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Abstract— In this paper, the problem of vehicle service mode
selection (sensing, communication, or both) and vehicle con-
nections within terahertz (THz) enabled joint sensing and
communications over vehicular networks is studied. The consid-
ered network consists of several service provider vehicles (SPVs)
that can provide: 1) only sensing service, 2) only communication
service, and 3) both services, sensing service request vehicles, and
communication service request vehicles. Based on the vehicle net-
work topology and their service accessibility, SPVs strategically
select service request vehicles to provide sensing, communication,
or both services. This problem is formulated as an optimization
problem, aiming to maximize the number of successfully served
vehicles by jointly determining the service mode of each SPV
and its associated vehicles. To solve this problem, we propose
a dynamic graph neural network (GNN) model that selects
appropriate graph information aggregation functions according
to the vehicle network topology, thus extracting more vehicle
network information compared to traditional static GNNs that
use fixed aggregation functions for different vehicle network
topologies. Using the extracted vehicle network information,
the service mode of each SPV and its served service request
vehicles will be determined. Simulation results show that the
proposed dynamic GNN based method can improve the number
of successfully served vehicles by up to 17% and 28% compared
to a GNN based algorithm with a fixed neural network model
and a conventional optimization algorithm without using GNNs.

Index Terms— Joint sensing and communication, dynamic
graph neural network, service requirements, dynamic vehicle
network topology.

I. INTRODUCTION

S INCE the joint design of wireless sensing and communica-
tions on a single hardware platform can improve spectral
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efficiency and reduce hardware complexity, it is considered as
a promising technology to support various vehicular applica-
tions (e.g., autonomous driving and vehicle platooning) [1],
[2], [3], [4]. The shortage of wireless spectrum in sub-6 GHz
band can substantially constraint the performance of the joint
sensing and communication services, especially for the vehic-
ular applications where the densely deployed moving vehicles
request frequent joint sensing and communication services.
This leads us to the usage of high frequency band spectrum,
especially to the usage of wider, extra high data rate tera-
hertz (THz) band. However, the sensing and communication
signals transmitted in THz bands experiences much higher
path loss and are highly vulnerable to blockages [5], [6], [7].
Hence, using THz band for vehicular networks to provide
high-resolution sensing and high data rate communication ser-
vices faces many challenges such as compensation for severe
path loss, reduction of link blockages, adaptation to dynamic
vehicle network topology, and meeting various sensing and
communication requirements.

Recently, several works in [8], [9], [10], [11], [12], [13],
and [14], have studied the problems of using radio frequency
for both communications and sensing over vehicular networks,
as summarized in Table I. The author in [8] and [9] optimized
time slot allocations for sensing and communication services.
The work in [10] designed a radar-assisted beamforming
scheme while considering the mobility of vehicles. The authors
in [11] achieved high-efficient communication and obstacle
detection for urban autonomous vehicles by considering the
channel sparsity characteristics of the joint communication
and sensing systems. In [12], the authors optimized the power
allocation and relay vehicle selection for sensing and com-
munication services to minimize the total power consumption
in multi-hop vehicle-to-vehicle (V2V) networks. The work
in [13] and [14] explored the tradeoff between sensing accu-
racy and communication throughput by optimizing the power
and time resources for sensing and communication. However,
the works in [8], [9], [10], [11], [12], [13], and [14] may
sacrifice the performance of sensing or communication service
to enhance the performance of another one, since both sensing
and communication services need to use limited wireless
spectrum.

To overcome this challenge, the use of higher frequency
bands (e.g., THz bands) with abundant bandwidth can be
a promising solution to achieve high-quality sensing and
communication services simultaneously. In [15], the authors
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TABLE I
RELATED WORK ON COMMUNICATIONS AND SENSING OVER VEHICULAR NETWORKS

TABLE II
RELATED WORK ON GNNS

achieved accurate target sensing and high-rate communi-
cation at the same time by designing the waveform for
joint sensing and communication system in low THz bands.
The work in [16] utilized the abundant bandwidth and
directional transmission of THz bands to simultaneously pro-
vide a millimeter-level environmental sensing capability and
extremely high data rates for virtual reality (VR) service. The
authors in [17] investigated an integrated scheduling method of
sensing, communication, and control for THz communications
in unmanned aerial vehicle (UAV) networks by considering
the THz channel particularities, reduction of link blockages,
and the various service requirements. In [18], the authors
designed a sensing integrated discrete Fourier transform spread
orthogonal frequency division multiplexing (SI-DFT-s-OFDM)
waveform for THz integrated sensing and communication
system to overcome the high free space path loss, reflection
loss, Doppler effects, and phase noise of THz bands. The work
in [19] considered the beam-squint and beam-split impacts
in THz massive MIMO systems and designed an integrated
sensing and communication scheme to improve the sensing
accuracy and transmission rates. The authors in [20] optimized
the design of hybrid precoder and radar receive beamforming
for millimeter wave (mmWave)/Terahertz (THz) multi-user
MIMO integrated sensing and communication (ISAC) systems.
However, the methods in [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], and [20] may not be able to capture
the dynamics of vehicle network topologies caused by vehicle
movements and dynamic wireless channels. In fact, vehicle
network topology information can improve both sensing and
communication services since it includes the connectivity

information of all vehicles, which is crucial for managing the
interference between THz sensing and communication links.

A number of existing works such as in [21], [22], [23],
[24], [25], [26], [27], [28], [29], [31], [32], and [30] stud-
ied the problem of using graph neural networks (GNNs) to
extract topological and geographical location information of
dynamic vehicle networks, as summarized in Table II. The
authors in [31] and [32] provided a comprehensive survey of
applying GNNs to extract representation vectors for mobile
networks, and introduced the corresponding challenges, prob-
lems, and solutions. The authors in [21] solved a vehicle
scheduling problem based on the topology features learned
and extracted by a GNN. The authors in [22] used a graph
convolutional network (GCN) to extract the vehicle topologi-
cal and geographical information, including vehicle position,
velocity, angle, and connection. In [23], a graph attention
network (GAT) that can learn the importance coefficients
of each neighboring vehicle was used to extract topological
information of moving vehicles. In [24], the authors used
a distributed GNN to handle an uncertain number of users
and the constantly changing connections between them. The
work in [25] used GNNs to capture the topological connec-
tion relations among multiple devices such as edge servers,
reconfigurable intelligent surfaces (RISs), and edge users.
The work in [26] and [27] developed a heterogeneous GNN
based solution to extract the topology related features for
different type of vehicles. The authors in [28] used GCNs to
manage the joint radar-communication resources allocation in
dynamic vehicle network topologies. In [29], the authors used
GNNs to capture the communication interference and channel
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conditions among UAVs and ground users. The authors in [30]
developed a scalable bipartite graph neural network (BGNN)
that can quickly adapt to different system size (e.g., the number
of antennas or users) so as to improve the efficiency of
multi-antenna beamforming in a high dynamic environment.
However, most of these works [21], [22], [23], [24], [25], [26],
[27], [28], [29], and [30] used a single predefined GNN model
to extract vehicle information from various network topologies
and hence they did not consider whether the defined GNN
model can process various vehicle network topologies thus
reducing the information extracted by GNNs.

