
IEEE Wireless Communications • August 2024 1471536-1284/24/$25.00 © 2024 IEEE

Abstract
Advancements in artificial intelligence (AI), and 

the surge in diverse training data, have facilitated AI 
generated content (AIGC). Despite high efficiency, 
the inherent instability of AI models poses challeng-
es in creating user-specific content, especially when 
creating an avatar for a user. To address this issue, 
this article integrates wireless perception (WP) with 
AIGC and introduces WP-AIGC, a unified frame-
work that leverages a user skeleton obtained by 
WP to guide AIGC, thereby generating the avatar 
that aligns with the user’s actual posture. Specifical-
ly, WP-AIGC first employs a novel multi-scale per-
ception technology to sense posture in the physical 
world and construct the user skeleton. Then, the 
skeleton and the user’s requirements are conveyed 
to the AIGC, thereby guiding the creation of the 
avatar. Furthermore, WP-AIGC can adjust the com-
puting resources allocated to perception and AIGC 
based on user feedback, thereby optimizing the 
service. Experimental results verify the effectiveness 
of the service. With limited computing resources, 
WP-AIGC achieves optimal QoS of 3.75 when four 
links are involved in perception.

Introduction
The spectacular growth of various types of data, 
hardware upgrades, and the advancement of arti-
ficial intelligence (AI) models has led to the emer-
gence of AI generated content (AIGC), which can 
imitate human behavior to create digital content 
[1]. Specifically, AIGC refers to the AI-enabled 
methods (which are able to automatically pro-
duce, manipulate, and modify multi-modal dig-
ital content) and the corresponding generated 
content [2]. Due to the ability of automatically 
producing various kinds of high-quality digital 
content, the AIGC is gaining increasing attention, 
especially with the rapid integration of the physi-
cal world and virtual digital world.

At the function and application levels, AIGC 
enables autonomous content creation through 
AI [3], and boosts the development of various 
applications. Taking the virtual interactive game 
in Metaverse as an example, AIGC can generate 
avatars and create the corresponding scenarios 
according to users’ requirements, thereby con-
structing a complete virtual world for users to 
explore. During this process, the user’s needs, for 

example, prompts, can be transmitted to the AIGC 
model through various ways such as voice and text 
[4]. Yet, some information is challenging to con-
vey through words, such as the user’s posture in 
the physical world. Some feasible methods include 
utilizing cameras (such as Kinect — https://learn.
microsoft.com/en-us/windows/apps/design/devic-
es/kinect-for-windows) or on-body sensors (such 
as Sony MO-COPI — https://www.sony.net/Prod-
ucts/mocopi-dev/en) to capture the user’s posture, 
which can be combined with user’s prompts and 
then fed into an AIGC model to produce digital 
content. For instance, systems like Sony MO-COPI 
typically use high-quality sensor such as acceler-
ators and gyroscopes to gather movement data 
and construct the user’s posture. These systems 
are known for their reliable and impressive per-
formance. However, the specialized sensors can 
be costly, and wearing them for extended periods 
might be uncomfortable to users.

Besides the above mentioned methods, wireless 
perception is also a suitable method for providing 
AIGC perception support [5]. Compared to the 
aforementioned camera and sensor-based systems, 
wireless perception operates in a passive manner, 
without requiring users to wear or carry any devices, 
making it more user-friendly and easily acceptable. 
Additionally, it can be achieved by leveraging exist-
ing wireless communication signals without necessi-
tating any other specialized devices. Although it may 
be slightly inferior in terms of stability and accuracy, 
wireless perception offers lower costs and a wider 
range of applicability, hence presenting broad pros-
pects for future applications.

Building on the above discussion, we pres-
ent the first wireless perception based AIGC 
(WP-AIGC) framework, which seamlessly integrates 
wireless perception with AIGC, affording users with 
better digital content generation services. Taking 
the virtual game as an example, the proposed 
framework is illustrated in Fig. 1. As can be seen, 
in the physical world, the wireless signals are used 
to sense the user and predict the corresponding 
skeleton. Subsequently, the AIGC model generates 
the avatar according to the user’s prompts and the 
obtained skeleton. In WP-AIGC, the number of 
sensors affects the perception accuracy, that is, the 
similarity between the predicted skeleton and the 
user’s actual posture, while the number of infer-
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ence steps in AIGC model affects the quality of 
generated avatar. To balance the perception accu-
racy and content quality, WP-AIGC receives the 
user’s feedback on satisfaction with generated con-
tent and adjusts the computing resources at the 
server allocated to perception and AIGC accord-
ingly, thereby enhancing user experience. Overall, 
the main contributions of this article are as follows:
• We propose WP-AIGC, the fi rst framework inte-

