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Abstract— Reconfigurable Intelligent Surface (RIS) is an
emerging technology that can improve the spectrum and energy
efficiency of next-generation wireless networks. However, attain-
ing accurate channel state information (CSI) for the cascaded RIS
channel is particularly challenging. Imperfect CSI is a major
bottleneck to achieving the spectral efficiency benefit of RIS-
assisted networks. Rate splitting (RS), a promising multiple access
technology, has been shown to be able to achieve an improved
spectrum efficiency and be robust to channel uncertainties.
This paper investigates the interplay between RIS and RS by
considering a RIS-assisted RS beamforming problem. Active
beamforming at the base station (BS) and passive beamforming
at the RIS are jointly considered to maximize the minimum user
rate under both the perfect CSI case and the imperfect CSI
case. A block coordinate descent (BCD) algorithm is developed to
solve this non-convex problem. Compared with the conventional
semi-definite relaxation (SDR) approach, the proposed method
does not require that the covariance matrix of the common beam-
forming vector be rank-one. Moreover, we present theoretical
results to help reveal the impact of the system parameters and
explain the performance gain resulting from the integration of
RIS and RS. Extensive simulation results are also provided to
show that RIS-assisted RS can improve the max-min rate perfor-
mance significantly compared with conventional multiple access
technologies, such as non-orthogonal multiple access (NOMA)
and space division multiple access (SDMA) with/without RIS,
especially in overloaded systems. With the proposed method,
RS shows great potential in combating realistic CSI errors in
RIS-assisted networks.

Index Terms— Max-min fairness, rate splitting, reconfigurable
intelligent surface (RIS), block coordinate descent (BCD).

I. INTRODUCTION

RECONFIGURABLE Intelligent Surface (RIS) has
recently emerged as a promising technology for 6G

wireless communications due to its ability to reconfigure the
propagation environment [1], [2], [3]. RIS is a programmable
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meta-surface equipped with multiple low-cost programmable
reflecting elements, whose amplitude and phase can be recon-
figured. As a result, the reflection of incoming signals can
be programmed to enhance the wireless channel. Compared
with conventional technologies such as amplify-and-forward
(AF), massive multiple-input multiple-output (MIMO) [4], and
millimeter wave (mmWave), RIS does not require an increased
number of active radio frequency (RF) chains. Both the energy
consumption and hardware cost are low. RIS has been regarded
as a promising technology for 6G to make high spectrum
efficient, yet cost-effective systems.

Meanwhile, rate splitting (RS) has been envisioned as a
promising multiple access technology for beyond 5G wire-
less communication [5], [6], [7]. In RS, the message at the
transmitter is split into the private part and the common
part. The common part shared a common codebook known
to all users, hence can be decoded by each user. The pri-
vate part can be decoded by removing the interference from
the common part and treating interfering signals from other
users as noise. The flexibility to partially decode interference
and partially treat the remaining interference as noise makes
RS a promising PHY-layer transmission paradigm for non-
orthogonal transmission, interference management, and multi-
ple access strategies in 6G [8]. RS has been shown in [9] to
outperform and unify space division multiple access (SDMA)
and non-orthogonal multiple access (NOMA) under a wide
range of network loads and user deployment. Recent research
progress has shown that RS can achieve a spectrum efficiency
improvement [9], robust to imperfect channel state informa-
tion (CSI) conditions [5], [10], and outperforms NOMA and
SDMA in secure downlink transmissions [11].

Inspired by the appealing advantages of RIS and RS,
researchers have begun to study the interplay and benefit
of integrating the two infrastructure-level techniques. The
benefits of integrating RIS and RS have been shown in terms
of energy efficiency improvement [12], [13], secure transmis-
sion [14], spectrum efficiency improvement [15] and outage
probabilities performance improvement [16]. Apart from these
benefits, [17] tries to answer the question “Why we should
consider the integration of RS and RIS” by showing that RS
and RIS share similarities and they complement each other.
To be specific, both techniques perform beamforming. RIS
plays passive beamforming to assist the signal transmission
while the RS plays active beamforming at the BS to achieve
better performance. A joint design should be considered when
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integrating the two techniques together. Moreover, as RIS
comprises only nearly passive elements, and accurate channel
state information (CSI) for the RIS-related channels is hard
to obtain [18]. Meanwhile, RS has been shown to be robust
to CSI uncertainties [19]. Therefore RS is a good fit for RIS
systems towards channel uncertainties [20].

Before the integration of RS and RIS, the joint design of
RIS with other multiple access technologies has already been
studied. In SDMA, the base station (BS) employs different
linear precoding to serve different users simultaneously in the
same frequency band for the downlink/uplink transmissions.
Reference [21] shows that conventional zero-forcing (ZF)
beamforming is insufficient to null/suppress the interference
from other users while a RIS can provide spatial interfer-
ence nulling/cancellation capability to solve this problem.
Compared with SDMA where interfering signals from other
users are treated as noise, (power domain) NOMA allows
users to be in the same time-frequency resource block and
distinguishes them in the power domain. By doing so, NOMA
has been regarded as a multiple access candidate technology
to improve the system spectrum efficiency for future wireless
networks [22]. The integration of RIS and NOMA has been
shown to provide a cost-effective solution to achieve high
energy efficiency [23], spectrum efficiency [24], and increased
coverage [25]. Another multiple access technology, RS, has
been shown in [9] to outperform and unify SDMA and NOMA
under a wide range of network loads and user deployment.
Despite its appealing advantages and a good fit with RIS
technology, few technical contributions have been presented
and the full possibilities of the integration of RIS and RS
remain to be explored.

The RS beamforming design has been extensively stud-
ied. In [10], a sum rate maximization beamforming was
studied with the weighted minimum mean squared error
(WMMSE) method. In [26], a difference of convex func-
tions (DC) programming was proposed to optimize the pre-
coder covariance matrix. Secure and robust RS beamforming
design was studied in [27] and [28] under imperfect CSI,
respectively. Most of the previous works find a subopti-
mal solution with optimization techniques. Recently, global
optimal beamforming was proposed in [29] to optimize the
energy efficiency in an RS system with a branch and bound
algorithm.

In terms of the joint beamforming design between RIS
and RS, the authors in [30] explored the joint optimiza-
tion in a RIS-assisted RS system. The successive convex
approximation and semidefinite programming (SDP) is used
to maximize the minimum rate of all users. This technique
can return a rank-one solution for the RIS-assisted NOMA
system [31]. However, this technique could not be extended to
a RIS-assisted RS system since the rank-one condition may not
be satisfied in an RS system [32]. Reference [16] explores the
on-off control for passive beamforming at the RIS. A closed-
form expression for the outage probability for the cell-edge
users is derived. Reference [13] performs beamforming design
to maximize the energy efficiency in a RIS-assisted RS system.
Reference [15] performs beamforming and RIS scatter matrix
design to maximize the system’s spectral efficiency. However,

the above works all assume perfect CSI setting, which is
unrealistic in practice. The mechanism and advantages of RS
in combating the RIS-related channel uncertainties have not
yet been studied so far.

