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Abstract—Despite the proven capabilities of deep neural net-
works (DNNs) for radio frequency (RF) fingerprinting, their
security vulnerabilities have been largely overlooked. Unlike the
extensively studied image domain, few works have explored the
threat of backdoor attacks on RF signals. In this paper, we
analyze the susceptibility of DNN-based RF fingerprinting to
backdoor attacks, focusing on a more practical scenario where
attackers lack access to control model gradients and training
processes. We propose leveraging explainable machine learning
techniques and autoencoders to guide the selection of positions
and values, enabling the creation of effective backdoor triggers
in a model-agnostic manner. To comprehensively evaluate our
backdoor attack, we employ four diverse datasets with two
protocols (Wi-Fi and LoRa) across various DNN architectures.
Given that RF signals are often transformed into the frequency or
time-frequency domains, this study also assesses attack efficacy
in the time-frequency domain. Furthermore, we experiment
with potential defenses, demonstrating the difficulty of fully
safeguarding against our attacks.

Index Terms—Backdoor Attack, Radio Frequency Fingerprint-
ing, Explainable Machine Learning, Security.

I. INTRODUCTION

The Internet of Things (IoT) has become increasingly pop-
ular in recent years, with wireless technology being integrated
into more and more aspects of our daily lives. As the number
of wireless devices grows, an effective and efficient device
authentication method is essential [1]–[3]. Radio frequency
(RF) fingerprinting has become a promising technique for
authenticating RF devices because it is more difficult to tamper
and spoof compared to traditional methods [4], [5].

RF fingerprints are unique properties generated by inherent
physical imperfections in the analog circuitry of RF emitters
during the manufacturing process [6], [7]. These imperfections
affect the transmitted signals slightly, but they do not affect
the overall performance of the devices. As a result, every
RF emitter has a unique fingerprint, including ultra-low-
power devices and legacy ones. With the widespread use of
deep learning, fingerprints can be automatically extracted and
classified by deep neural networks (DNNs). Specifically, due
to the excellent performance on feature extraction, many RF
fingerprinting systems deploy convolutional neural networks
(CNNs) to extract RF fingerprint features and classify different
devices [8]–[13].

§The corresponding author is Xuyu Wang (xuywang@fiu.edu).

While DNNs offer powerful capabilities for RF finger-
printing, they also bring inherent vulnerabilities, including
susceptibility to evasion and backdoor attacks [14]–[18].
Recent studies have explored the adverse impacts of these
attack techniques in relevant domains. For example, Moosavi-
Dezfooli et al. propose a universal perturbation that can fool
DNNs on any image in the computer vision domain [19].
Nevertheless, evasion attacks typically involve an iterative
process of perturbing the input sample based on gradients
derived from the target model [20]. This iterative nature
results in a significant computational burden for attackers.
Therefore, backdoor attacks become a hot topic since it is
more robust and practical from the perspective of attackers.
In today’s deep learning landscape, the integration of diverse
cloud platforms, pre-trained models, and public datasets has
become essential. Nonetheless, ensuring the security of such
resources presents significant challenges. Malicious attackers
can introduce problematic datasets and pre-trained models,
thereby compromising the performance of inference tasks.
Furthermore, attackers can invade the cloud infrastructure and
manipulate loss functions during the training process to dis-
rupt model performance. Given these circumstances, backdoor
attacks can be classified into three main types: poisoning-
based backdoor attacks, weights-oriented backdoor attacks,
and structure-modified backdoor attacks [21]. For instance,
BadNets is one of the first backdoor attacks that employ a
visible trigger to deceive DNNs. The presence of this trigger
in an image causes it to be incorrectly classified into a target
class predefined by the attacker [15].

While extensive research has focused on backdoor attacks
across various domains, there is limited analysis of the secu-
rity vulnerabilities of deep learning-based RF fingerprinting
systems. Given that RF fingerprinting enables device identi-
fication and impacts the security of broader applications, it
is crucial to investigate potential backdoor threats targeting
DNN-based RF fingerprinting. Therefore, this paper examines
backdoor attacks on DNN-based RF fingerprinting to address
the significance of understanding the security risks posed to
these safety-critical systems.

Challenges. Implementing backdoor attacks on RF finger-
printing systems poses several challenges. First, these systems
are crucial for security purposes, prompting system providers
to incorporate robust protections. Existing powerful backdoor
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attacks typically involve creating a trigger generator that
requires accessing gradient information or modifying loss
functions. However, in the case of high-level security systems
like RF fingerprinting, it would be impractical for them to
expose gradient information. Therefore, designing a powerful
trigger without knowing and manipulating the gradient in the
training process is a challenging task. Second, while backdoor
attacks have been thoroughly investigated in the image do-
main, it is important to note that triggers designed for images
may not be applicable or effective for RF signals. DNN-
based RF fingerprinting typically uses in-phase/quadrature
(I/Q) samples in the time domain as input data, which are
fundamentally different from images. Therefore, a different
approach is needed when considering backdoor attacks in RF
fingerprinting. Third, the added trigger should not significantly
impact the system’s performance and be resistant to a certain
level of defense methods. This poses a unique challenge for
RF fingerprinting systems since input I/Q data often undergoes
signal processing, transforming it into the frequency or time-
frequency domain. This requires the trigger to be effective in
both the time domain and the frequency domain.