grating wireless perception and AIGC for pro-
viding avatar generation services to users. The 
WP-AIGC includes wireless perception, AIGC 
based content generation, and a feedback 
interface, which receives the user’s feedback 
and optimizes computing resources at the edge 
server to enhance the user experience.

• We propose the multi-scale wireless perception, 
which refers to perform large-scale and small-
scale perception on users in sequence. Unlike 
existing works, the proposed method allows 
for perceptions at diff erent scales to assist each 
other by sharing the results, thereby enhancing 
the overall perceptual performance.

• Leveraging the collected wireless perception 
data and the AIGC model, we provide a prac-
tical and compelling use case to verify the fea-
sibility of the proposed framework, lighting the 
way of providing virtual service via the combi-
nation of wireless perception and AIGC.

AIGc And WIreless perceptIon technoloGIes
In this section, we provide a comprehensive review 
of AIGC and wireless perception technologies.

AIGc
The development of AIGC can be divided into 
three main stages. The initial stage (around 1950s 
to 1990s) is characterized by limited technolo-

gies, and only small-scale experiments are feasible, 
resulting in products such as the “Illiac Suite” [6]. 
In the second stage (around 1990s to 2010s), sig-
nifi cant advances in deep learning, the evolution 
of internet services, coupled with the accumu-
lation of user data pushed AIGC into real-world 
applications. We are now in the third stage, with 
the emergence of new and better AI models lead-
ing to the more powerful and intelligent AIGC, 
capable of producing a variety of digital content 
that imitates or even exceeds human creations.

Basic to advanced, AIGC functions include con-
tent repair, enhance, edit, and generate. Specifi cally, 
repair refers to fix missing content, such as using 
diff usion models [7] to recover missing pixels in an 
image. Besides that, AIGC can also enhance the 
image quality by increasing the contrast, improving 
pixel quality and clarity, as shown in Fig. 2. The con-
tent editing and generation are more advanced fea-
tures of AIGC. Concretely, editing means that AIGC 
is capable of conducting operations, such as modi-
fying and replacing, on the specifi ed content. Such 
a function can be used to handle sensitive content, 
such as replacing sensitive people or things without 
changing the overall layout and style of the image 
[8]. Content generation is the function of AIGC that 
distinguishes it from other AI models. Benefiting 
from a large amount of training data, algorithmic 
progresses and hardware upgrades, AIGC can now 
generate not only images, but also videos, codes, 
and manuscripts, which can greatly improve pro-
ductivity in creating digital content. According to the 
above described definition and functions, several 
features of AIGC can be summarized as follows.

Automatic: Given a specified task or order, 
AIGC can automatically produce digital content 
and present it in various forms, such as pictures 
and videos, which is more productive than tradi-

As can be seen, in the 
physical world, the 
wireless signals are 
used to sense the user 
and predict the cor-
responding skeleton. 
Subsequently, the AIGC 
model generates the 
avatar according to the 
user’s prompts and the 
obtained skeleton

FIGURE 1. Th e overall structure of WP-AIGC. During the operation process, the channel state information (CSI) extracted 
from wireless signal is fi rst processed, and then a pre-trained network is used to predict the skeleton based on the pro-
cessed CSI. Aft er that, the obtained skeleton and the user’s requirements (e.g., prompts) are passed to the AIGC model to 
generate the corresponding avatar, which is fi nally presented to the user via devices like virtual reality headset. Further-
more, users can provide feedback to WP-AIGC, which then optimizes the computing resources based on the feedback, 
thereby improving the overall quality of service (QoS).
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tional ways that often require human involvement, 
such as professionally generated content (PGC) 
and user generated content (UGC).

Interactive: Due to the massive training data 
and human-like way of thinking, AIGC can bet-
ter understand the user’s thoughts or instructions 
through prompts, making AIGC can interact with 
people in a more natural way than other AI mod-
els. Such a feature is expected to further improve 
the interaction experience between humans and 
machines.

