
8230 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 11, NOVEMBER 2023

Joint Optimization of Sensing and Computation for
Status Update in Mobile Edge Computing Systems

Yi Chen , Zheng Chang , Senior Member, IEEE, Geyong Min , Senior Member, IEEE,
Shiwen Mao , Fellow, IEEE, and Timo Hämäläinen , Senior Member, IEEE

Abstract— IoT devices have been widely utilized to detect state
transition in the surrounding environment and transmit status
updates to the base station for system operations. To guarantee
the accuracy of system control, age of information (AoI) is
introduced to quantify the freshness of the sensory data and
meet the stringent timeliness requirement. Due to the limited
computing resources, the status update can be offloaded to the
mobile edge computing (MEC) server for execution. Since status
updates generated by insufficient sensing operations may be
invalid and lead to additional processing time, a joint data sensing
and processing optimization problem needs to be considered.
Therefore, this work formulates an NP-hard problem that consid-
ers the freshness of the status updates and energy consumption
of the IoT devices. Subsequently, the problem is decomposed
into sampling, sensing, and computation offloading optimization
problems. To optimize the system overhead, a multi-variable iter-
ative system cost minimization algorithm is proposed. Simulation
results illustrate the efficacy of our method in decreasing the
system cost, and indicate the influence of sensing and processing
under different scenarios.

Index Terms— Age of information, mobile edge computing,
computation offloading, status update.

I. INTRODUCTION

A. Background and Motivation

WITH the development of Internet of Things (IoT),
ubiquitous connections of billions of IoT devices rang-

ing from tiny IoT sensors to more powerful smarts phones
are envisioned [1]. To realize various IoT applications like

Manuscript received 11 November 2022; revised 20 February 2023;
accepted 11 March 2023. Date of publication 30 March 2023; date of current
version 13 November 2023. This work was supported in part by the National
Natural Science Foundation of China (NSFC) under Grant 62071105, in part
by the Sichuan Natural Science Foundation under Grant 2022NSFSC0544,
and in part by the NSF under Grant ECCS-1923717. The associate editor
coordinating the review of this article and approving it for publication was
D. Niyato. (Corresponding author: Zheng Chang.)

Yi Chen is with the School of Computer Science and Engineering, Uni-
versity of Electronic Science and Technology of China, Chengdu 611731,
China.

Zheng Chang is with the School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 611731,
China, and also with the Faculty of Information Technology, University of
Jyväskylä, 40014 Jyväskylä, Finland (e-mail: zheng.chang@jyu.fi).

Geyong Min is with the Department of Computer Science, University of
Exeter, EX4 4QF Exeter, U.K.

Shiwen Mao is with the Department of Electrical and Computer Engineer-
ing, Auburn University, Auburn, AL 36849 USA.

Timo Hämäläinen is with the Faculty of Information Technology, University
of Jyväskylä, 40014 Jyväskylä, Finland.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2023.3261338.

Digital Object Identifier 10.1109/TWC.2023.3261338

object recognition, traffic monitoring and autonomous driving,
vast information from the physical world should be extracted
and transformed into status updates to implement intelligent
control for IoT devices [2]. As the processing operations
of the status update are time-consuming and computation-
intensive, it is an arduous task to process the sensory data
timely for IoT devices with limited storage and computation
capacity. Mobile edge computing (MEC) has been regarded as
a promising technology to overcome the resource constraints
of IoT devices by providing cloud-like computing resources
at the network edge [3], [4]. In this case, IoT devices are able
to offload the computing tasks to the nearby MEC server for
further execution. By deploying powerful computing resources
in proximity to IoT devices and executing computing tasks
on behalf of IoT devices, there is a significant potential to
boost the development of IoT with extensive applications
[5], [6]. For example, the implementation of MEC-assisted
IoT systems has led to the emergence of a variety of real-time
sensing applications, such as healthcare monitoring [7], intel-
ligent agriculture [8], and disaster detection [9], that have
greatly benefited from this technology. In the context of
smart agriculture, the MEC-assisted IoT system offers a more
efficient method for collecting and analyzing data from a
field or crop. By deploying various IoT devices to gather
information on factors such as soil, weather, and irrigation
and processing status information with the help of edge
servers, the system is able to quickly and effectively process
this data, making it available to a central control unit for
decision-making purposes. This allows for more informed
choices on when to plow the field and when to harvest
the crop.

Moreover, the accurate monitoring of the IoT system relies
on the strict requirement on the freshness of the collected
information. Recently, age of information (AoI) defined as the
time elapsed since the generation of the last status update,
has been adopted as a performance metric to quantify the
freshness of generated status information [10]. When an IoT
device generates and receives a status update successfully,
its value of AoI is reset to 0. The AoI of the status update
increases linearly with time until the next status update is
successfully received. The average value of the AoI during
the continuous sensing periods reflects the freshness of the
sensory data [11]. By introducing the concept of AoI, the
abstract information freshness problem can be transformed
into a concrete mathematical optimization problem.

1536-1276 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1785-9626
https://orcid.org/0000-0003-3766-820X
https://orcid.org/0000-0003-1395-7314
https://orcid.org/0000-0002-7052-0007
https://orcid.org/0000-0002-4168-9102

CHEN et al.: JOINT OPTIMIZATION OF SENSING AND COMPUTATION FOR STATUS UPDATE IN MEC SYSTEMS 8231

The typical IoT system can be constructed as a three-layered
structure including the sensing layer, the network layer and the
application layer [12]. Sensing of the IoT device is considered
as the process that the IoT device observes the environment
transition and generates the status update when necessary.
In the sensing layer, the IoT devices keep sensing the state
transition process and generating state updates periodically.
The periodic sensing model is the preferred choice for appli-
cations requiring constant monitoring of crucial conditions
or processes, including temperature, pressure, and humidity
[13], [14], [15]. This model ensures real-time surveillance,
promoting consistent and accurate data collection. Then, the
sensory data are transmitted through the network layer for
processing and future system control. Processing of the sta-
tus update includes determining whether a status update is
valid and extracting the necessary information from the status
update to perform system control. By repeatedly receiving the
valid status update from different IoT devices, the AoI at the
BS can be reduced during the system control process [16].
Although numerous works have been done on how to reduce
the AoI in IoT system, prior works mainly focus on the joint
optimization of sensing and communication [2], [16], [28].
However, data processing, which also plays a crucial role in
determining the freshness of the data, needs to be considered
concurrently with the sensing part due to the connection
between the sensing time and the processing time.

In the sensing layer, in order to ensure the information
freshness on the BS side, IoT devices should perform the
sampling operations and generate status updates at as high
a frequency as possible. With the short sampling interval,
the BS can achieve a low value of AoI due to the fre-
quent status updates [17]. But sampling the state transition
frequently brings additional energy consumption, which is
not negligible for IoT devices with limited battery capacity.
Moreover, successful sensing may be a random event for IoT
devices due to the possible state tracking error rate [18], [19].
Longer sensing time can significantly improve the sensing
successful probability, at the cost of additional time overhead
and freshness of status updates. In addition, if the sensing time
is insufficient, multiple sensing failures can lead to multiple
unnecessary repetitions of the sensing process. As the data
sensing-processing procedure shown in Fig. 1, the IoT device
that performs sensing operations three times will receive a
longer sensing time and a short total task duration time.
Nevertheless, the IoT device which only performs a single
sensing operation generates the invalid update unfortunately
and has to execute the extra sensing-processing procedure until
the sensing operation is successful. Thus, the sensing time of
the IoT device should be explicitly considered to obtain the
minimum time overhead.

In the processing part, since some information embedded in
the sensory data requires further processing before it can be
utilized for further system control, the execution time of the
sensing task of the IoT device also has a significant impact
on the freshness of the status update. Due to the computation
capacity limitations of the IoT devices themselves, they would
prefer to offload the tasks to the MEC server for execution
to obtain a shorter processing time. But selfish IoT devices

Fig. 1. Example of the sensing-processing procedure.

will compete for limited computational and communication
resources, which may create utility conflicts and increase the
system overhead during the computation offloading decision-
making process [20], [21].

B. Contribution

In view of these above-mentioned challenges, we further
analyze the joint optimization problem of sensing and process-
ing in MEC system. By investigating the effects of sampling,
sensing, and processing on system overhead independently,
we seek to realize the IoT device sensing and processing
trade-off in terms of the information freshness and energy
consumption for IoT devices. The main contributions of the
paper can be summarized as follows.
• We first introduce an MEC-assisted IoT system, where the

IoT devices keep generating status updates periodically.
Then, the sensing, data transmission and task processing
are modeled separately and the AoI of the sensory data
during the status updating process is formulated.