Solution. To address the above challenges, we propose a
practical backdoor attack for DNN-based RF fingerprinting
by only poisoning some training data, without controlling
other training components (e.g., loss function and model
structure). Our method leverages the concept of black-box
adversarial attacks, where we construct a surrogate model
due to the inherent limitations in manipulating the training
process. Then, we employ LIME (Local Interpretable Model-
agnostic Explanations) [22] on the surrogate model to identify
the important areas that will guide us to place the trigger in a
strategic location. The encoder component of an autoencoder
is used to generate feature values for the backdoor trigger. To
evaluate the effectiveness of the backdoor attack, we conduct
a thorough study of its performance under various trigger de-
tection and defense strategies. This comprehensive assessment
allows us to validate the robustness and effectiveness of our
approach. The main contributions of this paper are as follows.

• To the best of our knowledge, this is the first work
to investigate backdoor attacks on RF fingerprinting.
We develop a practical model-agnostic trigger generation
method without the need for access to gradients and
additional training components.

• We deploy an eXplainable Artificial Intelligence (XAI)
approach and an autoencoder to generate the backdoor
trigger that satisfies the realistic adversarial constraints.
We then explore the effectiveness of this trigger in both
the time and frequency domains.

• We evaluate trigger detection and mitigation techniques,
demonstrating that our backdoor trigger is stealthy and
difficult to fully defend against.

• We conduct extensive experiments across four different
datasets and three different model architectures to validate
our proposed backdoor attack. The results show that our
attack can achieve over 97% success rate for most cases.

The rest of the paper is organized as follows. Section II dis-
cusses the related work and Section III introduces background
on LIME. Section IV provides the problem statement and
threat model. LIME-guided backdoor attacks are elaborated in
Section V. Section VI presents the experimental evaluations
and analysis. Finally, Section VII concludes this paper.

II. RELATED WORK

Previous works have studied backdoor attacks in a wide
range of applications. In the image domain, BadNet [15]
first demonstrates the vulnerability of DNNs by embedding a
visible trigger onto the lower right corner of the image. Chen
et al. [23] first discuss stealthy triggers, enabling poisoned
inputs to evade human inspection. In addition to the above
backdoor attacks that require adding triggers and modify-
ing labels, clean-label attacks that can attack DNNs without
modifying labels are also discussed [24]–[27]. Besides, [28]
crafts triggers by training a separate generator model, which
requires the ability to manipulate the whole training process.
To restrict attacker capabilities, Li et al. [29] adopt techniques
from image steganography to generate sample-specific triggers
without knowing the gradient information. Zeng et al. [30] first
examine image backdoor attacks from a frequency perspective,
demonstrating the importance of the frequency domain in
designing both attacks and defenses.

Except for the image domains, backdoor attacks also be
demonstrated as a threat to DNNs in other domains. For
instance, [31] proposes backdoor attacks on wireless traffic
prediction in both centralized and distributed training scenar-
ios. Jiang et al. [32] employ generative adversarial networks
(GAN) to create backdoored time series data. TrojanFlow [33]
implements attacks on network traffic classification by si-
multaneously optimizing a trigger generator and the target
model. However, training this generator requires manipulation
of gradients and the loss function during the training process,
necessitating significant adversary capability. Severi et al. [34]
employ an XAI tool to guide clean-label backdoor attacks
against malware classifiers. In fact, their approach does not
utilize powerful DNNs to generate trigger values, which may
limit the performance of the attack.

There are several key distinctions between our work and
related research. First, I/Q data for RF fingerprinting is a two-
dimensional stream in the time domain. Traditional triggers
designed for static images may not be feasible in this case.
Second, it is natural to consider the effectiveness of back-
door attacks in the time-frequency domain, since time-domain
I/Q data may be processed by short-time Fourier transform
(STFT). Third, to ensure the practicality of our attack in real-
world scenarios, we impose restrictions on the adversary’s
capabilities. Specifically, the attacker can only tamper with
a small portion of training data while not having access to the
gradient or the ability to modify the training method.

We note that Zhao et al. [35] recently proposed backdoor
attacks on RF signal classification, which is concurrent with
ours. However, they did not consider the XAI tool to guide
attacks and frequency domain attacks.
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III. BACKGROUND: LIME

While DNNs achieve impressive performance across many
domains, their black-box nature makes their internal decision
processes opaque and difficult to interpret. XAI techniques
have thus emerged to provide humans with insight into how
these complex models arrive at predictions. LIME is one of the
first model-agnostic XAI methods to locally interpret complex
black-box DNNs with an interpretable model (e.g., linear
regression). To achieve this, LIME approximates the DNN fθ
by generating a series of perturbations for a given sample x,
represented as x

′

1, x
′

2, ..., x
′

p, where certain feature values in
x are randomly set to 0. Then, these perturbed samples are
fed to the DNN to obtain predicted labels. With the perturbed
samples and corresponding labels, LIME trains a weighted
linear regression to approximate the decision boundary as

arg min
g∈G

p∑
i=1

πx(x
′

i)(fθ(x
′

i)− g(x
′

i))
2, (1)

where G denotes the set of interpretable models such as
linear regression and decision trees. The proximity measure
πx(x

′

i) = exp(−d(x, x′

i)
2/σ2) calculates the similarity be-

tween the original input x and each perturbed input x
′

i based
on a distance function d(·, ·). In this paper, we employ cosine
distance as the distance function.

IV. PROBLEM STATEMENT AND THREAT MODEL

In this section, we first describe the problem statement and
then introduce the threat model.

A. Problem Definition

The typical backdoor attack pipeline for DNN-based RF
fingerprinting is illustrated in Fig. 1. Users first upload and
store I/Q samples in the cloud. At this stage, attackers may
inject triggers into a small portion of the data. The user then
specifies the model architecture, loss function, and decides
whether signal processing is necessary. While the attacker
cannot access model gradients or training, poisoning the sub-
dataset Ds ensures a backdoor is embedded into the model
after training completes. As a result, the model maintains
normal accuracy for regular samples but produces predictions
for the target class when dealing with samples containing the
backdoor trigger.

