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Abstract—Radio frequency fingerprint (RFF) has been
widely used in wireless transceivers as an additional physical
security layer. Most of the existing RFF extraction methods
rely on a large number of labeled signal samples for model
training. However, in real communication environments, it is
usually necessary to process timely received signal samples,
which are limited in quantity and are difficult to obtain labels,
the performance of most RFF methods is generally poor. To ef-
fectively extract features from the limited and unlabeled signal
samples, we propose an efficient RFF extraction method using
an asymmetric masked auto-encoder (AMAE). Specifically, we
design an asymmetric extractor-decoder, where the extractor
is used to learn the latent representation of the masked signals
and the decoder as light as a convolution layer reconstructs
the unmasked signal from the latent representation. Using
commercial off-the-shelf LoRa datasets and WiFi datasets, we
show that the proposed AMAE-based RFF extraction method
achieves the best performance compared with four advanced
unsupervised methods whether in the case of large data size
or small data size, or under line of sight (LOS) and non line of
sight (NLOS) channel scenarios. The codes of this paper can
be downloaded from Github: https://github.com/YZS666/An-
Efficient-RFF-Extraction-Method.

Index Terms—Radio frequency fingerprint (RFF), unsuper-
vised learning, asymmetric masked auto-encoder (AMAE).

I. INTRODUCTION

In wireless communications, due to the openness of
wireless channels, the large amount of mobile devices, and
the emergence of the Internet of Things (IoT), various
physical layer security problems arise, such as medium
access control (MAC) address attack, impersonation attack,
and so on [1]. The attacker may tamper with the identifi-
cation information such as password or MAC address, to
spoof wireless devices, which deceives the receiver and
threatens the security of the device identity. In addition,
the complex algorithm of traditional defensive mechanisms,
such as protocol analysis, brings an additional costs and
resource consumption [2]. Hence, to enhance communi-
cation security with a lightweight computing method, the
radio frequency fingerprint (RFF) technology based on the
unique characteristics of the electromagnetic wave emitted
by the transmitter is proposed [3]. Unique characteristics
such as in-phase and quadrature (I/Q) origin offset, fre-
quency error, synchronization correlation, etc. are difficult
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to tamper with and can be used for transmitter identification
[4].

However, traditional RFF extraction methods rely on
prior expert knowledge, which are usually only applicable
for situations with limited number of parameters [5]. In re-
cent years, the emergence of deep learning (DL) overcomes
the limitations. DL models can automatically extract high-
dimensional signal features in an end-to-end manner, which
is conducive to further classify signals [6], [7]. Wang et al.
[8] used a complex-valued neural network (CVNN) and
network compression to identify seven power amplifiers.
Shen et al. [9] used deep metric learning and the k-NN
algorithm to classify and detect 60 malicious commercial
LoRa devices. However, these DL methods require a large
number of labeled signal samples to train a robust extrac-
tor. When the labeled signal samples are insufficient, the
performance will sharply decrease. Fu et al. [10] proposed
a semi-supervised method, which used metric-adversarial
training to identify the automatic-dependent surveillance-
broadcast devices and WiFi devices.

In addition, unsupervised learning [11] such as auto-
encoder (AE) [12], masked auto-encoder (MAE) [13]-[15],
deep embedding clustering (DEC) [16], variational auto-
encoder (VAE) [17] and deep convolution generative ad-
versarial network (DCGAN) [18] is introduced into solving
the problem of missing labels. Xie et al. [12] preprocessed
the original signals using Hilbert Huang transform (HHT),
and use AE for RFF feature extraction. Huang et al. [14]
used the symmetric mask auto-encoder (SMAE) to learn
RFF features, using the residual network as the backbone
network. However, the symmetric decoder and residual
network which have high floating-point operations (FLOPs)
and large model sizes, requires excessive computing re-
sources and training time.