The main contribution of this work is to design a novel
framework that enables service provider vehicles (SPVs) to
efficiently provide sensing and communication services to ser-
vice request vehicles using THz bands. Our key contributions
include:
• We consider a practical THz enabled joint sensing

and communication solution in vehicular networks, with
which the SPVs provide sensing and communication
services to the service request vehicles. To maximize the
portion of successfully served vehicles, the SPVs need
to choose their service mode to be providing sensing,
communication, or both services.

• An optimization problem that aims to maximize the
total number of successfully served vehicles by jointly
determining the service mode of each SPV and the service
request vehicles served by is introduced. The severe THz
path loss, the blockages of sensing/communication links,
as well as the environmental dynamics in regards to
vehicle mobility and service needs, are all considered in
this optimization problem.

• To solve this problem, we propose a dynamic GNN
that selects appropriate graph information aggregation
functions according to the vehicle network topology, thus
extracting more vehicle network information compared
to traditional static GNNs that use fixed aggregation
functions for different vehicle network topologies. The
aggregation function selection parameters and GNN
model parameters are jointly optimized in the training
process. Then, using the extracted vehicle network infor-
mation, the service mode selection and service request
vehicle connection of each SPV are determined.

Simulation results show that the proposed dynamic GNN
based method can improve the number of successfully served
vehicles by up to 17% and 28% compared to a GNN
based algorithm with a fixed neural network model and a
conventional optimization algorithm without using GNNs,
respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a vehicular network that consists of a set M
of M communication service request vehicles, a set N of
N sensing service request vehicles, and a set U of U SPVs,
as shown in Fig. 1. In this network, each SPV uses the same
range of THz bands to provide: 1) sensing services, 2) com-
munication services, or 3) both sensing and communication
services. We consider the vehicle network dynamics including

TABLE III
LIST OF MAIN NOTATION

vehicle movement, vehicle blockage, and unknown working
state (i.e., providing services and cannot provide services) of
each SPV. The movement of vehicles will change the vehicle
locations, thereby altering the vehicle connection and wireless
channels between vehicles. The vehicle blockage and unknown
working state of each SPV will change the accessibility of each
SPV, thereby increasing the dynamics of vehicle networks.
Next, to model the accessibility of the SPVs, we introduce the
vehicle blockage model, communication model, and sensing
model. The main notations are summarized in Table III.

A. Vehicle Blockage Model

The projection of a building or tree on the ground is
modeled as a quadrilateral. The transmission link between
SPV u and communication service request vehicle m will
be blocked when the line segment between SPV u and
communication service request vehicle m intersects with one
of diagonals of the quadrilateral. Specifically, if 1) SPV u and
communication service request vehicle m are on the different
sides of the diagonal, 2) the vertices of the diagonal are
on the different sides of the straight line passing through
SPV u and communication service request vehicle m, the
connection between SPV u and vehicle m will be blocked.
Here, a binary variable ρC

um that indicates whether a blockage
exists between SPV u and communication service request
vehicle m is expressed as

ρC
um

=

{
0, if a blockage exists between vehicle u and m ,

1, otherwise,

(1)
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Fig. 1. Illustration of the considered vehicular network model.

within which ρC
um = 1 means that the communication link

between SPV u and communication service request vehicle m
is line-of-sight (LoS); otherwise, we have ρC

um = 0. Similarly,
the link between SPV u and sensing service request vehicle
n will be blocked when the line segment between SPV u
and sensing service request vehicle n intersects with one
of diagonals of the quadrilateral. The binary variable ρS

un

that indicates whether a blockage exists between SPV u and
sensing service request vehicle n is expressed as

ρS
un

=

{
0, if a blockage exists between vehicle u and n,

1, otherwise,

(2)

within which ρS
un = 1 means that the sensing link between

SPV u and sensing service request vehicle n is LoS; otherwise,
we have ρS

un = 0. In (1) and (2), we have considered the
buildings and trees that may cause the blockage between
SPVs and service request vehicles. In future, we will study
how terrain affects the performance of joint sensing and
communications in vehicular networks based on satellite map.

B. Communication Model

We consider a practical vehicle network where each SPV
may not always function, such that each SPV has two states:
1) active state at which the SPV can provide services and
2) deactivated state at which the SPV cannot provide any
service. Let ωu be the state of an SPV with ωu = 1 indicating
that vehicle u can provide sensing, communication, or both
services; otherwise, we have ωu = 0. The probability of an
SPV in the active state is p.

The power transmitted by SPV u and received by commu-
nication service request vehicle m is

Sum =
ωuρC

umPuAT
umAR

mu

HB
umHF

um

, (3)

within which Pu is the transmit power of SPV u, HF
um =

(4πfdum)2

c2 is the free space path gain, HB
um = 1

r(dum) is the

molecular absorption path gain with r (dum) ≈ e−τ(f)dum

being the transmittance of the medium, τ (f) is the overall
absorption coefficient of the medium, dum is the distance
between SPV u and communication service request vehicle
m, c is the speed of light, and f is the operating frequency.
Since the molecular absorption loss HB

um and free space path
loss HF

um can cause the severe attenuation, higher antenna
gains are required in the THz bands so as to compensate
the severe path loss. The effective THz antenna gain can
be represented as a function of the horizontal and vertical
beamwidths. Let AT

um represent the effective antenna gain of
SPV u transmitting data to communication service request
vehicle m, which can be denoted by AT

um = 4π
(ι+1)Γϱu,ςu

for the main lobe and AT
um = 4πι

(ι+1)(4π−Γϱu,ςu ) for the
side lobes. Similarly, AR

mu represents the effective antenna
gain of communication service request vehicle m served by
SPV u, which can be denoted by AR

mu = 4π
(ι+1)Γϱm,ςm

for
the main lobe and AR

mu = 4πι
(ι+1)(4π−Γϱm,ςm ) for the side

lobes. Γϱu,ςu
= 4 arcsin

(
tan

(
ϱu

2

)
tan

(
ςu

2

))
, within which

ϱu and ςu represent, respectively, the horizontal and vertical
beamwidths of the antenna of SPV u. ι captures the side
lobe power to main lobe power ration. Here, if the horizontal
and vertical emission angles of SPV u towards its associated
vehicle m are within the horizontal and vertical beamwidths
of SPV u, the effective THz antenna gain of main lobe is
selected for SPV u; otherwise, the effective THz antenna gain
of side lobes is selected for SPV u.