B. Threat Model

1) Adversary’s Goal: This paper focuses on targeted back-
door attacks, where the adversary aims to induce misclassi-
fications to a specific target class. The attacker’s goal is to
obtain a backdoored classifier fb by poisoning a fraction of
the training data. An optimal backdoored classifier fb would
behave identically to a clean classifier f on unperturbed inputs
x, but generate adversary-chosen predictions yt on backdoored
inputs xb as:

fb(x) = f(x); fb(xb) = yt ̸= f(xb). (2)

In addition to the attack effectiveness mentioned above,
the attacker has two other goals: stealthiness and robustness.

DNN model

Benign Set 𝐷!

𝑦!: Device 3 Device 7
𝑦": Device 0 Device 0

⋯

Backdoored Set 𝐷"

𝑦!: Device 2 Device 7

⋯

Signal
Processing

Train a
DNN

𝑥

Device 1Signal
Processing

Signal
Processing

𝑥

𝑥

Predict

Predict Device 0

Inference Phase

Training Phase

Fig. 1. Overview of the backdoor attack pipeline for DNN-based RF
fingerprinting.

Stealthiness demands the trigger remains concealed and un-
detectable, ensuring that it does not raise suspicion or attract
attention. Robustness ensures that the backdoor attack remains
effective even when faced with certain defensive mechanisms.

2) Adversary’s Capability: In recent years, the widespread
use of cloud platforms, pre-trained models, and public datasets
has become essential to various workflows. However, for
security-critical RF fingerprinting systems, it is vital to limit
adversary capabilities. In this paper, we assume that attackers
are only permitted to poison some training data, but they
have no access to or control over other training components
such as the training loss and model architecture. During the
inference stage, attackers can only query the trained model
with poisoned data but cannot access the model’s internal
information or the inference process. Limiting adversary’s
knowledge and control in this manner reflects realistic threat
models applicable to many real-world scenarios, given the
prevalence of cloud resources.

V. LIME-GUIDED BACKDOOR ATTACKS

A. Overview

In this paper, we design backdoor attacks on general RF
fingerprinting systems under restricted attack capabilities. Let
Dtrain = {(xi, yi)}Ni denote the training dataset containing
N samples, where each x represents 2×256 raw I/Q data and
yi is the corresponding device category. To build a poisoned
training set Dp, attackers need to inject triggers into a small
subset Ds of the full training dataset Dtrain. This portion is
defined as poisoning rate γ .

= |Ds|
|Dtrain| . The poisoned training

set Dp consists of this backdoored data Ds and the remaining
benign data Db, i.e., Dp = Ds ∪Db.

After constructing the poisoned training set Dp, the back-
doored DNN fθ is trained on this dataset. We assume users
follow a standard supervised learning approach, training the
RF fingerprinting model by minimizing its classification error
on Dp, formulated as:

min
θ

E(x,y)∈Dp
LCE(fθ(x), y), (3)
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where LCE represents the widely used cross-entropy loss and
θ denotes the model parameters. Before deploying the model
in the real world, the user typically evaluates performance on
a separate benign set. As illustrated in Section IV-B1, the
backdoored model must perform properly on clean samples
in order to deceive the user.

1

LIME

Encoder DecoderSubset 𝐷!

Reconstruction Loss

Feature Embeddings

Surrogate Model

Trigger Position
Trigger

Perturbed Sample

Target Class Data

2

3

1

3

1

2

Model Training

Position Selection

Value Generation

Fig. 2. Overview of our proposed trigger generation.

The most critical step in the above attack procedure is gener-
ating effective backdoor triggers under the limited adversary
capabilities. Since we preclude the attacker from leveraging
gradients, we employ both a surrogate model and autoencoder
to craft triggers using only the small poisoned subset Ds, as
illustrated in Fig. 2. Step 1 involves training the surrogate
model and autoencoder for future trigger generation. Step 2
selects the trigger placement position, and step 3 determines
the corresponding trigger values.

B. Trigger Position Selection

I/Q samples, encompassing both real and imaginary parts in
the time domain, are collected from diverse protocols, modula-
tion techniques, and can even be influenced by environmental
factors. This characteristic makes I/Q data less straightforward
and interpretable in comparison to images. Consequently,
attempting to manually devise an effective backdoor trigger
through direct observation of the raw I/Q samples may be
challenging and inefficient.

Backdoor attacks can successfully deceive the model be-
cause optimizing the poisoned training data will shift the
model’s decision boundaries to accommodate the introduction
of backdoor triggers. Hence, targeted backdoor attacks can be
achieved by modifying input areas that are highly influential
toward the targeted class prediction. The key challenge of
this approach is to select these influential regions in a model-
agnostic manner, without access to gradient information. XAI
techniques emerge as a powerful tool to highlight influential
features for a prediction. In this paper, we employ LIME to
pinpoint input areas that strongly push the model toward the
target class, allowing us to strategically insert triggers.

Because triggers must be inserted prior to training and we
cannot use the target model itself, this impedes us from deploy-
ing LIME to determine feature importance and guide trigger
selection. As RF fingerprints result from minute imperfections
inherent to the device itself, we assume that the extraction
of RF fingerprints should be carried out from similar regions
across multiple samples from the same device. This extraction
process should remain independent of the DNN’s structure.
Therefore, we can employ a surrogate model that enables
LIME to perform significance analysis for identifying salient
regions from this alternate model to guide trigger insertion for
the target model. Specifically, we employ a simple CNN as the
surrogate model, while avoiding excessive training time that
could raise user suspicion. The key insight is that important
regions for the surrogate are likely also to be impactful for
the target model since RF fingerprints intrinsically depend on
device characteristics rather than model structure.