This paper tries to develop novel and efficient beamform-
ing algorithms for RIS-assisted RS systems and explore the
interplay between RIS and RS in the imperfect CSI case. The
main contribution of this paper is summarized as follows:

1) We formulate a max-min rate optimization problem to
explore the interplay between RIS and RS techniques.
The joint beamforming design is considered under dif-
ferent RIS configurations.

2) We employ the weighted mean squared error mini-
mization (WMMSE) algorithm to transform the non-
convex max-min rate problem into a more tractable
form. A block coordination descent (BCD) algorithm
is proposed to optimize the variables in an alternative
manner. The algorithm was extended to the imperfect
CSI case to explore the robustness of RS in combating
RIS-related channel uncertainties.

3) We provide analysis on the impact of the system param-
eters. Numerical results show that RIS-assisted RS is
robust towards channel uncertainties and outperforms the
conventional multiple access technologies with/without
RIS in terms of the max-min rate.

The remainder of this paper is organized as follows.
Section II presents the system model and formulates the
max-min rate maximization problem. Section III introduces
a rate-WMMSE relationship, based on which a BCD algo-
rithm is developed for different RIS setups. The algorithm is
extended to the imperfect CSI case in Section IV. Numerical
results are provided in Section V to evaluate the effectiveness
of the proposed algorithms. Finally, Section VI concludes this
paper.

Notation: The notation used in this paper is summarized
as follows. Bold lower or upper case letters are used to
denote vectors and matrices, respectively. CN (µ, σ2) denotes
the circularly symmetric complex Gaussian distribution with
mean µ and variance σ2. For any scalar a, |a| denotes the
absolute value. For any vector a, ai is the ith element, and aH

represents its conjugate transpose. Diag(A) stands for a vector
whose elements are extracted from the diagonal of matrix A.
Rank(A) denotes the rank of matrix A. Variables with stars
are optimal solutions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The differences between RIS-assisted RS, NOMA, and
SDMA are illustrated in Fig. 1. The figure shows a two-user
system where the BS aims to deliver message s1 to User
1 and message s2 to User 2. In the SDMA system, each user
treats the signal from other users as interference, as shown in
Fig. 1(a). In the NOMA system, User 1 completely decodes
the message from User 2 using successive interference can-
cellation (SIC), hence an improved spectrum efficiency can be
achieved. Unlike NOMA and SDMA, the RS system shown in
Fig. 1(c) generates messages using a public codebook known
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Fig. 1. Three multiple access technologies assisted by RIS: (a) SDMA, (b) NOMA, and (c) RS.

to all users. Each user partially decodes the messages for other
users and partially treats the messages from other users as
interference.

Specifically, we consider a downlink multi-user multiple-
input-single-output (MISO) communication system, which
consists of a BS with M antennas, and K user equip-
ments (UEs) each with a single antenna, denoted by K =
{1, 2, . . . ,K} [6], [10]. In RS, the message Xk intended for
UE k is split into a private part Xp,k and a common part Xc,k.
The private parts are encoded independently into Gaussian
data symbol streams, denoted as [s1, s2, . . . , sk]T ∈ CK×1.
Meanwhile, the common parts of all UEs {Xc,1, Xc,2, . . . ,
Xc,K} are combined into a common message Xc, which is
encoded into a common stream sc with a public codebook
known to all UEs. As a result, the combined symbols are
grouped into a vector s = [sc, s1, s2, . . . , sK ]T ∈ C(K+1)×1.
Each signal is assumed to have zero mean and unit variance,
i.e., E[ssH ] = IK+1. At the transmitter, the precoding matrix
for all UEs is w = [wc,w1,w2, . . . .,wK ], where wk ∈
CM×1 is the precoding matrix for UE k ∈ K for its private
data sk, and wc ∈ CM×1 is the precoding matrix for the
common message sc.

To assist signal transmission, a RIS with N reflecting ele-
ments is placed between the UEs and the BS. The equivalent
channels from the BS to UE k, from the RIS to UE k,
and from the BS to the RIS are denoted as hd,k ∈ CM×1,
hr,k ∈ CN×1, and G ∈ CN×M , respectively. The combined
channel between the BS and UE k, hk ∈ CM×1, can be
regarded as a combination of the direct and the reflected
channels, i.e.,

hk ≜ hd,k + GHΘhr,k, (1)

where Θ ∈ CN×N is the RIS phase shift matrix. Note that the
RIS reflection phase-shift matrix Θ is a diagonal matrix with
diagonal elements vi = βie

jθi , where θi ∈ [0, 2π] and βi ∈
[0, 1], 1 ≤ i ≤ N . We extract the diagonal elements of Θ and
let v = diag{Θ} ∈ CN×1. Then we have hk = hd,k +HH

k v,
where Hk = diag{hH

r,k}G ∈ CN×M . The reflection matrix Θ
captures the effective phase shifts of all the reflecting elements
on the RIS. The phase shift unit can be adjusted by the RIS
controller based on measured channel dynamics. Depending
on the amplitude and phase shift of the reflecting elements,
we consider two types of RIS in this paper [31].

• RIS Φ1: the reflecting elements can be adjusted
with arbitrary continuous amplitudes and phase, i.e.,
Φ1 = {βie

jθi |θi ∈ [0, 2π], βi ∈ [0, 1]}.
• RIS Φ2: The reflection amplitude is fixed and only the

phase can be adjusted. If the phase can be adjusted
continuously, the feasible set is expressed as Φ2 =
{ejθi |θi ∈ [0, 2π]}. This setting can be extended to a
quantized phase shift.