The interference at communication service request vehicle
m served by SPV u is

ZC
um (α, β) =

∑
i∈U\{u}

∑
m′∈M

ωiρ
C
im′ρC

imαim′PiA
T
imAR

mi

HB
imHF

im

+
∑

i∈U\{u}

∑
n′∈N

ωiρ
S
in′ρ

C
imβin′PiA

T
imAR

mi

HB
imHF

im

+
∑

n′∈N

ωuρS
un′ρ

C
umβun′PuAT

umAR
mu

HB
umHF

um

, (4)

within which α = [α1, · · · , αM ] is communication ser-
vice vehicle connection indicator matrix with αm =
[α1m, · · · , αUm], and β = [β1, · · · , βN ] is sensing ser-
vice vehicle connection indicator matrix with βn =
[β1n, · · · , βUn]. αim = 1 represents that SPV i is selected
to serve communication service request vehicle m in the
communication mode; otherwise, αim = 0. Similarly, βin = 1
represents that SPV i is selected to detect sensing ser-
vice request vehicle n in the sensing mode; otherwise,
βin = 0. Note that the first two terms of (4) capture,
respectively, the interference caused by other communication
services, and by other sensing services. The third term is
the interference caused by the sensing transmitting antenna
of the current SPV since each SPV can simultaneously pro-
vide sensing and communication services. Here, we ignored
the sensing interference caused by communication service
provided by the same vehicle since we can optimize the
antenna array to eliminate the interference, as done in [33]
and [34].
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The signal-to-interference-plus-noise ratio (SINR) of com-
munication service request vehicle m served by SPV u is

λC
um (α, β) =

Sum

ZC
um (α, β) + εum

, (5)

where εum =
∑

i∈U\{u} ωiρ
C
imPiA

T
imAR

mi (1− r (dim)) /HF
im

+ ε0 with ε0 being the Johnson-Nyquist noise power. εum

is caused by thermal agitation of electrons and molecular
absorption.

Therefore, the data rate of the link between SPV u and the
communication service request vehicle m is

EC
um (α, β) = B log2

(
1 + λC

um (α, β)
)
, (6)

with B being the bandwidth.

C. Sensing Model

The interference at sensing service request vehicle n served
by SPV u is

ZS
un (α, β)

=
∑

i∈U\{u}

∑
m′∈M

ωiρ
C
im′ρS

iuαim′PiA
T
iuAR

ui

HB
iuHF

iu

+
∑

i∈U\{u}

∑
n′∈N

ωiρ
S
in′ρ

S
iuβin′PiA

T
iuAR

ui

HB
iuHF

iu

+
∑

i∈U\{u}

∑
m′∈M

ωiρ
C
im′ρS

inαim′PiA
T
inAR

nuκinc2

(4π)3f2d2
ind2

unHB
inHB

un

+
∑

i∈U\{u}

∑
n′∈N

ωiρ
S
in′ρ

S
inβin′PiA

T
inAR

nuκinc2

(4π)3f2d2
ind2

unHB
inHB

un

, (7)

within which κin is the radar cross section when SPV i
provides sensing service for vehicle n. In (7), the first term
indicates the interference caused by other SPVs providing
communication services with line-of-sight transmission links.
The second term indicates the interference caused by other
SPVs providing sensing services with line-of-sight transmis-
sion links. The third term indicates the interference caused by
other SPVs providing communication services via scattering
paths. The last term indicates the interference caused by
other SPVs providing sensing services via scattering paths.
From (4) and (7), we see that a sensing service request vehicle
is interfered by the scattering path interference caused by
other service request vehicles. However, the scattering path
interference will not interfere communication service request
vehicles since sensing services are more sensitive to scattered
sensing signals [8].

Given (7), the SINR of sensing service request vehicle n
served by SPV u is

λS
un (α, β) =

PuAT
unAR

nu(HS
un)−1(HB

un)−1

ZS
un (α, β) + εun

, (8)

within which HS
un = (4π)3f2d4

un

κunc2 is the spreading loss of the
sensing signal sent by SPV u, reflected by sensing service
request vehicle n, and then received by SPV u.

D. Successfully Served Vehicles

A successfully served vehicle must have its communication
or sensing service requirement satisfied. Let Qm be the
size of the information requested by communication service
request vehicle m, the transmission delay between commu-
nication service request vehicle m and its associated SPV
is Qm∑

u∈U αumEC
um(α,β) . Then, the set of successfully served

communication service request vehicles is given by

B={m| Qm∑
u∈U αumEC

um (α, β)
≤Dmax,∀m ∈M,∀u ∈ U},

(9)

within which Dmax is the maximum tolerable delay of the
communication service. The set of successfully served sensing
service request vehicles is

O = {n|
∑
u∈U

βunλS
un (α, β) ≥ λmin,∀n ∈ N ,∀u ∈ U},

(10)

within which λmin is the minimum SINR threshold required
by the sensing service.

E. Problem Formulation

In the defined system model, the goal is to optimize the
service mode (i.e., providing sensing, communication, or both
services) of each SPV and its associated vehicles to maximize
the number of successfully served vehicles, which is formu-
lated as optimization problem

max
α,β

|B|+ |O| (11)

s.t. (9)− (10), (11a)∑
u∈U

αum = 1, αum ∈ {0, 1},∀m ∈M,∀u ∈ U , (11b)∑
u∈U

βun = 1, βun ∈ {0, 1},∀n ∈ N ,∀u ∈ U , (11c)

within which |B| is the number of successfully served com-
munication service request vehicles, and |O| is the number of
successfully served sensing service request vehicles. In (11),
constraint (11b) requires a communication service request
vehicle to be served by only one SPV. Constraint (11c) requires
a sensing service request vehicle to be served by only one
SPV.