Creativity: Different from the traditional AI 
model with limited output space in most cases (such 
as a classifier), AIGC has diverse answers to the 
same question, demonstrating its creative ability that 
can promote the diversifi cation of digital content.

Diversity: AIGC not only supports multi-modal 
input, but the generated digital content can also 
be presented in different forms, which is another 
important characteristics that distinguishes AIGC 
from other AI models. As a result, AIGC can assist 
in a variety of digital content production in diff er-
ent fi elds.

In Fig. 2, the defi nition, features and some appli-
cations of AIGC are presented. It is clear that AIGC 
would signifi cantly improve the content and infor-
mation production efficiency in the near future, 
thereby revolutionizing the traditional digital con-
tent production and consumption mode.

WIreless perceptIon
With the rise of ISAC technologies, using wireless 
signals for perception gains considerable traction. 
The essence of this approach is that environmen-
tal characteristics affect wireless signal propaga-
tion, thereby encoding the signal with information 
about its surroundings [9]. By applying signal 
processing methods, we can extract these char-
acteristics, so as to realize the perception of the 
physical environment. According to the principle, 
we can observe that wireless perception has two 
notable advantages:
• The first is the wide coverage. Theoretically, 

wireless perception can be applied anywhere 
covered by wireless signals. It should be noted 
that wireless signals can vary under different 

scenarios, which may result in diff erent percep-
tion abilities.

• The second is that users are not required to 
wear any device during the perception process, 
eliminating the discomfort associated with pro-
longed device wear and the concern for device 
recharging.
So far, researchers have conducted extensive 

studies on wireless perception, covering human 
detection, localization, and recognition, such as 
posture and gesture. For instance, user detection 
refers to the determination of the presence or 
absence of a user in a specifi c area by analyzing 
signal fl uctuations. The main steps often include 
signal denoising, feature extraction, and user 
detection. Another significant area of research 
is the reconstruction of user posture. In [5], the 
authors first extract the amplitude and phase of 
the CSI, captured from multiple sensing links into 
images, and then use the neural networks to pre-
dict the user skeleton. Similarly, in WiSPPN [10], 
the authors propose a fully convolutional network, 
which consists of an encoder, feature extractor, 
and decoder, to predict the pose adjacent matrix. 
This matrix can then be utilized to reconstruct the 
user’s posture. While these approaches to pos-
ture reconstruction can yield good results, they 
often overlook the impact of user’s location and 
posture on different perception links, lacking a 
specifi c processing for each one. Therefore, they 
struggle to fully extract and utilize the user-related 
information within the CSI measurement.

Based on foregoing discussion, particularly 
the role of AIGC, the principle and advantages 
of wireless perception, it is natural to consider 
using the output of wireless perception, that is, 
user skeleton, as the input of AIGC, thereby gen-
erating virtual avatars that are closely align with 
the user’s actual posture. Yet, integrating these 
two technologies poses important technical chal-
lenges, which are discussed next.

the proposed FrAMeWorK
This section presents the proposed WP-AIGC 
framework, including research challenges and 
implementation processes.

FIGURE 2. Th e defi nition, features, and the corresponding applications of AIGC.
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reseArch chAllenGes
Multi-Scale Wireless Perception: When guiding 
AIGC with wireless perception, the perception 
of users at various scales in the physical space is 
essential. For instance, in Fig. 1, the user’s loca-
tion in the physical world corresponds to the 
virtual character’s position in the boxing ring, 
while posture facilitates the virtual avatar con-
struction. Therefore, multi-scale perception is vital 
for WP-AIGC. This perception task necessitates 
obtaining the user’s location and posture from the 
same data set. Meanwhile, perception at differ-
ent scales needs to mutually enhance each other, 
which poses a considerable challenge.

Computing Resource Optimization: Balanc-
ing computing resources between perception and 
AIGC is critical. With limited resources, if less is 
allocated to perception, more can support AIGC, 
which fosters content generation but may weak-
en the perception. Conversely, allocating more 
to perception may leave AIGC with insufficient 
resources. This ensures accurate perception, but 
the generated content may not meet user needs 
due to resource constraints. In practice, users have 
diff erent preferences for perception and AIGC, and 
therefore effective resource balance depends on 
the user feedback.