Considering that the actual communication system needs
to be able to quickly respond to the captured signal while
also hoping to reduce computational costs of the device,
a lightweight RFF extraction method based on lightweight
model driven by unlabeled signal samples is crucial for
practical applications. In this paper, we propose an effective
RFF extraction method based on an asymmetric masked
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auto-encoder (AMAE), which is a simple and scalable self-
supervised method. The main contributions of this paper
are summarized as follows:

« We propose an RFF extraction method that effectively
extract the RFF of emitters in an unsupervised way,
which does not rely on sufficient signal samples and
corresponding labels to driven the training process of
deep model.

« We innovatively design a decoder as light as just a
convolutional layer, that reconstructs the unmasked
signals from the latent representation of masked sig-
nals with a better performance than symmetric models
and brings a remarkable speedup in the training pro-
cess.

o The proposed AMAE-based RFF extraction method
is evaluated on commercial LoRa datasets and WiFi
datasets. The simulation results show that our AMAE-
based RFF extraction method achieves the best ro-
bustness and generalization while minimizing compu-
tational costs.

The remaining components of the paper are as follows.
Section II describes the signal model and problem formu-
lation. In Section III, we show the details of proposed
AMAE-based RFF extraction method. In Section IV, we
present the simulation results including comparision with
the other unsupervised method. Finally, we concludes the
paper and point out the future work in Section V.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

M emitters are activated for RFF extraction, and their
radio frequency signals are captured by a receiver respec-
tively. The received signals from the m-th emitter can be
expressed as

T (t) = h(t) * fm(s(t)) + n(?), (1)

where z,,(t), m € {0,1,---,M — 1}, is the received
signals, s(t) is the transmitted signals, f,,(-) is the effect
of specific damage caused by the hardware components for
signal modulation and up-conversion, h(t) stands for the
time-varying wireless channel impulse response, * denotes
the convolution operation, and n,,(t) is the additive white
Gaussian noise. We obtain discrete-time samples which is
defined as

xi[n] = xx(nTs), n€ {0,1,--- ,N — 1}, 2)
where N is the number of sampling points and 7 repre-
sents the sampling interval.

B. Problem Formulation

Let X and Z be the sample space and feature space,
respectively. RFF extractor can be regarded as a mapping
function f, € F : X — Z. The decoder can be regarded
as a mapping function f, € F : Z — X where X denotes
the reconstructed sample space. When a signal sample xy,
(xx € X) is the input, a feature vector z;, (zx € Z) of the
signal sample is output through f,, and the reconstructed
signal sample X;, (X, € X) is output through f;, where f;

and f, is optimized by minimizing the mean square error
(MSE) between the X, and xj, which can be written as

fT(Hlfei)ne}_ E(xk’ik)ND{Emse[xh fr(fe(xk))]}a (3)

where D is the training dataset and L,,s. is MSE loss.

III. THE PROPOSED RFF EXTRACTION METHOD

A. Masked Representation Learning

Latent Feature

M. Extractor . Decoder
Unmasked Representation
Patch ﬁ
Masked j
Patch > Bl —
Unmasked ﬁ
Patch u
Zr
____________ Reconstructed 1/Q
LMSE

Original Reconstructed

Patch Patch
Fig. 1. The framework of the proposed AMAE-based RFFE method.

According to the convolution property, masked represen-
tation learning applies a mask on the input data to restrict
the model from seeing only partial information of the input
data, and reconstruct a masked block by sensing the higher-
order feature representation of neighboring blocks. The
principle of AMAE is to learn the compressed represen-
tation of data, which uses a masking mechanism to force
the model to only focus on certain subsets of input data,
having specific applications. In this paper, we propose a
RFF extraction method based on AMAE, which is shown
in Fig. 1. Firstly, the signal samples are randomly masked
using a patch, which can be formulated as

mgn]=0or 1, ne{0,1,--- , N —1}, 4
. Zr]z[;ol mk[n]

y=1- - N ©)

X[n] = G(xx[n]) = my[n] © xk[n], (6)

where myj represents the mask block for k-th signal
sample, and the length of mask block is the same as
that of signal sample, v is the defined hyper-parameter
of mask ratio, ® indicates element-wise product, and Xy,
is the masked signals, where G refers to mask operation.
Secondly, the masked signals are compressed into a latent
feature representation zj using an extractor and then the
missing patch is reconstructed using a decoder. The MSE
loss are used to evaluate the effect of masked representation
learning and can be expressed as

N,—1
© (1 —my)|?,

Z [(xk — %)
)

where ||-|| represents the mold operation, N; represents the
number of training samples. Finally, the Adam optimizer
updates the extractor and decoder to minimize the above
MSE loss, which means that the parameters of the extractor
and decoder are updated at the same time.

