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Abstract—In this paper, we propose a cross-domain, scalable,
and interpretable radio frequency (RF) fingerprinting system
using a modified prototypical network (PTN) and an explanation-
guided data augmentation across various domains and datasets
with only a few samples. Specifically, a convolutional neural
network is employed as the feature extractor of the PTN
to extract RF fingerprint features. The predictions are made
by comparing the similarity between prototypes and feature
embedding vectors. To further improve the system performance,
we design a customized loss function and deploy an eXplainable
Artificial Intelligence (XAI) method to guide data augmentation
during fine-tuning. To evaluate the effectiveness of our system in
addressing domain shift and scalability problems, we conducted
extensive experiments in both cross-domain and novel-device sce-
narios. Our study shows that our approach achieves exceptional
performance in the cross-domain case, exhibiting an accuracy
improvement of approximately 80% compared to convolutional
neural networks in the best case. Furthermore, our approach
demonstrates promising results in the novel-device case across
different datasets. Our customized loss function and XAI-guided
data augmentation can further improve authentication accuracy
to a certain degree.

Index Terms—Radio frequency fingerprinting, cross-domain
identification, few-shot learning, explainable artificial intelligence.

I. INTRODUCTION

In recent years, the proliferation of the Internet of Things
(IoT) has contributed to the widespread integration of wireless
technology into daily life. While the IoT-based applications
are promising, there are also existing security issues, such as
device identification and authentication [1], [2]. To mitigate
these security issues, various approaches have been devised
and put into practice. Although conventional cryptographic
authentication methods based on Internet Protocol (IP) and
Media Access Control (MAC) addresses have been widely
employed [3], they suffer from inherent vulnerabilities, such as
susceptibility to spoofing and tampering [4]. Moreover, these
methods may not be suitable for ultra-low-power devices or
outdated hardware that is no longer actively maintained [5].
To address these issues, radio frequency (RF) fingerprinting
has emerged as a promising device identification solution that
leverages the intrinsic characteristics of RF devices to improve
safety and security in a variety of settings [6].

RF fingerprints are attributed to inherent physical imper-
fections in the analog circuity of RF emitters during the

§The corresponding author is Xuyu Wang (xuywang@fiu.edu).

manufacturing process, which affects the transmitted signals
but does not affect the performance of devices. Therefore, RF
fingerprint serves as a unique property for each device, includ-
ing ultra-low-power devices and old equipment. In compar-
ison to conventional cryptographically secure authentication
methods, the distinctive nature of the RF fingerprint makes
it resistant to tampering and spoofing, thereby ensuring the
security of the device [7]. This property makes RF fingerprint
particularly suitable for high-level security demanding sce-
narios. Furthermore, RF fingerprint-based identification does
not require additional power consumption as it is intrinsically
linked to the transmitted signals. Due to the benefits of RF
fingerprint, numerous studies have studied RF fingerprinting
for device identification, including UWB [8], LoRa [9]–[11],
RFID [12], ZigBee [13], and WiFi [14]–[17].

RF fingerprinting generally includes fingerprint feature ex-
traction and multi-class identification. Effective feature extrac-
tion is essential for accurately classifying different RF finger-
prints. Knox et al. present an RF fingerprint authentication
method based on automatic gain control circuitry to distinguish
between different transmitters [18]. Huang et al. extract the
permutation entropy as the fingerprint to identify the unique
transmitter [19]. However, the above traditional RF fingerprint
extraction methods are hand-crafted, inefficient, and require a
thorough understanding of communication technologies and
protocols. In contrast, deep neural networks (DNNs) have
gained considerable popularity in RF fingerprinting. This is
primarily attributed to their powerful capability of feature
extraction and classification. By directly using raw or simple-
processed in-phase/quadrature (IQ) samples as input, DNNs
can automatically extract meaningful features and classify
various devices.

In an ideal scenario, deep learning-based fingerprinting
systems can automatically extract fingerprint features and
accurately classify devices. However, RF fingerprints are
embedded in transmitted wireless signals, and these signals
can undergo variations in decay and reflection across dif-
ferent environments. This can cause a problem for DNNs,
known as domain shift. While DNNs can be very accurate
in familiar domains, they struggle to adapt to new domains.
Moreover, DNNs typically have a fixed output layer size,
which limits their scalability. This means that they can only
classify a specific range of devices. This can be a problem
in real-world scenarios where device additions or removals

979-8-3503-8350-8/24/$31.00 ©2024 IEEE 2099

IE
EE

 IN
FO

C
O

M
 2

02
4 

- I
EE

E 
C

on
fe

re
nc

e 
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 | 
97

9-
8-

35
03

-8
35

0-
8/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IN
FO

C
O

M
52

12
2.

20
24

.1
06

21
42

3

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 18:25:18 UTC from IEEE Xplore.  Restrictions apply. 



are common. If a new device is added, the DNN needs to
be retrained from scratch with a new dataset. This can be a
time-consuming and expensive process. Fortunately, there are
a number of approaches that have been proposed to address
these issues, including transfer learning, adversarial domain
adaptation (ADA), and few-shot learning (FSL). In this paper,
we focus on FSL, as it does not require a large number of
samples and is relatively convenient to deploy. This alleviates
the burden of re-collecting data and re-training models, making
RF fingerprinting more practical in real-world situations.