• A joint sensing and processing optimization problem
is formulated for status updates to minimize the sys-
tem overhead including the energy consumption and the
information freshness. Then, the NP-hard problem is
transformed into three subproblems to optimize the sam-
pling interval, sensing time and computation offloading
decision individually.

• We solve the sensing and sampling subproblems with
extremum principles, and solve the computation offload-
ing decision-making problem with a game-theoretic
approach. Then, a multi-variable iteration system cost
optimization algorithm (MISCO) is proposed to minimize
the system overhead.

• Extensive simulations are conducted to present the effec-
tiveness of our proposed optimization algorithm. Numer-
ical results illustrate the connection between data sensing
and processing.

C. Organization

The rest of this paper is organized as follows. In Section II,
a literature review is conducted. In Section III, we present
the MEC-assist IoT system model and formulate the sensing,
transmission and processing models during the status update
process. In Section IV, we analyze the AoI in the considered
system. In Section V, we propose the system overhead opti-
mization problem and decompose the problem into sensing,

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

8232 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 11, NOVEMBER 2023

sampling and processing subproblems. In Section VI, the
joint sensing and processing optimization algorithm MISCO
is proposed. In Section VII, simulation results are presented
and discussed. Finally in Section VIII, we conclude our paper.

II. RELATED WORK

Freshness of the status update has emerged as a recent
highlight in the field of network research, which leads to the
increasing research interest in AoI served as the metrics to
measure the freshness of information [22], [23], [24], [25],
[26], [27]. Yates et al. in [22] investigate real-time status
updates generated by multiple independent sources sending
to a single monitor with an AoI timeliness metric and derive
the general values of AoI suitable for various multi-source
service system. Kadota et al. in [24] study a single-hop
wireless network where multiple nodes transmit time-sensitive
information to the base station while minimizing the expected
weighted total AoI of the network and satisfying the just-
in-time throughput at the same time. Feng et al. in [25]
design an optimal strategy for the energy harvesting sensor
to generate status updates with the purpose of minimizing the
long-term average AoI and satisfying the energy constraint in
the different cases of whether the system has the updating
feedback. Zhou et al. in [26] study a time-intensive IoT
monitoring system where IoT devices continuously generate
and transmit the status updates with updating cost. Through
simultaneously optimizing the sampling and updating process,
the minimum average AoI of the destination node is derived
under the upper bound of the updating cost. Chen et al. in [27]
investigate the AoI-aware radio resource management problem
in a Manhattan Grid vehicle-to-vehicle network to realize the
optimal frequency allocation and packet scheduling decision-
making.

Several relative works have been conducted in the context
of the optimization of data sensing [2], [16], [28], [29], [30].
Peng et al. in [2] propose a joint sensing and communication
scheduling framework for status updates in the multi-access
network to minimize the average status error. The trade-off
between data sensing and data transmission is investigated to
minimize the long-term average AoI during multiple sensing
cycles in [16] and [28]. In [29] and [30], the UAV trajectory
optimization problem where UAV performs the sensing tasks
to collect the time-intensive data is studied to satisfy the
system AoI threshold.

In addition to the issues mentioned above, the collected data
should be offloaded to the MEC server for low-latency pro-
cessing. Due to the resource competition among IoT devices,
the computation offloading optimization problem needs to
be considered. The computation offloading decision-making
problem has been widely investigated to address the com-
putation capacity constraint and communication interference.
Game-theoretic method has been introduced to address the
computation offloading decision-making problem [31], [32],
[33], [34]. Chen et al. in [31] first utilize the concept of
the potential game to achieve the Nash equilibrium of the
computation offloading game. Yang et al. in [32] propose a
computation offloading game including multiple computation

Fig. 2. Example of MEC-assisted IoT system.

offloading schemes which take advantage of the available
resources of idle mobile devices.

However, most of the studies have focused on reducing
processing latency and system energy consumption while
performing computation offloading decision-making, ignoring
the role of information freshness in improving service quality.
In addition, the state-sensing procedure may generate invalid
state updates, resulting in extra processing time and deteriorat-
ing the service quality. Therefore, the sensing and processing
operations need to be considered jointly to ensure the freshness
of the status update and minimize the system overhead.

III. SYSTEM MODEL

A. Network Model

We consider a typical MEC-assisted IoT system with a
set N of N IoT devices and an MEC server. The IoT
devices monitor a physical process like the traffic condition
in the autonomous driving system. The IoT devices sample
the status information and generate the status update when
necessary. The status sampling process of each IoT device i
is independent of each other and takes the periodic delivery
sampling policy of sensor updates which is one of the most
common approaches in practice [36]. The sampling intervals
of IoT devices are denoted as T = {τ1, τ2, . . . , τN}. The MEC
server functions as an MEC server provider which is located
in proximity to the IoT devices and can be accessed by the
IoT devices via the wireless channel. IoT devices that transmit
computing tasks to the MEC server will be associated with
clones at the MEC server which execute computing tasks on
behalf of IoT devices [35]. Considering the constraint of IoT
devices’ computation capability, each IoT device can choose to
process the status information locally with its own processor or
to offload the sensed data to the MEC server or more powerful
computing resources. After extracting the required information
from the raw status data, the computing results are transmitted
to the BS for future system control. To keep the freshness
of the status information and guarantee accurate control, the
sensing, transmission and processing process needs to be
executed repeatedly. Fig. 2 shows the status offloading and
processing procedure.

B. Sensing Model

In this section, we describe the data sensing process of
generating status updates for IoT devices. Let tunit

i be the
sensing time for IoT device i to perform a whole sensing
task once. The status update processing task generated by IoT

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: JOINT OPTIMIZATION OF SENSING AND COMPUTATION FOR STATUS UPDATE IN MEC SYSTEMS 8233

device i can be represented as a tuple Ui = {di, ci}, where di

denotes the size of the sensory data generated in one sensing
operation and ci denotes the necessary CPU cycles to finish
the computing tasks.

To evaluate the sensing quality of IoT devices, we utilize
a probabilistic sensing model [37]. When an IoT device
executes a sensing task, the successful sensing possibility is
denoted as

ϱi = e−ξDs
i , (1)

where Ds
i is the distance between the IoT device and the

sensing target, and ξ is a positive parameter to evaluate
the quality of IoT device detection depending on the envi-
ronmental condition. Considering one single data sensing
operation cannot satisfy the successful possibility requirement,
the device may repeat the sensing operation to improve the
sensing successful possibility. Let S = {s1, s2, . . . , sN} be the
number of sensing operations executed by the IoT devices in a
sensing operation. After finishing multiple sensing operations,
the sensing successful possibility is denoted as

Pi (si) = 1− (1− ϱi)
si . (2)

To ensure the sensing quality, the successful sensing possibility
should be lower bounded. Let pmin be the threshold for
the successful sensing possibility of IoT devices. When IoT
devices execute sensing operations, the successful sensing
probability should satisfy:

Pi (si) ≥ pmin, ∀i ∈ N . (3)

Note that as the number of sensing operations increases, the
IoT device achieves a higher sensing successful possibility.
However, the multiple sensing operations will lead to a longer
sensing time and larger sensing energy consumption. For
device i, the sensing time is

T ses
i (si) = tunit

i si. (4)

To process the generated status update in time, the sensing
time should not exceed the sampling frequency. Otherwise,
before the information of status update is extracted, another
new status update is generated by the IoT device, which makes
the information of the former status update outdated. Thus, the
sensing time should satisfy the constraint:

1 ≤ si ≤
⌊

τi

tunit
i

⌋
. (5)

Let ei be the energy cost for IoT device i to detect the status
information per bit sensed data, the energy consumption of
one single sensing process is

Eses
i (si) = eidisi. (6)

It is worth noticing that the IoT devices cannot know
whether the status update is generating successfully from the
raw sensory data. Further processing operations are required
to verify the validity of the generated status update. If the
sensing process is failed, the sensory data will be removed
and the control unit will send the request to generate another
new status update to the IoT device. If the IoT device has

generated a new status update before receiving the request,
the request will not be further processed. Otherwise, the IoT
device will restart the sensing process immediately regardless
of the sampling interval.

C. Transmission Model

When finishing the sensing procedure and generating a new
status update, the IoT devices need to further process the status
update to verify the validity of the status update and extract
the status information. Since some IoT devices are limited
in computation capability, they need to transmit their status
updates to the edge server for further processing. Let x =
{x1, x2, . . . , xN} be the transmission policies for all the N IoT
devices, in which the elements can be expressed as follows.

xi =

{
1, IoT device i transmits to edge server.
0, otherwise.

