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Online Distributed Offloading and Computing
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Abstract— With the rapid development and convergence of the
mobile Internet and the Internet of Things (IoT), computing-
intensive and delay-sensitive IoT applications (APPs) are pro-
liferating with an unprecedented speed in recent years. Mobile
edge computing (MEC) and energy harvesting (EH) technologies
can significantly improve the user experience by offloading
computation tasks to edge-cloud servers as well as achieving
green and durable operation. Traditional centralized strategies
require precise information of system states, which may not be
feasible in the era of big data and artificial intelligence. To this
end, how to allocate limited edge-cloud computing resource
on demand, and how to develop heterogeneous task offloading
strategies with EH in a more flexible manner are remaining
challenges. In this paper, we investigate an EH-enabled MEC
offloading system, and propose an online distributed optimization
algorithm based on game theory and perturbed Lyapunov opti-
mization theory. The proposed algorithm works online and jointly
determines heterogeneous task offloading, on-demand computing
resource allocation, and battery energy management. Further-
more, to reduce the unnecessary communication overhead and
improve the processing efficiency, an offloading pre-screening
criterion is designed by balancing battery energy level, latency,
and revenue. Extensive simulations are carried out to validate
the effectiveness and rationality of the proposed approach.

Index Terms— Internet of Things, mobile edge comput-
ing, energy harvesting, game theory, perturbed Lyapunov
optimization.

I. INTRODUCTION

DRIVEN by the rapid development of the Internet of
Things (IoT) and the popularization of intelligent ter-

minals (e.g., smartphones, wearable devices, autonomous
driving vehicles, and intelligent sensors), cloud-oriented
applications (e.g., virtual reality (VR), augmented reality
(AR), autonomous driving, and online gaming) which are

Manuscript received January 25, 2021; revised April 24, 2021; accepted
April 25, 2021. Date of publication May 5, 2021; date of current version
October 11, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 62071077 and Grant 61671096 and
in part by the NSF under Grant ECCS-1923717. This article was presented in
part at the IEEE ICC 2020. The associate editor coordinating the review of
this article and approving it for publication was D. Niyato. (Corresponding
author: Yun Li.)

Shichao Xia, Zhixiu Yao, and Yun Li are with the Chongqing Key
Laboratory of Mobile Communications Technology, Chongqing Univer-
sity of Posts and Telecommunications, Chongqing 400065, China (e-mail:
xiashichao65@163.com; zhixiuyao@163.com; liyun@cqupt.edu.cn).

Shiwen Mao is with the Department of Electrical and Computer Engineer-
ing, Auburn University, Auburn, AL 36849 USA (e-mail: smao@ieee.org).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2021.3076201.

Digital Object Identifier 10.1109/TWC.2021.3076201

computation-intensive and delay-sensitive, are proliferating
at an unprecedented scale in recent years [1]–[3]. Although
the processing capability and the storage capacity of mobile
devices (MDs) have been constantly improved, the compu-
tational performance and battery life remain serious chal-
lenges in the age of big data and artificial intelligence.
As an emerging computing paradigm, mobile edge computing
(MEC) significantly enhances users’ service experience since
some or all of the computation tasks can be offloaded to edge-
cloud servers. In MEC, the computing and storage resources
are deployed at the network edge to effectively reduce com-
putation latency and avoid congestion [4].

Limited by the size and cost of hardware, the battery
capacity is finite, which cannot satisfy the long-term endurance
requirements of the MDs. In particular, it may even be
impossible or extremely expensive to install rechargeable
batteries or supply power by the traditional grid (e.g., when
MDs are distributed in remote or hazardous environments).
Therefore adopting cheaper, more convenient and reliable
energy supply modules is increasingly essential. Fortunately,
energy harvesting (EH) technologies allow MDs to capture
renewable energy from the environment (e.g., solar radiation,
wind, and mechanical energy) for data communications and
task processing, and become increasing important to achieve
green communications and durable operation of the MDs. Inte-
grating EH into the MEC system has realistic significance [5].

The convergence of EH and MEC brings about new chal-
lenges to ensure the stability of system performance in the
long-term evolution. A few recent works have considered the
integration of EH and MEC and optimized tasked offload-
ing [6]–[8]. For example, Mao et al. in [6] investigated an
EH-enabled MEC system and proposed a low-complexity
centralized computation task offloading algorithm based on
Lyapunov optimization under a point-to-point communication
scenario with only a single MD and a single MEC server.
The authors in [7] studied the trade-off between energy
consumption and stability of the battery level for the point-
to-point communication scenario. Zhang et al. in [8] jointly
optimized energy harvesting and transmit power control under
the delay constraint for EH-enabled mobile cloud computing.
These prior works are based on the original and simplified
centralized network architecture that considers the average
rate, delay, connection density, and differentiated services.
However, with the rapid growth of edge devices and data in the
age of IoT, centralized optimization could not be effective for
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distributed MEC scenarios with thousands of heterogeneous
IoT applications.

In this paper, we consider a typical EH-enabled distributed
MEC system with multiple edge-cloud servers and EH-enabled
devices, in which the EH-enabled devices harvest energy from
the surrounding environment, and offload computation tasks,
when needed, to available edge-cloud servers. It should be
noted that the applications running in the EH-enabled devices
have heterogeneous data characteristics and requirements.
For example, wearable devices or smart home applications
have low data rate, high latency tolerance, and plain battery
energy level demand. In the case of autonomous vehicles
with rigorous battery energy level management, each vehicle
could generate at least 100GB of data per day, which are
also extremely sensitive to latency [9]. Meanwhile, the edge-
cloud servers have heterogeneous edge computing resources
(e.g., different service providers have different computation
and storage performance, and ask different service prices).
Moreover, driven by the MEC and EH technologies, more
applications will offload tasks to the cloud for improved
computational efficiency, which poses serious challenges to
enhance the efficiency and fairness of edge-cloud resource
allocation.

Inspired by these observations, we aim to address the fol-
lowing main issues in this paper: (i) how to make the optimal
offloading and energy harvesting decisions to ensure stability
of the battery energy level and guarantee the computation
performance in a distributed manner; (ii) how to allocate edge-
cloud computing resources, provide on-demand services, and
ensure fairness for heterogeneous IoT applications; and (iii)
how to maximize the time-averaged network utility, and bal-
ance the system energy consumption and computation latency.

The major contributions of this work are summarized as
follows.

• We investigate the joint problem of heterogeneous task
offloading scheduling, computing resource allocation, and
EH management. Task offloading scheduling and com-
puting resource allocation are formulated as a distributed
optimization problem, which also aims to stabilize the
battery energy level and guarantee the computation per-
formance in the long-term evolution.

• To determine the optimal strategies of heterogeneous task
offloading and computing resource on-demand allocation,
and to ensure fairness, a dynamic quote price mechanism
for edge-cloud resource is designed based on the game-
theoretic approach. Moreover, the optimal strategies are
proven to be the Stackelberg Equilibrium (SE) solution.

• The offloading and pricing decisions rely on multi-
ple pieces of time-dependent information (e.g., battery
level, computation task backlog, computing resource, and
harvested energy). To maximize the time-averaged net-
work utility and ensure system computation performance,
we decouple task offloading, energy harvesting, and com-
puting resource allocation with the perturbed Lyapunov
optimization theory and develop effective online, distrib-
uted algorithms.

• To reduce the unnecessary communication signaling over-
head and select suitable edge-cloud servers, an offloading

pre-screening criterion is proposed to balance battery
energy level, computation latency, and revenue.

The remainder of this paper is organized as follows.
Section II reviews main related works. In Section III,
we describe the system model and formulate the computa-
tion task offloading and energy harvesting problem. Online
distributed computation offloading and resource management
with Lyapunov optimization and game theory is presented
in Section IV. Section V analyzes the game strategies and
proves the existence of the SE. Section VI designs an
offloading pre-screening criterion and a price update function.
Section VII evaluates the performance of the proposed scheme.
Section VIII concludes this paper.

II. RELATED WORK

Due to the limitation of processing capability, storage
capacity, and battery life of traditional smart mobile devices
(MDs), how to further improve the computational performance
and battery endurance of MDs has become one of the major
questions in the new era of network reform [5]. Computation
offloading and energy harvesting (EH) have been recognized
as important technologies to enhance mobile user experience
as well as achieving green and durable communications, and
have attracted much attention in recent years [10].