Problem (11) is challenging to solve for multiple reasons.
First, problem (11) is non-convex, which means applying
the traditional optimization algorithms to solve problem (11)
can incur significantly high complexity. Second, the objective
function, as well as the constraints in (11a) are all unknown
and change in some unknown pattern with the dynamic vehicle
network topology. The traditional optimization methods may
not be applied for dynamic vehicle network topologies caused
by vehicle movement, vehicle blockage, and unknown working
state (i.e., providing services and cannot provide services) of
each SPV. When the vehicle network topology changes, the
traditional optimization methods need to be executed again to
re-optimize service mode selection and service request vehicle
connection. Third, the vehicle dynamics caused by THz bands
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make the optimization problem (11) hard to solve. Compared
to other frequency bands such as mmWave, using THz bands
for providing both communication and sensing services in
vehicle networks requires the designed algorithm to be quickly
adapted to the vehicle network dynamics caused by blockages
of THz communications and sensing. In consequence, the
methods designed for mmWave based communications and
sensing may not be used for THz bands, whereas the proposed
method can also be used for mmWave bands. To solve this
problem, we use GNNs to extract not only geographical loca-
tion information (e.g., vehicle location) but also topological
information (e.g., vehicle connection and vehicle interference).
Compared to traditional optimization methods and other neural
network based algorithms that need to be retrained when vehi-
cle topologies change (e.g, adding new vehicles or removing
existing vehicles), a trained dynamic GNN model can be
used to extract the features of newly arrived vehicles without
retraining thus reducing training complexity.

III. DYNAMIC GNN BASED SOLUTION

In this section, a dynamic GNN based algorithm is intro-
duced to solve problem (11). Different from the static GNN
model [26] that uses fixed node aggregation functions to
extract vehicle network information for different vehicle net-
work topologies, the proposed dynamic GNN model can
select appropriate graph information aggregation functions
from eight types of node aggregation functions and three
types of layer aggregation functions. Hence, the proposed
dynamic GNN based algorithm can extract more vehicle
topology features and find a better service mode for each
SPV and its associated service request vehicles. Next, we first
introduce graph representation of the considered vehicular
networks. Then, we present the components of the GNN based
algorithm and the training process. Finally, we provide the
entire procedure of using the proposed algorithm to select
vehicle service mode and determine the service request vehicle
connection.

A. Representation of Vehicular Networks via Graphs

Here, we explain the use of graphs to represent the con-
sidered vehicular network. Each vehicle is modeled as a node
while each connected link (e.g., sensing link, communication
link, and interference link) between two vehicles is modeled as
an edge. Let G = (V, E) represent a graph with node features
f ∈ RP×|V|, within which V and E represent the node and
edge sets, respectively. The node set V = U ∪M∪N contains
three types of vehicles, |V| = U + M + N is the number of
vehicles, and P = U + 2(M + N) is the dimension of node
features. Specifically, the node features can be defined by f =
[f1, · · · , fV ] with fv = [ev1, . . . , evM ′ , gv1, . . . , gvV ]⊤ being
the node feature for vehicle v ∈ V , within which evm′ captures
the number of SPVs that fall within the LoS link between
vehicle v and m′ (as shown in Fig. 2), gvv′ =

(
HB

vv′H
F
vv′

)−1

captures the free space and molecular absorption path gain
between vehicle v and v′, and M′ = M∪ N is the set of
service request vehicles. Moreover, we assume that there is an
edge between SPV u and service request vehicle m′ when

Fig. 2. Visualization of node feature.

Fig. 3. Neighbor sampling process of vehicle v.

ωuρum′ = 1, which guarantees that SPV u is working in
an active state and the connected link between SPV u and
service request vehicle m′ is not blocked. Since the loca-
tions and working state of vehicles vary over time, the edge
set E will change dynamically in different vehicle network
topologies.

For each vehicle v ∈ V , we define three types of vehicles as
follows: 1) the first hop vehicles which can directly connect to
vehicle u are represented by S1 (v) = {v′ ∈ V| (v, v′) ∈ E}
with |S1(v)| being the number of vehicles in S1 (v), 2)the
second hop vehicles that connect to vehicle v through an
intermediate vehicle (i.e. a fist hop vehicle) are captured in
set S2 (v) = {S1 (v′) |v′ ∈ S1 (v)} with |S2(v)| being the
number of vehicles in S2 (v), and 3) the third hop vehicles
that connect to vehicle v through two intermediate vehicles
(i.e. the first and second hop vehicles) are captured in set
S3 (v) = {S1 (v′) |v′ ∈ S2 (v)} with |S3(v)| being the
number of vehicles in S3 (v). For the example shown in
Fig. 3, we have S1 (v1) = {v2, v3}, S2 (v1) = {v4, v5, v6},
and S3 (v1) = {v7, v8, v9, v10}. Here, we consider three hop
vehicles because the information of three hop vehicles can
represent the vehicle connection and topological information
of a given vehicle.

B. Components of the GNN Based Algorithm

As shown in Fig. 4, the components of the proposed
dynamic GNN based algorithm that is implemented by a
central controller are [35]: 1) input layer, 2) hidden layer I,
3) hidden layer II, 4) hidden layer III, 5) hidden layer IV, 6)
hidden layer V-VII, and 7) output layer. These components are
specified as follows:
• Input: The GNN input layer is connected to two paralleled

fully connected layers (FCLs). The input of the first fully
connected layer is h0

u = fu ∈ RP×1 and the input of the
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Fig. 4. Structure of the proposed dynamic GNN model.

second fully connected layer is h1
L ∈ RP×1, where

h1
L =

1
|S1 (u) |

∑
v′∈S1(u)

h0
v′ , (12)

with h0
v′ = fv′ ∈ RP×1.

• Hidden Layer I: Hidden layer I contains two paralleled
FCLs. It is in charge of the graph information extraction
for each vehicle u’s first hop vehicles, and outputs

h1
u = σ

([
w1h

0
u∥w2h

1
L

])
, (13)

within which σ (·) is the rectified linear unit function,
·∥· is the vector concatenation. w1 ∈ R(Ω0/2)×P and
w2 ∈ R(Ω0/2)×P are, respectively, the weight param-
eters of the two FCLs, with Ω0 being the size of the
graph information vector. Here, (12) and (13) are node
aggregation functions that extract the graph information
of vehicle u. We can also consider other types of node
aggregation functions [35] as shown in Fig. 5. Notice that,
(12) and (13) can only extract the graph information for
each vehicle once a time, while the graph information
h1

v′ of all vehicles is required for solving the joint
model selection and vehicle connection problem, the
implementation of (12) and (13) needs to repeated for
|S1(u)| times.