The received signal for UE k can be expressed as

yk = hH
k

∑
i∈M

wisi + nk, ∀k ∈ K, (2)

where M = K ∪ {c} denotes the combined set and nk ∼
CN (0, σ2

0) is the additive white Gaussian noise at UE k.
At the receiver, each UE first decodes the common stream

by treating all the private streams as noise. Then its private
message is decoded by removing the decoded common stream
with SIC. After the decoding process, the receiver recombines
messages into original messages. The decoding SINR for the
common message and the private message for UE k at the
receiver is given by

γc,k =
|hH

k wc|2∑
i∈K |hH

k wi|2 + σ2
0

, ∀k ∈ K, (3)

γp,k =
|hH

k wk|2∑
i∈K,i̸=k |hH

k wi|2 + σ2
0

, ∀k ∈ K. (4)

Under Gaussian signaling, the achievable rate of UE k in
decoding the common rate and the private rate are given by

rc,k = log2(1 + γc,k), Rp,k = log2(1 + γp,k). (5)

To ensure that all UEs can decode the common message
stream, the actual rate of the common message stream, denote
as rc, is constrained by each rc,k, i.e.,

rc = min
k∈K

rc,k. (6)

According to the RS decoding principle, the actual data stream
rc is shared by all UEs. By denoting Rc,k as the general
common rate allocated to UE k, we have∑

k∈K

Rc,k ≤ rc, Rc,k ≥ 0. (7)

After removing the common data stream, each UE decodes its
own private message. Finally, the overall achievable data rate
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for UE k is given by

Rk = Rc,k + Rp,k, ∀k ∈ K. (8)

B. Problem Formulation

In this paper, we aim to maximize the minimum achievable
rate of all UEs by jointly performing active beamforming at
the BS as well as passive beamforming at the RIS. Specifically,
the problem can be mathematically formulated as

max
w,Rc,Rp,v,s

s (9a)

s.t.
∑

k∈M

||wk||2 ≤ P (9b)

vi ∈ Φ, ∀i (9c)
Rp,k + Rc,k ≥ s (9d)
Rp,k ≤ log2(1 + γp,k), ∀k (9e)∑
k∈K

Rc,k ≤ log2(1 + γc,k), ∀k, (9f)

where w = {wi|i ∈ M}, Rp = {Rp,k|k ∈ K}, Rc =
{Rc,k|k ∈ K}, P is the total transmit power at the BS, and Φ
denotes one of the set in Φ1 or Φ2.

The formulated problem is non-convex optimization where
the non-convexity is due to Rp,k and Rc,k. As can be seen
from (5), the expression of Rp,k involves the logarithmic
operation of γp,k, which is concave. The inner function γp,k,
as shown in (3), involves a quadratic-over-linear operation of
w, which is convex. As a result, the combined expression of
Rp,k is neither concave nor convex. Moreover, the beamform-
ing vector w is coupled with the RIS phase shift matrix Θ,
which makes the problem more challenging.

III. JOINT BEAMFORMING DESIGN WITH PERFECT CSI

It can be seen that Problem (9) is a joint beamforming
design problem, which is to find the active beamforming w
at the BS as well as the passive beamforming Θ at the RIS.
To deal with the coupling between the passive beamforming
and the active beamforming, we propose to use the alternative
optimization (AO) framework, which optimizes the active
beamforming and the passive beamforming iteratively.

A. The BCD-Based Approach for RIS: Φ1

References [5], [7], and [10] have proposed a weighted
minimum mean square error (WMMSE) approach to solve
this problem. The WMMSE method utilizes the relationship
between mutual information and MMSE to find a stationary
solution. Let the estimated common message of UE k be
denoted as ŝc,k = gc,kyk with gc,k being a scalar equalizer.
Then an estimate of sk can be expressed as ŝk = gp,k(yk −
hH

k wcsc,k), since the interference from the common message
can be removed at each UE. Then, the mean-squared errors
(MSE) of the common message and the private message can
be expressed respectively as

ϵc,k = E[|ŝc,k − sc,k|2] = |gc,k|2Tc,k − 2Re(gc,khH
k wc) + 1,

(10)

ϵp,k = E[|ŝk − sk|2] = |gp,k|2Tp,k − 2Re(gp,khH
k wk) + 1,

(11)

where

Tc,k = E[|yk|2] =
∑
i∈M

|hH
k wi|2 + σ2

0 ,

Tp,k = E[|yk|2]− |hH
k wc|2 =

∑
i∈K

|hH
k wi|2 + σ2

0 . (12)

To minimize the MSE of both the common and the private
messages, we take the derivative of the MSE in (10) w.r.t. the
scalar equalizer, i.e., ∂ϵc,k/∂gc,k = 0 and ∂ϵp,k/∂gp,k = 0.
Then we obtain the optimal MMSE equalizer as

gMMSE
c,k = hH

k wc/Tc,k, gMMSE
p,k = hH

k wk/Tp,k. (13)

Substituting the optimal equalizer (13) into the MSE (10),
we obtain the minimum MSE as

ϵMMSE
c,k = 1− |hH

k wc|2

Tc,k
, ϵMMSE

p,k = 1− |hH
k wk|2

Tp,k
. (14)

By comparing (14) with (3) and (5), we obtain the
rate-MMSE relationship as

rc,k = − log2(ϵ
MMSE
c,k ), Rp,k = − log2(ϵ

MMSE
k ). (15)

Meanwhile, the augmented weighted MSE (WMSE) can be
defined as

ξc,k = uc,kϵMMSE
c,k − ln(uc,k), (16a)

ξp,k = up,kϵMMSE
p,k − ln(up,k), (16b)

where uc,k > 0 and up,k > 0 are the associated weights with
UE k’s MSE. The weighted MMSE (WMMSE) is defined as
the minimum augmented WMSE over all possible weights, i.e.,
ξMMSE
c,k = minuc,k

ξc,k and ξMMSE
p,k = minup,k

ξp,k. Now we
take derivative w.r.t. the weights in (16), i.e., ∂ξc,k/∂uc,k =
0 and ∂ξp,k/∂up,k = 0. Then we obtain the optimal weight
as

uMMSE
c,k =

1
ϵMMSE
c,k

, uMMSE
p,k =

1
ϵMMSE
p,k

. (17)

Combining (15), (16) and (17)), we obtain the rate-WMMSE
relationship as

ξMMSE
c,k = 1 + ln

(
ϵMMSE
c,k

)
= 1− rc,k ln 2, (18a)

ξMMSE
p,k = 1 + ln

(
ϵMMSE
p,k

)
= 1−Rp,k ln 2. (18b)

This will be the core relationship in the WMMSE algorithm.
With the rate-WMMSE relationship (18), the max-min rate

problem in (9) can be equivalently rewritten as

max
w,G,U,s,Rc,Rp,v

s (19a)

s.t.
1− ξc,k

ln 2
≥
∑
k∈K

Rc,k (19b)

1− ξp,k

ln 2
≥ Rp,k (19c)

Rc,k + Rp,k ≥ s (19d)
vi ∈ Φ1, ∀i (19e)
(9b), (7),
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where G = {gc,k, gp,k|k ∈ K} are the sets of scalar equalizers,
U = {uc,k, up,k|k ∈ K} is the set of associated weights of
UEs’ MSE, and ξc,k and ξp,k are given in (16).