After the surrogate CNN model finishes training, all ex-
amples belonging to the target class will be perturbed to
generate inputs for LIME, as described in Section III. To
generate input perturbations x

′
for LIME, superpixels of the

original I/Q data are randomly selected using a Bernoulli
distribution. We define superpixels as areas of 32 contiguous
I/Q samples from the input. Then, perturbations are created
by randomly deactivating chosen superpixels, setting the I/Q
values within them to 0. These perturbed samples are then
fed as inputs to an interpretable explanation model, Lasso
regression in this case, to obtain importance weights w for
each superpixel indicating its significance to the prediction.
The Lasso model provides sparse feature weights highlighting
the most influential superpixels for RF fingerprinting. To
mitigate bias from individual samples, we calculate average
importance weights across all target class examples as

w =
1

M

M∑
i

wi; wi = arg min
g=Lasso

L(fs, g, π,xi),∀yi = yt (4)

where L is the loss of the Lasso regression and M is the
number of examples xi from the target class yt in the subset
Ds. The importance weight wi for each data sample belonging
to the target class is calculated by LIME. By taking the
average of these weight vectors, w can effectively capture the
regions most relevant to the target class for RF fingerprinting.
Since the importance weights from LIME are concentrated in
specific regions, we only select the superpixel with the highest
weight as the location for inserting the trigger.

C. Trigger Value Generation

After identifying the trigger position using LIME, the next
challenge is selecting appropriate trigger values. However, I/Q
samples contain intrinsic preamble structures and dependen-
cies between data points that originate from communication
protocols, such as Wi-Fi or LoRa. This means we cannot
arbitrarily select trigger values as it could introduce apparent
anomalies that reveal the trigger’s presence. A prior work [34]
leverages XAI tools to select trigger values from the data
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itself. However, in our case, the data exhibits varying formats
and structures, making it impractical and unreasonable to
directly employ existing I/Q data as the trigger data. Instead,
inspired by steganography techniques [29], [36], [37], we aim
to embed target device fingerprint features into the important
region as the backdoor trigger. To achieve this, we employ an
autoencoder to generate low-dimensional features specifically
designed for the trigger. By doing this, when the victim
model receives samples containing the embedded trigger, it
recognizes the important region exhibiting target class features
and consequently misclassifies to the target label naturally.

Similarly, we only use the subset Ds to train the autoen-
coder. The encoder part fe learns to represent the key features
and dependencies within each I/Q sample. The decoder fd then
attempts to reconstruct the original input from the encoded
representation. The mean squared error (MSE) between the
original and reconstructed inputs is used as the loss function
to update the parameters of the autoencoder. To avoid biased
features, we use the trained encoder to extract and average the
representations of all I/Q data from the target class in Ds as

e =
1

M

M∑
i

ei; ei = fe(xi), ∀yi = yt; (5)

where ei represents the embedding feature vector extracted
by the encoder for each data xi, and e denotes the average
of all such embeddings. This can eliminate individual sam-
ple biases and environmental interference, resulting in more
stable feature embedding. This average feature embedding is
then deployed as the trigger value. Compared to GAN-based
approaches [33], using an autoencoder for trigger generation
has two advantages. First, it does not require manipulating the
training process, better matching practical attacker capabilities.
Second, the GAN training process introduces additional over-
head and makes the overall model training more challenging.
This can potentially interfere with the effectiveness of the
backdoor attack.

D. Summary

In this section, we will describe how to integrate the
aforementioned methods for designing triggers. Algorithm 1
provides a comprehensive overview of how to combine LIME
and autoencoder to generate the trigger.

Lines 1 − 12 involve training a surrogate model fs and
an autoencoder on the subset Ds concurrently. The surrogate
model is trained using a conventional supervised learning
scheme, optimizing it with cross-entropy loss and the Adam
optimizer. On the other hand, the autoencoder is trained in an
unsupervised manner by minimizing the reconstruction loss,
which is the mean squared error between the original input
and reconstructed output. This allows the autoencoder to learn
a latent representation that can faithfully reconstruct inputs.
Lines 15− 17 generate importance weights by explaining the
surrogate model’s predictions using an interpretable model.
Line 19 produces trigger values from the autoencoder’s en-
coder fe. Line 21 identifies the superpixel with maximum

average importance weight and sets it to 1, with other regions
set to 0. Line 22 averages the feature embeddings to obtain a
representative trigger pattern. Line 23 performs a pointwise
product between the averaged embedding and the selected
importance region to insert the trigger. Overall, the trigger gen-
eration process is time-efficient because the surrogate model
and autoencoder are trained concurrently, and the position and
value selection occur in parallel.

Algorithm 1 Backdoor trigger generation
INPUT: Subset Ds = {(xi, yi), i = 1, . . . , N}, surrogate

model fs parameters θ, encoder fe and decoder fd pa-
rameters ψ, target class label yt;

OUTPUT: Backdoor trigger t.
Step 1: Train the surrogate model and autoencoder

1: while θ have not converged do
2: for (xi, yi)

N ∈ Ds do
3: LCE ← CrossEntropy(fs(xi, yi))
4: end for
5: θ ← θ − lrθ · ▽θLCE
6: end while
7: while ψ have not converged do
8: for (xi, yi)

N ∈ Ds do
9: LMSE ← 1

N

∑N
i (fd(fe(xi)),xi)

2

10: end for
11: ψ ← ψ − lrψ · ▽ψLMSE

12: end while
Step 2: LIME-guided trigger generation

13: for (xi, yi)
M , ∀yi = yt do

14: // Select trigger position
15: ξKi ← Bern(p)
16: x

′K
i ← xi ⊙ ξKi //Pointwise product

17: wi ← Lasso(x
′K
i , fs(x

′K
i ), πxi

(x
′K
i ))

18: // Select trigger value
19: ei ← fe(xi)
20: end for
21: p← PositionMax( 1

M

∑M
i wi)

22: e← 1
M

∑M
i ei

23: t← e⊙ p
24: return t

VI. EXPERIMENTAL EVALUATION AND ANALYSIS

A. Experiment Setup

The learning rate, max epochs, and poisoning rate λ are set
to 0.0001, 100, and 0.1, respectively. The target class label is
set to 0 (the first device) across all cases. All experiments are
conducted on a server with an Intel Xeon E5-2650L v4 CPU
and 8 NVIDIA GeForce GTX 1080Ti GPU.