• Hidden Layer II: Hidden layer II also consists of two
paralleled FCLs, with the input of the first fully connected
layer being h1

u ∈ RΩ0×1 and the input of the second fully
connected layer being h2

L ∈ RΩ0×1, with

h2
L =

1
|S1 (u) |

∑
v′∈S1(u)

h1
v′ . (14)

The hidden layer II extracts the graph information for
each vehicle u’s second hop vehicles, and outputs

h2
u = σ

([
w3h

1
u∥w4h

2
L

])
, (15)

within which h2
u ∈ RΩ0×1, w3 ∈ R(Ω0/2)×Ω0 and

w4 ∈ R(Ω0/2)×Ω0 are the weight parameters of the two
FCLs, respectively. (14) and (15) also constitute a node
aggregation function that extracts the graph information
of vehicle u and its second hop neighbors, and need to
be implemented for |S1(u)| times to obtain the the graph
information h2

v′ of all sampled vehicles in S1 (u).
• Hidden Layer III: This layer contains two paralleled

FCLs, with the input of the first fully connected layer

being h2
u ∈ RΩ0×1 and the input of the second fully

connected layer being h3
L ∈ RΩ0×1, within which

h3
L =

1
|S1 (u) |

∑
v′∈S1(u)

h2
v′ . (16)

Hidden Layer III takes charge of the graph information
extraction of each vehicle u’s third hop vehicles, and
outputs

h3
u = σ

([
w5h

2
u∥w6h

3
L

])
, (17)

within which h3
u ∈ RΩ0×1, w5 ∈ R(Ω0/2)×Ω0 and

w6 ∈ R(Ω0/2)×Ω0 are the weight parameters of the two
FCLs, respectively. Similarly, (16) and (17) also consti-
tute a node aggregation function that extracts the graph
information of vehicle u and its third hop neighbors.

• Hidden Layer IV: This layer contains three paralleled
FCLs and it combines the output of hidden layers I-III
(i.e., h1

u, h2
u, and h3

u). The output of this layer is the
graph information vector h4

u ∈ Rλ0×1 of vehicle u, which
can be expressed as

h4
u = σ

([
w7h

1
u∥w8h

2
u∥w9h

3
u

])
, (18)

within which w7 ∈ R(Ω0/3)×Ω0 , w8 ∈ R(Ω0/3)×Ω0 , and
w9 ∈ R(Ω0/3)×Ω0 are the weight parameters for the out-
put of hidden layers I-III, respectively. Here, the output
h4

u constitutes the final graph information of vehicle u,
as it concatenates the graph information of the sampled
first, second, and third hop vehicles. We define (18) as
a layer aggregation function that is used to combine the
output of the node aggregation functions in (13), (15),
and (17) for vehicle u. We can also consider other types
of layer aggregation functions [35] as shown in Fig. 5.

• Hidden Layer V-VII: This layer consists of three cascaded
FCLs. It finds the relationship between the graph informa-
tion vector h4

u and the probability distribution of on-duty
service provide vehicle u in the corresponding sensing,
communication, or both service modes.

• Output: The output is the probability distribution of
vehicle u serving M + N service request vehicles in
the corresponding sensing or communication mode and it
is represneted by yu =

[
y1

u, · · · , yM+N+1
u

]
. It includes

the case that SPV u does not serve any service request
vehicles, and hence, we have yu ∈ R(M+N+1)×1. Based
on the probability distribution yu of each vehicle u,
the service mode selection and service request vehicle
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Fig. 5. Key explanations to the node and layer aggregation functions.

connection of each SPV is determined by selecting the
vehicle with the highest probability. Here, the designed
GNN model can be applied for a network in which M
and N are constant. If M or N in the network changes,
we only need to train hidden layers V-VII. This is because
hidden layers I-IV are used a fixed number of vehicles
to extract the feature of each vehicle.

C. Training of the Dynamic GNN Based Method

In this subsection, we first explain the process of finding
appropriate aggregation functions for the proposed dynamic
GNN. Then, the loss function is defined and the entire training
procedure is introduced. To find the appropriate node and
layer aggregation functions for different vehicle topologies,
we define a trainable vector θ ∈ R(KA1+A2)×1, which
represents the probabilities of selecting each node aggregation
function and layer aggregation function, within which A1 is
the number of the node aggregation functions that the GNN
can select, A2 is the number of the layer aggregation functions
that the GNN can select, and K is the number of node
aggregation functions used in the proposed dynamic GNN
based method. From the definition of θ, it is actually used to
select K node aggregation functions and one layer aggregation
function. We then use binary cross entropy (BCE) to capture
the difference between the predicted and actual service request
vehicle connection results, which is

J (w, θ) =
M+N+1∑

i=1

−zi
u log δ

(
yi

u (w, θ)
)

−
(
1− zi

u

)
log
(
1− δ

(
yi

u (w, θ)
))

, (19)

within which δ (·) is the sigmoid function, zi
u is the label of

vehicle u in class i which implies that vehicle u is selected to
serve service request vehicle i, and w is a vector of all GNN
parameters.

Given (19), we then show how to train the proposed
GNN model. The proposed dynamic GNN method is trained
with an iterative method that consists of two steps: 1) Joint
optimization of θ and w, and 2) optimization of w given θ.
Specifically, the two steps are elaborated as follows:

1) Joint Optimization of θ and w: Let Jtra (w, θ) and
Jval (w, θ) denote the training and the validation loss, respec-
tively. Then, the goal of optimizing θ and w is expressed as

min
θ

Jval (w∗(θ), θ) (20)

s.t. w∗(θ) = argminw Jtra(w, θ). (20a)

Due to the difficulty in finding a closed-form solution
for (20a), we solve (20) and (20a) in an iterative manner.
Firstly, we explain the process of optimizing θ based on
validation data. To reduce the computational overhead for
obtaining ∇θJval (w∗(θ), θ) in (20), we use a gradient based
approximation method [36] to approximate ∇θJval (w∗(θ), θ)
by adapting w using only a single training step, which is

∇θJval (w∗(θ), θ) ≈ ∇θJval (w − ξ∇wJtra(w, θ), θ) ,

(21)

within which ξ is the learning rate. Then, θ is updated by
using a standard gradient descent method, which is expressed
by

θ ← θ − η∇θJval (w − η∇wJtra(w, θ), θ) , (22)
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within which η is the learning rate. Then, we explain the
update process of w based on training data. Using a gradient
descent method, GNN parameters w is updated by

w ← w − ξ∇wJtra(w, θ). (23)

By iteratively updating (22) and (23) until convergence,
problem (20) can be solved and the well-trained θ∗ can be
obtained.