Challenges. Designing a scalable and domain-robust RF
fingerprinting system based on FSL is still a challenging task.
There are several key challenges that need to be addressed.
First, while FSL demonstrates the capability to classify new
data with only a few samples, obtaining stable RF fingerprints
from a limited number of wireless signals poses difficulties
due to substantial variations across different domains. Sec-
ond, RF fingerprints are more subtle than domain factors
and transmitted signals. Additionally, emitter imperfections
may be similar between devices of the same manufacturer.
Therefore, the model’s feature extraction capability must be
highly precise in order to effectively identify devices across
diverse domains. Third, in complicated tasks, fine-tuning is
commonly employed to enhance model accuracy. However,
when working with a limited number of samples, there is a
risk of overfitting. To address this, regularization techniques
are typically introduced through data augmentation during the
fine-tuning process. Nevertheless, implementing an effective
data augmentation method specifically for wireless signals
within FSL frameworks remains challenging.

Our solution. To address these challenges, we carefully
redesign the classical prototypical network (PTN) [20] to
extract relatively stable fingerprint features across various
domains and accurately identify new devices with only a small
number of samples. Specifically, we design a similarity-based
loss function for training and fine-tuning the PTN to optimize
the feature extractor to generate unique RF fingerprints that
are robust in different domains. The well-trained extractor can
effectively extract unique fingerprint features for each device.
We then compute a prototype for each device by averaging
the extracted feature vectors. This prototype serves as a stable
fingerprint for that device. During the authentication phase,
the input device is assigned to the class whose prototype is
most similar to the feature vector of the input device, thereby
determining its identity. In complicated tasks, fine-tuning is
necessary but can lead to overfitting with only a few samples.
To address this issue, we leverage a classic eXplainable Arti-
ficial Intelligence (XAI) technique called Local Interpretable
Model-agnostic Explanations (LIME) [21] to design a data
augmentation technique for RF fingerprinting. To evaluate the
effectiveness of our proposed RF fingerprinting system, we
conduct comprehensive assessments across various datasets,
devices, and domains. The main contributions of this paper
are as follows.

• To the best of our knowledge, this is the first time
to discuss RF fingerprinting in the cross-dataset case.

This is a more challenging and practical scenario as it
encompasses both domain shift and scalability challenges.

• We devise a data augmentation technique based on an
XAI method and a customized loss function that aids in
improving the accuracy of the system.

• We experimentally demonstrate the effectiveness of our
proposed RF fingerprinting system in both in-dataset and
cross-dataset scenarios using three public datasets. The
results showed that our system can improve accuracy by
up to 80% in the best case for in-dataset scenarios, and
achieve a mean accuracy of 76% for the more challenging
cross-dataset scenario.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces the background
and motivations. Section IV introduces our system design.
In Section V, we evaluate our experiments comprehensively.
Section VI concludes this paper.

II. RELATED WORK

In recent years, deep learning techniques have been widely
applied in the field of RF fingerprinting. In [22], convolu-
tional neural network (CNN) consistently outperformed other
networks such as long-short term memory (LSTM) and multi-
layer perceptrons (MLPs). [9] explored the various neural
networks with different signal representations (IQ, amplitude-
phase, and spectrogram) and employed the DeepLoRa aug-
mentation technique to enhance the performance in cross-
day scenarios. [23] showed the advantages of complex-valued
neural networks for RF fingerprinting. Shen et al. employed
a spectrogram-based approach and incorporated the estimated
carrier frequency offset (CFO) into their CNN model for LoRa
device fingerprinting [10]. Jafari et al. proposed traditional
neural networks on RF traces collected from six ZigBee de-
vices at various signal-to-noise ratio (SNR) levels [24]. Pan et
al. introduced the RF-DNA structure, a complex arrangement
of millions of Dual Natural Attributes (DNA) in a helical
configuration for RFIDs [12].

To enhance the robustness of RF fingerprinting, Chen et
al. proposed an identification system that combines software
defined radio (SDR) and transfer learning technology [25].
Yu et al. proposed a multi-sampling CNN and an SNR
adaptive region of interest (ROI) selection algorithm to extract
RF fingerprinting for the purpose of classifying ZigBee de-
vices [26]. RadioNet employed adversarial domain adaptation
and introduced a novel metric (device rank) to enhance the ef-
fectiveness of radio fingerprinting in cross-day scenarios [27].
In [28], semi-supervised deep learning and RF fingerprinting
with meta pseudo time-frequency labels have been deployed
to improve identification performance in small-scale labeled
datasets. Yang et al. proposed a solution to the security
issues by presenting a method of generating RF fingerprinting
recognition using generative adversarial networks (GAN) [29].

FSL has been widely used in RF fingerprinting and related
fields to solve domain-shift problems. [30] employed metric
learning to address domain shift and scalability issues in LoRa
RF fingerprinting. Jin et al. proposed a Wi-Fi-based human
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identification system by using FSL and generative adversarial
networks [31]. FewSense employed FSL to enhance the per-
formance of a cross-domain Wi-Fi sensing system [32]. Wi-
Learner improved generalization ability on cross-domain Wi-
Fi-based gesture recognition by using one-shot learning [33].

Our work differs from related work in several key aspects.
First, our datasets are generated from different groups, leading
to a more diverse division of devices and domains. Second,
we utilize the principles of few-shot learning and employ
a modified PTN to extract domain-invariant RF fingerprint
features, yielding promising results in various scenarios. Third,
we customize the loss function and propose an XAI-aided data
augmentation to improve cross-dataset accuracy.