(7)

When the IoT device decides to transmit its status update to
the edge server for processing, the transmission rate for the
status update can be written as

ri(x) = B log2

(
1 +

gi,spi

ω0 +
∑

m∈N ,m̸=i xmgm,spm

)
, (8)

where B is the channel bandwidth allocated to the IoT device
i, gi is the channel gain between device i and the edge node, pi

represents the device i’s transmission power, and ω0 represents
the noise power. Then, the transmission latency is

T trans
i (x) =

di

ri(x)
. (9)

and the transmission energy consumption can be expressed by

Etrans
i (x) =

pidi

ri(x)
. (10)

D. Computation Model

In this subsection, we introduce the computation model
of the status update. Dependent on the different computation
offloading strategies of the IoT devices, the time and energy to
execute the computation tasks of the status updates are differ-
ent. If the device chooses to process the status update with its
own local processor, the computation latency is T local

i = ci

fi
,

where fi represents the CPU frequency of the local processor
in IoT device i. Besides, processing the computation task
locally brings extra energy consumption to the IoT device
itself, which is calculated as

Elocal
i = ciδ. (11)

where δ is the energy consumption cost per CPU cycle. When
the computation task is transmitted to the edge server for
further processing, the computation latency is expressed as

T edge
i =

ci

fe
. (12)

where fe denotes the CPU frequency of the edge server.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

8234 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 11, NOVEMBER 2023

Fig. 3. Example of AoI.

IV. AGE OF INFORMATION ANALYSIS

We introduce the concept of AoI to evaluate the freshness
of the status update generated by IoT devices. Let Ai(t)
be the AoI of the IoT device i with Ai(0) = 0, and the
AoI is defined as the time that elapses from the last valid
status update received by the control unit. One status update
is valid to the control unit when the sensing process of
status update is successful and the computation of the status
update is finished. The AoI of status update grows from the
beginning of the sensing, and keeps increasing until the next
valid status update is received by the control unit. Let T j,prcs

i

be the processing time to conduct processing operation j,
and T j,prcs

i = j × T 1,prcs
i . Based on the different offloading

strategies, the processing time of one single process operation
is calculated as

T 1,prcs
i (si,x) = T ses

i (si) +
(
T trans

i (x) + T edge
i

)
xi (13)

+ T local
i (1− xi). (14)

However, the sensing time might be too short for IoT
devices to successfully generate a valid status update with
only one sensing operation. After finishing the computation
execution, the control unit may find the uploaded status update
fails to meet the requirement, i.e. the sensing processing is not
successful. In this case, the status update will be dismissed and
a request will be sent to the IoT device to repeat the sensing
process to generate another status update. Then we have the
following Theorem 1 on the average number of processing
time.

Theorem 1: For IoT device i, the average number of pro-
cessing time for IoT devices to finish a processing task is
T 1,prcs

i (si,x)

Pi
.

Proof: Please see Appendix A.
Next, we derive the AoI of the status updates. Note that the

information embedded in the status update can be used for
further execution after processing. The AoI at time t of the
i-th IoT device is denoted as

∆i(t) = t− ai(t), (15)

where ai(t) is the time when the latest status update generated
by the IoT device i is successfully sensed and processed.
Without loss of generality, we assume the initial observing
time is t1 = 0, and the initial AoI is ∆0. As shown in Fig. 3,
the AoI grows linearly during the sensing and processing

procedure and reset to a smaller value when a new status
update is successfully accepted. Let tj be the time when the
j-th status update is generated and finishes processing at the
time t′j . Let Yj denote the system time of the status update j,
which is defined as

Yj = t′u − tj , (16)

where t′u is the time when the next status update is successfully
sensed and executed. Specifically, when the status update j is
valid, Yj = t′j , i.e. the finishing time of the status update j.
Besides, Xj denotes the time between the generation of two
continuous status update j and j + 1, which is given by

Xj = tj+1 − tj . (17)

Based on the definition above, the average AoI of the IoT
device i is denoted as

∆i =
1
T

∫ T

0

∆i (t) dt. (18)

For the sake of simplicity, we consider the time interval with
T = t′n which is displayed in Fig. 3. To calculate the average
AoI, the area is divided into several geometric parts which are
expressed by the concatenation of polygons Qj . Hence, the
average AoI is given by

∆i =
1
T

n+1∑
j=1

Qj . (19)

The area of the polygons is calculated differently. For j = 1,
Q1 = ∆0(X1 + Y2). For 2 ≤ j ≤ n, the area of the trapezoid
Qj is calculated by the difference between two triangles,
which is

Qj =
1
2
(Xj−1 + Yj)2 −

1
2
Y 2

j =
1
2
X2

j−1 + YjXj−1. (20)

Besides, the area of the Qn+1 is the area of a triangle with a
width of Yn. Hence, the equation (19) can be rewritten as

∆i = lim
T→∞

Q1 + Qn+1 +
∑n

j=2 Qj

T

= lim
T→∞

[
Q1+Qn+1

T
+

n− 1
T

∑n
j=2(

1
2X2

j−1+ YjXj−1)
n− 1

]
.

(21)

As T becomes larger, i.e. T →∞, the value of Q1+Qn+1
T can

be ignored consequently and n−1
T can be treated as the value

of 1
E[X] . From the analysis above, we have

∆i =
E[Q]
E[X]

=
1
2E[X2] + E[XY]

E[X]
. (22)

Considering the sensing model mentioned above, the value of
E[X] is dependent on the sampling interval, which is given
by E[X] = τi.

Besides, the value of E[Y] is identical to the average
processing time of a successful status update E[T prcs

i]. Since
Xj is independent of Yj , we derive the average AoI as

∆i (si, τi,x) =
1
2

E[X] + E[Y] =
1
2
τi +

T 1,prcs
i (si,x)

Pi(si)
.

(23)

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: JOINT OPTIMIZATION OF SENSING AND COMPUTATION FOR STATUS UPDATE IN MEC SYSTEMS 8235

V. PROBLEM FORMULATION

A. Problem Formulation

The freshness of the generated status update plays a key
role in accurate monitoring and controlling. Hence, the AoI
should be well considered when evaluating the system per-
formance. Besides, energy consumption is another significant
performance metric due to the physical constraint of IoT
devices. The sensing, transmission and computation operations
all consume considerable energy during the running procedure
of IoT devices. The average value of IoT device i is dependent
on the energy consumption per time slot, which is given by

Ei (si, τi,x) = lim
T→∞

∑n
j=1

Eses
i (si)+Etran

i (x)xi+Elocal
i (1−xi)

Pi

T

=
Eses

i (si) + Etran
i (x)xi + Elocal

i (1− xi)
E[X]Pi

=
Eses

i (si) + Etran
i (x)xi + Elocal

i (1− xi)
Piτi

. (24)

As discussed above, the overhead of the computation
offloading problem includes both the average AoI and energy
consumption, which can be formulated as

Ci(si, τi,x) = µt∆i (si, τi,x) + µeEi (si, τi,x) , (25)

where µt and µe are the scalar weight of the AoI and
energy consumption respectively to measure the both fairly
and control the trade-off between the AoI and energy con-
sumption. For all the IoT devices, the optimization objective
is to minimize the total overhead, which is expressed by

P : min
S,τ,x

N∑
i=1

Ci(si, τi,x) (26a)

s.t. 1 ≤ si ≤
⌊

τi

tunit
i

⌋
∀i ∈ N , (26b)

xi ∈ {0, 1} , ∀i ∈ N (26c)
τi ≥ τmin, ∀i ∈ N (26d)
Pi (si) ≥ pmin, ∀i ∈ N (26e)

N∑
i=1

xidi ≤ De. ∀i ∈ N (26f)

where De is the data threshold of the MEC server. Constraints
in (26b) ensure the sensing time for a IoT device will not
exceed the sampling interval. (26c) guarantees the offloading
decision for each IoT device is binary. (26d) is the lower bound
of the sampling interval for IoT devices. (26e) is the lower
bound of the successful sensing probability. Constraint in (26f)
means the upper bound of the data size of the MEC server.

B. Problem Decomposition

Considering s and x are both discrete variables, the feasible
set of Problem (26a) is non-convex. Besides, the variables
contain both continuous variables and discrete variables, which
makes the optimization problem NP-hard [38]. In this part,
we decompose the optimization problem into several subprob-
lems: sampling interval optimization, sensing optimization and
computation offloading optimization.