ﬁmse (ka xk
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B. Asymmetric Autoencoder

1) RFF Extractor: The signal sample, composed of
in-phase (I) component and quadrature (Q) component,
can be regarded as a complex number. However, standard
convolutional neural networks cannot be directly opera-
tion for complex number. To fully exploit the potential
information of the signal sample, we present an effective
RFF extractor using complex valued convolutional layer,
which is shown in Fig. 2(a). Specifically, we use nine
complex valued convolutional blocks for extracting signal
information between I and Q component. The Leaky ReLU
[20] is used as activation function which makes the negative
end incompletely suppressed, so as to solve the problem of
gradient disappearance or gradient explosion. LazyLinear
[21] further compresses the dimension of latent feature
representation to 1,024.

Convolution X9 ’ Complex_Conv1D
>~ (644

Latent Feature
Representation

><1\‘.

Flatten L EN
N

LazyLinear (1024) X1

ConvID (16384,1) x1
N

Leaky ReLU (0.2) x 1 !

BatchNorm (128) > 1 i

View x1
e
Latent Feature

Representation Maxpool (2) X1 ’:

REFF signal x1

(a) RFF extractor (b) Asymmetric de-

coder

Fig. 2. The structure of the proposed RFF extractor and asymmetric
decoder.

2) Decoder: The design of the decoder can be very
flexible, as it can be symmetric or asymmetric with the
encoder [22]. To reduce the complexity caused by complex-
valued RFF extractor, we design an asymmetric decoder as
shown in Fig. 2(b). The decoder first converts the size and
shape of the latent feature representation into the size of the
input signal through a standard convolutional layer, and the
view function. This lightweight design makes the training
process more focused on the RFF extraction ability of the
extractor, while reducing the computational complexity and
having shorter training time.

C. Training Procedure

The full training procedure of the proposed AMAE-
based RFF extraction method is described in Algorithm
1.

IV. SIMULATION RESULTS AND ANALYSIS

A. Simulation Parameters

We use the LoRa dataset [9] and WiFi dataset [23] for
simulation, the detailed simulation parameters are shown in
Table. 1. Silhouette coefficient (SC) is utilized to indicate
the RFF extraction performance. The formula of the SC is
given as

Nie—1
1 < bk—a

SC:E

where ;. represents the number of samples in the test
dataset, aj represents the average distance between the
k-th sample and other samples within the cluster; by

Algorithm 1: Training procedure of proposed
AMAE-based RFF extraction method.

Input:
e D: Training dataset;
e Xj: Sample of masked signal;
o T': Number of training iterations;
o B: Number of batches in a training iteration;
e 0., 0, Parameters of the extractor and decoder,
respectively;
o lre, lrg: Learning rate of the extractor and decoder,
respectively;
Training procedure:
fort=11t T do

for b=1 10 B do
Sample a batch training dataset from D;

Forward propagation:
Get the masked signal samples of xy:

ik = G(Xk);
Get the latent feature representation:
Zx = fe( Xk)

Get the reconstructed signals:

X = fa(05"; 72c);

Calculate the loss: L5 (Xk, Xk )3
Backward propagation:

Updating the parameters of the extractor:
0" — Adam(Vg,, L, Ir.,0"");
Updating the parameters of the decoder:
03’“1 + Adam(Vy,, L, Zrd,Bfi’b);

end
end
TABLE I
SIMULATION PARAMETERS
Dataset LoRa (LOS) WiFi (LOS) LoRa (NLOS)
Categories 30 16 10
Training Samples 13,500 43,208 1,800
Validation Samples 1,500 4,801 200
Length of Each Sample 8,192 6,000 8,192
Signal Bandwidth 125 KHz 56 KHz 125 KHz
Oversampling Ratio 8 Ms/s 5 Ms/s 8 Ms/s
Pytorch 1.10.2
Python 3.6.13
Signal Format 1Q
Training vs. Validation 9:1
Optimizer Adam
Epochs 300
Batch Size 128
Learning Rate 0.001
Platform NVIDIA GeForce GTX 3090Ti GPU