1) Victim Models: We evaluate three different model archi-
tectures on I/Q time domain inputs: a three-layer MLP (multi-
layer perceptron), a CNN following the structure of [8], and
a GRU (gated recurrent unit) model consisting of two GRU
layers. The GRU model uses an embedding vector length
of 256 and two dense layers to extract time-series features
for RF fingerprinting. Additionally, we test a CNN model on
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TABLE I
DATASET SUMMARY.

Dataset # of samples # of devices

ORACLE 128,000 16
CORES 135,776 58
WiSig 102,945 130
Ours 24,000 10

Fig. 3. LoRa transmitters
and a USRP receiver.

spectrogram inputs in the time-frequency domain, denoted as
S-CNN. This CNN has a similar structure to the previous one
but with modifications to the input layer to fit spectrograms.

2) Attack Models: The surrogate model employs a simple
1D CNN architecture taking the 2 × 256 I/Q samples as a
1 × 256 input with two channels. It contains two 1D convo-
lutional layers with 64 and 16 kernels of size 3, respectively.
The autoencoder is comprised of three convolutional layers as
the encoder and three corresponding deconvolutional layers as
the decoder.

3) Datasets: This paper employs three public datasets and
an original dataset collected by ourselves, incorporating both
Wi-Fi and LoRa protocols. Table I summarizes key informa-
tion about these datasets. The original ORACLE dataset [8] is
captured with 16 USRP X310 transmitters and a USRP B210
receiver. [38] is collected by UCLA CORES lab, consisting
of 163 consumer Wi-Fi cards arranged in a grid at the
Orbit Testbed [39]. For our work, we use 58 devices of this
dataset and denote it as CORES. Conducted by the same team
as the CORES, the WiSig dataset [40] is collected by 41
unspecified USRP receivers to capture wireless signals from
174 COTS Wi-Fi cards. The wireless devices communicate
with an 802.11a/g access point over channel 11. Besides, we
also aggregate the Wi-Fi datasets into a combined dataset for
additional analysis. To ensure that our analysis is manageable
and focused, we only select portions of the three extensive
datasets in this paper.

As shown in Fig. 3, our dataset is created using ten com-
mercial off-the-shelf LoRa transmitters (Pycom LoPy4), and
a USRP N210 software-defined radio platform as the receiver.
Due to differing sampling rates and preamble structures, the
original captured I/Q data for LoRa is 2× 1024 in size. This
is downsampled to 2 × 256 to conform to the input size
requirements of the models.

Testing across these diverse datasets and standards provides
comprehensive evaluation and insights into the attack’s impact
across various model types and input domains. The breadth of
experiments enables robust and thorough analysis.

B. Evaluation Metrics

1) Effectiveness: To analyze the effectiveness of our attack,
we employ the attack success rate (ASR) and benign accuracy
(BA) as the metrics. ASR is the ratio of successfully attacked
poison samples to the total number of poison samples, while
BA denotes the accuracy achieved on benign samples.

2) Stealthiness: Visual inspection is insufficient for evalu-
ating trigger stealthiness. Therefore, this study employs three
approaches to quantify it, namely (i) trigger size, (ii) isolation
forest [41], and (iii) STRIP [42]. (i), we use l-norms to
directly measure the size of triggers and the difference between
the l-norms of the input before and after adding triggers.
(ii) Isolation forest is an unsupervised anomaly detection
algorithm that identifies rare and dissimilar points instead of
constructing a model based on normal samples. The underlying
idea is that poisoned samples may be detected as outliers
due to their similarity in comparison to the highly diverse
background points. We keep default settings in this paper. (iii)
STRIP detects poisoned samples by measuring the predicted
entropy of samples generated by applying various inputs to
suspicious images. The entropy quantifies the randomness of
the predictions. Thus, attacks with higher entropy are more
difficult for STRIP to detect. The rationale behind this lies in
the fact that the presence of triggers leads to the incorporation
of these triggers in each sample. As a result, the predicted
value of the target class increases regardless of the input,
leading to lower entropy compared to normal samples.

3) Robustness: The last goal of the attack is to ensure its
robustness against defense methods. Pruning is one of the most
direct approaches to sanitize the victim model. Prior work [43]
reveals that the backdoor often relies on a specific group of
neurons for trigger recognition, rendering them unresponsive
to clean data. Fine-tuning the model on the clean dataset can
further mitigate the attacker’s capabilities. In this work, we use
a pruning rate of 50% as the first defense method. Then, we
apply Fine-Pruning [43] to retrain the victim model using the
available clean dataset provided to the defenders. We consider
two different learning rates: the first is the same as the learning
rate used during training, and the second is five times larger
to help the model escape local minima.