1) Sampling Interval Optimization: Due to the constraint
(26b), the upper bound of the sensing time is dependent on the
sampling interval of IoT devices. Hence, to obtain the optimal
sensing time, the sampling period should be determined first.
Note that the sampling interval has a great influence on the AoI
and energy consumption of IoT devices. When the IoT devices
generate status updates more frequently, i.e. the smaller τi

for IoT device i, the AoI decreases accordingly. However, the
energy consumption will increase greatly due to the frequent
sampling action. In this subproblem, we study the optimal
sampling interval for IoT devices to achieve the trade-off
between the AoI and energy consumption, which is denoted
as

P1 : min
T

N∑
i=1

Ci(τi) s.t. (26d). (27)

2) Sensing Time Optimization: Based on the result of the
sampling interval optimization, the upper bound of sensing
time is obtained. With more sensing times, the sensing suc-
cessful probability is greatly improved. However, the excessive
sensing operation may lead to unnecessary sensing latency and
extra sensing energy consumption. To determine the suitable
sensing time for IoT devices, the problem P is rewritten as

P2 : min
S

N∑
i=1

Ci(si) s.t. (26b), (26e). (28)

3) Computation Offloading Optimization: After solving
P1 and P2, our goal is to find an optimal computation
offloading policy for all the IoT devices to minimize the
system overhead. The problem can be expressed as

P3 : min
x

N∑
i=1

Ci(x) s.t. (26c), (26f). (29)

Although the MEC server is equipped with powerful computa-
tion capability, more IoT devices choosing to transmit comput-
ing tasks to MEC server will cause severe interference which
may lead to extra time latency. Based on these observations,
we aim to optimize the computation offloading strategies for
IoT devices to minimize the system overhead.

VI. JOINT OPTIMIZATION OF SENSING AND COMPUTATION

The joint optimization of sensing and computation is real-
ized using the Block Coordinate Descent (BCD) method. The
fundamental concept of BCD involves alternating between
optimizing one variable while holding the others fixed until
the objective function reaches convergence. By fixing the
sampling interval, sensing time, and computation offloading
policy separately, we solve the subproblems proposed above.
Then, we design an iterative algorithm to solve the problem
P to minimize the system overhead jointly.

A. Sampling Interval Optimization

In this part, we solve the sampling interval optimization
problem P1 mentioned in (27). Given the fixed sensing time
and computation offloading policy, the value of T 1,prcs

i

Pi
remains

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

8236 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 11, NOVEMBER 2023

unchanged. Therefore, for simplicity, the expression of P1 can
be rewritten as

P1 : min
T

N∑
i=1

Ct
i (τi) =

N∑
i=1

(
µtτi

2

+ µe
Eses

i (si) + Etran
i (x)xi + Elocal

i (1− xi)
Piτi

)
s.t. (26d). (30)

Since τi is the continuous variable, we calculate the deriva-
tive directly to discuss the variation trend to address the opti-
mization problem. Then, the derivative of Ct

i (τi) is calculated
as

∂Ct
i (τi)

∂τi
=

µt

2
− µeE

total
i

τ2
i

, (31)

where Etotal
i = Eses

i (si)+Etran
i (x)xi+Elocal

i (1−xi)
Pi

is a constant.

By solving ∂Ct
i (τi)

∂τi
= 0, we have

τ∗i =

√
2µeE

total
i

µt
. (32)

Since the derivative of Ct
i (τi) is positive when τi > τ∗i and

Ct
i (τi) is monotonic increasing, the optimal sample interval

will be the lower bound if τ∗i < τmin. Hence, the optimal
sampling interval is expressed as

τ∗i =

√

2µeE
total
i

µt
, if

√
2µeE

total
i

µt
> τmin,

τmin, otherwise.

(33)

B. Sensing Time Optimization

In this part, the subproblem (28) is considered to determine
the optimal number of the sensing time. Note that the value
of T 1,prcs

i and Pi increases with si and the value of Ci(si)
increases with T 1,prcs

i and decreases with Pi. Besides, when
the offloading policy is fixed, the costs of transmission and
processing are determined. From the analysis above, the value
of system overhead is rewritten with respect to the sensing
time as

P2 : min
S

N∑
i=1

Cs
i (si) (34)

=
N∑

i=1

(
µt

T ses
i (si) + T ex

i

Pi(si)
+ µe

Eses
i (si) + Eex

i

Pi(si)τi

)

=
N∑

i=1

(
µt

tunit
i si + T ex

i

1− (1− pi)
si

+ µe
eidisi + Eex

i

τi [1− (1− pi)
si]

)
s.t. (26d). (35)

where T ex
i =

(
T trans

i (x) + T edge
i

)
xi+T local

i (1−xi) and Eex
i =

Etran
i (x)xi + Elocal

i (1 − xi) are constant when the sampling
interval and computation offloading policy remain unchanged.

To minimize the system overhead, the variation trend of
the objective function needs to be considered. To change
the non-convex feasible set into a convex set, we relax the

Algorithm 1 Enumerating for Sensing Time Optimization
Input: x, T.
Output: Optimal sensing times S.

1: for each IoT device i ∈ N do
2: Initialization: si = 1;

3: Computing Ci(si)
∣∣∣∣
si=1

;

4: while si ≤
⌊

τi

tunit
i

⌋
do

5: if Ci(si + 1) < Ci(si) then
6: si = si + 1;
7: else
8: break;
9: end if

10: end while
11: end for

discrete variable si into real value as si ∈ [0, +∞]. It can be
verified that the function of Cs

i (si) is convex. Therefore, the
value of Cs

i (si) first decreases with si and increases with the
increment of si and there is only one optimal solution for si.
However, it is hard to achieve the optimal sensing time by
directly solving ∂Cs

i (si)
∂si

= 0. Considering the sensing time is
discrete and has an upper bound, an enumerating algorithm is
proposed to find the optimal sensing time, which is shown
in Algorithm 1. For each IoT device, the sensing time is
initially set as si = 1. The number of sensing operations keeps
increasing until the system overhead is no longer decreasing.
Considering the computation complexity of Algorithm 1 is
dependent on the sampling interval which is a constant and
the number of IoT devices. Let τ be the average value of the
sampling interval. The optimal sensing time s∗i can be derived
with the complexity no more than O (τN).

C. Computation Offloading Optimization

In this part, subproblem P3 is solved to determine the opti-
mal computation offloading policy with the aim of minimizing
the system cost. From the conclusion of [39], the computation
offloading decision-making problem can be transformed into
the maximum cardinality bin packing problem [40], which is
NP-hard. Therefore, finding a central solution to the subprob-
lem P3 is NP-hard. In view of the complexity of the offloading
computation optimization problem, game theory is introduced
to provide a decentralized way to conduct the computation
offloading decision-making.

Before solving the offloading problem, the data size con-
straint of the MEC server needs to be considered. Since
the computation capacity of the MEC server is limited in
practice, the number of data that can be processed at the
same time is finite. When the data size of the MEC server
exceeds the threshold, the MEC server will not be able to
serve the IoT devices anymore. To meet the data constraint
proposed in (26f), we design an MEC server availability
request mechanism, which can be utilized to ensure a rational
computation offloading decision without violating the data
constraint of the MEC server.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: JOINT OPTIMIZATION OF SENSING AND COMPUTATION FOR STATUS UPDATE IN MEC SYSTEMS 8237

Specifically, when an IoT device finishes the sensing oper-
ation and generates a status update, the IoT device first makes
a preliminary offloading decision based on the requirement of
its computing task and the network condition. Then, the IoT
device will send a computation request with the data size of
the status update to the MEC server, in order to acquire the
equivalent computation capability of the MEC server. When
the MEC server receives the request, the MEC server first
summarizes all its computation tasks to determine whether its
computation capacity upper bound is exceeded and the amount
of spare computation capacity to be allocated. If

∑N
i=1 xidi ≤

De, the MEC server will permit the computation offloading
request and send the computation capacity fe to the IoT
device. Otherwise, the data size of computing tasks transmitted
to the MEC server is beyond the data threshold of the MEC
server. To reasonably allocate the computing resource of the
MEC server, the MEC server can list the IoT devices that are
being served by the MEC server and eliminate the computing
task with the most value of the data size continuously until
the data threshold De is satisfied. For those IoT devices that
are eliminated from the service list, the MEC server will send
a message with the assigned value 0 of computation capacity
to the deleted IoT devices. Consequently, the processing time
for those IoT devices is infinite with 0 allocated computation
capacity, and the IoT devices will choose local processing
instead. Through the MEC server availability request mech-
anism, the MEC server unavailability is addressed and the
subproblem P3 is transformed into the offloading decision-
making problem. Due to the data size of messages is relatively
small, the communication overhead caused by the availability
request mechanism can be ignored.