Considerable effort has been made on how to effectively
offload tasks to center/edge-cloud servers. To minimize energy
consumption under delay constraint, Deng et al. in [11]
formulated a task allocation problem based on the interplay
and cooperation of fog and cloud, aiming to balance power
consumption and transmission delay to optimize workload
allocations toward fog and cloud. Dai et al. in [12] addressed
the computation offloading problem with particle swarm opti-
mization in the Internet of Vehicles and multi-access edge
computing environment, in which health applications were
divided into different parts to offload to nearby vehicles.
To maximize the energy efficiency, Liu et al. in [13] formu-
lated a joint radio and computational resource allocation prob-
lem by applying the non-orthogonal multiple access (NOMA)
technique to improve the energy efficiency of NOMA-enabled
MEC. Moreover, energy efficiency optimization is important
for resource-constrained e-Health devices. You et al. in [14]
proposed a prior threshold-based task offloading method, and
formulated optimal resource allocation as a convex optimiza-
tion problem to maximize energy efficiency in a centralized
manner.

Energy harvesting helps to make MDs self-sustainable and
to achieve the goal of green communications [15]–[19]. Con-
sidering the random arrival of sensory data and harvested
energy, Yang et al. in [15] minimized transmission delay by
optimizing the data rate. Gupta et al. in [16] analyzed two
opportunistic transmission mechanisms in energy harvesting
wireless sensor networks, and studied the performance of
sequential transmissions. Under the constraint of harvested
energy, Li et al. in [17] investigated the transmit power
control strategy in mobile sensor networks to minimize the
system energy consumption. Calvo-Fullana et al. in [18]
considered how to select the number of energy harvesting
sensors in an energy harvesting enabled sensor network, and
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studied transmit power control to avoid data fusion distortion.
Guo et al. in [19] discussed how to optimize the time ratio of
energy transmission to maximize the network energy efficiency
of wireless data and energy transmission. Considering two-
way relay cooperation network composed of two source nodes
and an energy harvesting node, Hu et al. in [20] proposed
an optimization algorithm to minimize the number of long-
term average power outage under the constraint of long-term
average battery based on Lyapunov optimization theory.

In recent years, the convergence of MEC and EH tech-
nologies has been seen as an advanced and promising
architecture to provide efficient, convenient, and flexible
services [21]–[25]. Wang et al. in [21] jointly optimized wire-
less access mode, computing and wireless resource allocation
to minimize the energy consumption in heterogeneous net-
works. Considering the dynamics and randomness of wireless
channels and task arrival process, Teng et al. in [22] proposed
a hybrid time-scale task offloading and wireless resource
allocation strategy to minimize system energy consumption.
To minimize the total computing and transmission energy
consumption, Zhang et al. in [23] jointly optimized the
computing resources, wireless bandwidth, and transmit power
with Lyapunov optimization theory. Zhuang et al. in [24]
modeled computational resource and transmission power allo-
cation as a convex optimization problem to minimize the
end-to-end task processing delay. Mahmood et al. in [25]
jointly optimized the harvested energy, computing resource
of devices, and wireless bandwidth resources to maximize the
computing energy efficiency of the system. Moreover, without
requiring a priori knowledge of the network, Chen et al. in [26]
proposed a dynamic task offloading algorithm based on a
double deep Q-network to maximize the long-term revenue
utility.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In the energy harvesting (EH)-enabled MEC offloading sys-
tem, it is essential for each mobile device (MD) to determine
the local computing and task offloading strategies on the
basis of the devices’ status (such as battery energy level, task
type, and backlog). To maximize the utilization of edge-cloud
resources, the edge-cloud servers should allocate computing
resources on demand, e.g., by allocating virtual machines with
different CPU frequencies to different requests [27]. In this
section, we first model the EH-enabled MEC offloading net-
work, where each MD is capable of EH. Next, the offloading
and computing resource allocation problem is formulated.

We consider an EH-enabled MEC network system as
shown in Fig. 1. The system serves a set of MDs, M =
{1, 2, . . . ,m}, each equipped with an energy-harvesting com-
ponent (e.g., piezoelectric transducer [28] and electromagnetic
transducer [29]) and fully powered by harvested renew-
able energy. There is a set of edge-cloud servers, N =
{1, 2, . . . , n}, which provide computing or data storage ser-
vices to the MDs within its radio coverage. The MDs can
process tasks locally or offload tasks to the edge-cloud servers.
We assume that the system operates in discrete time slots and
let τ and T Δ= {0, 1, . . . , } denote the duration of each time
slot and the time slot indices, respectively.

Fig. 1. Energy harvesting enabled MEC offloading system: (i) Each MD is
capable of energy harvesting; (ii) Each MD can locally execute tasks or offload
them to the edge-cloud servers.

A. Computation Task and Queueing Model

The computation task of MDs follows the data-partition
model [9], [30], namely, the task-input bits are bit-wise inde-
pendent and can be arbitrarily divided into different groups,
and executed at the MDs or the edge-cloud servers. Different
MDs with diverse requirements (such as offloading dead-
line and energy constraint) have different task characteristics
(called the task’s “DNA”), e.g., data type, task size, and
computation density. In time slot t, the task’s “DNA” of MD i
can be characterized by a three-tuple Λi (t) =

〈
bi (t) , τd

i , γi

〉
1,

where bi (t) is the processed task (include programs codes,
configurations information, etc.) in time slot t, τd

i is the max-
imum computation latency of bi(t), and γi is the computation
density (in cycles/bit), which can be obtained through off-line
measurement [31].

The task arrivals of the MDs are modeled as an inde-
pendent, identically distributed (i.i.d.) Bernoulli process. Let
ai (t) and Qi (t) denote the task arrival and task queue
backlog at MD i in time slot t, respectively. Accord-
ingly, let A (t) = {a1 (t) , a2 (t) , . . . , am (t)} and Q (t) =
{Q1 (t) , Q2 (t) , . . . , Qm (t)} denote the arrived task set and
queue backlog set of all MDs in time slot t, respectively. As the
arrived task in each time slot is finite, we have 0 ≤ ai (t) ≤
amax

i , i ∈ M, t ∈ T , and E {A (t)} = {λ1, . . . , λm}, where
λi is the task arrival rate of MD i. The task backlog at MD i
evolves as follows.

Qi (t+ 1)
= max {Qi (t) − bi (t) , 0} + ai (t) , i ∈ M, t ∈ T . (1)

B. Local Processing Model
At the beginning of each time slot, the MDs should decide

whether to offload or not, how much task will be offloaded,
and where to offload. For local processing, the MD needs to
allocate computing resource (e.g., computing power or CPU
frequency) to process the task.

1) Computation Task Model: To achieve energy savings
under latency constraints, the MDs should process tasks at an
appropriate CPU clock frequency determined by the dynamic
voltage frequency scaling (DVFS) technique [32]. Let bi0(t)

1To simplify analysis, we assume that the computing deadline and density
of the processed task do not change in a time slot.
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denote the locally executed task of MD i in time slot t, given
by

bi0 (t) =
∫

τ

fi0 (t)/γi dt, i ∈ M, t ∈ T , (2)

where fi0 (t) is the CPU clock speed of MD i.2 Considering
that the CPU clock is bounded, we have fmin

i0 ≤ fi0 (t) ≤
fmax

i0 .
2) Local Computing Energy Consumption Model: Consid-

ering the limitation of battery energy, the local execution
and offloading decisions should take energy consumption into
account. For each MD, energy consumption occurs when
processing local task (computing energy consumption) and
offloading a task (communication energy consumption).3

When a task is processed locally, we assume that the main
energy consumption is due to the CPU, and ignore other types
of energy consumption at the MD. Typically, the CPU energy
consumption to process task bi0 (t) is proportional to the CPU
frequency, modeled as follows.

ep
i0 {fi0 (t)} = κi

∫
τ

(α(fi0 (t))σ + β) dt, (3)

where κi is the effective energy coefficient associated with
the chip architecture; α and β are the parameters determined
by the CPU model; and σ ranges from 2 to 3, which can be
obtained through off-line measurements [33]. We set α = 1,
β = 0, and σ = 2 in this paper.