III. BACKGROUND AND MOTIVATION

A. Problem Scope

RF fingerprint-based device authentication systems have
gained increased attention due to their uniqueness and ro-
bustness in countering spoofing and attacks. By using deep
learning, RF fingerprints can be better extracted and identified.
However, traditional deep learning approaches have a fixed
output size for a specific task, which poses a challenge for
RF fingerprinting systems that require frequent addition or
removal of devices. Meanwhile, incorporating new devices
also brings unseen domains to the system. The domain shift
issue becomes a critical concern in RF fingerprinting systems,
despite the powerful computing and mapping capabilities are
offered by deep learning models. It will significantly reduce
the accuracy in unseen domains. The primary reason behind
this is the sensitivity of wireless signals to environmental
changes, resulting in variations in scattering and reflection pat-
terns. Consequently, deep learning models can be effectively
trained on known domains but may struggle to generalize to
new devices and environments. Therefore, this paper aims
to address these challenges and is based on the following
objective and underlying assumption.

• The objective is to enhance the scalability and domain
robustness of the RF fingerprinting system, enabling it to
perform well across unseen domains and devices using
only a limited number of samples.

• We make an assumption that our system has a base
dataset Ebase consisting of a group of known devices
within a particular range of domains. The feature extrac-
tor is trained using this dataset and needs to extract stable
fingerprint features across various domains. Although the
metric-based approach has the ability to detect unknown
devices, this paper concentrates on addressing the domain
shift and the scalability challenges.

B. Motivation

1) Physical Layer Identification: Traditional IP or MAC
address-based identification schemes still face many security
issues. Moreover, some IoT devices lack sufficient computa-
tional power, making it impractical to deploy cryptographic
authentication schemes. To overcome these challenges, the
physical layer-based security paradigm has been proposed.

This paradigm leverages unique, permanent, and unavoidable
physical imperfections generated during the manufacturing
process. These imperfections can be utilized as unique finger-
prints, enabling them to be used for authentication purposes.

2) Domain Shift Problem: Although the deep learning-
based RF fingerprinting system is promising due to its unique-
ness, the domain shift problem still exists because the finger-
print is transmitted via wireless signals. This implies that even
though the fingerprint itself is stable and distinct, environmen-
tal changes can greatly affect signal propagation, resulting in
a lack of robustness in identifying RF fingerprints. Fig. 1 and
Fig. 2 present the accuracy drops as the unknown domains
increase, and the data distribution varies among different
datasets (i.e., CORES [34], WiSig [15], and ORACLE [35]).
Thus, a robust RF fingerprinting system is needed, which can
identify devices in new and diverse domains.

Number of Unknown Domains
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Fig. 1. Classification accuracy de-
creases as the number of unknown
domains increases.

Cross-dataset

W
a
s
s
e
rs

te
in

 D
is

ta
n
c
e

Fig. 2. The dissimilarity between dif-
ferent datasets, where C, W , and O
represent CORES, WiSig, ORACLE.

3) Scalability Problem: In real-world scenarios, it is com-
mon to introduce new devices or remove existing ones from an
RF fingerprinting system. However, traditional deep learning
methods such as CNN and LSTM encounter scalability limi-
tations because their fixed output layers constrain their ability
to handle a varying number of classes once trained. Adapting
these models to new settings requires extensive retraining with
a large volume of training samples, which is time-consuming.

4) Small Sample Problem: During the training phase of the
RF fingerprinting system, a vast dataset can be collected to
train a deep learning model offline. However, when it comes
to implementing the system in new domains or with new
devices, collecting a large dataset becomes impractical and
infeasible, which can pose challenges related to domain shift
and scalability. This limitation has the potential to impact the
system’s ability to accurately identify devices. Therefore, it
is necessary to ensure the efficacy of the RF fingerprinting
system even with only a limited number of new samples.

C. Few-shot Learning

Few-shot learning aims to achieve generalization to new
classes and new domains that are not seen in the training
set, based on only a limited number of examples of each
new class. This distinguishes it from most traditional deep
learning techniques that require large quantities of labeled
data for training. As a result, FSL is particularly valuable in
scenarios where labeled data is scarce or costly to obtain and
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where the model needs to adapt to new, unseen tasks with
minimal examples quickly. In contrast to conventional machine
learning, FSL adopts a different approach to partitioning
datasets. In this paper, we have a base dataset Ebase to train a
feature extractor fθ. Then, we construct a support set Esupport
comprising a small number of labeled samples and the query
set Equery contains data that we need to infer the labels. The N -
way K-shot learning scheme is a general approach in FSL. The
N and K refer to the number of classes the model is trained
on and the volume of labeled examples per class, respectively.

IV. RF FINGERPRINTING SYSTEM

The overview of the proposed RF fingerprinting system is
shown in Fig. 3. This section will introduce it in detail.

A. Problem Definition

Base Set
𝜀!"#$

Preprocessing 𝑓! Classifier Our Loss
Function

Extractor TrainingUpdate

Support Set
𝜀#%&&'() Preprocessing 𝑓! Embedding

Query Set
𝜀*%$(+ Preprocessing 𝑓! Embedding

Prototypes

Extractor Fine-tuningLIME-guided Augmentation

Similarity
Prediction

Identification

Fig. 3. Overview of RF fingerprinting system.

In this paper, we employ three different public datasets
and partition them into various domains according to different
days and distances. We denote our input time-domain IQ data,
which has a shape of 2×256, as X = {X,E}. It encompasses
a feature space represented by X = {x1, x2, . . . , xn} and
complex environmental factors denoted as E ∼ (T,D). Due
to the changes in environments E, the input signal X changes
with varying time T and propagation distance D.