Then, we formulate the computation offloading prob-
lem as a computation offloading game. Let x−i =
{x1, . . . , xi−1, xi+1, . . . , xN} be the computation offloading
policy of the other IoT devices except for i. With the knowl-
edge of the offloading strategies of other IoT devices, the IoT
device i performs the offloading decision-making to minimize
the system cost, i.e.

min
xi∈x

Ci(xi, x−i), ∀i ∈ N . (36)

The offloading decision-making problem can be formulated as
a strategic game Γ = {N ,x, Ci}, where the IoT device set N
is the set of players, x is the set of strategies taken by players,
and the system cost Ci(xi, x−i) is the objective function to
be minimized. Then, we define the Nash equilibrium of the
game Γ as in the following definition.

Definition 1: A computation offloading strategy x∗ =
{x∗1, . . . , x∗N} is a Nash equilibrium if no IoT devices can
further reduce the system overhead by unilaterally changing
its own computation offloading strategy, i.e.,

Ci(x∗i , x
∗
−i) ≤ Ci(xi, x

∗
−i), ∀xi ∈ {0, 1} , ∀i ∈ N . (37)

For a multi-user computation offloading game, the Nash
equilibrium guarantees that each IoT device at the Nash
equilibrium achieves a mutually satisfactory policy and has
no incentive to deviate from its original strategy. The property
is because if any IoT device is about to change its offload-
ing policy, it should obtain lower system cost by updating

offloading policy, which is contradictory to the definition of
Nash equilibrium. Then, we define the best response for each
IoT device as follows.

Definition 2: For IoT device i, the strategy x∗i is the best
response based on the policies of other users x−i, if the system
cost satisfies that

Ci(x∗i , x
∗
−i) ≤ Ci(xi, x

∗
−i), ∀xi ∈ {0, 1} . (38)

To achieve the Nash equilibrium, all the IoT devices tend
to take the best response strategy. Then we have following
Lemma 1.

Lemma 1: An IoT device will achieve the lower system cost
by offloading computing task to the MEC server for processing
based on the offloading strategy x, if the received interference
meets

∑
m∈N ,m̸=i xmgm,spm ≤ Li, where Li is denoted as

Li =
gi,spi

2

µtdiτi + µepidi

B
[
µtτi

(
T local

i − T edge
i

)
+ µeElocal

i

]
− 1

− ω0.

Proof: According to (13), (23) and (24), the lower system
cost of transmitting computing tasks to the MEC server for
processing is equivalent to

µt
T local

i

Pi
+ µe

Elocal
i

Piτi
≥ µt

T edge
i + T tran

i (x)
Pi

+ µe
Etrans

i (x)
Piτi

.

That is

ri(x) ≥ µtdiτi + µepidi

µtτi

(
T local

i − T edge
i

)
+ µeE

local
i

Then, we can derive the threshold of the interference∑
m̸=i

xmgm,spm

≤ gi,spi

2

µtdiτi + µepidi

B
[
µtτi

(
T local

i − T edge
i

)
+ µeElocal

i

]
− 1

− ω0.

Accordingly, the best response of the IoT device i can be
expressed as

x∗i =

1, if

∑
m∈N\{i},xm=1

gm,spm ≤ Li,

0, otherwise.
(39)

Based on Lemma 1, the computation offloading strategy
of IoT device i is mainly dependent on its own received
interference. To prove the existence of the Nash equilibrium
in our proposed computation offloading game, we introduce
the concept of the potential game [41].

Definition 3: A strategic game is called a potential game
only if the variation of the utility function is proportional to the
change of a certain function which is called potential function,
i.e. there exists a potential function Φ(x) satisfying that

Ci(xi, x−i) < Ci(x′i, x−i), iff Φ(xi, x−i) < Φ(x′i, x−i)
(40)

for each IoT device i ∈ N , and any xi, x
′
i ∈ x.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

8238 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 11, NOVEMBER 2023

Algorithm 2 Decentralized Computation Offloading Opti-
mization Algorithm
Input: S, T.
Output: Optimal computation offloading strategy x∗.

1: Initialize the computation offloading strategy that each IoT
device chooses to process its task locally, i.e. xi = 0, ∀i ∈
N ;

2: repeat for each iteration slot t
3: Initialize the update set κ = ∅.
4: for each IoT device i ∈ N do
5: Select the best response x∗i for i according to (39);
6: if xi ̸= x∗i then
7: Add IoT device i into the update set κ to

compete for the updating opportunity;
8: end if
9: end for

10: if κ = ∅ then
11: break;
12: end if
13: for each IoT device i in the update set κ do
14: Compute the improvement in the system cost

by (41);
15: end for
16: The IoT device i with the most improvement in the

system cost, Update the offloading strategy xi = x∗i ;
17: Broadcast the decision update to all the other devices;
18: Other devices choose the original offloading strategy

for next iteration slot t + 1;
19: until κ = ∅ for several consecutive slots
20: return x∗

Theorem 2: The computation offloading decision-making
game is a potential game and always has at least one Nash
equilibrium and possesses the finite improvement property.
Proof: Please see Appendix B.

According to Theorem 2, we can see that the computation
offloading problem can achieve the Nash equilibrium after
finite iterations. Next, we propose a decentralized computation
offloading optimization algorithm in Algorithm 2 to achieve
the mutually satisfactory offloading strategy for IoT devices.

To take the advantage of the finite improvement property of
the potential game, we propose a decentralized computation
offloading optimization algorithm to allow an IoT device
to update its offloading strategy at one iteration. For each
iteration, the update set is initialized as an empty set to
record the IoT devices that have the incentive to update
their offloading strategy. Based on the offloading strategies
of other IoT devices x−i, each IoT device computes its
received interference by

∑
m∈N ,m̸=i xmgm,spm. Then, the

IoT devices select the best response strategy according to
(39) and determine whether it needs to update its offloading
strategy. If the best response is different from its current
strategy, the device i will be added to the update set to compete
for the opportunity to update the offloading strategy. After all
the IoT devices decide their best responses, the devices in the
update set will evaluate the improvement range of updating

the offloading policy by

∆Ci = Ci(x∗i , x
∗
−i)− Ci(x∗i , x

∗
−i), (41)

where x∗i = 1 − x∗i is the original strategy of the device
i. To improve the convergence speed of the iteration, the
IoT device with the most improvement will win the compe-
tition and update its offloading strategy. The other devices
will sustain their original offloading strategy and wait for
the next iteration to contend for the updating opportunity.
The offloading strategy will be continuously iterated until
no device tends to update its offloading strategy for several
consecutive iterations, and the optimal offloading policy x∗ is
obtained. Since the most operations in Algorithm 2 are basic
mathematical calculations, the computational complexity of
one iteration is mainly dependent on the sort of the device with
the most improvement. Since each device needs to perform the
sorting operation, therefore the complexity of one iteration
is O (N log N). Assuming that I iterations are required to
achieve the Nash equilibrium, the complexity of Algorithm 2
is O (IN log N).

D. Algorithm Summary

In this subsection, we summarize the multi-variable iteration
system cost optimization algorithm (MISCO) for joint sensing
and processing optimization to minimize the system overhead.
To solve the overall optimization problem (26a), we execute
the iterations of the sensing, transmission and computation
offloading optimization. First, we solve the optimal sampling
period for each IoT device. Afterwards, based on the upper
bound of the sampling interval, we utilize the enumeration
method to determine the optimal sensing time. Based on the
result of the sampling and sensing optimization, a game-
theoretic optimization algorithm is proposed to solve the
optimal computation offloading strategy. Iterations of the
sampling interval, sensing time and computation offloading
optimization terminate when the disparity of the overall system
cost Ĉ =

∑N
i=1 Ci between two consecutive iterations is

below the threshold ϵ. The details of the proposed algo-
rithm are summarized in Algorithm 3. Based on the analysis
above, the sampling interval set, the sensing time set and
the computation offloading strategy are updated during the
iteration process and the overall system cost keeps decreas-
ing in each iteration. Considering the system cost has a
lower bound and can only decrease finitely, the proposed
multi-variable iterative optimization algorithm is convergent.
Assuming K iterations are requisite to meet the disparity
threshold, the complexity of Algorithm 3 can be expressed
as O (KN + KτN + KIN log N).