2) Optimization of w Given θ∗: Based on θ∗, the node
aggregation functions and layer aggregation function for the
GNN are determined. Then, the GNN parameters w is tuned
on the validation data to further improve the performance of
the proposed dynamic GNN based method. The update process
of w is

w ← w − µ∇wJval(w, θ∗), (24)

within which µ is the learning rate. By updating (24) until
convergence, the well-trained w∗ can be obtained. Finally,
based on the well-trained w∗, the optimal probabilistic service
mode selection and service vehicle connection strategy at each
SPV, yu, can be obtained. The training process of the dynamic
GNN is summarized in Algorithm 1.

D. Implementation of the Dyanamic GNN Based Method
Next, we analyze the implementation of the dynamic GNN

based algorithm. Within the considered vehicular network,
the proposed dynamic GNN is implemented on a controller,
and control the vehicles with 1) each vehicle reports its GPS
data to the central controller such that the central controller
can obtain the vehicle network topology, and 2) the central
controller sends decision results of service mode selection
and service request vehicle connection to each vehicle. To use
the dynamic GNN based algorithm to solve problem (11), the
central controller must first calculate the molecular absorption
path gain HB

um, free space path gain HF
um, effective antenna

gain AT
um of SPV u transmitting data to communication

service request vehicle m, and effective antenna gain AR
um

of communication service request vehicle m served by SPV
u. To calculate the path gains and effective antenna gains,
the central controller needs to know the geographical loca-
tion information of each vehicle and the antenna direction
of each pair of vehicles. The central controller can obtain
the geographical location information and antenna direction
information according to vehicles’ periodically reported GPS
data. Using the obtained geographical location information
and antenna direction information of each vehicle, we can
construct the vehicle network topology and then formulate a
graph to represent the vehicle network topology. Based on
this graph representation, a dynamic GNN will be deployed
to output the optimal service mode selection and service
request vehicle connection strategy of each SPV u (i.e., α
and β). After the central controller determining the service
mode selection and service request vehicle connection, it sends
the decision results to each vehicle. Since the size of GPS
data (i.e., latitude, longitude, and direction) and decision
results (i.e., service mode selection and service request vehicle
connection matrices) are relatively small, we can neglect the
communication overhead and delay used for GPS data and
decision results transmission.

Algorithm 1 Dynamic GNN Based Solution for Solving
Problem (11)

1: Input: Vehicle features f and connection relationships of
each vehicle v ∈ V;

2: Initialize: θ and w are initially randomly generated from
uniform distribution;

3: for u = 1→ U do
4: Sample the first hop vehicles S1 (u), second hop vehi-

cles S2 (u), and third hop vehicles S3 (u) for SPV u;

5: Aggregate the neighboring graph information from the
first hop vehicles S1 (u) of SPV u based on (12)-(13);

6: Aggregate the neighboring graph information from the
second hop vehicles S2 (u) of SPV u based on (14)-
(15);

7: Aggregate the neighboring graph information from the
second hop vehicles S3 (u) of SPV u based on (16)-
(17);

8: Combine the output of the node aggregation functions
in (13), (15), and (17) for SPV u based on (18);

9: Obtain the graph information h4
u of vehicle u and use

h4
u to predict the probability distribution yu;

10: Calculate loss J (w, θ) based on (19);
11: Update θ based on (22);
12: Update w based on (23);
13: end for
14: Obtain the optimal θ∗;
15: Optimize w based on θ∗ according to (24);
16: Determine the probability distribution yu of SPV u pro-

viding service for each service request vehicle in the
corresponding sensing, communication, or both service
modes according to θ∗ and w∗;

17: Output: The service mode selection and service request
vehicle connection (i.e., α and β) for each SPV u ∈ U .

E. Complexity Analysis

The complexity of the dynamic GNN based method depends
on training the dynamic GNN model (i.e., optimizing the
GNN parameters θ and w). The computational complex-
ity of training θ depends on the number A1 of available
node aggregation functions, the number A2 of available layer
aggregation functions, and the number K of required node
aggregation functions. Hence, the computational complexity
for training θ is O

(
A2A

K
1

)
. The computational complexity

of training w depends on the width, depth, and number
of parameters in the GNN model. These GNN parameters
are determined by the selected node and layer aggregation
functions. For example, if we use the node and layer aggre-
gation functions in Fig. 4, the complexity of training w is
O
((

Ω0|U|
∏K

k=1 |Sk(u)|
)∏I

i=1 Ci

)
, within which Ci is the

number of the neurons in layer i and I is the number of hidden
layers. Therefore, the computational complexity of iteratively
updating θ and w is

O

((
A2A

K
1

)(
Ω0|U|

K∏
k=1

|Sk(u)|

)
I∏

i=1

Ci

)
. (25)
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Notice that the proposed dynamic GNN based model will only
trained once during the offline training phase, such that this
training process will not introduce additional costs in terms
of time, energy, or computing resource during the service.
Compared to current works [22], [28], [37] that need to
train the entire neural network models whenever M and N
in the network change, our method only needs to retrain
three fully connected layers since the hidden layers V-VII are
three cascaded fully connected layers. In consequence, our
designed method has a lower training complexity compared
to the current methods [22], [28], [37]. To further enhance
the scalability of the designed GNN model, we can define
the number of neurons in hidden layer VII as the maximum
number of service request vehicles i.e., Mmax + Nmax. In this
case, our designed GNN method can also be applied to the
scenarios where the number of service request vehicles is less
than Mmax +Nmax. To use our GNN model for these scenarios,
we only need to deactivate (Mmax + Nmax−M −N) neurons
in hidden layer VII.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider an urban area (one street
block locates in Shanghai) with size 100 m × 100 m,
as shown in Fig. 6. Based on the GPS Shanghai Taxi dataset
in [38], we collect and construct 3, 500 vehicle topologies
within this region, with the time interval between two vehicle
topologies being 30 seconds. 1, 500 out of these 3, 500 vehicle
topologies are considered as the training dataset, 1, 000 of
the vehicle topologies are the testing dataset, and the rest
1, 000 vehicle topologies function as the validation dataset. For
each vehicle topology, it contains U data points with U being
the number of service provider vehicles (SPVs) in the vehicle
topology. Each data point consists of 1) graph information of
SPV u ∈ U , 2) graph information of neighboring vehicles
of SPV u ∈ U , and 3) the actual service request vehicle
connection result of SPV u ∈ U . The other parameters used
in simulations are listed in Table IV [39]. The results of
proposed dynamic GNN based algorithm are compared with
the ones of an exhaustive search algorithm (noted as baseline
a), a standard GNN algorithm with a fixed neural network
model (noted as baseline b), and an optimization solution
that directly uses the geographic location information (noted
as baseline c). Notice that the exhaustive search algorithm
can find the optimal solution for the considered problem.
Thus, the comparison between baseline a and the proposed
solution can testify the optimality of the results of the pro-
posed solution. Meanwhile, the comparison between baseline
b and the proposed solution demonstrates how dynamically
choosing different aggregation functions for different vehicle
network topologies can improve the performance of the joint
sensing and communication services in regards to successfully
served vehicles. Meanwhile, the comparison between baseline
c and the proposed solution can justify the benefits for using
GNNs to extract more comprehensive vehicle topological and
geographical information.