C. Backdoor Triggers

In addition to our proposed attack, we evaluate three other
backdoor triggers for comparison. Following [23], we use
Gaussian noise (GN) to mimic channel noise, which is a
reasonable trigger for RF fingerprinting tasks. We also im-
plement a BadNet trigger [15] by prominently perturbing the
first 8 I/Q samples. To better analyze our method’s efficacy,
we conduct tests using a trigger denoted as LG, which inserts
Gaussian noise into the region identified by LIME. Our attack
differs from LG in using target class statistics to craft a
representative trigger, rather than arbitrary noise. Comparisons
among these triggers will demonstrate the effectiveness of
our techniques for generating tailored and stealthy backdoor
attacks on RF fingerprinting. Fig. 4 shows examples of the
different trigger patterns in both the time and time-frequency
domains. The time-domain plot of BadNet appears smaller
than the rest of the data because the scale is dominated by the
large trigger values. This makes the normal data look smaller
in comparison.
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Clean GN BadNet LG Ours

Fig. 4. Examples of triggers in the time domain and time-frequency domain.
For better visualization, the time-frequency domain triggers are amplified by
a factor of 10.

D. Effectiveness Evaluation

Table II presents the classification accuracy achieved on
each dataset using standard training without attacks. MLP is
excluded for LoRa time domain fingerprinting as it failed to
reach eligible accuracy (only about 20%) on this data. This
may be attributed to the downsampling process, which could
have hindered the MLP model from learning the underlying
features needed for accurate classification. As illustrated in
Section IV-B1, the threat model should achieve comparable
BA on clean samples as standard training while maximizing
ASR on poisoned samples as much as possible. Maintaining
accuracy on clean data is crucial for avoiding detection.

TABLE II
ACCURACY WITH STANDARD TRAINING.

ORACLE WiSig CORES Combined LoRa

Raw I/Q
MLP 0.7179 0.9343 0.9897 0.8043 -
CNN 0.9389 0.9669 0.9952 0.9049 0.8050
GRU 0.8425 0.9140 0.9885 0.8770 0.7250

Spectrogram CNN 0.8794 0.9733 0.9998 0.9386 0.8155

Fig. 5. BA and ASR on the LoRa dataset. S-CNN refers to the spectrogram
input CNN model.

The effectiveness results of the various backdoor attacks
on LoRa fingerprinting are summarized in Fig. 5. All four
backdoor attacks lead to a degradation in BA, especially for
GRU and S-CNN (spectrogram CNN). Among these attacks,
the GN attack causes the most significant BA degradation,
while our method results in the least degradation. Regarding
the ASR, the attacks in the time domain prove to be effective
for both GRU and CNN models. However, when transforming

to the time-frequency domain, ASR decreases for all attacks.
Our proposed trigger retains the highest ASR in the time-
frequency domain while GN experiences the lowest ASR.
Overall, our proposed attack consistently achieves high ASR
with lower BA impact compared to other attacks, demonstrat-
ing its effectiveness across diverse models and input domains
in LoRa fingerprinting.

Table III shows that our attack is also effective for Wi-
Fi fingerprinting. On the ORACLE dataset, all three victim
models in the time domain experience a substantial decrease
in BA, while such decrease is not observed in the time-
frequency domain. Although universal BA drops on the time
domain ORACLE data, our approach substantially reduces the
extent of this decrease. Specifically, BadNet and GN lower BA
around 15% for MLP, while our attack only reduces BA by
6% without sacrificing ASR. Compared to BadNet and GN,
our trigger improves BA by about 3% and 2% for CNN and
GRU, respectively. On other datasets, our attack even improves
BA when using the MLP model. This may be because our
triggers contain target device features and emphasize impor-
tant regions, which assists MLP in categorizing inputs more
accurately. This additional information helps to compensate
for the limitations of MLP, which has slightly weaker feature
extraction than CNN and GRU. Notably, GRU exhibits strong
resilience against the GN attack for I/Q data, with substantially
lower ASR than other attacks across all datasets. This suggests
that the GRU model is intrinsically robust due to its ability
to learn long-term dependencies and resist noise. Even on
this defensive model, our proposed attack still outperforms
other attacks, attaining the highest BA on three datasets while
receiving two highest and two second-highest ASR.

In the time-frequency domain, the differences between
attacks are less significant compared to the time domain.
However, GN still performs poorer than others, particularly
in terms of BA. In contrast, our attack continues to exhibit
a high ASR while keeping the BA unaffected. Despite the
less pronounced discrepancies in the time-frequency domain,
our method proves to be effective, maintaining a high ASR
without compromising on the accuracy of benign samples even
after employing STFT to transform I/Q data into spectrograms.
Furthermore, the CNN model exhibits higher BA but lower
ASR in the time-frequency domain versus the time domain.
This may be because RF fingerprinting features become more
pronounced after STFT, enhancing the discrimination of clean
samples. Meanwhile, triggers could lose some abilities af-
ter transformation, reducing attack effectiveness in the time-
frequency domain. This is the rationale behind the adoption
of data preprocessing in many defense methods [44].

E. Stealthiness Evaluation

As shown in Fig. 4, most triggers are difficult to discern
through human inspection. The BadNet trigger is more visible
in the time domain. Meanwhile, the GN trigger is more appar-
ent in the time-frequency domain. In general, the stealthiness
of these triggers makes them challenging to detect without
close inspection. To provide further analysis, we employ l-
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TABLE III
BA, ASR, AND ASR AFTER PRUNING FOR BACKDOOR ATTACKS ON WI-FI FINGERPRINTING ACROSS VARIOUS DATASETS AND MODEL ARCHITECTURES.

THE BEST RESULT IN EACH CASE IS DENOTED IN BOLD, WHILE THE SECOND BEST IS UNDERLINED.