Digital Content Generation: Generative dif-
fusion models off er a balance between tractability 
and flexibility, aiming to bridge the gap between 
simple, analytically-evaluable models and gener-
ative model that can capture intricate data struc-
tures. While diff usion models can effi  ciently model 
complex data distributions, their primary challenge 
lies in the generation process. Specifically, they 
necessitate an extended sequence of Markovian 
diffusion steps for producing samples. This multi-
step approach, intrinsic to diff usion models, impos-
es computational demands. As a consequence, 
time and resources required for sample generation 
may render diff usion models less optimal for appli-
cations where rapid response or limited computa-
tional power is paramount.

Content Quality Assessment: The evalua-
tion of content quality is not only directly related 
to the QoS of the framework, but also can guide 
the allocation of computing resources. The con-

tent quality evaluation should consider two major 
aspects. The fi rst is the accuracy of the generated 
content, which depends on the wireless percep-
tion accuracy and whether the user’s requirements 
are accurately transmitted to AIGC. The second 
aspect is the quality of content presentation, such 
as whether images are clear or videos are smooth. 
The evaluation of the first aspect depends more 
on user feedback, while the second aspect can be 
analyzed through numerical analysis.

the proposed Wp-AIGc
As illustrated in Fig. 3, the proposed framework 
comprises three parts. The fi rst is multi-scale per-
ception, which combines signal processing with 
machine learning to transform CSI into a user 
skeleton. The second part involves content gener-
ation, producing appropriate digital content based 
on user’s needs and the obtained skeleton. The 
third part adjusts the resource allocation based on 
user feedback, ensuring a balanced performance 
between perception and AIGC.

Multi-Scale Sensing: To achieve a desired per-
ception accuracy, we propose to perceive users in 
an order of large-scale to small-scale, as shown in 
Fig. 3. Specifi cally, during perception, a transmitter 
(Tx) sends wireless signals, and the receiver (Rx) uses 
multiple antennas to capture the signals and extract 
CSI. Note that, at the Rx, one antenna is used to 
receive the reference signal, while the rest form an 
array to capture the surveillance signals. Then, to 
eliminate the direct signals and static object induced 
reflections, which lack valuable information about 
the user, we apply the fast Fourier transform to the 
CSI, nullify the zero-frequency components, and 
then convert the processed CSI to the time domain 
via the Inverse fast Fourier transform.

Based on data converted back to the time 
domain, we complete multi-scale perception 
through the following steps:
1. The matrix pencil algorithm is used to estimate 

the angle of arrival (AoA) and time of fl ight (ToF) 
of the user induced refl ection. Using estimated 
parameters, the user’s location is calculated.

2. The reciprocal of distance between the user 
and perception link is used to weight the CSI 
amplitude and phase of each perception link.

FIGURE 3. Th e three main parts of the proposed WP-AIGC. Here, Tx is the wireless signal transmitter, and Rx is the receiver. Th e green dashed lines are the 
transmission links and the orange concentric circles represent the Fresnel zone formed by Tx and Rx4. Note that during the training, the human skeleton 
extracted from video frames is used as the ground truth to supervise the predicted skeleton, so as to complete the training. When providing services, the 
trained network can directly convert the obtained CSI into a skeleton without the camera, thus constituting a device-free solution.
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3. The weighted CSI amplitudes and phases are 
summed respectively to obtain the amplitude and 
phase vectors to complete large-scale perception.

4. Based on estimated user location and the Fres-
nel zone principle,1 the unbiased variance of 
each link is calculated, which indicates the fl uc-
tuation characteristics of the perception link.

5. The CSI amplitude and phase from each per-
ception link are weighted by the unbiased vari-
ance, then summed to produce another pair of 
amplitude and phase vectors, enabling small-
scale perception.

6. The amplitude and phase vectors obtained by 
steps 3 and 5 are summed, respectively, to 
obtain the aggregated amplitude and phase vec-
tors, thereby completing multi-scale perception.
The aggregated vectors derived here serve as 

the input for the network that converts signals into 
a user skeleton, which will be elaborated in the 
next section.