C. Edge-Cloud Processing Model

Edge-cloud servers have sufficient power supply, and more
computation and storage capabilities compared with MDs.
Once the MD decides to offload a task, the offloaded task
will be transmitted to a server through a wireless channel,
and then the server will allocate appropriate virtual machine
resource (mainly including computing and storage resources)
for the MD. The communication model (i.e., communication
latency and energy consumption) of MDs and the edge-cloud
processing model will be presented in the following.

1) Communication Model: Let hi (t) = [l (t)]o denotes the
wireless channel power gain, where l(t) is the communication
distance in time slot t, and o ∈ {2, 3} is a constant. According
to the Shannon-Hartley theory, the task transmission rate
of MD i in time slot t is given by ri [Pi (t) , hi (t)] =
Bilog2

(
1 + Pi(t)hi(t)

w

)
, in which Bi, Pi (t) and w are the

channel bandwidth, transmit power, and average noise power
in time slot t, respectively.

For MD i, let Iij (t) ∈ {0, 1}, j ∈ N , t ∈ T be
the computation task offloading strategy indicators, where
Iij (t) = 1 denotes that MD i will offload task to the jth
edge-cloud server in time slot t. Thus, the transmission delay
of MD i can be derived as follows.

dc
ij (t) =

bij (t) · 1 {Iij (t) = 1}
ri [Pi (t) , hi (t)]

, j ∈ N , t ∈ T , (4)

2Note that, it has been proved that the optimal computing frequency should
be the same within each time slot [6]. Hence the computation task can be
rewritten as bi[·] (t) = fi[·] (t) τ/γi.

3In this paper, we assume that the energy harvested is always used to process
local tasks and offloading.

where 1 {·} is the indicator function. Accordingly, we can
obtain the communication energy consumption of MD i for
offloading task bij (t) to edge-cloud server j as follows.

ec
ij {bij (t) , Iij (t)} = Pi (t) dc

ij (t) . (5)

Next, we present the communication cost model. Let ϕij(t)
denote the unit uplink communication cost from MD i to edge-
cloud server j in time slot t.4 The communication cost can be
expressed as follows.

cij (t) = ϕij (t) bij (t) · 1 {Iij (t) = 1} , i ∈ M, j ∈ N . (6)

2) Edge-Cloud Processing Delay Model: Let fij(t) denote
the CPU clock frequency (in cycle/s) of the allocated virtual
machines at edge-cloud server j for MD i in time slot t.
Since the CPU clock frequency is constrained by the maximum
fmin

j and minimum fmax
j , we have fmin

j ≤ fij (t) ≤ fmax
j .

Accordingly, the processing delay of edge-cloud server j is

dp
ij (t) =

bij (t) · 1 {Iij (t) = 1}
γifij (t)

, j ∈ N . (7)

3) Edge-Cloud Execution Energy Consumption Model: The
computation energy consumption of edge-cloud server j to
process task bij(t) can be calculated as follows.

ep
ij (t) = κj

∫
Δt

(fij (t))2dt, j ∈ N , (8)

where Δt = dp
ij (t) is the processing delay of edge-cloud

server j.

D. Energy Harvesting Model

Assume that the harvested energy arrival process of MDs is
i.i.d. in different time slots. Let δi (t) denote the harvested
energy in time slot t for MD i with the maximum value
δmax
i = P h

i τ , and P h
i be the average energy harvesting

power in the system, which can be obtained through off-
line measurements [34].5 Considering that only part of the
harvested energy can be stored in the battery in practice, let
eh

i (t) represent the harvested energy charged to battery of MD
i in time slot t. We have

0 ≤ eh
i (t) ≤ δi (t) , i ∈ M, t ∈ T . (9)

From Section III-C, we obtain the total energy consumption
of MD i in time slot t as follows.

et
i0 (t) = ep

i0 (t) +
n∑

j=1

ec
ij (t) ·1 {Iij (t) = 1} . (10)

To prevent over-discharging of battery [36], we define the
battery discharging constraint as

Emin
i ≤ et

i0 (t) ≤ Emax
i , (11)

4Note that, the communication cost of each MD is related not only to the
size of the task, but also to the communication mode. For example, the cost
of using cellular communication is higher than that using WiFi. Although the
model adopted is simple, it captures the nature of communication cost and
can be easily extended to other communication models.

5Generally, energy harvesting power P h
i is related to the energy-harvesting

components, e.g., a wind turbine generates around 100mW at wind speeds
2m/s ∼ 9m/s, and dedicated radio frequency (RF) sensors can produce 5μW
at a transmission power of 4W and a distance of 15m [35].
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where Emin
i and Emax

i are the minimum and maximum
discharged energy of the battery in each time slot, respectively.

In order to ensure continuous operation of MDs, the bat-
tery energy level must be sufficient to power for local task
processing and communications at the beginning of each time
slot t. Let Bi (t) denote the battery energy level of MD i at
the beginning of time slot t. Therefore, we have the constraint
of energy consumption of MD i in time slot t as follows.

Emin
i ≤ et

i0 (t) ≤ min {Emax
i , Bi (t)} <∞. (12)

If the inequalities in (12) does not hold, the task has to be
stored in the backlog queue. According Eqs. (9) and (10),
we obtain the dynamics of the energy queue of MD i as
follows.

Bi (t+ 1) = max
{
Bi (t) − et

i0 (t) , 0
}

+ eh
i (t) . (13)

E. Task Offloading Utility Model

In order to evaluate the benefit of processing task in time
slot t, we adopt the logarithmic utility function for each MD
i, which has been widely used in the wireless communications
and mobile computing domain as follows [37]–[39].

uiĵ (t) = ρi log
(
1 + biĵ (t)

)
, i ∈ M, ĵ ∈ {0,N} , (14)

where ρi is a benefit weight parameter of MD i.

F. Revenue Maximization Problem

The EH-enabled MEC offloading system aims to ensure
that each MD has sufficient energy to execute the offload-
ing strategy, and to meet the task queue stability and task
offloading deadline constraints of each MD in each time
slot. Correspondingly, we define the offloading decisions,
processed task, computing resource allocation profiles, and
energy harvesting decisions of the MEC offloading sys-
tem in time slot t as I (t) = {Iij (t)}i∈M,j∈N , b (t) ={
biĵ (t)

}
i∈M,ĵ∈{0,N}

, F(t) =
{
fiĵ (t)

}
i∈M,ĵ∈{0,N}

, and

e (t) =
{
eh

i (t)
}

i∈M, respectively. According to the task
offloading decision, resource allocation, and energy consump-
tion in each time slot, we define the revenue maximization
problem as follows.

P1 : max
I(t),b(t),F(t),e(t)

R = lim
T→∞

1
T

E ×

⎡
⎣T−1∑

t=0

⎧⎨
⎩

∑
∀i,ĵ

(
uiĵ (t) − cij (t) − ψje

p
ij (t)

)⎫⎬
⎭

⎤
⎦

(15)

s.t. (9), (12)

0 ≤
∑
∀ĵ

biĵ (t) ≤ Qi (t) ,

∀i ∈ M, ĵ ∈ {0,N} , t ∈ T (16)

fmin
ĵ

≤ fiĵ (t) ≤ fmax
ĵ

,

∀i ∈ M, ĵ ∈ {0,N} , t ∈ T (17)

Q̄i = lim
T→∞

sup
1
T

T−1∑
t=0

E {Qi (t)} <∞, t ∈ T , (18)

where ψj is the unit energy consumption cost of edge-cloud
server j. Inequality (16) ensures that the sum of the processed
tasks for local execution and offloading does not exceed the
queue backlog of MD i in time slot t; inequality (17) indicates
that the allocated CPU frequency is within the maximum and
minimum range in each time slot; and inequality (18) is the
stability constraint of task queues.

IV. ONLINE DISTRIBUTED DYNAMIC COMPUTATION TASK

OFFLOADING ALGORITHM

In the age of IoT, both edge devices and data volume are
growing rapidly. On one hand, it is difficult or even impossible
to collect the global system status information in real-time.
And the traditional centralized optimization methodologies
may not be applicable to the distributed MEC scenarios with
thousands of heterogeneous IoT applications. On the other
hand, due to the intermittent, heterogeneous, and sporadic
natures of the task arrivals and harvested energy, accurate
prediction of system status is also impossible. As a result,
we develop a distributed dynamic computation task offloading
and computing resource allocation strategy based on the buyer-
seller game theory and perturbed Lyapunov optimization in
this section. We will transform the centralized optimization
problem P1 to a distributed optimization problem P2.