Dataset
Time-domain Time-frequency domain

Model MLP CNN GRU CNN
Metric BA ASR Prune BA ASR Prune BA ASR Prune BA ASR Prune

ORACLE

BadNet 0.5768 0.9993 0.8975 0.8434 0.9709 0.9661 0.7860 0.9692 0.6993 0.8765 0.9612 0.8916
GN 0.5645 0.9624 0.8452 0.8485 0.9214 0.8776 0.7918 0.1574 0.1049 0.8726 0.9060 0.8696
LG 0.6049 0.9937 0.8304 0.8734 0.9753 0.9707 0.8016 0.9776 0.5371 0.8751 0.9594 0.8992

Ours 0.6515 0.9951 0.8338 0.8762 0.9794 0.9761 0.8088 0.9713 0.9306 0.8732 0.9381 0.8727

WiSig

BadNet 0.9339 0.9973 0.9566 0.9484 0.9781 0.9720 0.9127 0.9638 0.9248 0.9709 0.9908 0.8798
GN 0.9343 0.9573 0.8293 0.9430 0.9313 0.8360 0.9151 0.7470 0.2013 0.9727 0.9932 0.8823
LG 0.9394 0.9953 0.9916 0.9438 0.9739 0.9751 0.9131 0.9629 0.9280 0.9713 0.9855 0.8633

Ours 0.9424 0.9942 0.9913 0.9473 0.9784 0.9619 0.9176 0.9782 0.9350 0.9787 0.9921 0.8808

CORES

BadNet 0.9905 0.9987 0.9989 0.9955 0.9992 0.9411 0.9615 0.9842 0.8945 0.9996 0.9987 0.9000
GN 0.9896 0.9333 0.8579 0.9876 0.9701 0.8169 0.9840 0.2894 0.1205 0.9861 0.9112 0.8958
LG 0.9919 0.9990 0.9994 0.9968 0.9971 0.9768 0.9853 0.9944 0.9885 0.9996 0.9948 0.8990

Ours 0.9926 1.000 1.000 0.9974 1.000 1.000 0.9865 0.9991 0.9988 0.9998 0.9997 0.8999

Combined

BadNet 0.7808 0.9971 0.8951 0.8909 0.9731 0.9662 0.8592 0.9624 0.8833 0.9338 0.9195 0.6924
GN 0.7841 0.9781 0.8846 0.8988 0.9539 0.8776 0.8798 0.6203 0.2213 0.9345 0.9163 0.6684
LG 0.8010 0.9972 0.9895 0.9079 0.9734 0.9643 0.8741 0.9799 0.8828 0.9249 0.9346 0.6988

Ours 0.8120 0.9984 0.9898 0.9083 0.9733 0.9666 0.8731 0.9777 0.8918 0.9342 0.9325 0.7739

norms and two anomaly detection methods for additional
quantitative insights into stealthiness.

Wi-Fi LoRa

!
!
N
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Fig. 6. || · ||p norms on different triggers. ∆l2t denotes the l2 norm changes
after adding triggers in the time domain, while ∆l2s denotes the changes after
STFT.

Fig. 6 presents the trigger size in terms of norms. The trends
are similar for both Wi-Fi and LoRa datasets. As expected,
the visible BadNet trigger exhibits the largest l2-norm and
l∞-norm. However, it is important to highlight that the GN
trigger demonstrates the most noticeable changes in l-norms
of the samples before and after trigger addition. In the time-
frequency domain, BadNet also causes smaller perturbations
than GN, consistent with previous visual analysis. In contrast,
our proposed triggers have the lowest l-norm values and
changes in both the time and time-frequency domains across
all datasets.

Table IV presents the isolation forest results. The ORACLE
and LoRa datasets have the highest anomaly rates. However,
even for the clean samples, the time domain ORACLE data
has a 16% anomaly rate, while the LoRa data has 44% and
28% anomaly rates in the time and time-frequency domains,

TABLE IV
THE RESULTS OF ISOLATION FOREST. HIGHER VALUES INDICATE MORE

POISONED SAMPLES REMOVED.

Time Domain Time-frequency Domain
BN GN LG Ours BN GN LG Ours

ORACLE 0.2969 0.3522 0.2254 0.1685 0.1424 0.1608 0.0607 0.0437
WiSig 0.0228 0.0279 0.0124 0.0102 0.1575 0.1758 0.0897 0.0839

CORES 0.0751 0.0615 0.0330 0.0205 0.1916 0.5252 0.0598 0.0939
Combined 0.0928 0.0921 0.0571 0.0383 0.2203 0.1367 0.0555 0.0567

LoRa 0.5789 0.7083 0.5733 0.4773 0.7250 0.9100 0.5343 0.4437

respectively. This explains the lower clean accuracy rates for
these datasets compared to others, as shown in Table II. In
general, our method consistently achieves the lowest anomaly
rate, approaching that of clean samples. Despite its smaller l2-
norm, the GN attack has a higher anomaly rate than BadNet
for time domain data. Interestingly, anomaly rates increase for
almost all datasets in the time-frequency domain. For instance,
on CORES, the anomaly rates for BadNet and GN increase
from about 7% in the time domain to 19% and 52% in the
time-frequency domain, respectively. This demonstrates data
processing can provide some defense against backdoor attacks
by making triggers more visible than in the original time do-
main. This observation aligns with frequency domain backdoor
attacks on images [30]. However, even after transforming to
the time-frequency domain, our trigger still results in samples
with the lowest anomaly rates.

Table VI presents the STRIP results. Overall, image-based
defenses seem less effective for RF fingerprint data. Although
the entropy difference between clean and poisoned samples is
not highly pronounced, STRIP successfully detected BadNet
attacks on ORACLE and Combined datasets in the time
domain, and GN attacks in the time-frequency domain. This
may be because STRIP is designed to detect backdoors in
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TABLE V
ASR OF DEFENDING BACKDOOR ATTACKS ON WI-FI FINGERPRINTING USING FINE-PRUNING WITH DIFFERENT LEARNING RATES.