Signal to Skeleton Conversion: Using the 
obtained aggregated vector, a neural network, which 
contains an encoder and a decoder, is jointly trained 
to map the extracted amplitude and phase vectors to 
human skeleton images. Here, the encoder employs 
strided convolutional networks to extract information 
from aggregated vectors, and the decoder applies 
resize convolutions to reconstruct the user pose. Spe-
cifi cally, the encoder network consists of three layers 
of 3  3 convolutions with 2  2 strides, each fol-
lowed by a 1  1 convolutional layer with a stride of 
1  1. The rectifi ed linear unit activation functions are 
applied after each layer and a fully connected layer is 
utilized after the fi nal convolutional layer to convert 
images directly. The decoder network consists of the 
total of seven layers, where the first two layers use 
1  1 kernels with a stride of 1  1, and the subse-
quent 5 layers use 3  3 convolutions with a stride of 
1  1.

To ensure skeleton prediction, we synchronize 
CSI collection with video capture and extract skel-
eton from video stream for training supervision, as 
shown in Fig. 3. Assuming [V, A, P] is a synchronized 
data set, where V is the user pose extracted from 
the video, and A and P correspond to the aggregat-
ed amplitude and phase vectors, respectively. Then, 
the network takes A and P as the inputs to predict 
the user skeleton, which is optimized through the 
supervision of V. Here, the training objective is to 
minimize the diff erence between the predicted skel-
eton and the corresponding V, with the loss func-
tion defi ned as the average Euclidean distance error. 
The network is implemented using TensorFlow and 
trained over 64 epochs with a batch size of 32, with 
a learning rate of 0.001.

Digital Content Generation: After obtaining 
the user skeleton, the InstructPix2Pix [12], which 
can edit images based on user’s instructions, is 
utilized to generate corresponding virtual digital 
content. The construction of InstructPix2Pix con-
sists of two steps: generating training data and 
training the model.

In the first step, a fine-tuned GPT-32 is used 
to generate instructions and edited captions, 
and then StableDiffusion3 is combined with 
Prompt-to-Prompt4Nto generate paired images 
based on the paired instructions and captions.

In the second step, using the generated pairs 
of images and corresponding instructions, a con-
ditional diff usion model is trained to predict noise 

added to the given image and the text instruction.
During the training process, the available 

weights of the InstructPix2Pix model are initial-
ized with a pre-trained StableDiff usion checkpoint. 
Meanwhile, to enable the trained model to per-
form conditional or unconditional denoising with 
respect to either or both conditional inputs, 5 per-
cent of the sample images, 5 percent of the sample 
instructions, and 5 percent of the sample imag-
es with instructions are randomly set to an empty 
set. Based on such capability, two scale guidance 
parameters are further introduced to trade off  how 
strongly the generated samples correspond with 
the input image and how strongly they correspond 
with the edit instruction. After training, WP-AIGC 
utilizes this network to generate digital content, 
with the obtained user skeleton as the input and 
user’s service requirements as editing instructions.

Computing Resource Adjustment: In an ini-
tial stage of operation, WP-AIGC first derives an 
optimal resource allocation strategy to maximize 
QoS, based on a mapping relationship between 
computing resources and the TV, BRISQUE, and 
similarity.5 Here, the QoS is calculated as the sum 
of the inverse of both normalized Total Variation 
(TV) and Blind/Referenceless Image Spatial Quality 
Evaluator (BRISQUE), and the similarity. WP-AIGC 
then allocates computing resources according to 
this strategy to deliver services, that is, generate 
the corresponding avatar and display it to the user 
via devices like virtual reality headset. After that, 
WP-AIGC monitors user feedback and adjusts its 
resource allocation strategy accordingly.

For instance, in an interactive boxing game, 
if a user throws a punch with the right hand and 
the avatar fails to mimic this motion due to insuffi  -
cient perceptual accuracy, then the user can clear-
ly observe this discrepancy, being unsatisfactory, 
and report to the system. In response, WP-AIGC 

FIGURE 4. Comparison of experimental results of diff erent 
perception methods.
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Using the obtained 

aggregated vector, a 
neural network, which 

contains an encoder 
and a decoder, is joint-

ly trained to map the 
extracted amplitude 

and phase vectors to 
human skeleton images

1 The Fresnel zone consists 
of a series of concentric 
ellipses. When an object 
moves perpendicularly to the 
elliptical boundary, it passes 
through more ellipses, caus-
ing greater fl uctuations in the 
received signal. Conversely, 
when it moves parallel to the 
boundary, the signal fl uctua-
tions are smaller [11].