VII. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
system overhead minimization algorithm by numerical results.
We assume the coverage of the MEC server is a 50 m × 50 m
area and N IoT devices are randomly distributed in the cov-
erage area to execute the sensing tasks and generate the status
updates. The channel gain of each IoT device is calculated as
gi,s = v−o, where v is the distance between the IoT device and

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: JOINT OPTIMIZATION OF SENSING AND COMPUTATION FOR STATUS UPDATE IN MEC SYSTEMS 8239

Algorithm 3 Multi-Variable Iterative System Cost Optimiza-
tion Algorithm
Input: Status update set U , distance set D, computation

capacity fi and fe, ω0, channel gain g, transmission power
p, sensing time unit tunit

i .
Output: Sampling interval T∗, sensing time set S∗, optimal

computation offloading strategy x∗.
1: Set r = 0 as the iteration slot. Initialize the sampling inter-

val set T0, the sensing time set S0 and the computation
offloading strategy profile x0 randomly;

2: repeat for each iteration slot r
3: Given the fixed Sr and xr, solve the sampling interval

Tr+1 according to (33);
4: Given the Tr+1 and xr, solve the sensing time Sr+1

using Algorithm 1;
5: Given the Tr+1 and Sr+1, solve the offloading strat-

egy xr+1 using Algorithm 2;
6: Compute the overall system cost Ĉr+1 based on Tr+1,

Sr+1 and xr+1;
7: r = r + 1;
8: until |Ĉr − Ĉr−1| < ϵ
9: return x∗

TABLE I
PARAMETERS USED FOR SIMULATION

the MEC server and o is the path loss coefficient set as 4. The
other parameters used in the simulation are given in Table I.

Given the lack of a joint optimization scheme for task
sensing and processing, We evaluate the performance of our
proposed optimization scheme by comparing the impact of
each variable individually. To ensure a fair and accurate
comparison, all variables are held constant, with the exception
of the variable under comparison. Accordingly, the specific
effect of each variable on the overall performance can be
isolated and analyzed. Specifically, the influence of sampling
frequency is examined through the comparison with GSA, the
influence of number of the sensing operations is displayed
by comparing with ISA and the comparison with BRCO,
SGDCO, and AECO shows the optimization in the compu-
tation offloading strategy. Then, the overall performance of
our proposed optimization method can be attained. Therefore,
we introduce five comparative algorithms as benchmarks:

• Greedy Sensing Algorithm (GSA): The sampling interval
is decided according to (33). The IoT devices will execute
the least sensing operations to meet the sensing successful

Fig. 4. System cost vs. number of IoT devices.

probability to achieve the least sensing latency. Then, the
offloading decision-making is made by Algorithm 2.

• Instant Sampling Algorithm (ISA): Each time when the
previous status update finishes processing, the IoT device
will conduct another sampling process to generate a
new status update, which is similar to the zero-wait
policy in [42]. The sensing time decision is made by
Algorithm 1 and the computation offloading strategy is
made by Algorithm 2.

• Best Response Computation Offloading (BRCO) [34]:
The sampling interval is decided by (33), and the sensing
time is obtained from Algorithm 1. Each device chooses
the best-response strategy based on the computing cost of
the two processing ways and the offloading probabilities
of other devices in the previous stage.

• Stochastic Gradient Descent Computation offloading
(SGDCO): SGDCO utilizes the stochastic gradient
descent to solve the computation offloading problem
while the optimization of sensing time and sensing inter-
val is the same as MISCO [43].

• All Offloading to Edge Computing (AECO): The sam-
pling interval and sensing time are determined in the same
way as our proposed optimization algorithm. However, all
the computing tasks are offloaded to the MEC server for
processing.

We first evaluate the system cost of our proposed method.
Fig. 4 shows the system cost of different methods with the
different numbers of IoT devices. Compared to the other
schemes, our proposed MISCO achieves the lowest system
cost no matter what the number of IoT devices is. When the
number of IoT devices is relatively small, there is not much
difference between AECO and the other five comparative
methods due to the small interference caused by IoT devices.
Compared to the other three computation offloading opti-
mization methods BRCO, SGDCD and AECO, our proposed
method has a better performance in system cost as the number
of IoT devices increases. With the larger number of IoT
devices, the bandwidth for IoT devices to execute the task
transmission is insufficient and the transmission cost improves
greatly. Therefore, our computation offloading method indi-
cates a more rational offloading decision-making process.

Fig. 5 shows the system cost with the different numbers
of the CPU cycles required to process the status update.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

8240 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 11, NOVEMBER 2023

Fig. 5. System cost vs. number of CPU processing cycles.

Fig. 6. Sensing time-processing time ratio vs. successful sensing probability
thresholds.

The numerical result shows the system cost of MISCO is
lower than other benchmarks with more computation load of
the status update. The system cost of ISA rises significantly
because the longer process time of the status update makes
the status sampling out of date, while the increment of system
cost of sensing optimization is relatively stable as the number
of CPU cycles increases. With the improvement of the CPU
cycle, the performance of MISCO is close to the one of AECO.
Due to the heavy computation load, all IoT devices choose to
offload their tasks.

Fig. 6 depicts the sensing time-processing time ratio with
the different successful sensing probability under various com-
putation loads. Note that the processing time here consists
of the transmission time and the task processing time. When
the sensing successful probability threshold is relatively small,
the sensing time-processing time ratio remains at a stable
level. Considering the threshold is easy to meet, the sens-
ing time is determined by the sensing optimization method.
As the requirement of sensing successful probability threshold
increases, more sensing operations need to be performed to
satisfy the successful probability threshold, which causes a
longer sensing time for IoT devices. Specifically, when the
CPU cycle is 1000 Megacycles and the sensing successful
probability threshold is more than 0.65, the sensing successful
probability threshold has a great influence on the sensing-
processing ratio. That is, the processing time dominates the
sensing time-processing time ratio when the successful prob-
ability requirement is not strict and then the sensing time

Fig. 7. Sensing time-processing time ratio vs. number of CPU processing
cycles.

Fig. 8. System cost vs. successful sensing probability thresholds.

dominates with the high successful probability requirement.
As the CPU cycle increases, the sensing time dominates
at a higher level of successful probability due to the more
processing time for status updates. When the CPU cycle
is 1500 Megacycles, the sensing-processing ratio begin to
increase when the sensing successful probability threshold is
more than 0.7.

The simulation result of the sensing time-processing time
ratio with the different CPU cycles is shown in Fig. 7. When
the computation load is small, the sensing time dominates the
sensing-processing ratio. With the higher sensing successful
probability threshold, the sensing time accounts for a higher
proportion of the total time cost. As the number of CPU
cycles increases, the sensing time as a percentage of total time
decreases sharply. In the case of large number of CPU cycles,
the sensing successful probability has little effect on the ratio
of sensing time to processing time. The sensing-processing
ratio remains at the same level for different successful prob-
ability thresholds, and it can be seen that processing time
accounts for the major part of the total time at a high
computation load.

Fig. 8 shows the impact of different sensing successful
probability thresholds on the system cost. When the threshold
is at a low level, the system cost will not be limited by the
threshold and can be optimized to get the minimal system
overhead directly by our proposed optimization algorithm.
Therefore, the system cost will be maintained at a stable level.
After the threshold value exceeds 0.7, the optimization method

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: JOINT OPTIMIZATION OF SENSING AND COMPUTATION FOR STATUS UPDATE IN MEC SYSTEMS 8241

Fig. 9. System cost vs. sampling interval thresholds.

Fig. 10. Number of iterations vs. Number of IoT devices.

will be limited to achieve the optimal system overhead in order
to meet the sensing successful rate requirement. When the
CPU cycles for the task execution are small, the more obvious
is the influence of the sensing successful rate threshold and
the system cost rises more obviously. Therefore, the optimal
threshold should be set to about 0.7 to ensure the sensing
quality as well as the value of the system overhead.

In Fig. 9, the numerical result shows the system cost of
our proposed MISCO with different sampling intervals. With
the high sampling frequency limit, the system overheads for
different task computations loads are sustained at a stable
value. When the sampling interval is greater than 1.4 s, the
system overhead starts to increase gradually. This means that
the sampling interval limit at this point is greater than the
optimal sampling interval solved by our proposed algorithm,
and the excessively long sampling interval leads to an increase
in the AoI, resulting in an increase in system overhead.
To reduce the energy consumption of generating status updates
and the AoI of status updates, the sampling interval threshold
should be set lower than a certain level.

Fig. 10 depicts the number of iterations of our proposed
method with the different numbers of IoT devices. Here
the number of iterations contains the iteration number of
Algorithm 2 to achieve the Nash equilibrium and the iteration
number of Algorithm 3 for converging. The iteration number
increases with the increased number of IoT devices, which
illustrates the convergence and scalability of our proposed
MISCO. When the number of IoT devices is getting larger,
the network resources are insufficient for the IoT devices.