Dataset Model MLP CNN GRU S-CNN
lr↓ BadNet GN LG Ours BadNet GN LG Ours BadNet GN LG Ours BadNet GN LG Ours

ORACLE 1× lr 0.8014 0.7581 0.9799 0.9594 0.9575 0.8116 0.9706 0.9682 0.6860 0.0778 0.7771 0.7994 0.8898 0.8838 0.8949 0.8956
5× lr 0.0708 0.1296 0.2651 0.3846 0.5074 0.4208 0.5977 0.6382 0.1227 0.0506 0.1509 0.1807 0.2256 0.1270 0.2774 0.2973

WiSig 1× lr 0.8122 0.7295 0.9481 0.9483 0.9522 0.9262 0.9789 0.9631 0.5339 0.0471 0.7376 0.7592 0.9699 0.9658 0.9760 0.9709
5× lr 0.0129 0.0609 0.1232 0.2059 0.0332 0.1764 0.3922 0.7068 0.0276 0.0107 0.1706 0.3183 0.0542 0.0875 0.1246 0.3989

CORES 1× lr 0.9170 0.8169 0.9996 1.0000 0.7340 0.7938 0.9977 1.0000 0.9784 0.0199 0.9820 0.9957 0.9012 0.8799 0.8854 0.9991
5× lr 0.0169 0.0170 0.1768 0.3426 0.0356 0.0287 0.1907 0.4706 0.0304 0.0171 0.1294 0.2694 0.0172 0.0189 0.0180 0.0757

Combined 1× lr 0.8532 0.7044 0.9531 0.9274 0.9580 0.8151 0.9782 0.9660 0.8793 0.1149 0.8412 0.9046 0.6797 0.6674 0.7049 0.7102
5× lr 0.0222 0.0719 0.2164 0.2709 0.1626 0.3624 0.4189 0.5126 0.0305 0.0221 0.2543 0.3902 0.1719 0.1144 0.2779 0.3597

TABLE VI
ENTROPY DIFFERENCE PRODUCED BY STRIP BETWEEN BENIGN AND
POISONED INPUTS. NEGATIVE VALUES IN BOLD INDICATE POTENTIAL

DETECTION.

Time Domain Time-frequency Domain
BN GN LG Ours BN GN LG Ours

ORACLE -0.0053 0.0027 0.0035 0.0045 0.0396 -0.0030 0.0039 0.0092
WiSig 0.0779 0.0200 0.1463 0.0942 0.1489 0.0500 0.1040 0.0817

CORES 0.1013 0.0070 0.1393 0.0882 0.2438 0.0542 0.0828 0.2985
Combined -0.0080 0.0021 0.0029 0.0031 0.0379 -0.0536 0.0042 0.0154

LoRa 0.0253 0.0190 0.0197 0.0279 0.0880 0.0353 0.0077 0.0963

image data. For 2D time-series data, STRIP fails to identify
invariant triggers after stacking inputs. Only BadNet triggers
with large l2-norm are detected in some cases. Similarly, after
transforming the time series data to spectrograms using STFT,
only GN triggers can be detected. It is noted that our triggers
still exhibit a notable increase in entropy, rendering them less
susceptible to detection. Based on the three detection methods,
our trigger demonstrates the best stealthiness, being not only
the smallest in scale but also the least likely to be detected by
the detection algorithms.

F. Robustness Evaluation

Attackers need to ensure the backdoored model remains
robust when victims deploy defense methods. We assume that
defenders have a small labeled clean dataset, 30% of the
training set in this paper, and can modify the victim model.
Table III shows the ASR after implementing pruning for
Wi-Fi fingerprinting. Except for defending GRU against GN
attacks, which show some effect, pruning does not significantly
reduce ASR in other cases. Fig. 7 presents the case for
LoRa fingerprinting. Pruning provides some defense for S-
CNN, substantially reducing ASR of BadNet and GN attacks.
However, it does not significantly help for other cases, which
might be attributed to the limited capacity offered by pruning.

Table V and Fig. 7 summarize retraining results with the
original and five times the learning rates. When using the
original learning rate, only the GN attack on GRU can be
effectively mitigated. However, other cases see limited effect.
In contrast, retraining with a larger learning rate drastically
reduces ASR for all attacks. In the case of the MLP model,
BadNet and GN attacks are almost entirely disabled, while
our attack maintains an ASR ranging from 20% to 38%.
This trend is consistent across other models. Furthermore,

GRUCNNS-CNN

Fig. 7. Pruning (red line) and Fine-Pruning with different learning rates on
LoRa fingerprinting.

for CORES data in the time-frequency domain, this defense
strategy proves highly effective, with even our attack method
retaining only 7% of the ASR. This is probably because
that CORES has more distinctive features, allowing retraining
to effectively forget trigger patterns. This also explains why
CORES consistently achieves the highest BA. In general, our
attack is challenging to be completely defended while BadNet
and GN are defeated.

VII. CONCLUSION

In this paper, we proposed the first effective backdoor attack
on RF fingerprinting systems. To address real-world scenarios,
we limited the attacker’s capabilities without manipulating
gradients or additional training components. To achieve this,
we employed an XAI method to guide trigger placement
and an autoencoder to extract features as trigger values.
Extensive experiments were conducted on three public WiFi
datasets and one self-collected LoRa dataset. We compared our
approach with three other attacks on various neural network
architectures. Additionally, we investigated both time-domain
I/Q samples and their time-frequency domain spectrograms.
Our proposed attack outperforms the benchmark approaches
in terms of effectiveness, stealthiness, and robustness of our
attack under different detection and defense methods.
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