Theorem 1: The stationary solution to Problem (19) that
satisfies conditions (13) and (17) is also a stationary solution
to Problem (9).

Proof: We refer readers to [7] for detailed proof. □
Substituting hk = hd,k + HH

k v into (12), we have

Tc,k = vHQc,kv + 2Re
(
vHqc,k

)
+ αc,k + σ2

0 ,

Tp,k = vHQp,kv + 2Re
(
vHqp,k

)
+ αp,k + σ2

0 ,

where Qc,k =
∑

i∈MHkwiwH
i HH

k , qc,k =∑
i∈MHkwiwH

i hd,k, αc,k =
∑

i∈M |hH
d,kwi|2,

Qp,k =
∑

i∈KHkwiwH
i HH

k , qp,k =
∑

i∈KHkwiwH
i hd,k,

and αp,k =
∑

i∈K |hH
d,kwi|2.

Although Problem (19) is till non-convex, it has a
block-wise convex property w.r.t. w, (G,U), and v. When w
and v are fixed, the problem is convex w.r.t. (G,U). When v
and (G,U) are fixed, we will obtain ξc,k and ξp,k as shown
in (22), at the bottom of the page, which is a second-order
cone in terms of w. When w and (G,U) are fixed, we obtain
ξc,k and ξp,k as shown in (23), at the bottom of the page,
which is also a second-order cone in terms of v. Hence the
block coordinate descent (BCD) method, which successively
optimizes each of the variables, can be used. The details of
the BCD algorithm are as follows.

1) The optimization of (G,U): The scaling factor G and
the optimal weight U have closed-form expressions,
which are given in (13) and (17), respectively.

2) The optimization of w: The optimal w can be obtained
by solving the following problem.

max
w,s,Rc,Rp

s (20)

s.t. (19b), (19c), (19d), (9b), (7),

where ξc,k and ξp,k are given in (22).
3) The optimization of v: The optimal v can be obtained

by solving the following problem.

max
v,s,Rc,Ru

s

s.t. (19b), (19c), (19d), (7),

|vi|2 ≤ 1, ∀i. (21)

where ξc,k and ξp,k are given in (23).

To summarize, the proposed algorithm successively opti-
mizes the variables. Its complexity mainly comes from Step 2
and Step 3, which are two quadratically constrained convex
optimization problems (QCCP). The QCCP problem in Step 2
consists of d1 = 4K + 2 constraints and d2 = 1 + 2K + MK
variables. Hence, the worst case computational complexity of
solving this problem is O(d1d

2
2 + d3

2)
√

d1 log(1/ϵ) [33] for
a given stopping criterion ϵ. Similarly, the problem in Step 3
is also a QCCP, which has d3 = 4K + 1 constraints and
d4 = 1 + 2K + N2 variables. The computational complexity
in Step 3 is O(d3d

2
4 + d3

4)
√

d3 log(1/ϵ). Hence, the overall
complexity of the BCD algorithm is O(Iin(M3K3.5 + (K +
N2)3K0.5) log(1/ϵ)), where Iin is the total number of outer
iterations of the BCD algorithm.

Theorem 2: The proposed BCD algorithm will converge
after a finite amount of steps.

Proof: Denote the objective function in (19) as
F (G,U,w,v). Then we have

F (Gt−1,Ut−1,wt,vt) ≤ F (Gt,Ut,wt,vt)

≤ F (Gt,Ut,wt+1,vt)

≤ F (Gt,Ut,wt+1,vt+1),

where the first inequality holds since Ut is the optimal weight
and Gt is the optimal MMSE equalizer to minimize the MSE.
The second inequality holds since wt+1 is the optimal solution
to Problem (20) and the third inequality holds since vt+1 is
the optimal solution to Problem (21). □

B. The Penalty-Based BCD Approach for RIS:Φ2

In the RIS:Φ2 case, we need to deal with the non-convex
constraints with Φ2. The problem becomes

max
w,G,U,s,Rc,Rp,v

s, (24a)

s.t. (19b), (19c), (19d), (9b), (7)
vi ∈ Φ2, ∀i. (24b)

To simplify the optimization of v and facilitate parallel updat-
ing, we propose to use the penalty dual decomposition (PDD)
framework. This method introduces an auxiliary variable u.
Hence Problem (24) is equivalently transformed to

max
w,G,U,s,Rc,Rp,v

s (25a)

ξc,k(w) = uc,k

[
|gc,k|2

(∑
i∈M

wH
i hkhH

k wi + σ2
0

)
− 2Re(gc,khH

k wc) + 1

]
− ln(uc,k), (22a)

ξp,k(w) = up,k

[
|gp,k|2

(∑
i∈K

wH
i hkhH

k wi + σ2
0

)
− 2Re(gp,khH

k wk) + 1

]
− ln(up,k). (22b)

ξc,k(v) = uc,k

[
|gc,k|2

(
vHQc,kv + 2Re

(
vHqc,k

)
+ αc,k + σ2

0

)
− 2Re(gc,khH

d,kwc + gc,kvHHkwc) + 1
]
− ln(uc,k), (23a)

ξp,k(v) = up,k

[
|gp,k|2

(
vHQp,kv + 2Re

(
vHqp,k

)
+ αp,k + σ2

0

)
− 2Re(gp,khH

d,kwk + gp,kvHHkwk) + 1
]
− ln(up,k).

(23b)
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s.t. (19b), (19c), (19d), (9b), (7)
v = u, (25b)
ui ∈ Φ2, ∀i. (25c)

To deal with the constraint v = u, Problem (24) is further
transformed to

max
w,G,U,s,Rc,Rp,v

z = s− 1
2ρ
||v − u + ρµ||2 (26a)

s.t. (19b), (19c), (19d), (9b), (7)
ui ∈ Φ2, ∀i, (26b)

where ρ is a penalty coefficient and µ is the dual variable
vector associated with constraint v = u. To optimize the
variable vector u, we solve the following sub-problem.

min
u

||v − u + ρµ||2 (27)

s.t. ui ∈ Φ2, ∀i. (28)

For this problem, we notice that ui is decoupled in both the
objective function and the constraint. Hence we can obtain the
optimal solution in parallel. Note that

||v − u + ρµ||2

= (v + ρµ)H(v + ρµ) + uHu− 2Re(uH(v + ρµ)). (29)

When ui ∈ Φ2, we have |ui| = 1. Hence uHu = N .
To minimize the term ||v − u + ρµ||2, the phase of u and
the phase of v + ρµ should be the same, i.e.,

ui = exp {j∠v̄i} , (30)

where v̄i is the element of v̄ and v̄ = v + ρµ.
We design an iterative algorithm where the inner loop

optimizes variables (G,U,w,v,u) successively. In the outer
loop, the dual variable ρ is decreased by a factor of α and the
dual variable µ is updated by

µ = µ +
1
ρ
(v − u). (31)

As can be seen, algorithm 1 consists of an outer loop
that decreases the penalty factor and an inner loop that
optimizes the variables successively. With the decrease of the
penalty coefficient, the penalty term becomes larger and will
eventually guarantee that u = v. For the inner loop, the
complexity is the same as that of the BCD algorithm. Steps 11
and 12 in the outer loop also have closed-form expressions.
We conclude that the overall complexity of Algorithm 1 is
O(IoutIin(M3K3.5 + (K + N2)3K0.5) log(1/ϵ)).