A. Optimization Model Based on Buyer/Seller Game Theory

Processing the offloaded tasks at the edge-cloud servers
incur costs (e.g., computing energy consumption, hardware
cost, etc.), which should be covered by the MDs [42]. This
can be viewed as a “market” in which each MD buys task
processing products from suitable edge-cloud servers. The
MDs can be regarded as buyers (denoted by b) who buy virtual
machines (or, computing resource) to process their offloaded
task, and edge-cloud servers can be viewed as sellers (denoted
by s) who provide computing services to the buyers.

The payment from the buyers (i.e., MDs) should be posi-
tively related to their task offloaded to the sellers (i.e., edge-
cloud servers). In this section, we first define the unit task
payment of MD i who offload a task to the jth edge-cloud
server as pij (t) (in $/bit) in time slot t. Hence, we can define
the offloading payment sij (t) as follows.

sij (t) = pij (t) bij (t) , i ∈ M, j ∈ N . (19)

1) Buyers/MDs Game model: We assume that the MDs are
always rational and seek to maximize their individual revenue.
It is obviously that the optimal strategy of buyers should
take offloaded task, communication costs, and payments into
account. According to (6), (14) and (19), the object function
of buyer i in time slot t is given by

ubi (t) =
∑
∀ĵ

{
uiĵ (t) − cij (t) − sij (t)

}
,

ĵ ∈ {0,N} , t ∈ T , (20)
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To maintain the stability of the battery energy level and guar-
antee the computation performance in the long-term evolution,
we define problem P2 − buyer for buyer i as follows.

P2 − buyer : max
Ii(t),bi(t),ei(t)

ubi

= lim
T→+∞

1
T

E

⎡
⎣T−1∑

t=0

⎧⎨
⎩

∑
∀ĵ

(
uiĵ (t) − cij (t) − sij (t)

)⎫⎬
⎭

⎤
⎦

s.t. (9), (12), (16) −−(18). (21)

2) Sellers/edge-Cloud Servers Game Model: Let sji denote
the reward that edge-cloud server j receives by providing
computing resource for MD i. According to (19), the revenue
of the jth edge-cloud server sji(t) in time slot t is

sji (t) = sij (t) = pij (t) bij (t) , i ∈ M, j ∈ N . (22)

According to (8) and (22), we define the optimization
problem of seller j as follows.

P2 − seller : max
Ij ,Pij ,Fij

usj (t) (23)

= lim
T→∞

1
T

E

[
T−1∑
t=0

{
m∑

i=1

(
sji(t) − ψje

p
ij (t)

)}]
(24)

s.t. pij (t) ≥ 0, i ∈ M, t ∈ T . (25)

B. Game Model Problem Analysis

According to (1) and (13), the optimal strategies of both the
buyers and the sellers are only related to their current states,
and are irrelevant to the states in the past. Therefore, problems
P2 − buyer and P2 − seller are markov decision process
(MDP) problem, and can be solved by MDP or reinforcement
learning (RL) approaches [26]. Unfortunately, compared to
the conventional MEC system with battery-power devices,
the computation offloading and pricing decisions designed
for the EH-enable MEC system are much more complicated
because the CPU clock speed (fiĵ(t)), task request (ai(t)), har-
vestable energy units (δmax

i ), wireless channel state (hi(t)/w),
battery energy levels (Bi(t)), task cache backlogs (Qi(t)),
and price (pij(t)) need to be considered in each time slot.
To use decentralized MDP or RL to solve problem P2−buyer,
we have to consider |fi0(t)|·|ai (t) |·|δmax

i |·|hi (t) /w|·|Bi (t) |·
|Qi (t) | · |pij (t) | states, where |x| denote the number of states
of x. Assuming the average number of states for each item is
100, the total number of states will reach 1014, which requires
a lot of computing power and huge storage space. This is
almost impossible to implement in practice for each MD with
limited computing and storage capabilities.

Therefore, we design an online task offloading and energy
management scheme based on game theory with perturbed
Lyapunov optimization, with greatly reduced complexity and
storage requirements.

C. Game Model Analysis Based on Perturbed
Lyapunov Optimization

1) Buyers/MDs Game Model Based on Perturbed Lyapunov
Optimization: It should be noted that due to the battery energy

causality constraints (11) and (13), the battery energy level is
time-dependent. We first define two important parameters: the
perturbation parameter θi and the virtual energy queue B̃i (t)
of the battery at MD i [41] in the following.

Definition 1: The perturbation parameter θi is a bounded
constant given by

θi ≥ Ẽmax
i + Vi

(
Emin

i

)−1
, (26)

where Ẽmax
i = min

{
κi(fmax

i0 )2τd
i +

∑n
j=1 Pi (t) τd

i , E
max
i

}
.

Definition 2: Let B̃i (t) = Bi (t) − θi denote the virtual
energy queue to track the battery energy level at MD i.
By carefully setting θi, there will be enough battery power
to maintain the local task execution and communications
for MD i.

Theorem 1: The battery energy level always satisfies 0 ≤
Bi (t) ≤ θi + δmax

i in each time slot.
Proof: Please refer to Appendix A. �

Then, we define the Lyapunov function for the computation
task queue and battery virtual energy queue as follows.

L [Θi (t)] =
1
2

{
(Qi (t))2+

(
B̃i (t)

)2
}
. (27)

Obviously, L [Θi (t)] ≥ 0. According to [40], the Lyapunov
Drift is given by

Δ [Θi (t)]=E

{
L [Θi (t+1)] − L [Θi (t)] |Qi (t) , B̃i (t)

}
.(28)

The underlying objective of the online optimal decision is to
minimize the upper bound of the drift-minus-utility function,
which is defined as follows.

Δ [Θi (t)] − ViE {ubi (t) |Θi (t)} , (29)

where Vi ≥ 0 is a non-negative controllable parame-
ter. We have Theorem 2 for an upper bound of the
drift-minus-utility.

Theorem 2: For any given control parameter Vi ≥ 0,
ai (t) ∈ [0, amax

i (t)], and eh
i (t) ∈ [0, δmax

i ], we have

Δ [Θi (t)] − ViE {ubi (t) |Θi (t)}
≤ E

{
Bi (t)

[
eh

i (t) − et
i0 (t)

]
|Θi (t)

}
+E {Qi (t) [ai (t) − bij (t)]|Θi (t)}
+Φi − ViE {ubi (t) |Θi (t)} , (30)

where Φi is a nonnegative constant given by Φi =
1
2

{
(Emax

i )2 + (δmax
i )2

}
+ 1

2

{
(bmax

i )2 + (amax
i )2

}
.

Proof: Please refer to Appendix B. �
It can be seen that minimizing the upper bound of drift-

minus-utility is equivalent to minimize the Right-Hand-Side
(RHS) of inequality (30). According to Theorem 2, we can
transform the optimization problem P2−buyer to P2−buyer′
as follows.

P2 − buyer′ : max
Ii(t),bi(t),ei(t)

Ubi (t)

= Viubi (t) +Qi (t) [bi (t) − ai (t)]
+B̃i (t)

[
et

i0 (t) − eh
i (t)

]
s.t. (9), (11), (16)− (18). (31)
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2) Sellers/Edge-Cloud Game Model: Furthermore, we can
transform the optimization problem P2−seller to P2−seller′
based on the maximum value theory as follows.

P2 − seller′ : max
Ij ,Pij ,Fij

Usj (t)

=
∑
∀i

(
sji(t) − ψje

p
ij (t)

)
, i ∈ M, t ∈ T

s.t. (25). (32)

V. OPTIMAL GAME STRATEGIES AND

STACKELBERG EQUILIBRIUM

In this section, we first analyze the optimal energy har-
vesting, task offloading, and computing resource allocation
strategies. We will then show that the optimal solutions are
Stackelberg Equilibrium (SE) solutions.

A. Optimal Strategy for Buyers/MDs
For each mobile device (MD), there are three fundamental

questions need to be answered: (i) how much harvested energy
should be stored in the battery; (ii) which task should be
processed locally; and (iii) how to select a suitable server for
offloading.