As illustrated in Section III, we have a base set of M
labeled samples B = {(X b

1 ,Yb
1), . . . , (X b

M ,Yb
M )}, where Yb

represents the known devices in the base set Ebase. The domains
of the base set are defined as the source domains Ds. In our
approach, we employ a standard supervised learning method
to train both the feature extractor fθ and a classifier C(·)
using data from the base set. We define the target domains
denoted as Dt, which comprises domains not seen in the base
set Ebase. Both the support set Esupport and the query set Equery
are presented in the target domains. In the N -way K-shot
scheme, K labeled samples for N devices are gathered to
create the support set Esupport, which is subsequently used to
generate prototypes c and fine-tune the feature extractor fθ.
Following this, we compare the similarity d of each prototype
c to predict the labels Yq of the query set Equery.

To address the domain shift and scalability issue, we for-
mulate two different cases: the cross-domain case and the
novel-device case. In the cross-domain case, the target devices

remain the same as those in the base set but belong to different
domains. On the other hand, the novel-device case introduces
new devices, encompassing two scenarios: the in-dataset case
and the cross-dataset case. The in-dataset case involves novel
devices that originate from the same dataset. The cross-dataset
case involves novel devices from a different dataset, which
poses greater challenges.

B. Stable Fingerprint Extraction

The first challenge in building a domain-robust and scal-
able RF fingerprinting system is to extract stable fingerprint
representations from different devices and domains. A stable
RF fingerprint is one that changes very little or even remains
unchanged over multiple fingerprint extractions. This stability
is essential for accurate device classification, as it allows the
system to distinguish between devices even if the environ-
mental conditions changed. In this section, we will discuss
how to extract stable RF fingerprints. We start by introducing
the signal pre-processing of the input IQ samples. Then we
describe our feature extractor that is feasible for scalable tasks.
Last, we integrate PTN to generate stable RF fingerprints.

1) Signal Pre-processing: As shown in Fig. 4, a preamble
is transmitted prior to the start of the main data transmission
to help the receiver detect the beginning of the data and
synchronize its clock with the transmitter’s clock. The frame
preamble’s structure is typically standardized for a specific
wireless communication system. This structure is particularly
well-suited for the RF fingerprinting task, as it usually consists
of a fixed pattern of recognizable symbols. This stable pattern,
which can be easily distinguished from the data, is useful in
extracting stable fingerprint features. Furthermore, it also helps
reduce privacy concerns when identifying devices since it
avoids including data information. Consequently, by isolating
the identical structure of the frame preamble, it becomes
possible to extract data-agnostic and stable RF fingerprints,
as illustrated in Fig. 5.

t1 t2 ... t10
Guard

Interval
T1 T2

10 × 0.8 = 8μs 1.6 + 2 × 3.2 = 8μs
STS LTS

CORES, WiSig@25Msps → 10.2μs

ORACLE@20Msps

Fig. 4. 802.11a/g frame preamble
structure.

packet_decision.eps

Start of the frame

Fig. 5. Detect the start of the pream-
ble.

2) Feature Extraction: CNNs have demonstrated their abil-
ity to extract useful features from input data, which makes
them well-suited as feature extractors for various models. In
this work, we deploy a simple CNN that closely resembles
the CNN architecture proposed in [35], to serve as the feature
extraction function fθ, which generates embedding vectors for
calculating prototypes. The architecture of our CNN is simple,
consisting of only two convolutional blocks and two fully-
connected layers. Concretely, the input time-domain IQ data
is a two-dimensional vector with the shape of 2 × 256. The
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first convolutional block contains a convolution layer with 256
filters of size 1 × 7 with stride 1, a ReLu activation layer,
and a batch normalization layer. The second convolutional
block has a similar structure as the previous one, except that
the convolution layer is different. The second convolutional
layer has 2× 7 convolution kernels with stride 1 in 80 output
channels. Both of the two layers have a 0× 3 padding. Then,
the following linear layers consist of 1024 and 256 neurons,
respectively. These layers are accompanied by a ReLU acti-
vation function and one-dimensional batch normalization. To
ensure the embedding vectors reside on a hypersphere with a
constant radius, an L2-norm layer is added prior to the final
classification layer as

fθ(Xi) =
f ′
θ(Xi)

∥f ′
θ(Xi)∥2

, (1)

where f ′
θ(Xi) is the output before the L2-norm ∥·∥2, and

fθ(Xi) denotes the final feature embeddings. After the feature
extraction block, there is a final classifier C(·) that can be
adjusted according to the number of known devices. The fea-
ture extractor is trained using a traditional supervised learning
scheme, employing our base set Ebase as the training data.

3) Stable Fingerprints: Maintaining the stability of device
fingerprints is crucial when identifying devices across diverse
domains. To achieve this, we employ a modified PTN which
involves calculating the mean value of the generated feature
vectors, resulting in stable and reliable representative vectors.
These representative vectors, known as prototypes, encapsulate
the fundamental characteristics of a specific class of devices.
By computing prototypes for each device, we obtain gener-
alized representations that remain relatively invariant across
different domains. These stable representations play a crucial
role in the classification process, enabling accurate and reliable
device identification.

After we employ the feature extractor fθ to obtain the
embedding vectors from the input IQ samples as illustrated
in Section IV-B2, the prototype for each device is determined
by averaging all the embedding vectors belonging to the same
class. The computation of prototypes can be expressed as
follows:

ci =
1

n

n∑
Xi∈Edata

fθ(Xi), (2)

where ci denotes the prototypes of device Yi, and n denotes
the number of samples per class in the dataset.

C. Precise Fingerprint Extraction

By implementing the above processes, we can extract stable
RF fingerprints for different devices. However, it is still a
challenge to ensure that these stable RF fingerprints can be
used to effectively distinguish devices across various domains.