Note: LOS represents line of sight, NLOS represents non line of sight.

represents the minimum average distance between the k-
th sample and samples from other clusters. The larger the
value, the better feature extraction performance. The pro-
posed AMAE-based RFF extraction method is compared
with four currently existing unsupervised methods [11],
including AE [12], DEC [16], VAE [17], DCGAN [18].
We discuss the RFF extraction performance of different
methods in different data sizes and channel scenarios.
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TABLE II
SC ON THE LORA AND WIFI DATASET UNDER Asymmetric / Symmetric DECODER

Methods LoRa (LOS) WiFi (LOS) LoRa (NLOS)
30-way 30-way (FS) 16-way 16-way (FS) 10-way 10-way (FS)
AE [12] 0.0035 / -0.01824  -0.0365 / -0.0499 0.1390 / -0.0206  0.0126 / -0.0065 0.0336 / 0.0189 -0.0201 / 0.0757
DEC [16] -0.0931 /-0.1100  -0.1159 / -0.0171 0.2790 / 0.0131 0.0332 / -0.0326 -0.0046 / 0.5348  -0.0897 / 0.5007
VAE [17] 0.2225 / 0.4676 0.1398 / 0.2674 0.2230 / 0.2653 0.2211 / 0.2458 -0.3438 /0.3332  0.3941 / 0.2748
DCGAN [18] -0.0280 / -0.1496  -0.0365 / 0.0100 -0.0042 / -0.0154  -0.0042 / -0.0076 0.0196 / 0.0368  -0.0537 / -0.0275

AMAE (proposed) 0.4053 / 0.1772 0.3401 / -0.0533 0.3688 / 0.0323 0.2460 / 0.0469 0.5543 / 0.2647 0.5428 / 0.2163

Note: FS refers to 20 samples per class.
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(a) AE [12] (b) DEC [16] (c) VAE [17]

(d) DCGAN [18]

(e) SMAE [14] (f) AMAE (proposed)

Fig. 3. Visualization of latent feature representation of different unsupervised methods on the LoRa dataset with sufficient data size, where AE,
DEC, DCGAN, VAE and AMAE are trained with the asymmetric decoder, while SMAE is trained with the symmetric decoder.

(a) AE [12]

(b) DEC [16] (c) VAE [17] (d) DCGAN [18] (e) SMAE [14] (f) AMAE (proposed)

Fig. 4. Visualization of latent feature representation of different unsupervised methods on the LoRa dataset with few-shot data size, where AE, DEC,
DCGAN, VAE and AMAE are trained with the asymmetric decoder, while SMAE is trained with the symmetric decoder.

B. Robustness of Proposed Method

Robustness is the ability of the model to stably extract
RFF features even when there is disturbance or distri-
bution bias in the input signal. Table II shows that the
proposed AMAE-based RFF extraction method has better
RFF extraction performance than other methods in both
LOS and NLOS scenarios when using extractors trained
with asymmetric decoders. Meanwhile, as the channel
scenario becomes more complex which means having a
lower signal-to-noise ratio, the RFF extraction ability of
other methods such as VAE decreases significantly, while
the proposed AMAE-based RFF extraction method still has
good RFF extraction ability.

C. Generality of Proposed Method

Analyzing the impact of data size on the performance
of the proposed method, the proposed method still has
better RFF extraction performance than the other four
comparison methods, especially in scenario with limited
data size. Specifically, in the LOS scenario of the LoRa
dataset, when the data size decreases, the performance of
the VAE method sharply decreases because VAE uses latent
layer distribution to reconstruct the original signal, and its
modeling error will increase as the data size decreases,
resulting in poorer RFF extraction performance compared
to the proposed AMAE based RFF extraction method when
the data size is limited.