Therefore, all the IoT devices tend to process their computing
tasks locally which makes the number of iterations reach an
upper bound due to all devices stop iterating after choosing
local execution.

VIII. CONCLUSION

In this paper, we first formulate the joint sensing and
processing optimization problem to optimize the system per-
formance including the information freshness of the status
updates and the energy consumption of IoT devices. The
optimization problem is decomposed into three subproblems
to optimize the sampling, sensing and computation offloading
respectively. The sampling and sensing optimization problems
are solved by extremum principles and game-theoretic method
is utilized to perform the computation offloading decision-
making. Afterwards, the multi-variable iterative optimization
algorithm is proposed to minimize the system cost jointly.
Numerical results depict that the system cost achieved by our
proposed method is lower than other comparative methods
and the dominance of sensing and processing under dif-
ferent scenarios. Besides, the impact of the sensing proba-
bility and sampling interval thresholds are analyzed in the
simulation.

APPENDIX A
PROOF OF THEOREM 1

The probability that IoT device i requires j sensing
operations to generate a valid status update is Pi (si) (1 −
Pi (si))j−1. Thus the expectation of execution time can be
calculated as

E[T prcs
i] = lim

j→∞
Pi (si) T 1,prcs

i (si,x)

+ Pi (si) (1− Pi (si))T
2,prcs
i (si,x)

+ Pi (si) (1− Pi (si))2T
3,prcs
i (si,x)

+ . . . + Pi (si) (1− Pi (si))j−1T j,prcs
i (si,x)

= lim
j→∞

Pi (si) T 1,prcs
i (si,x)

j∑
n=1

n(1− Pi (si))n−1.

(42)

Given the value of Pi (si) is in the range of (0,1), let 1−Pi (si)
be a single variable ρ and

∑∞
n=1 n(1 − Pi (si))n−1 can be

further calculated as
∞∑

n=1

n(1− Pi (si))n−1 =
∞∑

n=1

[(1− Pi (si))n]′

=
∞∑

n=1

(ρn)′ = (
ρ

1− ρ
)
′

=
1

(1− ρ)2
=

1
Pi (si)

2 . (43)

By substituting (43) into the expectation of execution time,
the average number of processing time for a successful status
update is calculated as E[T prcs

i] = T 1,prcs
i (si,x)

Pi(si)
.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

8242 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 11, NOVEMBER 2023

APPENDIX B
PROOF OF THEOREM 2

To prove the computation offloading decision-making game
is a potential game, we define the potential function as

Φ(x) =
1
2

N∑
i=1

∑
m̸=i

gi,spixigm,spmxm +
N∑

i=1

gi,spiLi(1− xi).

(44)

We consider an IoT device that chooses to update its offloading
policy with a lower system overhead, i.e. Ci(xi, x−n) <
Ci(x′i, x−n). From the definition of the potential game, the
decrease of the system cost will lead to a decrease of the
potential function. If the original offloading policy is to process
the task locally, i.e. x′i = 0, xi = 1, we derive Ci(1, x−n) <
Ci(0, x−n), and

∑
m∈N\{i},xm=1gm,spm ≤ Li is meet. Then,

we compute the change of the potential function by updating
the offloading policy:

Φ(1, x−i)− Φ(0, x−i)

=
1
2

∑
j ̸=i

∑
m̸=i,m̸=j

gj,spjxjgm,spmxm +
1
2
gi,spi

∑
j ̸=i

gj,spjxj

+
1
2
gi,spi

∑
m̸=i

gm,spmxm +
∑
j ̸=i

gj,spjLj(1− xj)

− 1
2

∑
j ̸=i

∑
m̸=i,m̸=j

gj,spjxjgm,spmxm

−
∑
j ̸=i

gj,spjLj(1− xj)− gi,spiLi

= gi,spi

∑
m̸=i

gm,spmxm − gi,spiLi < 0. (45)

For x′i = 1, xi = 0, the result is similar to the argument above.
According to the definition of the potential game, we conclude
that the computation offloading decision-making problem is a
potential game.

REFERENCES

[1] C. Xu, Y. Xie, X. Wang, H. H. Yang, D. Niyato, and T. Q. S. Quek,
“Optimal status update for caching enabled IoT networks: A dueling
deep R-network approach,” IEEE Trans. Wireless Commun., vol. 20,
no. 12, pp. 8438–8454, Dec. 2021.

[2] F. Peng, Z. Jiang, S. Zhou, Z. Niu, and S. Zhang, “Sensing and
communication co-design for status update in multiaccess wireless
networks,” IEEE Trans. Mobile Comput., vol. 22, no. 3, pp. 1779–1792,
Aug. 2021.

[3] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, “Joint computation
and communication design for UAV-assisted mobile edge computing in
IoT,” IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5505–5516,
Oct. 2019.

[4] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang,
“Efficient and secure multi-user multi-task computation offloading for
mobile-edge computing in mobile IoT networks,” IEEE Trans. Netw.
Service Manage., vol. 17, no. 4, pp. 2410–2422, Dec. 2020.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[6] Z. Ning et al., “Dynamic computation offloading and server deployment
for UAV-enabled multi-access edge computing,” IEEE Trans. Mobile
Comput., early access, Nov. 23, 2021, doi: 10.1109/TMC.2021.3129785.

[7] F. Wu, C. Qiu, T. Wu, and M. R. Yuce, “Edge-based hybrid system
implementation for long-range safety and healthcare IoT applications,”
IEEE Internet Things J., vol. 8, no. 12, pp. 9970–9980, Jun. 2021.

[8] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia,
“An overview of Internet of Things (IoT) and data analytics in agricul-
ture: benefits and challenges,” IEEE Internet Things J., vol. 5, no. 5,
pp. 3758–3773, Oct. 2018.

[9] C. Lee and S.-L. Kim, “Most efficient sensor network protocol for a
permanent natural disaster monitoring system,” IEEE Internet Things J.,
vol. 8, no. 15, pp. 11776–11792, Aug. 2021.

[10] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. 8th Annu. IEEE Conf.
Sensor, Mesh Ad Hoc Commun. Netw. (SECON), Salt Lake City, UT,
USA, Jun. 2011, pp. 350–358.

[11] Y. Sang, B. Li, and B. Ji, “The power of waiting for more than one
response in minimizing the age-of-information,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Singapore, Dec. 2017, pp. 1–6.

[12] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[13] A. Makhoul, H. Harb, and D. Laiymani, “Residual energy-based adap-
tive data collection approach for periodic sensor networks,” Ad Hoc
Netw., vol. 35, pp. 149–160, Dec. 2015.

[14] L. Hu, Z. Chen, D. Deng, M. Wang, Y. Jia, and T. Q. S. Quek,
“Joint optimization of freshness and fidelity for status updates in a
periodical decision system,” IEEE Trans. Veh. Technol., vol. 72, no. 3,
pp. 3569–3583, Mar. 2023.

[15] Y. H. Bae and J. W. Baek, “Age of information and throughput
in random access-based IoT systems with periodic updating,” IEEE
Wireless Commun. Lett., vol. 11, no. 4, pp. 821–825, Apr. 2022.

[16] S. Zhang, H. Zhang, Z. Han, H. V. Poor, and L. Song, “Age of
information in a cellular Internet of UAVs: Sensing and communication
trade-off design,” IEEE Trans. Wireless Commun., vol. 19, no. 10,
pp. 6578–6592, Oct. 2020.

[17] R. Li, Q. Ma, J. Gong, Z. Zhou, and X. Chen, “Age of processing: Age-
driven status sampling and processing offloading for edge-computing-
enabled real-time IoT applications,” IEEE Internet Things J., vol. 8,
no. 19, pp. 14471–14484, Oct. 2021.

[18] C. Kam, S. Kompella, G. Nguyen, J. Wieselthiery, and A. Ephremides,
“Towards an effective age of information: Remote estimation of a
Markov source,” in Proc. IEEE INFOCOM 1st Workshop Age-of-Inf.,
Honolulu, HI, USA, 2018, pp. 1–9.

[19] O. Ayan, M. Vilgelm, M. Klügel, S. Hirche, and W. Kellerer, “Age-of-
information vs. value-of-information scheduling for cellular networked
control systems,” in Proc. 10th ACM/IEEE Int. Conf. Cyber-Phys. Syst.,
Apr. 2019, pp. 109–117.

[20] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16, no. 8,
pp. 4924–4938, Aug. 2017.