Fig. 7 shows how the number of successfully served service
request vehicles changes with the vehicle network topology.
From Fig. 7, we see that the proposed dynamic GNN based

TABLE IV
SYSTEM PARAMETERS

Fig. 6. Visualization of the GPS data.

Fig. 7. The number of successfully served vehicles as the vehicle topology
varies (U = 10, M = 2, and N = 2).

method improves the number of successfully served vehicles
by up to 17% compared to the standard fixed GNN method
(i.e. baselines b). This is due to the fact that the proposed
method can learn more graph information of vehicle network
topologies by choosing appropriate aggregation functions for
different vehicle network topologies. Meanwhile, the proposed
method also yields a 28% higher number of successfully
served vehicles compared to the optimization method in base-
line c, as it uses a GNN model to extract both vehicle location
and topology information. Fig. 7 also shows that the proposed
dynamic GNN based method can achieve 91% of the overall
optimal number of successfully served vehicles achieved by
baseline a, which justifies that the proposed method is capable
of quickly adapting to changes on the vehicle topologies.

Fig. 8 shows how the number of successfully served vehi-
cles changes with the number of service request vehicles.
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Fig. 8. The number of successfully served vehicles as the number of vehicles
varies (U = 10, M and N vary from 1 to 5).

Fig. 9. The number of successfully served vehicles as the number of SPVs
varies (M = 2, N = 2, and U varied from 6 to 10).

In particular, it shows that the number of successfully served
vehicles increase with the number of service request vehicles,
as the availability of sensing and communication services also
increases. Fig. 8 shows that, compared to baselines b and c,
the proposed method can yield, respectively, up to 19.79%
and 32.84% higher number of successful served vehicles.
These gains stem from the fact that the adopted dynamic
GNN model can extract more vehicle network information
than the fixed neural network model, and can inclusively
extract the connectivity information of all vehicles. Fig. 8 also
shows that the difference between the number of successfully
served vehicles results from proposed method and one results
from baseline a is less than 8.85%. This further justifies that
the proposed methods can adapt to various vehicle network
topologies within which the number of service request vehicles
changes.

Fig. 9 compares the adaptability of all considered algorithms
under different vehicle network topologies with different num-
ber of SPVs. In particular, it shows the number of successfully
served vehicles increases with the number of SPVs. This is
because more SPVs can provide more connection options for
service request vehicles, thereby increasing the probability
of meeting sensing and communication service requirements.
From Fig. 9, we also see that the proposed method yields
up to 17.35% and 29.1% gains in terms of the number of
successfully served vehicles compared to baselines b and c.

Fig. 10. The training loss as the number of training epochs varies.

The 17.35% gain stems from the fact that the proposed method
can capture the dynamics of vehicle network topologies caused
by vehicle movements and dynamic wireless channels. The
29.1% gain is because the proposed GNN based method
considers topological information of all vehicles to manage
the interference among sensing and communication links.

Fig. 10 shows the convergence of the proposed dynamic
GNN based method under different learning rates. From
Fig. 10, we observe that, as the number of training epochs
increases, the training loss of the proposed method decreases
first and, then remains stable. This demonstrates that the
proposed dynamic GNN based method can reach convergence
after the sufficient training epochs (approximately 500 training
epochs). Fig. 10 also shows that the proposed method with
learning rate being µ = 0.09 can reduce training loss by
16.19% and 23.55%, compared to the proposed method with
learning rate being µ = 0.05 and µ = 0.03, respectively. This
is due to the fact that the proposed dynamic GNN model with
learning rate being µ = 0.09 can find a better set of weights,
and hence, better service mode and service vehicle connection
strategy can be determined for each SPV.

Fig. 11 shows the selected GNN models for differ-
ent vehicle network topologies. From Fig. 11(a), we see
that, a simple node aggregation function (e.g., SAGE_SUM
and SAGE_MEAN) and layer aggregation function (e.g.,
CONCAT) are selected in a sparse vehicular network with
5 SPVs, 2 communication service request vehicles, and 2 sens-
ing service request vehicles. This is due to the fact that a
sparse vehicle network topology only contains limited vehicle
topological information. Hence, using complex aggregation
functions to extract the topological information of these vehi-
cles may lead to overfitting. From Fig. 11(b), we see that,
attention mechanism based node aggregation functions (e.g.,
GAT_COS) are selected in a dense vehicular network that
consists of 10 SPVs, 5 communication service request vehi-
cles, and 5 sensing service request vehicles. This is because
attention mechanism based node aggregation functions can
measure the importance of different neighborhood vehi-
cles, and hence, accurately extract the graph information of
vehicles.

Fig. 12 shows how the number of successfully served
vehicles changes as the maximum tolerable delay of the
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Fig. 11. The selected GNN models for different vehicle network topologies.

Fig. 12. The number of successfully served vehicles as the maximum
tolerable delay Dmax varies (U = 10, M = 4, and N = 4).

communication service varies. From Fig. 12, we see that, the
number of successfully served vehicles increases as the maxi-
mum tolerable delay of the communication service increases.
This is due to the fact that, as the maximum tolerable delay
increases, one SPV can provide more services that meet
the requirement of communication service to service request
vehicles. Fig. 12 shows that the proposed method can achieve
up to 17.64% and 35.03% gains in terms of the number
of successful served vehicles compared to baselines b and
c, respectively. The 17.64% gain stems from the fact that
the proposed method uses different aggregation functions to
extract vehicle network information for different vehicle net-
work topologies, and hence, more vehicle network information
can be extracted. The 35.03% gain is because the proposed
method optimizes the service mode selection and service
request vehicle connection by taking the topology related fea-
tures into consideration. Fig. 12 also shows that the proposed
dynamic GNN based method can reach the similar perfor-
mance as baseline a, which verifies that the proposed method
can find a near optimal solution using the dynamic GNN
model.

