1 

𝐾 
) = 

1 
2 
log 

⎛ ⎜ ⎜ ⎝ 1 + 

( ̄𝛽𝑙 1 
+ 𝜇1 ) 𝑃 ∑𝑙 1 −1 

𝑖 =1 𝛽𝑖 𝑃 + 𝑁 𝑙 1 

⎞ ⎟ ⎟ ⎠ 
> 𝑅̄ 𝑙 1 

( ̄𝛽1 , … , 𝛽𝐾 ) , (32) 

𝑅 𝑙 1 + 𝑛 ( 𝜃
1 
1 , … , 𝜃1 

𝐾 
) 

 

1 
2 
log 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 
1 + 

𝛽𝑙 1 + 𝑛 𝑃 + 𝜇1 𝑃 

⎛ ⎜ ⎜ ⎝ 
𝛽𝑙 1 + 𝑛 

𝑃 

𝑙 1 + 𝑛 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙 1 + 𝑛 

⎞ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎝ 

𝑛 −1 ∏
𝑚 =1 

𝑙 1 + 𝑚 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙 1 + 𝑚 
𝑙 1 + 𝑚 −1 ∑

𝑖 =1 
𝛽𝑖 𝑃+ 𝑁 𝑙 1 + 𝑚 

⎞ ⎟ ⎟ ⎠ 
𝑙 1 + 𝑛 −1 ∑

𝑖 =1 
𝛽𝑖 𝑃 + 𝑁 𝑙 1 + 𝑛 + 𝜇1 𝑃 + 𝜇1 𝑃 

𝑛 −1 ∑
𝑡 =1 

⎛ ⎜ ⎜ ⎝ 
𝛽𝑙 1 + 𝑡 

𝑃 

𝑙 1 + 𝑡 −1 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙 1 + 𝑡 

⎞ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎝ 

𝑡 −1 ∏
𝑚 =1 

𝑙 1 + 𝑚 ∑
𝑖 =1 

𝛽𝑖 𝑃+ 𝑁 𝑙 1 + 𝑚 
𝑙 1 + 𝑚 −1 ∑

𝑖 =1 
𝛽𝑖 𝑃+ 𝑁 𝑙 1 + 𝑚 

⎞ ⎟ ⎟ ⎠ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
 ̄𝑅 𝑙 1 + 𝑛 ( ̄𝛽1 , … , ̄𝛽𝐾 ) , 𝑛 = 1 , 2 , … , 𝐾 − 𝑙 1 . (33) 

For 𝑠 = 2 , 3 , … , 𝐿 , set 

𝑠 = 

𝜆

𝐾− 𝑙 𝑠 ∏
𝑚 =1 

{ 

𝑙 𝑠 + 𝑚 ∑
𝑖 =1 

𝜃1 
𝑖 
𝑃 + 𝑁 𝑙 𝑠 + 𝑚 

} { 

𝑙 𝑠 + 𝑚 −1 ∑
𝑖 =1 

𝜃𝑠 −1 
𝑖 

𝑃 + 𝑁 𝑙 𝑠 + 𝑚 

} −1 , (34) 

𝑠 = 𝜃𝑠 −1 , 𝑘 = 1 , 2 , … , 𝑙 𝑠 − 1 , (35) 

𝑘 𝑘 

194 
𝑠 
𝑙 𝑠 
= 𝜃𝑠 −1 

𝑙 𝑠 −1 
+ 𝜇𝑠 , (36) 

𝑠 
𝑙 𝑠 + 𝑛 

= 𝜃𝑠 −1 
𝑙 𝑠 −1 + 𝑛 

+ 𝜇𝑠 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝜃𝑠 −1 

𝑙 𝑠 + 𝑛 
𝑃 

𝑙 𝑠 + 𝑛 −1 ∑
𝑖 =1 

𝜃𝑠 −1 
𝑖 

𝑃 + 𝑁 𝑙 𝑠 + 𝑛 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑛 −1 ∏
𝑚 =1 

𝑙 𝑠 + 𝑚 ∑
𝑖 =1 

𝜃𝑠 −1 
𝑖 

𝑃 + 𝑁 𝑙 𝑠 + 𝑚 

𝑙 𝑠 + 𝑚 −1 ∑
𝑖 =1 

𝜃𝑠 −1 
𝑖 

𝑃 + 𝑁 𝑙 𝑠 + 𝑚 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

𝑛 = 1 , 2 , … , 𝐾 − 𝑙 𝑠 , (37) 

hen we have 

 𝑘 

(
𝜃𝐿 
1 , … , 𝜃𝐿 

𝐾 

)
= 𝑅̄ 𝑘 

(
𝛽1 , … , 𝛽𝐾 

)
, 𝑘 = 1 , 2 , … , 𝑙 1 − 1 , (38) 