1) Optimal Strategy for Energy Harvesting: According
to (31), we can easily drive the optimal strategy for energy
harvesting as the solution to the following problem.

max
0≤eh

i (t)≤δi(t)
−B̃i (t) eh

i (t) . (33)

Solving the problem, we obtain the optimal amount of energy
to harvest in time slot t as follows.[

eh
i (t)

]∗
= δi (t) · 1

{
B̃i (t) < 0

}
. (34)

If B̃i (t) < 0, MD i should store the maximum amount of
energy δi(t). Otherwise, MD i does not store any energy.

2) Optimal Offloading Strategy: According to (31) and (33),
we obtain the new optimization problem of buyers as follows.

P2 − buyer′′ : max
Ii(t),bi(t)

Ubi (t)

= Viubi (t) +Qi (t) [bi (t) − ai (t)]
+B̃i (t) et

i0 (t)
s.t. (11), (12), (16)− (18). (35)

a) Local execution strategy: Due to the battery
discharging constraint (11), we can obtain the mini-
mum and maximum allocated CPU frequency for MD

i as fL
i0 (t) = max

{
fmin

i ,
√
Emin

i −
∑n

j=1 Pi
b∗ij

ri
/{κiτ}

}

and fU
i0 (t) = min

{
fmax

i0 ,
√
Emax

i −
∑n

j=1 Pi
b∗ij

ri
/{κiτ}

}
,

respectively. If and only if fL
i0 (t) ≤ fU

i0 (t), MD i will process
the task locally.

Proposition 1: According to (35), the optimal local execu-
tion strategy for MD i is given by:

f∗
i0 (t)

=

⎧⎨
⎩
fL

i0 (t) , B̃i (t) < 0, fM
i0 (t) < fL

i0 (t)
fM

i0 (t) , fL
i0 (t) < fM

i0 (t) < fU
i0 (t)

fU
i0 (t) , B̃i (t) ≥ 0 or B̃i (t) < 0, fM

i0 (t) ≥ fL
i0 (t) ,

(36)

where fM
i0 (t) = −A+

�
A2−8B̃i(t)κiτ(Qi+

Viρi
ln 2 )

4B̃i(t)κiτ
, and A =

2B̃i (t)κiγi +Qiτ/γi.
Proof: According to (35), the first order partial derivative

of Ubi (t) with respect to fi0(t) is

∂Ubi (t)
∂fi0 (t)

=
Viρi(

1+ fi0(t)τ
γi

)
ln 2

τ

γi
+Qi

τ

γi
+2B̃i (t)κifi0 (t) τ.

(37)

Furthermore, the second order partial derivative of Ubi (t) with
respect to fi0(t) is given by

∂2Ubi (t)
∂fi0(t)

2 = − Viρi(
1 + fi0(t)τ

γi

)2

ln 2

τ2

γi
2

+ 2B̃i (t)κiτ. (38)

Then we have the following two cases according to (37)
and (38):

• If B̃i (t) < 0, we have
∂2Ubi

(t)

∂fi0(t)
2 < 0. Moreover, the

inequalities (11), (12), (16)–(18) are affine functions.
Hence Ubi (t) is convex with respect to fi0 (t). Defining
the Lagrangian and according to the KKT (Karush-
Kuhn-Tucker) conditions [43], we find the global opti-

mum fM
i0 (t) | ∂Ubi

(t)

∂fi0(t) =0
= −A+

�
A2−8B̃i(t)κiτ(Qi+

Viρi
ln 2 )

4B̃i(t)κiτ
.

Accordingly, if fL
i0 (t) < fM

i0 (t) ≤ fU
i0 (t), then the

optimal solution is f∗
i0 (t) = fM

i0 (t). If fM
i0 (t) ≤ fL

i0(t),
then the optimal solution is f∗

i0 (t) = fL
i0 (t). If f∗

i0 (t) >
fU

i0 (t), then the optimal solution is f∗
i0 (t) = fU

i0 (t).
• If B̃i (t) ≥ 0, we have

∂Ubi
(t)

∂fi0(t) > 0. Ubi (t) is a monotone
increasing function of fi0 (t). Therefore, the optimal
solution is f∗

i0 (t) = fU
i0 (t) in this case.

�
b) Offloading strategy: At the beginning of each time

slot, each MD should first select one or more appropriate edge-
cloud servers, which will be discussed later in Section VI-A.
Once the server is chosen, we have the following proposition.

Proposition 2: For a chosen edge-cloud server j, the optimal
offloaded task is given by

b∗ij (t) =

⎧⎪⎨
⎪⎩
bLij (t) , bMij (t) < bLij (t)
bMij (t) , bLij (t) ≤ bMij (t) < bUij (t)
bUij (t) , bMij (t) ≥ bUij (t) ,

(39)

where bMij = ρi

C − 1, C = ϕij ln 2 + pij(t)ln 2 −
ln 2
Vi

(
Qi + B̃i (t) Pi

ri

)
, and bLij (t) and bUij (t) are the minimum

and maximum offloaded task, respectively, which will be
defined in Section VI-A.

Proof: According to (35), the first order partial derivative
of Ubi with respect to bij (t) is

∂Ubi (t)
∂bij (t)

= Vi

{
ρi

1
(1 + bij) ln 2

− ϕij − pij(t)
}

+Qi + B̃i (t)Pi/ri, (40)

and the second order partial derivative of Ubi (t) with respect
to bij(t) is

∂2Ubi (t)
∂bij(t)

2 = −Vi

{
ρi

1
(1 + bi0)

2ln 2

}
. (41)
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Obviously,
∂2Ubi

(t)

∂bij(t)2
< 0 and Ubi (t) is convex with respect to

bij (t). According to the KKT conditions, we can get the global
optimum bMij = ρi

C − 1. If bLij < bMij ≤ bUij , then b∗ij = bMij ; if
bMij ≤ bLij , then b∗ij = bLij ; and if bMij > bUij , then b∗ij = bUij . �

B. Optimal Strategy for Sellers/edge-Cloud Servers
For each seller/edge-cloud server, we need to determine the

optimal price (i.e., pij(t)) and computing resource allocation
(i.e., fij(t)) according to buyers’ requirements. Following (32)
and (39), we obtain the first order partial derivative of Usj (t)
with respect to pij(t) as
∂Usj (t)
∂pij (t)

= b∗ij − pij
ρi

C2
ln 2 + 2ψjκjb

∗
ij

ρi

C2

γi
2

τ
ln 2, (42)

and the second order partial derivative of Usj (t) with respect
to pij(t) as

∂2Usj (t)

∂pij(t)
2 = −2ρi(ln 2)2

C2

×{ B

C ln 2
+
ψjκjb

∗
ij

γi
2

τ

C
+ ψjκj

γi
2

τ

ρi

C2
}, (43)

where B = ϕij ln 2+ψjκjb
∗
ij

γi
2

τ ln 2− ln 2
Vi

(
Qi + B̃i (t) Pi

ri

)
.

For each seller, it is natural that the revenue Usj (t) should
be non-negative [42]. Letting Usj (t) = 0, we obtain the cost

price of seller j as pc
ij (t) = ψjκjb

∗
ij

γi
2

τ , which means that
the minimum acceptable selling price of the seller is pc

ij (t).
Theorem 3: If the selling price of seller j is greater than

pc
ij (t), we have

∂2Usj
(t)

∂(pij(t))2
< 0.

Proof: Since the minimum acceptable price of server
j is pc

ij (t), we have pc
ij (t) ≤ pij (t). Then, we have

B = ϕij ln 2 + pc
ij (t) ln 2 − ln 2

Vi

(
Qi(t) + B̃i (t) Pi

ri

)
≤

C. Since C > 0, we have ϕij ln 2 + pc
ij (t) ln 2 >

ln 2
Vi

(
Qi(t) + B̃i (t) Pi

ri

)
. Thus we have 0 < B

C ≤ 1 and
∂2Usj

(t)

∂(pij(t))
2 < 0. �

Since (25) is an affine function, Usj (t) is convex with
respect to pij (t). The optimal strategies in (32) can be
obtained by solving the Lagrangian Multiplier and KKT
conditions as follows.

p∗ij (t) =
C2

ρi ln 2
b∗ij (t) + 2ψjκjb

∗
ij (t)

γi
2

τ
. (44)

f∗
ij (t) =

b∗ij (t) γi

τd
i

. (45)

C. Existence of the Stackelberg Equilibrium
In this section, we prove that the optimal solution(
b∗ij (t) , p∗ij (t)

)
, i ∈ M, j ∈ N , t ∈ T is the Stackelberg

Equilibrium (SE) solution. For simplicity, we analyze the
optimal offloaded task (bij(t)) and price (pij(t)) solutions in
one time slot, which can be extended to other time slots easily.
First, the SE of the proposed game is defined in the following.