IV. JOINT BEAMFORMING DESIGN WITH IMPERFECT CSI

In practice, joint beamforming design requires precise CSI,
which is quite challenging to obtain. In this section, we con-
sider the scenario where the users know the perfect CSI while
the BS only has the imperfect CSI estimation due to feedback
errors and mismatches.

We assume that the CSI error model is given by

Hk = Ĥk + ∆Hk,

hd,k = ĥd,k + ∆hd,k

Algorithm 1 Penalty-Based BCD Algorithm
Require: P ;
Ensure: w∗, v∗;

1: Initialize outer loop iteration index Iout = 0; Initialize the
beamforming vector with equal power allocation P

M(K+1) ;
Generate vector v and u with reflection amplitude 1 and
random phases; Initialize µ = 0 and ρ = 200.

2: repeat
3: Initialize inner loop iteration index Iin = 0;
4: repeat
5: Update Gt and Ut based on (13) and (17);
6: Obtain wt+1 by solving convex optimization Prob-

lem (20);
7: Obtain vt+1 by solving Problem (26a);
8: Obtain ut+1 from (30) when Φ = Φ2;
9: Iin + +;

10: until |z
t−zt−1|
|zt−1| ≥ ϵ or Iin > Imax

in

11: Update µ based on (31);
12: Update ρ by ρ = cρ;
13: Iout + +;
14: until ||u− v||2 ≤ ϵ

where Ĥk and ĥd,k denote the estimated cascaded channel and
the estimated direct channel, respectively. ∆Hk and ∆hd,k

denote the CSI error of the cascaded channel and the direct
channel, respectively. It is shown in [34] that when the number
of the reflecting elements on the RIS is large, the distribu-
tion of vec(∆Hk) is approximated by Gaussian distribution.
In the rest of this paper, we assume that vec(∆Hk) ∼
CN (0, σ2

∆H,kI) and ∆hd,k ∼ CN (0, σ2
∆d,kI). Moreover, the

CSI error variances decay at a speed proportional to the
channel variances, i.e., σ2

∆d,k = δ
M ||hd,k||2 and σ2

∆H,k =
δ

MN ||Hk||2F where δ ∈ [0, 1] measures the relative CSIT
uncertainties [35], [36].

The BS is assumed to know the estimated channel ĥk =
ĥd,k + ĤH

k v and the conditional probability phk|ĥk
(hk|ĥk).

According to [10], we can formulate the average rate (AR)
optimization problem

max
w,Rc,Rp,v,s

s (32a)

s.t. (9b), (9c) (32b)
Rp,k + Rc,k ≥ s (32c)

Rp,k ≤ Ehk|ĥk
[log2(1 + γp,k)|ĥk], ∀k (32d)∑

k∈K

Rc,k ≤ Ehk|ĥk
[log2(1 + γc,k)|ĥk], ∀k,

(32e)

To deal with the challenging stochastic optimization prob-
lem, we resort to the sample average approximation (SAA)
method, which approximates the stochastic problem with a
deterministic one. To be specific, for a given channel estimate
ĥk, we use set HL to denote L i.i.d. channel realizations drawn
from the conditional distribution fhk|ĥk

(hk|ĥk).

HL = {hl
k = ĥk + ∆hl

k|ĥk, 1 ≤ l ≤ L, k ∈ K} (33)
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It was proven in [10] that when the sample size L is large
enough, the stochastic rate can be approximated by the sample
average. Hence if we define the sample average as

R̄p,k =
1
L

L∑
l=1

Rl
p,k, R̄c,k =

1
L

L∑
l=1

Rl
c,k

where Rl
p,k and Rl

c,k are the private rate and common rate
associated with the channel realization {hl

k}k. This leads to
the SAA problem

max
w,R̄c,R̄p,v,s

s (34a)

s.t. (9b), (9c) (34b)
R̄p,k + R̄c,k ≥ s (34c)

R̄p,k ≤
1
L

L∑
l=1

log2(1 + γl
p,k), ∀k (34d)

∑
k∈K

R̄c,k ≤
1
L

L∑
l=1

log2(1 + γl
c,k), ∀k, (34e)

where R̄p = {R̄p,k|k ∈ K}, R̄c = {R̄c,k|k ∈ K}, and γl
p,k

and γl
c,k are the associated SINR with the channel realization

hl
k. In the optimization process, the same beamforming vector

w is fixed for all the channel realizations.
Although this problem is deterministic, it is still non-convex.

Following a similar step in section III, we approximate

Ehk|ĥk
[min
uc,k

ξc,k|ĥk] ≈ min
uc,k

ξ̄c,k = ξ̄MMSE
c,k = 1− r̄c,k ln 2

Ehk|ĥk
[min
up,k

ξp,k|ĥk] ≈ min
up,k

ξ̄p,k = ξ̄MMSE
p,k = 1− R̄p,k ln 2

where r̄c,k = 1
L

∑L
l=1 log2(1 + γl

c,k). With this relationship,
the SAA max-min rate problem (34) can be equivalently
transformed into

max
w,Ḡ,Ū,s,R̄c,R̄p,v

s (35a)

s.t.
1− ξ̄c,k

ln 2
≥
∑
k∈K

R̄c,k (35b)

1− ξ̄p,k

ln 2
≥ R̄p,k (35c)

(34c), (19d), (19e), (9b), (7),

where Ḡ =
{

gl
c,k, gl

p,k|k ∈ K, 1 ≤ l ≤ L
}

and Ū ={
ul

c,k, ul
p,k|k ∈ K, 1 ≤ l ≤ L

}
are the scaling equalizer sets.