1) Similarity Metric: Once the prototypes of each device
have been determined, the model can leverage them to generate
predictions for new samples. This is achieved by computing
the similarity between the feature embedding of the new
sample and the prototypes associated with each class. In our

experimental setup, we quantify the similarity scores by using
cosine similarity as below:

D = d(c, fθ(Xi)) =
c · fθ(Xi)

∥c∥2 ∥fθ(Xi)∥2
, (3)

where D is the similarity matrix between the input sam-
ple Xi and prototypes of all known devices. The cosine
similarity d(c, fθ(Xi)) between a feature embedding and its
corresponding prototype ranges from −1 to 1. A value closer
to 1 indicates higher similarity. The prediction result will be
determined based on the class with the highest similarity score.

In the original PTN [20], authors deploy Euclidean dis-
tance as the similarity metric. While both metrics have their
advantages, we choose cosine similarity for the following
reasons. First, cosine similarity is scale-invariant whose value
has a fixed range from −1 to 1, while Euclidean distance
is variant. Given our focus on addressing domain shift and
scalability issues, we prefer a fixed metric to assess similarity.
Euclidean distance may change drastically when introducing
novel devices and domains, which is not meet our expec-
tations. Second, cosine similarity focuses on the orientation
of embedding vectors. By considering the angular separation
rather than the magnitude, cosine similarity allows for a more
robust comparison of embedding vectors.

2) Accurate Classification: To ensure that the RF finger-
print features are extracted accurately, the first step is to align
the fingerprint feature with its corresponding device class.
During the training phase, we only use base set B to train the
model. The feature extractor fθ generates feature embeddings,
while the classifier C(·) produces logits. To measure the
difference between the predicted outputs and the actual labels,
we employ the classic multi-class cross-entropy loss function
as follows:

LCE = −
∑
i

Yi · log(C(fθ(Xi))). (4)

By using cross-entropy loss, we can ensure the extracted RF
fingerprints can be correctly classified.

3) High Similarity: Given that our system authenticates
devices by comparing feature vectors with prototypes rather
than relying solely on the output logits from the classifier,
using only cross-entropy loss for model training can poten-
tially introduce biases. To address this concern, we propose a
similarity loss, which aims to generate an RF fingerprint that
exhibits high similarity to the corresponding prototype.

Since we already have a cross-entropy loss function to
facilitate the accurate classification of input data, the similarity
loss function mainly focuses on optimizing our model from
a similarity perspective. First, the cosine similarity between
the feature vector of the true label and its corresponding
prototype should be maximized. This high similarity assists
the model in making accurate classifications. Second, the
maximum similarity score in the similarity matrix D should
be as high as possible. Hence, we compute similarity loss as

LS = α · (1− dtrue) + β · (1− d1), (5)
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where dtrue denotes the similarity score of true labels, and
d1 represents the highest similarity score. By employing
similarity loss, the model is optimized to output feature em-
beddings with higher similarity to the corresponding prototype.
It is important to mention that we avoid directly calculating
the absolute error between the maximum similarity and the
similarity of the true labels. This is because it may lead to the
undesired situation that the two similarities may be the same
but relatively low, even if the classification is correct.

4) High Discriminability: Deploying the above similarity
loss can yield feature vectors that closely resemble the target
prototype. However, this may also generate interfering features
that exhibit high similarity to the prototype. To overcome this
issue, we propose a discriminability loss function which is
inspired by the concept of triplet loss. The purpose of this
discriminability loss is to encourage feature embeddings to
exhibit a low similarity to other prototypes. By incorporating
this discriminability loss, we aim to enhance the distinctive-
ness of the feature vector in relation to its associated prototype.
Therefore, we have

LD = max(0, ϵ+ d2 − d1), (6)

where d2 denotes the second highest similarity score, and ϵ
represents the discriminability level.

Overall, the loss function of our system is a combination of
cross-entropy loss, similarity loss, and discriminability loss as

L = λ1 · LCE + λ2 · LS + λ3 · LD, (7)

where λ1, λ2, and λ3 are coefficients that control the signif-
icance of the three loss components. By implementing this
customized loss function, our RF fingerprinting system is able
to extract more precise fingerprints.

D. Few-shots Fine-tuning

In certain challenging scenarios, fine-tuning becomes essen-
tial to improve the system performance. However, it is impor-
tant to note that our system operates on a few samples from
the support set. This limited available samples may hinder the
ability of the model to effectively generalize to the challenging
task. Data augmentation is a widely used technique that helps
machine learning models improve their generalization ability
and make accurate predictions on previously unseen data.
However, due to the small size of the support set and the unin-
tuitive nature of the input IQ samples, using inappropriate data
augmentation methods may degrade the model’s performance.
To address this challenge, we employ LIME to guide the data
augmentation process.

Using the inputs provided by the support set Esupport, we
can generate predictions by our system. Since our system
primarily focuses on extracting domain-invariant features to
output results, we employ LIME to identify the specific areas
of focus. We first partition the support time-domain IQ data X s

i

into 16 smaller segments. From these segments, we randomly
select subsets to create perturbed IQ samples X p

i . We then
feed these perturbed samples into our system to generate
corresponding perturbed predictions Yp

i . Next, we compute the

cosine distances between the perturbed data and the original
data, which serves as the weights of the perturbed samples.
Subsequently, we train a linear regression model (i.e., an
explainable model) using the perturbed samples, associated
weights, and perturbed predictions. The resulting coefficients
obtained from this linear model indicate the level of attention
our system assigns to different sections of the data. Larger
coefficients signify a higher degree of focus on specific areas.