Fig. 13. Visualization of service mode selection and service request vehicle
connection obtained by the proposed dynamic GNN based method.

Fig. 13 shows an example of using our proposed method
to determine the mode of SPVs and service request vehicle
connection. In this figure, SPV u7 is in deactivated state
and other SPVs are in active state. From Fig. 13, we see
that the proposed dynamic GNN based method is not only
based on vehicle geographical location but also based on
sensing and communication interference to determine the
service request vehicle connection. For example, in Fig. 13,
sensing service request vehicle n1 does not select SPV u6 to
establish a sensing link, although SPV u6 is the closest SPV
to sensing service request vehicle n1. The reason is that the
establishment of sensing link between vehicle n1 and vehicle
u6 will cause interference to the communication link between
vehicle u5 and vehicle m1. From this figure, we can also see
that if the communication service request vehicle and sensing
service request vehicle are located in different directions of
the SPV, the SPV prefers to provide both communication
and sensing services to them. For example, SPV u5 provides
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Fig. 14. The number of successfully served vehicles as the number of hops
of neighboring vehicles varies (U = 10, M = 2, and N = 2).

Fig. 15. The number of successfully served vehicles changes with the vehicle
network topology (U = 10, M = 2, and N = 2).

communication service to vehicles m1 and sensing service to
vehicle n1 simultaneously.

Fig. 14 shows how the number of successfully served
vehicles changes as the number of hops of neighboring
vehicles varies. From this figure, we see that, the number
of successfully served vehicles improves 18.25% when the
number of hops of neighboring vehicles increases from 2 to 3,
but only increases 2% when the number of hops of neighboring
vehicles increases from 3 to 4. This is due to the fact that
the information of three hop vehicles can represent the key
geographical information and topological information of a
vehicle.

Fig. 15 shows how the number of successfully served
vehicles changes as the vehicle network topology varies. In this
figure, we compare the proposed method with a traditional
optimization method to solve problem (11). In particular,
to enable the use of an optimization method to solve prob-
lem (11), we introduce two auxiliary variables (i.e., x and
φ) and reformulate the objective function in problem (11)
as maxα,β,x,φ

∑
u∈U

∑
m∈M xum +

∑
u∈U

∑
n∈N φun,

within which x = [x1, · · · , xM ] with xm = [x1m, · · · , xUm]
and φ = [φ1, · · · , φN ] with φn = [φ1n, · · · , φUn]. xum =
1 represents that communication service request vehicle m is
successfully served by SPV u; otherwise, xum = 0. Similarly,
φun = 1 represents that sensing service request vehicle
n is successfully served by SPV u; otherwise, φun = 0.

Fig. 16. The number of successfully served vehicles as the minimum SINR
threshold λmin varies (U = 10, M = 4, and N = 4).

The constraints in (11a) are rewritten as xumEC
um(α, β) ≥

αum
Qm

Dmax
,∀m ∈ M,∀u ∈ U and φunλS

un(α, β) ≥
βunλmin,∀n ∈ N ,∀u ∈ U . Then, the problem (11) can
be solved by Matlab Optimization Toolbox [40]. Fig. 15
shows that the proposed scheme can improve the number of
successfully served vehicles by up to 3.33% compared to an
optimization method. This is because the proposed scheme
uses GNNs to capture the geographical location information
and topological information of each vehicle, thus finding better
service mode selection and service request vehicle connection
strategy.

Fig. 16 shows how the number of successfully served vehi-
cles changes as the minimum SINR threshold of the sensing
service varies. From Fig. 16, we see that, as the minimum
SINR threshold of the sensing service increases, the number
of successfully served vehicles decreases since the number of
service request vehicles that meet the requirement of sensing
service decreases. Fig. 16 shows that the proposed method
can achieve up to 18.71% and 36.55% gains in terms of the
number of successful served vehicles compared to baselines
b and c, respectively. The 18.71% gain stems from the fact
that the proposed method can dynamically select different
nodes and layer aggregation functions for different vehicle
network topologies, thus improving the performance of the
joint sensing and communication services. The 36.55% gain
stems from the fact the proposed method uses a dynamic
GNN to extract more comprehensive vehicle topological and
geographical information.

Fig. 17 is a visualization of using the proposed GNN model
for extracting graph information vectors for different vehicle
network topologies. In this figure, the high-dimensional graph
information vector h4

u of each SPV u is mapped into a
two-dimensional space by TSNE visualization method [41].
The points represent the graph information vectors of SPVs
and the colors of points represent the classes of SPVs.
In Fig. 17, the points with high similarity are close to each
other. For example, as shown in Fig. 17(c), the points of
the same class are clustered. This is because the SPVs that
trend to provide sensing or communication service have the
similar geographical and topological features, and hence, the
extracted graph information vectors of them are similar. From
Fig. 17(a)-17(c), we see that, as the the number of training
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Fig. 17. TSNE visualization of graph information vectors for different vehicle network topologies.

epochs increases, the similarity relationship among different
points is more clear. This is due to the fact that the well-trained
GNN model can accurately extract the graph information of
each SPVs, and learn the relationship between graph infor-
mation vector and classification categories. From Fig. 17(c),
Fig. 17(f), and Fig. 17(i), we also see that, the extracted graph
information vector can accurately correspond to the class
it belongs to for three different vehicle network topologies.
This is because the proposed method uses a dynamic GNN
model that can select appropriate aggregation functions for
different vehicle network topologies, thus obtaining accurate
graph information at different vehicle network topologies.

V. CONCLUSION

In this paper, we have studied the problem of THz enabled
joint communication and sensing in vehicular networks. Using
this network, the vehicles’ dynamic needs are served by the
SPVs, which have both sensing and communication service
modes. The design problem is to determine the service mode
of each SPV and select the service request vehicles served by
each SPV, so as to maximize the number of successfully served
vehicles. We have cast this problem into an optimization
setting which captures the multi-service mode, service vehicle
connection blockage, THz channel particularities, and vehicle
network topology dynamics. To solve this problem, we have
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designed a dynamic GNN based method which selects appro-
priate graph information aggregation functions for different
vehicle network topologies, and thus extracts more vehicle
network information, such that it improves service coverage
at each SPV. Simulation results verified that the proposed
dynamic GNN based method can achieve significant gains in
terms of successful services, and adaptability, compared to the
standard GNN based solution.
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