Definition 1:
(
bSE
ij (t), pSE

ij (t)
)

is an SE solution when the
price pij (t) of seller is determined, and bSE

ij (t) satisfy

Ubi

(
bSE
ij (t)

)
= sup

bmax
ij ≤bij(t)≤bmin

ij

{Ubi (bij (t))} , ∀t ∈ T ,

(46)

and when the offloaded task bij (t) is determined, and pSE
ij (t)

satisfy

Usj

(
pSE

ij (t)
)

= sup
pij(t)≥pc

ij

{
Usj (pij (t))

}
, ∀t ∈ T . (47)

Next we prove that the optimal solution
(
b∗ij (t) , p∗ij (t)

)
is(

bSE
ij (t) , pSE

ij (t)
)
.

Lemma 1: If the price pij (t) of the seller/edge-cloud server
is fixed, the revenue function Ubi (bij (t)) of buyer/MD takes
the maximum value at b∗ij (t).

Proof: Proposition 2 shows that problem P2 − buyer′′

is convex with respect to bij(t). Thus the revenue function
Ubi (sij (t)) assumes its maximum value at b∗ij (t). According
to Definition 1, b∗ij (t) is the SE bSE

ij (t). �
Lemma 2: For buyers, the optimal offloaded task b∗ij (t)

decreases with the increased seller’s price pij (t).
Proof: According to (39), we have

∂b∗ij(t)

∂pij(t) = − ρi

C2 ln 2 <
0. Hence, b∗ij (t) is a monotonously decreasing function of
pij (t). It means that if the seller’s price increases, the buy-
ers will be more reluctant to buy, resulting in little or no
revenue for seller. Thus, the sellers should adopt a suit-
able price. We obtain the seller’s optimal price by solving
∂Usj

(pij(t))

∂pij(t)
= 0. �

Lemma 3: If the optimal offloaded task b∗ij (t) of buyer/MD
i is fixed, the Usj (pij (t)) of seller takes the maximum value
at p∗ij (t).

Proof: According to Theorem 2, problem P2 − seller′

is convex with respect to pij(t). Thus the revenue function
Usj (pij (t)) takes the maximum value at p∗ij (t). According
to Definition 1, p∗ij (t) is the SE pSE

ij (t). �
In summary,

(
b∗ij (t) , p∗ij (t)

)
is the optimal task offload-

ing and price decisions, and it is also the SE solution(
bSE
ij (t) , pSE

ij (t)
)
.

Fig. 2 illustrates the relationship and interaction among
the optimizations of task offloading, on-demand computing
resource allocation, and battery energy management at each
time slot. First, each MD/buyer needs to determine the energy
harvesting decision on the basis of the sign of the virtual
energy queue B̃i (t). After that, the task offloading and com-
puting resource allocation strategies will be obtained among
MDs/buyers and servers/sellers. Each MD/buyer decides task
offloading bij(t) and local execution fi0(t) strategies accord-
ing to the announced market price pij(t) of servers/sellers.
Next, each server/seller updates selling price and allocates
computing resource for heterogeneous MDs/buyers, and then
MDs/buyers update their strategies. Note that several iterations
may be necessary in the game to achieve convergence to
the SE solutions

(
bSE
ij (t) , pSE

ij (t)
)
. Finally, the servers/sellers

can allocate on-demand computing resource to heterogeneous
MDs through different equilibrium price pSE

ij (t).

VI. OFFLOADING PRE-SCREENING CRITERION AND PRICE

UPDATE STRATEGY DESIGN

In this section, we develop an offloading pre-screening
criterion to reduce the unnecessary communication signaling
overhead and improve the efficiency of task processing. And
then, the price update strategies of the sellers are designed.
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Fig. 2. Relationship and interaction among the optimizations in the market.

A. Offloading Pre-Screening Criterion

Heterogeneous mobile devices (MDs) have different battery
energy level, offloading requirements, and traffic characteris-
tics (e.g., task types and computation density). Moreover, since
edge-cloud servers have different computing resources (e.g.,
availability of computing resource and computing costs) and
are at different locations, the servers will set different prices
to serve different MDs, which may not be appropriate for
each MD. To reduce the unnecessary communication signaling
overhead, it is essential that each MD selects one or more
appropriate edge-cloud servers at the beginning of each time
slot. There are two main factors that affect the MDs’ offloading
selection decisions: (i) the battery discharging constraint factor
(B) and (ii) the price factor (P).

Criterion B: This is the battery discharge constraint of each
MD (11). We derive the minimum offloaded task in each time
slot as follows.

bLij (t) = min
{
fmin

j τ/γi, (Emin
i −D)ri/Pi(t)

}
, (48)

where D = κi[f∗
i0 (t)]2τ −

∑
∀x∈N ,x 
=j Pi(t)b∗ix(t)/ri.

Accordingly, the maximum offloaded task in each time slot
as follows.

bUij (t) = min
{
QL

i (t) , (min {Emax
i , Bi (t)} −D)ri/Pi(t)

}
,

(49)

where QL
i (t) = Qi(t) − bi0 (t) −

∑
∀x∈N ,x 
=j b

∗
ix(t).

If and only if bLij (t) ≤ bUij (t), it is feasible for MD i to
offload task to edge-cloud server j. Otherwise, the edge-cloud
server j will be excluded for MD i.

Criterion P: Due to different prices at the edge-cloud
servers, each MD should first choose (or exclude) those more
(or less) beneficial servers6 and determine how many tasks to
offload.

According to (40) and letting
∂Ubi

(t)

∂bij(t) |bij(t)=bmin
ij

> 0,
we have

pij(t) <
ρi(

1 + bmin
ij

)
ln 2

− ϕij +
Qi(t) + B̃i (t) Pi

ri

Vi
. (50)

That is, if the quote price of edge-cloud server j satisfies
inequality (50), the MD will obtain a large revenue Ubi by
increasing bij . When bij(t) = bmin

ij , it is beneficial for MD i
to offload tasks to edge-cloud server j. Otherwise, the edge-
cloud server j will be excluded for MD i.

6it is natural that each MD chooses edge-cloud servers by observing how

Ubi
varies with bij , i.e., the sign of

∂Ubi
(t)

∂bij(t)
.

Furthermore, Theorem 3 indicates that the floor price of
seller j for buyer i is pmin

ij = ψjκjb
min
ij γ2

i /τ . It follows that

ψjκjb
min
ij

γ2
i

τ < ρi

(1+bmin
ij )ln 2

− ϕij +
Qi(t)+B̃i(t)

Pi
ri

Vi
. Thus we

have

Qi (t) + B̃i (t) Pi

ri

Vi
>

ρi(
1 + bmin

ij

)
ln 2

− ϕij − ψjκjb
min
ij

γ2
i

τ
.

(51)

At the beginning of each time slot, due to constant Qi(t) and
B̃i (t), the number of available servers is related to the control
parameter Vi. The smaller the Vi, the more servers available.

B. Price Update Strategy
We first define the rth quoted price of seller j to buyer i

as pr
ij(t) in time slot t. When the quote price strategies of

all sellers are determined, each buyer decides task process-
ing strategies (executed locally or offloaded) based on (36)
and (39). According to Lemma 1, we know that the SE
solutions of buyers are b∗ij(t), for all i ∈ M and for all j ∈ N .

Once the buyers reach the SE solutions, the sellers adjust
price strategies based on the computation requirements of
buyers. And the price update rate of sellers can be expressed
as the Marginal Utility (MU) [44]. The price iteration process
can be expressed as follows.

pr+1
ij (t) = pr

ij (t) + ν
∂Usj (t)
∂pr

ij (t)
, (52)

where ν is the step size of price iteration, and
∂Usj

(t)

∂pr
ij(t) =

b∗ij (t) + pr
ij (t) ∂bij(t)

∂pr
ij(t)

− 2ψjκj
b∗ij(t)γ

2
i

τ
∂bij(t)
∂pr

ij(t) . To obtain the

(r + 1)th quote price of equation (50), each seller needs
to receive feedback information b∗ij(t) and

∂b∗ij(t)

∂pr
ij(t)

from the
buyers.