Algorithm 1 Feature extractor fine-tuning with LIME-guided
augmentation
INPUT: Support set Esupport = {(X s

i ,Ys
i )

K , i = 1, . . . , N},
feature extractor fθ, classifier C, learning rate lr, hyper-
parameters α, β, ϵ, λ1, λ2, λ3

OUTPUT: fine-tuned feature extractor fθ
Step 1: Fine-tune with support set

1: for number of epoch do
2: for (X s

i ,Ys
i )

K ∈ Esupport do
3: ci ← 1

K

∑K
fθ(Xi)

4: D← CosineSimilarity(c, fθ(X s
i ))

5: (di, d1, d2)← (Di,max(D), secondmax(D))
6: LCE ← CrossEntropy(C(fθ(X s

i )),Ys
i )

7: LS ← α · (1− di) + β · (1− d1)
8: LD = max(0, ϵ+ d2 − d1)
9: L = λ1 · LCE + λ2 · LS + λ3 · LD

10: end for
11: θ ← θ − lr · ▽θL
12: end for

Step 2: LIME-guided augmentation
13: for (X s

i ,Ys
i )

K ∈ Esupport do
14: X p

i ← Segment(X s
i )

15: Yp
i ← argmax(CosineSimilarity(c, fθ(X p

i ))
16: Regions← LinearRegression(X p

i ,Y
p
i , d(X

p
i ,X s

i ))
17: X a

i ← X s
i [Regions]

18: Eaugment ← Esupport + {(X a
i ,Ys

i )
K , i = 1, . . . , N}

19: end for
Step 3: Fine-tune with augmented set

20: for number of epoch do
21: fθ ← FineTune(Eaugment)
22: end for
23: return fθ

In this study, we augment the support data by preserving
values in the segments of the top 10 largest coefficients
and setting all other values to zero. This approach aims
to compel our feature extractor to extract robust fingerprint
features from important segments and ignore interference from
other segments. Meanwhile, considering the limited volume of
data in the support set, this procedure does not substantially
increase time complexity.

E. Summary

In this section, we will introduce how to integrate these
blocks to train our system and make predictions. First, our
customized loss function is used to optimize the feature
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extractor on the base set using a classic supervised learning
scheme. This ensures that the feature extractor extract features
that are discriminative for the different device classes. Then,
we propose a LIME-guided augmentation with fine-tuning
to improve the performance on the challenging tasks. The
pseudocode of implementing LIME-guided augmentation in
fine-tuning is described in Algorithm 1. The first step is fine-
tuning the model with a small number of iterations. This allows
the extractor warm up to the features of the new samples.
Next, LIME is deployed to guide data augmentation for the
fine-tuned model. Last, the model is fine-tuned again using the
augmented dataset. The whole process is not time-consuming
because the amount of data and the number of iterations are
small.

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

In all experiments, the learning rate was set to 0.0001.
Kshot, Nquery, and max epochs were set to 5, 20, 50,
respectively. The value of Nway was set to the size of all
label sets for the datasets involved in a given experiment. The
coefficients λ1, λ2, λ3 for the loss function L were set to 1.0,
0.8, and 0.8. For the similarity loss LS , the alpha and beta
coefficients were 1.2 and 1.0, respectively. The experiments
were conducted on a server with an Intel Xeon E5-2650L v4
CPU and 8 NVIDIA GeForce GTX 1080Ti GPU.

For the in-dataset case, we selected data with partial do-
mains as the base set, and the remaining data were allocated
to the support and query sets. For the cross-dataset scenario,
we designated devices with all domains as the base set, while
new devices with all domains constituted the target domains.

B. Datasets

We leverage three public datasets in this paper. Table I
shows brief information on these datasets.

1) ORACLE: The original ORACLE dataset [35] is cap-
tured with 16 USRP X310 transmitters and a USRP B210
receiver at 6-foot increments from 2 to 62 feet. The dataset
is divided into ORACLE.1 and ORACLE.2 based on time.
We also include ORACLE.F1 and ORACLE.F2, which are
generated by frame isolation as mentioned in Section IV-B1.
We use distance as the domain partition criterion. Due to an
inadequate number of frames, we exclude distances of 2, 56,
and 62 feet. As a result, there are a total of eight domains
in each ORACLE dataset. We randomly select 10 devices in
4 domains as the base set B, the remaining data are used to
discuss the domain shift and scalability issues.

2) CORES: The original dataset [34] consists of 163 con-
sumer Wi-Fi cards arranged in a grid at the Orbit Testbed [36].
This dataset was collected by the UCLA CORES lab and
is hereafter referred to as CORES. In this work, we use
the 58 devices in all five days of this dataset, where each
day represents a distinct domain. The base set of CORES
comprises a total of 30 devices across 2 domains.

TABLE I
DATASET SUMMARIES.

Dataset Name Emitter Models Examples Domains
ORACLE.1 16 USRP X310 1,280,000 8
ORACLE.2 16 USRP X310 1,280,000 8

ORACLE.F1 16 USRP X310 256,000 8
ORACLE.F2 16 USRP X310 256,000 8

CORES 58 COTS Wi-Fi Cards 250,681 5
WiSig 130 COTS Wi-Fi Cards 270,616 4

3) WiSig: Conducted by the same team as the CORES,
the WiSig dataset [15] is collected by 41 unspecified USRP
receivers to capture wireless signals from 174 COTS Wi-Fi
cards. Being much larger than previous datasets, we use data
from only one receiver (labeled ”node3-19”) for simplicity.
We use the 130 emitters present on all four days. The base set
is constructed using 100 devices across two domains.