The optimal gl
c,k, gl

p,k can be obtained from (13) based on a
specific hl

k. The optimal ul
c,k, ul

p,k can be obtained from (17)
based on hl

k.
The block-wise convex property still holds. As a result,

we have the SAA-BCD algorithm as follows.
1) The optimization of (Ḡ, Ū).
2) The optimization of w: The optimal w can be obtained

by solving the following problem.

max
w,s,R̄c,R̄p

s (36)

s.t. (35b), (35c), (19d), (9b), (7),

where ξ̄c,k and ξ̄p,k are given in (38), shown at the
bottom of the page.

3) The optimization of v: The optimal v can be obtained
by solving the following problem.

max
v,s,R̄c,R̄u

s (37)

s.t. (35b), (35c), (19d), (7),

|vi|2 ≤ 1, ∀i.

where ξ̄c,k and ξ̄p,k are given in (39), shown at the
bottom of the page.

The penalty-based BCD algorithm for the imperfect CSI
case can be similarly derived. We leave this out due to limit
of space.

ξ̄c,k(w) =
1
L

L∑
l=1

ul
c,k

[
|gl

c,k|2
(∑

i∈M
wH

i hl
kh

l,H
k wi + σ2

0

)
− 2Re(gl

c,kh
l,H
k wc) + 1

]
− 1

L

L∑
l=1

ln(ul
c,k), (38a)

ξ̄p,k(w) =
1
L

L∑
l=1

ul
p,k

[
|gl

p,k|2
(∑

i∈K
wH

i hl
kh

l,H
k wi + σ2

0

)
− 2Re(gl

p,kh
l,H
k wk) + 1

]
− 1

L

L∑
l=1

ln(ul
p,k). (38b)

ξ̄c,k(v) =
1
L

L∑
l=1

ul
c,k

[
|gl

c,k|2
(
vHQl

c,kv + 2Re
(
vHql

c,k

)
+ αl

c,k + σ2
0

)
− 2Re(gl

c,kh
l,H
d,kwc + gl

c,kv
HHl

kwc) + 1
]

− 1
L

L∑
l=1

ln(ul
c,k), (39a)

ξ̄p,k(v) =
1
L

L∑
l=1

ul
p,k

[
|gl

p,k|2
(
vHQl

p,kv + 2Re
(
vHql

p,k

)
+ αl

p,k + σ2
0

)
− 2Re(gl

p,kh
l,H
d,kwk + gl

p,kv
HHl

kwk) + 1
]

− 1
L

L∑
l=1

ln(ul
p,k). (39b)
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Fig. 2. Illustration of the RIS-assisted network architecture.

V. SIMULATION STUDY

We consider a RIS-assisted communication scenario as
depicted in Fig. 2. The parameters and channels are set the
same as [31]. In this x-y plane, the RIS is located at location
(50, 0)m. The UEs are located randomly in a circle around
center (50, 5)m with a radius of 3m. The BS is located at the
origin (0, 5)m. The channel coefficients are a combination of
distance-dependent large-scale fading and small-scale fading.
The large-scale path loss model follows PL(d) = Ad−α,
where A = −30dB is the path loss at a reference distance
1m, d is the distance between the transmitter and receiver,
and α is the path loss component. The path loss components
for channels hr,k, hd,k, and G are set to 2.2, 3.5, and 2.2,
respectively. For small-scale fading, the Rayleigh fading is
assumed for the direct channel hd,k and the Rician fading
is assumed for the RIS reflected channels, i.e.,

hd,k =
√

PL(d)hNLOS
d,k

G =

√
PL(d)
KG + 1

(√
KGGLOS + GNLOS

)
hr,k =

√
PL(d)
KR + 1

(√
KRhLOS

r,k + hNLOS
r,k

)
where KG = KR = 3 is the Rician factors, GLOS and
hLOS

r,k are line-of-sight (LoS) components, hNLOS
d,k , GNLOS and

hNLOS
r,k are the non line-of-sight (NLOS) components.
The noise power σ2 is set to −90dBm. The SNR metric is

defined as P/σ2
0 . For the proposed BCD algorithm and Algo-

rithm 1, the stopping criteria is ϵ = 0.01. For Algorithm 1, the
value of dual variables is ρ = 200 and the scaling constant is
c = 0.1. Every simulated curve is obtained by averaging over
100 channel realizations.

We compare the performance of the following algorithms.
1) RS:Φ1. RIS-assisted RS where the reflecting elements

can be adjusted with continuous phase and amplitude.
2) RS:Φ2. RIS-assisted RS where the reflecting elements

can be adjusted with continuous phase only.
3) RS:random phase. RIS-assisted RS where the reflecting

elements on the RIS are randomly set.
4) RS:w/o phase. RS only without RIS and there is only

a direct channel between the UE and BS.
5) SDMA:Φ1. RIS-assisted SDMA where the reflecting

elements can be adjusted with continuous phase and
amplitude.

Note that SDMA is a special case of the proposed RS system,
where the common rate for all UEs is set to zero. The proposed

Fig. 3. The objective function value versus the number of iterations for
M = 2, K = 4, N = 20, and P = 20dBm.

BCD algorithm and penalty-based BCD can be easily adapted
for the SDMA case.

A. Perfect CSI Case

1) Convergence of the Proposed Algorithm: In Fig. 3,
we present the convergence performance of the BCD algorithm
and the penalty-based BCD algorithm for M = 2, K = 4,
N = 20, and P = 20dBm. For the BCD algorithm, the
objective value is the max-min rate defined in (19). As can
be seen, the max-min rates are monotonically increasing and
converge very quickly (i.e., 4-5 iterations for SDMA:Φ1 and
10-15 iterations for RS:Φ1). For the penalty-based BCD algo-
rithm, the objective function value is the max-min rate minus
the penalty term (see (26a)). Both the outer loop iteration
and the inner loop iteration of the algorithm are counted. Due
to the penalty factor, the objective function value fluctuates
over iterations. This is because the inner loop is indeed the
BCD algorithm, hence the objective value function keeps
increasing in each inner loop. The convergence of the inner
loop is guaranteed. However, the outer loop refines the penalty
term, which may cause a decrease in the objective function
value. Such refinement brings fluctuations over iterations.
Eventually, the penalty term will go to zero to ensure that
u = v and the penalty-based BCD algorithm will converge
after finite steps.

2) Impact of the Number of RIS Reflecting Elements: To
compare the performance of different algorithms, we plot the
max-min rate versus the number of reflecting elements on the
RIS in Fig. 4. It can be seen that the performance of RS:Φ1 is
very close to that of RS:Φ2, which means in practice we
do not need an accurate RIS amplitude controller. Instead,
a RIS where the phase shift can be adjusted works pretty
well. Second, with the increase of the number of N , the
performance of RS:Φ1 and RS:Φ2 increases, which suggests
that by properly configuring more reflecting elements on the
RIS, an improved max min rate performance can be achieved
in RIS-assisted RS. As a comparison, the performance of
RS: w/o phase and RS: random phase stays on a horizontal
line. This shows that the introduction of RIS would not bring
significant performance gains to the RS system if the reflecting
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Fig. 4. Max-min rate versus the number of RIS elements N for M = 2,
K = 4, and P = 20dBm.