2 Fine-tuning GPT-3 involves 
two steps: generating edit 
instructions and modifi ed 
captions via a large language 
model and then fi ne-tuning 
GPT-3 with a dataset con-
taining input captions, edit 
instructions, and output 
captions.

3 StableDiff usion is a gener-
ative model that synthesizes 
high-resolution images effi  -
ciently by applying diff usion 
models within the latent 
space of autoencoders, 
enhanced by cross-attention 
layers, enabling diverse image 
creation tasks with reduced 
computational demands [13].

4 Prompt-to-Prompt [14] is 
a text-driven image editing 
framework that manipulates 
cross-attention layers to alter 
images based on textual 
prompt modifi cations without 
direct pixel space adjust-
ments.
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allocates more resources to perception (with the 
remaining resources dedicated to AIGC) to acti-
vate an additional perception link in the service, 
thereby enhancing the perception accuracy. Sim-
ilarly, if the feedback indicates inadequate quality 
of the virtual avatar, WP-AIGC reduces the number 
of perception links, freeing up more resources for 
AIGC to enhance the content generation.

Case Study
To validate WP-AIGC, we conducted tests in a 
practical scenario. Specifically, we build a 802.11ac 
protocol based wireless perception platform, which 
contains a signal transmitter and five receivers for 
signal transmission and CSI extraction. The extract-
ed CSI is processed offline on a server to complete 
multi-scale perception, user skeleton generation, 
and virtual avatar generation. The server is built 
on the standard Ubuntu 20.04 system, equipped 
with an AMD Ryzen Threadripper PRO 3975WX 
32-core processor and an NVIDIA RTX A5000 
Graphics Processing Unit (GPU).

To begin with, we compare the skeletons gen-
erated using our multi-scale perception technology 
with those produced without it, where skeletons 
are depicted by joint points. As illustrated in Fig. 
4, although the overall similarity between the skel-
etons generated by the two methods and the real 
human pose is close, there are discernible differ-
ences in details, highlighted by the red-marked 
areas in the images. The differences are particular-
ly noticeable when the arms are positioned close 
to the torso, as shown in the third row of images, 
where signals reflected by the torso and arms are 
difficult to distinguish. In such scenarios, the multi-
scale perception approach yields a more accurate 
skeleton. The reason is that the proposed method 
weights the links that carry more information about 
the user to play a greater role in the skeleton gen-
eration process, thereby improving the avatar con-
struction accuracy.

After the validation of multi-scale perception, 
we conduct an analysis on avatar generation, using 

boxing as an example. The results are presented in 
Fig. 5. From the results, we can see that Instruct-
Pix2Pix is capable of generating virtual avatars that 
mirror the user’s posture based on the obtained 
skeleton and user’s instruction, validating the effec-
tiveness of the proposed WP-AIGC. Besides that, it 
can be observed that, using the identical skeleton 
and instruction set, an increase in the number of 
inference steps leads to an improvement in the 
avatar quality. This improvement is evident in two 
key aspects: enhanced clarity, as indicated by the 
avatar’s facial features in the second row; and bet-
ter color matching, as demonstrated by the boxing 
gloves of the avatar presented in the fourth row. 
Therefore, when sufficient computing resources 
are allocated to AIGC, the quality of the generated 
avatar can be enhanced by appropriately increas-
ing the number of inference steps.

However, in practice, available computing 
resources are often limited. Here, based on the 
server used, processing CSI data from a single per-
ception link takes 0.097 seconds, generating a user 
skeleton takes 0.048 seconds, and performing a 
single inference step in AIGC takes approximately 
0.05 seconds. Therefore, given the above men-
tioned parameters, we analyze the relationship 
among the number of perception links, perception 
accuracy (measured by the similarity between the 
skeleton and the actual posture of the user), and 
avatar quality (measured by TV and BRISQUE), 
under a content refresh rate constraint of 1 Hz. 
The results are shown in Fig. 6.