 𝑙 1 
( 𝜃𝐿 

1 , … , 𝜃𝐿 
𝐾 
) = 

1 
2 
log 

⎛ ⎜ ⎜ ⎝ 1 + 

( ̄𝛽𝑙 1 
+ 𝜇1 ) 𝑃 ∑𝑙 1 −1 

𝑖 =1 𝛽𝑖 𝑃 + 𝑁 𝑙 1 

⎞ ⎟ ⎟ ⎠ 
> 𝑅̄ 𝑙 1 

( ̄𝛽1 , … , 𝛽𝐾 ) , (39) 

 𝑘 ( 𝜃𝐿 
1 , … , 𝜃𝐿 

𝐾 
) = 𝑅̄ 𝑘 ( ̄𝛽1 , … , 𝛽𝐾 ) , 𝑙 1 < 𝑘 < 𝑙 2 , (40) 

 𝑙 2 
( 𝜃𝐿 

1 , … , 𝜃𝐿 
𝐾 
) = 

1 
2 
log 

⎛ ⎜ ⎜ ⎝ 1 + 

( 𝜃1 
𝑙 1 
+ 𝜇2 ) 𝑃 ∑𝑙 2 −1 

𝑖 =1 𝜃2 
𝑖 
𝑃 + 𝑁 𝑙 2 

⎞ ⎟ ⎟ ⎠ 
> 𝑅̄ 𝑙 2 

( ̄𝛽1 , … , 𝛽𝐾 ) , (41) 

 𝑘 ( 𝜃𝐿 
1 , … , 𝜃𝐿 

𝐾 
) = 𝑅̄ 𝑘 ( ̄𝛽1 , … , 𝛽𝐾 ) , 𝑙 𝐿 −1 < 𝑘 < 𝑙 𝐿 , (42) 

 𝑙 𝐾 
( 𝜃𝐿 

1 , … , 𝜃𝐿 
𝐾 
) = 

1 
2 
log 

⎛ ⎜ ⎜ ⎝ 1 + 

( 𝜃𝐿 −1 
𝑙 𝐿 −1 

+ 𝜇𝐿 ) 𝑃 ∑𝑙 𝐿 −1 
𝑖 =1 𝜃𝐿 

𝑖 
𝑃 + 𝑁 𝑙 𝐿 

⎞ ⎟ ⎟ ⎠ 
> 𝑅̄ 𝑙 𝐾 

( ̄𝛽1 , … , 𝛽𝐾 ) , (43) 

…

 𝑙 𝐾 + 𝑛 ( 𝜃
𝐿 
1 , … , 𝜃𝐿 

𝐾 
) = 

1 
2 
log 

⎛ ⎜ ⎜ ⎝ 1 + 

𝜃𝐿 
𝑙 𝐿 + 𝑛 

𝑃 ∑𝑙 𝐿 + 𝑛 −1 
𝑖 =1 𝜃𝐿 

𝑖 
𝑃 + 𝑁 𝑙 𝐿 + 𝑛 

⎞ ⎟ ⎟ ⎠ 
= 𝑅̄ 𝑙 𝐿 + 𝑛 ( ̄𝛽1 , … , 𝛽𝐾 ) , 𝑛 = 1 , 2 , … , 𝐾 − 𝑙 𝐿 , (44) 

𝐿 
𝑘 
≥ 0 , 𝑘 = 1 , 2 , … , 𝐾, (45) 

𝐾 

 =1 
𝜃𝐿 

𝑘 
= 1 . (46) 

t follows that 

 𝑘 ( 𝜃𝐿 
1 , … , 𝜃𝐿 

𝐾 
) = 𝑅̄ 𝑘 ( ̄𝛽1 , … , 𝛽𝐾 ) , ∀𝑘 ≠ 𝑙 1 , 𝑙 2 , … , 𝑙 𝐿 , (47) 

 𝑘 ( 𝜃𝐿 
1 , … , 𝜃𝐿 

𝐾 
) > 𝑅̄ 𝑘 ( ̄𝛽1 , … , 𝛽𝐾 ) , ∀𝑘 = 𝑙 1 , 𝑙 2 , … , 𝑙 𝐿 , (48) 

𝐿 
𝑘 
≥ 0 , 𝑘 = 1 , 2 , … , 𝐾, (49) 

𝐾 

 =1 
𝜃𝐿 

𝑘 
= 1 . (50) 

his is a contradiction to that 𝑅̄ 𝑙 1 
( ̄𝛽1 , … , 𝛽𝐾 ) = … = 𝑅̄ 𝑙 𝐿 

( ̄𝛽1 , … , 𝛽𝐾 ) is the

aximum of minimum in { ̄𝑅 1 ( ̄𝛽1 , … , 𝛽𝐾 ) , …, 𝑅̄ 𝐾 ( ̄𝛽1 , … , 𝛽𝐾 )} . 
To sum up, the optimal solution to problem (6) must be obtained at

𝐾 
𝑘 =1 𝛽𝑘 = 1 . □
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