C. Evaluation on the Cross-domain Case

In the cross-domain case, our primary focus is to address
domain shift. We train our model using source domains and
then test its performance on unknown domains. To demon-
strate the robustness of our system with respect to domain
shift, we also evaluate several classic methods in this setting.
The results of various methods in the cross-domain scenario
are presented in Table II. While the performance varies across
models, they all exhibit satisfactory results in source domains.
However, when it comes to target domains, their accuracy
significantly decreases. In particular, when considering the
ORACLE dataset, even the K-nearest neighbor (KNN) [37],
CNN [35] and LSTM [11] models that perform well in
source domains (above 90%), struggle to achieve acceptable
performance in target domains, with only about 7% accuracy.
This can be attributed to the excessive impact of distance
on the signal strength, resulting in the failure classification.
The accuracy still remains inadequate even with ADA [38]
and ADA+KNN [27] methods, likely because the extracted
domain-invariant features are not related to fingerprints. Be-
sides, all models demonstrate superior performance on CORES
and WiSig datasets compared to the ORACLE datasets. As
previously mentioned in Section V-B, these two datasets were
collected by the same team and partitioned according to
different days. This suggests that domain shifts that occur at
different distances can be more disruptive than domain shifts
that occur in the same environment over time.

Our method consistently outperforms other models across
all datasets, even in cases where other models perform well.
For example, on the WiSig and CORES datasets, our method
achieves exceptionally high accuracy rates of 95% and 99%,
respectively. On the ORACLE dataset without signal prepro-
cessing, our method effectively enhances accuracy by approx-
imately 70%. Furthermore, for the framed ORACLE datasets,
our method achieves accuracy improvements exceeding 80%.
These results clearly highlight the consistent and substantial
enhancements delivered by our approach.
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TABLE II
THE PERFORMANCE OF OUR PROPOSED SYSTEM AND BASELINE METHODS IN THE CROSS-DOMAIN CASE.

WiSig CORES ORACLE.1 ORACLE.2 ORACLE.F1 ORACLE.F2
Source Target Source Target Source Target Source Target Source Target Source Target

KNN [37] 0.9158 0.7268 0.9909 0.7912 0.3407 0.0628 0.3421 0.0605 0.8604 0.1089 0.8604 0.1090
CNN [35] 0.9817 0.7658 0.9997 0.7521 0.9091 0.0680 0.9131 0.0710 0.9529 0.0578 0.9550 0.0639

LSTM [11] 0.9507 0.7347 0.9924 0.6419 0.6199 0.0625 0.6270 0.0623 0.8755 0.1243 0.8757 0.1267
ADA [38] 0.8476 0.5203 0.9028 0.6255 0.4711 0.0752 0.4071 0.0765 0.6090 0.0606 0.5910 0.0536

ADA+KNN [27] 0.9099 0.6922 0.9885 0.7751 0.5491 0.0676 0.5149 0.0682 0.6537 0.1072 0.6766 0.1059
Proposed 0.9774 0.9512 0.9999 0.9917 0.8678 0.7809 0.8880 0.7910 0.9809 0.8770 0.9825 0.8630

D. Novel-device Case

As mentioned in Section IV-A, traditional deep learning
techniques are not convenient for handling scenarios that
involve introducing new devices. To investigate the scalability
of our system, we conduct evaluations in both the in-dataset
case and the cross-dataset case. In the in-dataset case, our
system mainly focuses on addressing scalability concerns
since the domain information remains similar. In contrast,
the cross-dataset case presents a more challenging scenario
where both the device type and domain information undergo
changes, introducing difficulties associated with domain shift
and scalability.

TABLE III
TARGET ACCURACY OF THE IN-DATASET CASE. THE ABBREVIATIONS FT,

GN, AND LIME STAND FOR FINE-TUNING, GAUSSIAN NOISE
AUGMENTATION, AND LIME-GUIDED AUGMENTATION RESPECTIVELY.

Baseline + FT + GN + LIME

ORACLE.F1 0.9233 0.9344 0.9079 0.9173
ORACLE.F2 0.9179 0.9219 0.8958 0.9208
ORACLE.1 0.8546 0.8698 0.8229 0.8708
ORACLE.2 0.8662 0.8781 0.8489 0.8958

WiSig 0.9515 0.9608 0.9621 0.9666
CORES 0.9668 0.9746 0.9804 0.9843

1) In-dataset case: Table III presents the results of novel
device authentication under the in-dataset case. This table
demonstrates that our system has the capability to deliver
outstanding performance concerning the scalability challenge.
To substantiate the effectiveness of our proposed LIME-guided
data augmentation, we implemented Gaussian noise (GN) as
an alternative augmentation method for contrast.

For the ORACLE dataset, the pre-processed datasets (OR-
ACLE.F1 and ORACLE.F2) achieve higher accuracy, aligning
with the trend observed in the cross-domain case. This con-
firms the effectiveness of pre-processing. Interestingly, while
fine-tuning enhances the accuracy across all datasets, data
augmentation appears to negatively affect accuracy in the
framed ORACLE datasets. However, this reduction in accuracy
is acceptable given the high overall accuracy. Among all
scenarios, our system achieves the highest accuracy of 0.9843
on the CORES dataset. The most substantial improvement
through fine-tuning and LIME-guided augmentation is ob-
served in ORACLE.2, where accuracy increases by almost 3%.

2) Cross-dataset case: Fig. 6 shows the performance of
our system on the cross-dataset case, where new devices
with different manufacturers and domains present a greater
challenge compared to the previous case. When the ORACLE
dataset is used as the base set, our system performs well on
other datasets. However, when ORACLE is employed as the
target dataset, the accuracy decreases significantly. This is
because ORACLE divides domains by distance, which may
lead to greater differences between domains, thus making it
more difficult for the system to adapt.
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Fig. 6. Identification performance in the cross-dataset case. The abbrevi-
ations C, W, OF1, and OF2 stand for CORES, WiSig, ORACLE.F1, and
ORACLE.F2, respectively. OF1→C denotes that our system is trained on
ORACLE and tested on novel devices from the CORES dataset.