The experimental results show that increasing 
the number of perception links improves the per-
ception accuracy, that is, the similarity. However, 
this reduces the computing resources left for AIGC, 
resulting in an increase in TV and BRISQUE, that 
is, a decrease in image quality. For example, as the 
number of perception links increases from 4 to 5, 
the similarity improves from 0.86 to 0.95. However, 
at the same time, the BRISQUE rises from 32.05 to 
46.30, and the TV increases from 79.32 to 149.3. 
Based on the relationships in Fig. 6, it can be cal-
culated that WP-AIGC attains its maximum QoS 
of 3.75 when four perception links are involved, 
which provides a reference for the initial allocation 
of resources. Given that user’s demands for percep-
tual accuracy and image quality may vary across 
different applications, such results show that it is cru-
cial to obtain user feedback and adjust computing 
resources in situations where resources are limited.

Future Directions

AIGC Model Selection Strategy
Nowadays, various models are available for digital 
content generation, each of them excels in differ-
ent domains and consumes different amounts of 
resource. Therefore, it is crucial to design a model 
selection mechanism that considers user require-
ments, resource availability, and other relevant 
factors. During the design, it is necessary to ana-
lyze the user’s preferences when historical data 
is available, thereby enabling a customized AIGC 
experience. At the same time, given the long gen-
eration time required by common AIGC models 
like StableDiffusion in digital content generation, 
the selection mechanism needs detailed consid-
eration of latency issues, as these directly impact 
the user experience.

FIGURE 5. The impact of the AIGC’s inference steps on the avatar generation. The image on 
the left is the input skeleton. The images on the right are the corresponding virtual avatars 
generated based on different seeds. As indicated by the details marked in green, more 
inference steps results in avatars with higher quality.

Wireless
perception results The content generated based on perception results and user requirement

number of inference steps
5 steps 10 steps 15 steps 20 steps 25 steps

Wireless
perception results The content generated based on perception results and user requirement

number of inference steps
5 steps 10 steps 15 steps 20 steps 25 steps

5 The TV characterizes the 
smoothness of an image, 
while BRISQUE quantifies the 
potential loss of naturalness in 
an image. 
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edGe coMputInG resource optIMIZAtIon

When deploying AIGC in mobile networks, opti-
mizing edge computing resources is essential. 
The resources here include computing resources 
required for digital content generation, storage 
capacity, and transmission resources consumed 
for content delivery, such as bandwidth and trans-
mission power [2]. The design process for the 
joint resource optimization model must ensure 
the quality of content and minimize latency, while 
also preventing overloading the AIGC model due 
to an excess of tasks. Additionally, the impact 
on other network services must be taken into 
account. One potential approach is to utilize 
deep reinforcement learning to allocate various 
network resources.

GuIdInG AIGc WIth other proMIsInG technIQues
Regarding the proposed WP-AIGC, further 
research can be conducted on how to expand the 
range that users can move around and the num-
ber of users, so as to improve the system’s practi-
cality. Besides, AIGC can be combined with other 
promising technologies, such as eye-tracking and 
brain-computer interfaces [15], to guide or even 
control AIGC in generating more complex digital 
content that better meets user’s requirements. 
However, signals such as human brain waves are 
weaker, and are also infl uenced by human emo-
tions and thoughts, making them contain more 
information. Therefore, when using brain waves 
to guide the AIGC, the diffi  culty lies in accurate-
ly inferring user needs based on raw signals and 
efficiently transmitting these needs to the AIGC 
model. Meanwhile, ensuring the security of both 
the original signal and the generated content is 
crucial, and blockchain can be introduced here to 
achieve these objectives.

conclusIons
In this article, we propose the WP-AIGC frame-
work, which first leverages the multi-scale wire-
less perception technology to sense users in the 
physical world and predict the corresponding 
skeleton. It then sends the obtained skeleton to 
the AIGC model, which generates the digital ava-
tar according to the user’s prompts. Unlike most 
existing works that take descriptive text as input, 
WP-AIGC takes perception results as input. This 
can more accurately convey the user’s posture 
in physical world to AIGC, thereby generating 
virtual avatars that are more closely aligned with 
the actual user. Furthermore, WP-AIGC can opti-
mize the allocation of computing resources based 
on user feedback, thereby enhancing the QoS. 
To our knowledge, WP-AIGC is the first frame-
work to combine wireless perception with AIGC 
technology to achieve digital content generation. 
In the future, we will investigate specific techni-
cal issues in the process of combining perception 
with AIGC, thereby further unleashing the pro-
ductivity of AIGC.
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FIGURE 6. Th e relationship among the number of percep-
tion links, similarity, TV, and BRISQUE.
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