For each seller, the revenue increases with the increase
of quote price. Nevertheless, according to Definition 1 and
Lemma 3, Usj (t) is a convex function of pij(t), which
means that the seller cannot further increase the price when
∂Usj

(pij(t))

∂pij(t)
= 0. Thus the seller price will reach the SE under

the aforementioned constraints. Based on the above analysis,
when all the sellers reach the SE, all of the buyers will reach
the SE as well.

C. Computational Complexity Analysis
In the proposed scheme, the computational complexity is

affected by the number of available servers/sellers for buyers,
and the number of iterations among the buyers and sellers.
Let ñi denote the number of available servers for MD i, and
Γis denote the number of iterations between MD i and server
s, s ∈ [0, ñi]. For each MD and one suitable server (e.g.,
MD i and server s), the computational complexity is O (Γis).
Overall, the computational complexity of the proposed scheme

is O

(∑
s

Γis

)
.

VII. PERFORMANCE EVALUATION

To evaluate the effectiveness and rationality of the pro-
posed online Distributed Offloading and Computing resource
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management with Energy harvesting (DOCE) scheme for
MEC-enabled heterogeneous IoT, we design three sets of
simulations. First, we simulate the iterations of price update
and the convergence speed in each time slot, and show
the dynamic transaction prices in different time slots. Next,
we show the differentiated and on-demand resource allocation
for heterogeneous mobile devices (MDs). Finally, we conduct
a comparison study with three benchmark schemes.

A. Simulation Setting
In the following simulations, we consider the scenarios with

multiple MDs/buyers and multiple edge-cloud servers/sellers.
For each MD, the task computation density γi is uniformly
distributed between 800 cycle/Mbit and 1500 cycle/Mbit,
and the arrival rate λi is distributed between 2 Mbit/s and
75 Mbit/s. The average energy harvesting power P h

i (e.g.,
Piezoelectric generators [29]) is distributed between 2 mW to
50 mW, and harvested energy is uniformly distributed between
0 and δmax

i = P h
i τ . The minimum and maximum battery

dischargesare Emin
i = 0.01 mJ and Emax

i = 1 J in each
time slot, which correspond to the Li-Ion batteries [45]. For
each edge-cloud server, the minimum and maximum CPU
frequency are fmin

j = 0.015 GHz and fmin
j = 4 GHz,

respectively. In addition, similar to [6] and [7], we set ρi = 2,
fmin

i = 0.01 GHz, fmax
i = 2 GHz, κi = 1×10−6 ∼ 2×10−7,

Vi = 100 ∼ 1000, ϕi = 0.06 ∼ 0.24, κj = 1 × 10−7 ∼ 10 ×
10−7, ψj = 1, τ = 1s, and Pi = 2 mW. Moreover, the price
update step is set to 5 × 10−5, and each measurement is
averaged over 20 instances. All the simulations are performed
on a Workstation PC with Intel E5-2630 2.4GHz and 32GB
memory.

B. Dynamic Price Update and Computing Resource
Allocation of the Proposed Scheme

In this simulation, we illustrate the iteration of the quote
price and offloaded task updates in the proposed game. For
easy observation, we consider one MD (i.e., m = 1) and four
suitable edge-loud servers (i.e., n = 4) at different distances
with lij,j=1,2,3,4 = 2, 4, 6, 10 m, κj = 1×10−7, 2×10−7, 4×
10−7, 8 × 10−7, λi = 10 Mbit/s, and Vi = 100.

1) Price Update and Convergence Speed: Fig. 3 shows
the price updates at the edge-cloud servers/sellers and the
offloaded task at the MD/buyer, as well as the convergence
speed of the proposed scheme. In Fig. 3(a), the prices have a
big initial increase and then gradually increase with iterations,
finally approaching the optimal strategies (p∗ij(t)). In each

iteration, sellers check whether
∂Usj

(t)

∂pij(t)
> 0 or not. If yes,

the pricing is updated; otherwise, the procedure is terminated.
The number of iterations until convergence is about 25.
It can be seen from Fig. 3(b) that, since the initial price
(pc

ij) of sellers are lower, the offloaded task of the buyer
first increases and then quickly decreases along iterations,
eventually converging to the optimal value. Moreover, Fig. 3
illustrates that the bigger the communication distance and κj ,
the higher the optimal price. We also observe the opposite
trend for offloaded tasks. This is because that the unit cost of
processing tasks increases with the communication distance

Fig. 3. The evolution of the seller prices and the offloaded tasks.

and κj , and the sellers have to maximize their revenue at a
higher price. Accordingly, the buyer is likely to purchase more
computing resource and offload more tasks to the edge-cloud
servers with a lower price to maximize its revenue. According
to Section V-C the optimal prices and the offloaded task are
also SE solutions.

2) Dynamic Transaction Prices and Offloaded Tasks:
Fig. 4 shows the evolution of the transaction prices of
the servers/sellers and the offloaded tasks of the MD/buyer.
Fig. 4(a) shows that the transaction prices among the buyer
and sellers are gradually increasing until it stabilizes. And
the offloaded tasks exhibit the same trend in Fig. 4(b). This
is because that the queue backlog and battery energy level
increase progressively before they become stable (as can be
seen from the simulation results in the next subsection). The
MD has more sufficient energy to process or offload task
as time increases. Simultaneously, to ensure the stability of
the task queue, more tasks need to be processed, i.e., the
buyer needs to buy more computing resource from the sellers.
When the battery energy level and task queue become stable,
the transaction price and offloaded task do not increase further.

C. Differentiated Resource Allocation of
the Proposed Scheme

In this simulation, we consider three sets of heterogeneous
MDs (m = 3) with different computation density and latency
requirements, and set V1 = 100, γ1 = 1500, λ1 = 10Mbit/s,
V2 = 300, γ2 = 1000, λ2 = 8Mbit/s, and V3 = 600, γ3 = 800,
λ3 = 5Mbit/s,. The edge-cloud servers are the same as that in
Section VII-B.

Fig. 5 shows the battery energy level, the task queue
backlog, the revenue of the buyers, and the average computing
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Fig. 4. Transaction price and offloaded task versus time.

resource allocation over time. Fig. 5(a) and Fig. 5(b) show
that both the battery energy level and task queue backlog
achieve stability in the long-time evolution. The results also
validate the feasibility of the system. Moreover, the battery
energy level of each MD is stable at the perturbed energy
level θi + δmax

i .
As we can see from the simulation results, since different

devices have different requirements and data characteristics,
they have different chronological order to reach stability. For
example, because MD1 has a larger task arrival rate and
a smaller task cache demand, the task queue backlog of
MD1 will converge faster than other devices. Correspondingly,
the battery energy level, revenue, and average resource allo-
cated to MD1 also become stable first. As shown in Fig. 5(c)
and Fig. 5(d), due to the different requirements and character-
istics of the MDs, different MDs are allocated with different
computing resources. For example, since MD1 has a higher
latency sensitivity and greater computational density than
others, MD1 requests, and is allocated with more computing
resource at the cost of revenue.

D. Comparison Study
In this simulation, we conduct experiments to evaluate

the performance in terms of system revenue, average energy
efficiency (i.e., the processed task divided by system energy
consumption), battery energy, and task queue backlog with the
following three benchmark schemes.

• The Local-only scheme processes all tasks locally.
Note that this scheme disables computation offload-
ing, i.e., b∗ij(t) = 0. The minimum and maximum

CPU frequency are fL
i0 (t) = max

{
fmin

i0 ,
√

Emin
i

κiτ

}
and

fU
i0 (t) = min

{
fmax

i0 ,

√
min(Emax

i ,Bi(t))
κiτ

}
, respectively.

This allows us to demonstrate the improvement effects
by invoking computation offloading.