We address this by leveraging fine-tuning and LIME-
guided augmentation techniques, which significantly im-
prove the lower accuracies and further boost the already
good performance. Specifically, the worst-case scenario,
CORES→ORACLE.F1, initially achieves an accuracy of only
14.57%. However, after implementing fine-tuning and LIME-
guided augmentation, the accuracy experiences a remarkable
improvement, reaching 55.31%. On the other hand, the best-
case scenario, WiSig→CORES, already achieves a high accu-
racy of 96.81% using PTN alone. With the integration of fine-
tuning and LIME-guided augmentation, the accuracy further
increases to 98.05%.

E. Evaluation on Similarity Metrics and Loss Functions

Table IV presents the results from different similarity met-
rics and loss functions. The original PTN uses Euclidean
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distance to determine the similarity. However, it appears that
the cosine similarity provides more effective measurements
to our system when it comes to RF fingerprinting. This is
probably because cosine similarity is more effective at mea-
suring the similarity between fingerprint feature vectors within
a multi-dimensional space. In comparison to the classic cross-
entropy loss, our customized loss function also contributes
to improving RF fingerprinting classification accuracy. The
impact of our loss function on accuracy is more pronounced
in the cross-dataset case as compared to the cross-domain
scenario. For example, the accuracy increases from 84.52% to
91.13% in the OF1→C case. These findings demonstrate the
effectiveness of our customized loss function in RF fingerprint
extraction and classification.

TABLE IV
TARGET ACCURACY IN CROSS-DOMAIN AND CROSS-DATASET SCENARIOS

WITH DIFFERENT SIMILARITY METRICS AND LOSS FUNCTIONS.

Cross-Entropy Loss Customized Loss

Euclidean Cosine Baseline GN LIME

OF1 0.7809 0.8172 0.8288 0.8210 0.8770
OF2 0.7672 0.8492 0.8396 0.8480 0.8630
O1 0.7136 0.7516 0.7634 0.7090 0.7809
O2 0.7225 0.7699 0.7712 0.6910 0.7910
W 0.8753 0.9355 0.9464 0.9503 0.9512
C 0.9771 0.9850 0.9827 0.9928 0.9971

OF1→W 0.4963 0.5021 0.5406 0.7650 0.7792
OF1→C 0.8175 0.8452 0.9113 0.9162 0.9282

F. Evaluation on LIME-guided Data Augmentation

Table V shows the results of using different data aug-
mentation techniques in the cross-dataset scenario. In con-
junction with the previous findings, our proposed LIME-
guided data augmentation demonstrates an enhanced perfor-
mance for our RF fingerprinting system. We can see that
the CORES→ORACLE.F1 case shows the most significant
improvement, with an accuracy increase of approximately 41%
compared to the baseline PTN. LIME is deployed to under-
stand the important regions of the input IQ samples, allowing
us to retain these parts as the augmented data. Consequently,
our system becomes better at extracting features from these
regions, making it more resilient to irrelevant disturbances.
For instance, Gaussian noise data augmentation is ineffective
for the ORACLE dataset in most cases, resulting in a de-
cline in model accuracy. However, using LIME-guided data
augmentation, accuracy improvements are observed across all
cases. In particular, in the cross-domain scenario of ORACLE
datasets, where Gaussian noise significantly decreases accu-
racy, LIME-guided data augmentation continues to improve
model performance.

G. Evaluation on Hyperparameter

In the N -way K-shot scheme of FSL, it is generally
observed that higher accuracy is achieved with an increase
in the number of shots. Fig. 7 shows the trend of accuracy

TABLE V
TARGET ACCURACY IN CROSS-DATASET SCENARIOS WITH DIFFERENT

AUGMENTATION TECHNIQUES.

OF2→W OF2→C W→OF1 W→C C→OF1 C→W

GN 0.7297 0.9155 0.4625 0.9762 0.5113 0.8104
LIME 0.7442 0.9298 0.4938 0.9805 0.5531 0.8218

improvement as the number of shots increases. In cases where
the accuracy of a 1-shot approach is insufficient, such as
W→OF1, a significant improvement of approximately 35%
can be achieved by using 20 shots. However, it is important
to note that this increase is not linear. Improvements in
accuracy are most significant from 1-shot to 5-shots, after
which accuracy tends to improve more slowly. Increasing the
number of shots in FSL can improve accuracy, but it also
requires more data and computational resources. This can be
a challenge, as it contradicts the original intent of our system,
which is to generalize from a small amount of data. Therefore,
the choice of the number of shots is a trade-off between
accuracy gains and resource requirements. On the other hand,
Fig. 8 shows that our system is relatively stable as the number
of queries varies.
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Fig. 7. The performance of our sys-
tem varies with the number of training
shots (K).
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Fig. 8. The performance of our sys-
tem varies with the number of testing
queries.

VI. CONCLUSION

This paper presented a novel approach for building a robust
RF fingerprinting system to effectively address the challenges
of domain shift and scalability. To overcome these challenges,
our system employed a modified PTN to enable adaptation to
new domains and devices with only a few samples. To further
enhance performance, we designed a customized loss function
and developed a LIME-guided data augmentation technique.
We extensively evaluated the capabilities of our system across
various scenarios and datasets. Our results demonstrated that
our approach outperformed other methods in addressing do-
main shift issues. To the best of our knowledge, this study is
the first to comprehensively address these challenges across
different datasets and achieve outstanding performance.
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