Fig. 5. Max-min rate versus the transmit power P at the BS for M = 2,
K = 4, and N = 20.

elements on the RIS are not properly configured. Finally,
we take a look at the curve of RS:Φ1 and SDMA:Φ1, their
performance gap increases from 1.3 bits/s/Hz to 1.8 bits/s/Hz
when N increases from 10 to 50. This experiment suggests that
the RIS-assisted RS system exhibits significant performance
gains over the RIS-assisted SDMA system.

3) Impact of the Transmit Power: Fig. 5 presents the
max-min rate performance versus the transmit power for a
system with M = 2, K = 4, and N = 20. It is shown
that the performance of RS:Φ1 and RS:Φ2 increases with P
almost linearly. For example, when P increased from 0dBm
to 20dBm, the max-min rate increased from 0.55 bits/s/Hz to
2.5 bits/s/Hz. As a comparison, the max-min rate for SDMA:
Φ1 only slightly increased from 0.5 bits/s/Hz to 1 bits/s/Hz.
This experiment shows that increasing the transmit power is
more appealing to RS than SDMA in terms of performance
improvement. Besides, we note that the performance of RS:
random phase and RS: w/o phase is inferior to that of
RS:Φ1 and the performance gap is around 0.45 bits/s/Hz.

4) Impact of the Number of BS Antennas: The impact of
the number of BS antennas on the max-min rate is shown in
Fig. 6. The system parameters are set as K = 4, N = 20 and
P = 20dBm. As can be seen, the max-min rate for all the

Fig. 6. Max-min rate versus the number of antennas M at the BS for K = 4,
N = 20, and P = 20dBm.

Fig. 7. Max-min rate versus the number of users K for M = 2, N = 20,
and P = 20dBm.

schemes increases with M . This is because with more antennas
at the BS deployed, an increased MIMO multiplexing gain
can be expected. Moreover, we note that there is a turning
point at M = 4 for SDMA: Φ1 and RS: Φ1 (RS: Φ2). When
M < K, the performance gap between SDMA: Φ1 and RS:
Φ1 is around 1.6 bits/s/Hz. When M ≥ K, the performance
gap between SDMA: Φ1 and RS: Φ1 decreased significantly.
The results suggest that RIS-assisted RS is more attractive than
RIS-assisted SDMA in over-loaded systems where the number
of antennas at the BS is less than the number of single-antenna
users (M < K). In a MIMO system where M = K,
RIS-assisted RS does not bring significant performance gains
compared with the conventional RIS-assisted SDMA in terms
of the max-min fairness. We will discuss this in detail in
Section V-B.

5) Impact of the Number of UEs: Fig. 7 illustrates the
impact of the number of UEs on the max-min rate performance
when M = 2, N = 20, and P = 20dBm. The max-min rate
decreases with the increase of the number of UEs due to inter-
UE interference. In this experiment, we set M = 2. As can
be seen, the performance of SDMA: Φ1 is close to that of
RS: Φ1 when M = K. This is because in an under-loaded
system (M ≥ K) where the number of antennas at the BS
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Fig. 8. Max-min rate versus the number of reflecting elements N for M = 2,
K = 3, and P = 20dBm.

is larger than or equal to the number of single-antenna users,
zero-forcing (ZF) beamforming can be used to fully eliminate
the interference in the M×K MIMO channel for both SDMA
and RS system [19], [37].

6) Comparison With NOMA: We compare the performance
of the proposed scheme with the RIS-assisted NOMA system
in Fig. 8. The parameters are set as M = 2, K = 3, and P =
20dBm. The joint beamforming design for the RIS-assisted
NOMA system is implemented with the semidefinite relax-
ation (SDR) method in [31] by changing the objective function
to the max-min rate. Compared with RS transmission, NOMA
requires ordering the channels based on channel gains so that
the UE with a stronger channel gain can decode the UE’s
signal with a weaker channel gain. However, when combined
with RIS configuration, the channels can be modified by the
RIS. As a result, RIS-assisted NOMA needs to consider K!
different decoding orders, solve the beamforming separately
for each decoding order, and select the best beamforming
scheme. The complexity would be quite high especially when
the number of UEs is large. Although some user ordering
schemes are designed to reduce the complexity, they inevitably
suffer certain performance loss [38]. Unlike NOMA, RS does
not require channel ordering, and hence the complexity can be
greatly reduced. With the increase of the number of reflecting
elements on the RIS, the max-min rates of SDMA, NOMA,
and RS all increase. Compared with SDMA and NOMA, the
RS rate increases at a higher speed and achieves the best
performance. To be specific, when the number of reflecting
elements on the RIS increases from 10 to 50, the max-min
rate improvement for RS, NOMA, and SDMA is given by
about 0.9, 0.6 and 0.1 bits/s/Hz. This experiment suggests the
advantages of RIS-assisted RS over RIS-assisted NOMA in
terms of both performance and complexity.

B. Imperfect CSI Case

For each channel generation hk, we can have a channel
estimation as ĥk = hk−∆hk. Based on the conditional prob-
ability fhk|ĥk

(hk|ĥk), we set L = 100 channel realizations.
Note that hk represents the actual channel experienced by user
k but is unknown to the BS while ĥl

k(1 ≤ l ≤ L) can be used

Fig. 9. Max-min rate versus transmit power for M = 2, K = 4, and
N = 20 under imperfect CSI case.

Fig. 10. Max-min rate versus transmit power for M = 3, K = 3, and
N = 20 under imperfect CSI case.

to calculate the sample average rate, which can approximate
the ergodic max min rate performance.

1) Impact of the Transmit Power: We compare the ergodic
max-min performance of RS:ϕ1 with that of SDMA:ϕ1 by
changing the transmit power. In Fig. 9, Fig. 10, and Fig. 11,
we show their performance by fixing the number of transmit
antennas on the RIS to be 20 and changing the relative channel
estimation errors.