• The Dynamic Naive Offloading (DNO) scheme is to let
the MDs do their best to process task locally or offload
to the optimal edge-cloud server in a centralized man-

ner [6]. We set f∗
i0 (t) =

(
Vi

−2B̃i(t)κi

) 1
3

and b∗ij (t) =

min
{
Qi (t) − b∗i0 (t) , min{Emax

i ,Bi(t)}−κi[f
∗
i0(t)]τ

Pi(t)
ri

}
.

• The Dynamic Greedy Offloading (DGO) scheme pro-
posed in [7] processes computation tasks to maximize
the system revenue in a centralized manner. Compared
with this scheme, we can demonstrate the performance
of the differentiated and on-demand dynamic computing
resource allocation for heterogeneous MDs.

1) Performance Versus Time: Fig. 6 shows the performance
comparison of average revenue, energy efficiency, battery
energy level, and task queue backlog over long-term evolution.
We can see from Fig. 6(a) and Fig. 6(c) that the average
system revenue and battery energy level gradually increase
initially. This is because that the processed task gradually
increases as the backlog of the task queue increases. After
that, since the processed task becomes stable or reaches the
maximum, the average system revenue and the battery energy
level reach stable values. Fig. 6(b) and Fig. 6(d) show that
although the DNO scheme has a lower task queue backlog
at the beginning, its performance is inadequate in the long-
term due to its simple resource allocation method. Moreover,
we can see that the DOCE scheme, with a differentiated and
flexible computing resource allocation algorithm, outperforms
the other three schemes significantly in average system rev-
enue, energy efficiency, and task queue latency.

2) Varying Task Arrival Rate: Fig. 7 presents a performance
comparison of the four schemes under increased task arrival
rate, including the system revenue, the energy efficiency, the
battery energy level, and the task queue backlog. We can see
from Fig. 7(a), Fig. 7(b), and Fig. 7(c) that the average system
revenue, the energy efficiency, and the maximum battery
energy level all gradually decrease with the increased task
arrival rate. This is because that as the task arrival rate is
increased, there are more backlog in the task queue, as can
be seen from Fig. 7(d), and there are more tasks need to
be processed locally or offloaded at the expense of revenue,
energy efficiency, and battery energy. Moreover, the overall
performance of the proposed scheme is significantly better
than the DNO and DGO schemes.

3) Varying Energy Harvesting Capability: Fig. 8 presents
our performance comparison under varying energy harvesting
capability of the MDs. As we can see from Fig. 8(a) and
Fig. 8(c), the average system revenue and the maximum
battery energy level gradually increase and then converge to
stable values with the increase of the average energy harvesting
power. The average energy efficiency and the maximum task
queue backlog gradually decrease, as shown in Fig. 8(b) and
Fig. 8(d). This is because that with the increase of energy
harvesting power, the MDs have more battery energy and will
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Fig. 5. Battery energy level, queue backlog, revenue, and resource allocation versus time.

Fig. 6. Performance comparison of average revenue, energy efficiency, battery energy level, and task queue backlog over time (λ = 10Mbit/s
and P h = 10mW ).

prefer to process more tasks locally or offload them to the
edge servers. As the energy harvesting power exceeds 20 mW,
the renewable harvested energy in real time is sufficient

to support the need of each MD. The revenue and energy
efficiency of the proposed scheme are both significantly higher
than that of the DNO and DGO schemes.
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Fig. 7. System performance under increased task arrival rate (P h = 10mW ).

Fig. 8. Performance comparison under varying energy harvesting power (λ = 10Mbit/s).

4) Execution Time: Fig. 9 shows the execution time of
the schemes under different tasks arrival rates and numbers
of available servers. We can observe that the execution time

of the DOCE scheme increases with the increase of task
arrival rate in Fig. 9(a). The reason is that the larger the
offloaded task, the more iterations between each buyer and

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:52:35 UTC from IEEE Xplore.  Restrictions apply. 



6756 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 10, OCTOBER 2021

Fig. 9. Execution time of the different schemes.

seller to reach the SE solution
(
bSE
ij (t) , pSE

ij (t)
)
. We can also

see from Fig. 9(b) that the execution time increases when
more servers are available. This is because each buyer will
play games with more available sellers/servers to obtain the
optimal offloading strategy. Although the execution times of
the Local-ofnly scheme, DNO scheme, and DGO scheme
remain almost unchanged in the simulations, this is based on
the assumption that the network state information is perfectly
and fully known in advance for each MD and server, which
is an ideal assumption in a dynamic and random wireless
network.

VIII. CONCLUSION

In this paper, we investigated a distributed EH-enabled MEC
offloading system for heterogeneous IoT, and jointly optimized
task offloading, computing resource allocation, and battery
energy management based on game-theoretic and perturbed
Lyapunov optimization theory. First, this paper developed
heterogeneous task offloading strategies as well as achieving
the stability of the battery energy level and guaranteed the
computation performance in the long-term evolution. More-
over, aiming to allocate limited edge-cloud computing resource
on demand, a dynamic quote price mechanism of edge-
cloud resource was designed based on different computational
requirements. To reduce the unnecessary communication sig-
naling overhead and choice the suitable edge-cloud servers,
an offloading pre-screening criterion was proposed by balanc-
ing battery energy level, computation latency, and revenue.
The numerical results validated that the proposed distrib-
uted offloading scheme outperforms three baseline schemes.
An unique advantage of the proposed scheme is that it works
online, only requiring the current system state without the
overhead of distributing computation task requests, cloud
available resource, wireless channel state, and EH processes.

Since the computing resource of edge-cloud servers is
finite, they may not be able to respond quickly to bursty
computation requirements. The queueing delay could be high
for computation-intensive tasks. In our future work, we will
address the queueing delay in the cloud. Moreover, extensive
experiments will be conduct to verify the effectiveness and
reliability of the proposed algorithm in a realistic system in
the future.

APPENDIX A
PROOF OF THEOREM 1

Proof: According to the energy harvesting optimal strat-
egy (34), only if B̃i (t) ≤ 0, namely, Bi (t) ≤ θi, the MD i
needs to harvest energy δa

i (0 ≤ δa
i (t) ≤ δmax

i ). Thus, we have
0 ≤ Bi (t) ≤ θi + δmax

i in time slot t. Next, we show that
Bi (t+ 1) ≤ θi + δmax

i in the following.

1) If B̃i (t) > 0, i.e., Bi (t) > θi, MD i will not harvest
energy and thus [ea

i (t)]∗ = 0. We have Bi (t+ 1) ≤
Bi (t) + δmax

i ≤ θi + δmax
i .

2) If B̃i (t) ≤ 0, i.e., Bi (t) ≤ θi, MD i will harvest energy
and thus [ea

i (t)]∗ = δi(t). We also have Bi (t+ 1) ≤
Bi (t) + δmax

i ≤ θi + δmax
i .

Following the iteration relationship of Bi (t), we thus have
that the battery energy level of MD i always satisfies 0 ≤
Bi (t) ≤ θi + δmax

i in each time slot t. �

APPENDIX B
PROOF OF THEOREM 2

Proof: Since bij(t) ≥ 0, ai(t) ≥ 0, eh
i (t) ≥ 0 and ei0(t) ≥

0, we have the following inequality.

L [Θi (t+ 1)]

=
1
2

{
(Qi (t))2 + 2Qi (t) (ai (t) − bi (t))

}
+

1
2

{
(ai (t))2 + (bi (t))2

}
+

1
2

{
(Bi (t))2 + 2Bi (t)

(
eh

i (t) − et
i0 (t)

)}
+

1
2

{(
eh

i (t)
)2

+
(
et

i0 (t)
)2

}
≤ 1

2
(Qi (t))2 +Qi (t) (ai (t) − bi (t))

+
1
2
(Bi (t))2 +Bi (t)

(
eh

i (t) − et
i0 (t)

)
+ Φi, (53)

where Φi = 1
2 (amax

i )2 + 1
2 (bmax

i )2 + 1
2

(
δh
i

)2 + 1
2 (Emax

i )2 ≥
0. According to inequality (53), we can deduce the follow
inequality.

Δ [Θi (t)] ≤ E {Qi (t) (ai (t) − bi (t))}
+E

{
B̃i (t)

(
eh

i (t) − et
i0 (t)

)}
+ Φi. (54)
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Adding −ViE (ubi (t) |Θi (t)) on both sides of (54), we have
the inequality (30). �
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