[21] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicu-
lar networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956,
Aug. 2019.

[22] R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3,
pp. 1807–1827, Mar. 2019.

[23] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano,
and S. Ulukus, “Age of information: An introduction and sur-
vey,” IEEE J. Sel. Areas Commun., vol. 39, no. 5, pp. 1183–1210,
May 2021.

[24] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of informa-
tion in wireless networks with throughput constraints,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., Honolulu, HI, USA, Apr. 2018,
pp. 1844–1852.

[25] S. Feng and J. Yang, “Age of information minimization for an energy
harvesting source with updating erasures: Without and with feedback,”
IEEE Trans. Commun., vol. 69, no. 8, pp. 5091–5105, Aug. 2021.

[26] B. Zhou and W. Saad, “Joint status sampling and updating for minimiz-
ing age of information in the Internet of Things,” IEEE Trans. Commun.,
vol. 67, no. 11, pp. 7468–7482, Nov. 2019.

[27] X. Chen et al., “Age of information aware radio resource management
in vehicular networks: A proactive deep reinforcement learning perspec-
tive,” IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2268–2281,
Apr. 2020.

[28] J. Zhao et al., “Secure resource allocation for UAV assisted joint sensing
and comunication networks,” in Proc. IEEE Wireless Commun. Netw.
Conf. (WCNC), Austin, TX, USA, Apr. 2022, pp. 1856–1861.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2021.3129785

CHEN et al.: JOINT OPTIMIZATION OF SENSING AND COMPUTATION FOR STATUS UPDATE IN MEC SYSTEMS 8243

[29] K. Liu and J. Zheng, “UAV trajectory optimization for time-
constrained data collection in UAV-enabled environmental monitoring
systems,” IEEE Internet Things J., vol. 9, no. 23, pp. 24300–24314,
Dec. 2022.

[30] J. Hu, H. Zhang, L. Song, R. Schober, and H. V. Poor, “Cooper-
ative Internet of UAVs: Distributed trajectory design by multi-agent
deep reinforcement learning,” IEEE Trans. Commun., vol. 68, no. 11,
pp. 6807–6821, Nov. 2020.

[31] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[32] Y. Yang, C. Long, J. Wu, S. Peng, and B. Li, “D2D-enabled mobile-
edge computation offloading for multiuser IoT network,” IEEE Internet
Things J., vol. 8, no. 16, pp. 12490–12504, Aug. 2021.

[33] Y. Ding, K. Li, C. Liu, and K. Li, “A potential game theoretic
approach to computation offloading strategy optimization in end-edge-
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 6,
pp. 1503–1519, Jun. 2022.

[34] Y. Wang et al., “A game-based computation offloading method in
vehicular multiaccess edge computing networks,” IEEE Internet Things
J., vol. 7, no. 6, pp. 4987–4996, Jun. 2020.

[35] Y. Mao, J. Zhang, Z. Chen, and K. B. Letaief, “Dynamic compu-
tation offloading for mobile-edge computing with energy harvesting
devices,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605,
Dec. 2016.

[36] L. Corneo, C. Rohner, and P. Gunningberg, “Age of information-
aware scheduling for timely and scalable Internet of Things applica-
tions,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Apr. 2019,
pp. 2476–2484.

[37] V. V. Shakhov and I. Koo, “Experiment design for parameter estimation
in probabilistic sensing models,” IEEE Sensors J., vol. 17, no. 24,
pp. 8431–8437, Dec. 2017.

[38] M. Sipser, Introduction to the Theory of Computation, 3rd ed. Boston,
MA, USA: Cengage Learning, 2012, pp. 225–277.

[39] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2015.

[40] KH. Loh, B. Golden, and E. Wasil, “Solving the maximum cardinal-
ity bin packing problem with a weight annealing-based algorithm,”
in Operations Research and Cyber-Infrastructure. New York, NY,
USA: Springer, 2009.

[41] D. Monderer and L. S. Shapley, “Potential games,” Games Econ.
Behavior, vol. 14, no. 1, pp. 124–143, May 1996.

[42] B. Barakat, S. Keates, I. Wassell, and K. Arshad, “Is the zero-
wait policy always optimum for information freshness (peak age)
or throughput?” IEEE Commun. Lett., vol. 23, no. 6, pp. 987–990,
Jun. 2019.

[43] Z. Liao, Y. Ma, J. Huang, J. Wang, and J. Wang, “HOTSPOT: A UAV-
assisted dynamic mobility-aware offloading for mobile-edge computing
in 3-D space,” IEEE Internet Things J., vol. 8, no. 13, pp. 10940–10952,
Jul. 2021.

Yi Chen received the B.S. degree from the School
of Computer and Software, Nanjing University of
Information Science and Technology, in 2021. He is
currently pursuing the M.S. degree with the School
of Computer Science and Engineering, University
of Electronic Science and Technology of China. His
research interests include mobile computing, edge
computing, the IoT, cloud computing, and big data.

Zheng Chang (Senior Member, IEEE) received
the Ph.D. degree from the University of Jyväskylä,
Jyvä skylä, Finland, in 2013. He has published over
140 papers in journals and conferences, and received
best paper awards from IEEE TCGCC and APCC
in 2017. He has been awarded as the 2018 IEEE
Communications Society Best Young Researcher
for Europe, Middle East, and Africa Region, and
the 2021 IEEE Communications Society MMTC
Outstanding Young Researcher. He serves as an
Editor for IEEE WIRELESS COMMUNICATIONS

LETTERS, China Communications, and International Journal of Distributed
Sensor Networks, and a Guest Editor for IEEE Network, IEEE WIRELESS
COMMUNICATIONS, IEEE Communications Magazine, IEEE INTERNET OF
THINGS JOURNAL, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,
Physical Communications, EURASIP Journal on Wireless Communications
and Networking, and Wireless Communications and Mobile Computing.
He was the Exemplary Reviewer of IEEE WIRELESS COMMUNICATION
LETTERS in 2018. He has participated in organizing workshop and special
session in Globecom’ 19, WCNC’18-22, SPAWC’19, and ISWCS’18. He also
serves as the Symposium Co-Chair for IEEE ICC’20 and Globecom’23,
the Publicity Co-Chair for IEEE Infocom’22, the Workshop Co-Chair for
ICCC’22, the TPC Co-Chair for IEEE iThing’22, and a TPC Member for
many IEEE major conferences, such as INFOCOM, ICC, and Globecom. His
research interests include the IoT, cloud/edge computing, security and privacy,
vehicular networks, and green communications.

Geyong Min (Senior Member, IEEE) received
the B.Sc. degree in computer science from the
Huazhong University of Science and Technology,
China, in 1995, and the Ph.D. degree in com-
puting science from the University of Glasgow,
U.K., in 2003. He is currently a Professor in high
performance computing and networking with the
Department of Computer Science, University of
Exeter, U.K. His research interests include com-
puter networks, wireless communications, parallel
and distributed computing, ubiquitous computing,

multimedia systems, modeling, and performance engineering.

Shiwen Mao (Fellow, IEEE) received the Ph.D.
degree in electrical and computer engineering from
Polytechnic University, Brooklyn, NY, USA. He is
currently a Professor and an Earle C. Williams
Eminent Scholar and the Director of the Wireless
Engineering Research and Education Center, Auburn
University. His research interests include wireless
networks and multimedia communications. He is
also a Distinguished Lecturer of the IEEE Com-
munications Society and IEEE Council of RFID.
He was a co-recipient of the 2021 Best Paper Award

of Elsevier/KeAi Digital Communications and Networks, the 2021 IEEE
INTERNET OF THINGS JOURNAL Best Paper Award, the 2021 IEEE Commu-
nications Society Outstanding Paper Award, the IEEE Vehicular Technology
Society 2020 Jack Neubauer Memorial Award, the 2004 IEEE Communica-
tions Society Leonard G. Abraham Prize in the Field of Communications
Systems, and several best conference paper/demo awards. He is the Editor-
in-Chief of IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND
NETWORKING.

Timo Hämäläinen (Senior Member, IEEE) has
over 25 year’s experience of the computer net-
works. He has more than 250 internationally
peer reviewed publications and he has supervised
more than 40 Ph.D. theses. His research interests
include performance evaluation and management
of telecommunication networks, and in particular
resource allocation, quality of service, anomaly
detection, and network security. He is currently
leading a research group in the area of network
resource management and anomaly detection with

the IT Faculty, University of Jyväskylä. He is a board member of this area’s
journals and IEEE conferences.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:32:17 UTC from IEEE Xplore. Restrictions apply.