Fig. 9 shows the performance of an overloaded system
where M = 2, K = 4 and M < K. It can be seen that
with the increase of the transmit power, the performance of
RIS-assisted SDMA slowly increases while the performance of
RIS-assisted RS increases significantly, regardless of the value
of the relative channel uncertainties. The proposed scheme is
quite robust toward channel uncertainties. For example, when
the transmit power is 20dBm and the relative CSI error is
0.1, the max-min rate of RS is around 2.2 bits/s/Hz, which is
88% of the rate achieved at perfect CSI case (2.5 bits/s/Hz).
Even when the relative CSI error is quite large (δ = 0.5, the
proposed RS scheme still achieves 1.75 bits/s/Hz, which is
around 70% of the perfect CSI case.)

Fig. 10 presents the performance of a system where M =
K = 3. In the perfect CSI case, we observe that the
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Fig. 11. Max-min rate versus transmit power for M = 4, K = 2, and
N = 20 under imperfect CSI case.

curve for RS and SDMA almost overlapped. This can be
explained by the max-min-fairness (MMF) degree-of-freedom
(DOF) analysis in [9], [19], and [39] from an information
theoretic perspective. The MMF-DOF represents the maximum
multiplexing gain that can be simultaneously achieved by all
the UEs. When M ≥ K, ZF can be used to fully eliminate
the interference in the combined M × K MIMO channel
for both SDMA and RS. Hence RIS-assisted RS and RIS-
assisted SDMA achieves similar performance under the setting
of M = K = 3. However, when the relative CSI error gets
larger, the performance of SDMA decreases significantly, and
the RS scheme is much more robust. To be specific, when the
transmit power is 20dBm, the max-min rate for RS (perfect
CSI) and SDMA (perfect CSI) is around 6.4 bits/s/Hz and
6.0 bits/s/Hz, respectively. When the CSI error is large, i.e.,
δ = 0.5, RS still achieves 2.84 bits/s/Hz, which is 44% the
performance in the perfect CSI case. SDMA only achieves
1.57 bits/s/Hz, which is only 26% the performance of the
perfect CSI case. This experiment suggests that RS is more
robust to the CSI uncertainties compared with SDMA, even
when M ≥ K.

Fig. 11 shows the performance of an under-loaded system
where M > K. It can be seen that SDMA and RS show very
similar performance in the low SNR regime under perfect CSI.
However, as the relative CSI error grows, the performance
of SDMA decreases significantly. When the transmit power
is 20dBm, the max-min rate for RS is around 5.0 bits/s/Hz
(or 75% of the performance in the perfect CSI case) while
the max min rate for SDMA is only 3.27 bits/s/Hz (or 50%
of the performance on the perfect CSI case). The experiment
again shows that RS has the advantage of being robust with
imperfect CSI. Meanwhile, as RIS only consists of passive
elements, accurately obtaining the CSI is quite challenging.
Therefore, it is a perfect fit for RS to integrate with RIS
technology.

2) Impact of the Number of RIS Reflecting Elements: We
plot the max-min performance versus the number of reflecting
elements on the RIS in Fig. 12. When the relative CSI error
is large, i.e., δ = 0.5, the performance of both SDMA and RS
improves with the increase of N . To be specific, for RS, the
performance gap from the perfect CSI case decreased from

Fig. 12. Max-min rate versus transmit power for M = 4, K = 2, and
P = 20dbm under imperfect CSI case.

7.2 − 4.5 = 2.7 bits/s/Hz when N = 10 to 7.7 − 5.9 =
1.8 bits/s/Hz when N = 50. For SDMA, the performance
gap from the perfect CSI case decreased from 6.5 − 3 =
3.5 bits/s/Hz when N = 10 to 6.4− 3.8 = 2.6 bits/s/Hz when
N = 50. When the relative CSI error is small, i.e., δ = 0.01,
with the increase of N , for RS the performance gap from the
perfect CSI case almost vanished. However, for SDMA, the
performance gap always exists. This experiment suggests that
when the CSI uncertainty is small, it is possible that RS can
achieve the same performance as the perfect CSI case when
the number of reflecting elements on the RIS is large.

3) The Impact of RIS Configuration: In this experiment,
we investigate the impact of RIS configuration. We compared
the performance of RS:ϕ1 with two benchmark algorithms,
RS: random phase and RS: w/o phase. When the transmit
power is high, i.e. P = 20dBm, as shown in Fig. 13, the
max-min rate decreases with the increase of the relative CSI
error. Increasing the number of reflecting elements on the
RIS can improve the performance of RS:ϕ1. However, the
performance of RS with random phase does not improve
significantly when N increases. In the perfect CSI case, i.e.,
δ = 0, RS:ϕ1 (N = 50) achieves considerable performance
gain (7.2−4.7 = 2.5 bits/s/Hz) compared with RS: w/o RIS.
Even when the CSI error is δ = 0.01, the performance gain
is still 6.6−4.1 = 2.5 bits/s/Hz. When CSI error is large,
i.e., δ = 0.5, the performance gain becomes 3.6−2.3 =
1.3 bits/s/Hz. This shows that RS with properly configured
RIS is quite robust toward a relatively small CSI error.

When the transmit power is low, i.e., P = 0dBM, the
max-min rate performance of RS with different RIS configu-
rations is shown in Fig. 14. It can be seen that RS: random
phase achieves a small amount of performance gain compared
with RS: w/o RIS, no matter whether the relative CSI error
is small or large. RS:ϕ1 achieves a max-min rate at around
2 bits/s/Hz when N = 50 and δ = 0.01, which is almost three
times the max-min rate achieved by RS without RIS. This
further demonstrates the benefits of integrating RIS and RS.
Moreover, comparing Fig. 13 and Fig. 14, we notice that the
benefit of increasing the reflecting elements on the RIS is more
significant at a low SNR regime or when the transmit power
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Fig. 13. Max-min rate versus relative CSI error for M = 3, K = 3, and
P = 20dbm.

Fig. 14. Max-min rate versus relative CSI error for M = 3, K = 3, and
P = 0dbm.

is small. To be specific, when P = 0dBm and δ = 0.01,
the performance gain of increasing N from 20 to 50 is
(2.0-1.2)/1.2=66.7% for RS:ϕ1 while this number is
(6.6-5.7)/5.7 =15.8% when P = 20dBm and δ = 0.01.

VI. CONCLUSION

This paper has investigated the interplay between RS and
RIS. A BCD algorithm is developed to maximize the minimum
rate of all users. Compared with the conventional SDR-
based method, the proposed method does not suffer from the
rank-one problem. Our simulation results show that with the
proposed method, RIS-assisted RS could achieve a satisfac-
tory performance compared with conventional multiple access
technologies, such as SDMA and NOMA with/without RIS.
An SAA-BCD algorithm is also developed to perform joint
beamforming design in the imperfect CSI case. Our simulation
results suggest that RS has the advantage of being robust
with channel uncertainties and is a good fit to RIS-assisted
networks.
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