D. Effectiveness of Asymmetric Decoder

It can be seen in Table II that in most cases in this paper,
the performance of extractors trained with asymmetric
decoder is better than that trained with symmetric decoder,
which indicates that the asymmetric decoder is more capa-
ble of training high-performance RFF extractors. Compared
with the VAE method trained with the symmetric decoder
in the LOS scenario of the LoRa dataset, the proposed
AMAE-based RFFE method has lower SC. However, asym-
metric VAE has poorer robustness and generalization. At
the same time, it requires to calculate an additional latent
layer distribution, and using a heavyweight decoder, which
requires more computational resources and longer training
time, which will be analyzed in the next sub-section.

E. RFF Feature Visualization

The dimensionality of the extracted features is reduced
to two dimensions by t-distributed stochastic neighbor
embedding (t-SNE) [24] for visualization, which is shown
in Fig. 3, Fig. 4. We show the visualization in the LOS
scenario of LoRa dataset, and the number of categories is
30. Obviously, the proposed method has better semantic
features in inter-class dispersion and intra-class compact-
ness, while the comparative methods roughly separates the
extracted features of different categories.

F. Computational Cost Analysis

To compare the computational costs of different algo-
rithms, as shown in Table. III, we chose FLOPs, training
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TABLE III
THE COMPUTATIONAL COST ANALYSIS OF PROPOSED METHOD AND COMPARATIVE METHODS USING Asymmetric / Symmetric DECODER

Methods FLOPs Size (MB) Training time (s/epoch)  Computational Memory (MB)
AE [12] 443 /71.2 8,513 /11,333
DEC [16] 71.6 / 110.5 11,327 7 12,529
VAE [17] 5,669,068,800 / 12,646,645,760 71,793 / 104,755 49.7 / 64.1 8,545/ 11,335
DCGAN [138] 127.4 /1 142.0 13,587 / 13,690
AMAE (Proposed) 41.1/ 63.8 8,501 / 11,327

Note: s/epoch refers to the time required to train an epoch.

time and computational memory as indicators. DEC re-
quires two-stage training, including AE and deep embedded
clustering, which requires multiple use of kmeans function
to calculate the sample center to update model. VAE
needs to calculate potential distribution, which needs to
calculate Kullback-Leibler (KL) divergence and MSE loss.
DCGAN needs to distinguish between true samples and
false samples, and needs to calculate lots of loss function.
The training process of proposed AMAE is same as that of
AE, without the need for additional calculations on latent
feature representations, and only uses MSE loss to update
model parameters. Besides, AE, DEC, VAE, and DCGAN
all needs to calculate the MSE loss for all parts of the
sample, but the proposed AMAE only needs to minimize
the unmasked part of the MSE loss used for training, which
have lower computational memory and can train a RFF
extractor in a shorter training time.

To further demonstrate the lightness of asymmetric de-
coder, we choose model size as indicator for our analysis.
All the comparison methods ensure that the backbone net-
work of the extractor is the same. Therefore, these methods
have the same model size in the extractor part, and the
decoder is divided into symmetric decoder and asymmetric
decoder, which is the key to different methods having
different model size. The asymmetric decoder composed
of only one convolutional layer, which has lower smaller
model size.

V. CONCLUSION

In this paper, we proposed an unsupervised RFF ex-
traction method based on AMAE. Specifically, the RFF
extractor is composed of nine complex-value convolutional
blocks and a full connected layer, and the decoder only
uses a real-value convolutional layer, which achieves a
better performance in a lightweight way. Moreover, the
proposed RFF extraction method was evaluated on LoRa
dataset [9] and WiFi dataset [23] and compared with
four latest unsupervised methods. We showed that the
proposed AMAE-based RFF extraction method has the
best robustness, generalization and lightweight. In addition,
feature visualization demonstrates the feature separation
of RFF extraction. In future work, we will use the RFF
extractor to solve downstream tasks, such as few-shot RFF
identification, and pay more attention to explore the bounds
on number of emitters.
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