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Abstract—With the rapid growth of mobile data traffic, the
shortage of radio spectrum resource has become increasingly
prominent. Millimeter wave (mmWave) small cells can be densely
deployed in macro cells to improve network capacity and spectrum
utilization. Such a network architecture is referred to as mmWave
heterogeneous cellular networks (HetNets). Compared with the
traditional wired backhaul, The integrated access and backhaul
(IAB) architecture with wireless backhaul is more flexible and
cost-effective for mmWave HetNets. However, the imbalance of
throughput between the access and backhaul links will constrain
the total system throughput. Consequently, it is necessary to jointly
design of radio access and backhaul link. In this article, we study
the joint optimization of user association and backhaul resource
allocation in mmWave HetNets, where different mmWave bands
are adopted by the access and backhaul links. Considering the
non-convex and combinatorial characteristics of the optimization
problem and the dynamic nature of the mmWave link, we propose a
multi-agent deep reinforcement learning (MADRL) based scheme
to maximize the long-term total link throughput of the network.
The simulation results show that the scheme can not only adjust
user association and backhaul resource allocation strategy accord-
ing to the dynamics in the access link state, but also effectively
improve the link throughput under different system configurations.
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I. INTRODUCTION

IN RECENT years, mobile data traffic has grown rapidly,
which leads to escalating demands for wireless spectrum.

Heterogeneous cellular networks (HetNets) provide a promis-
ing solution to improve network capacity and meet the traffic
demand [1]. By deploying small cells underlaying macro cell,
network coverage can be greatly enhanced, and user equipment
(UE) can be associated with a closer base station (BS) to obtain
better quality of service (QoS). However, there is a compelling
need to provide enough bandwidth and capacity to meet the
growing user demand in HetNets. A promising approach for ad-
dressing this demand is spectrum expansion, i.e., exploiting the
millimeter wave (mmWave) band from 30 GHz to 300 GHz [2],
[3]. The mmWave band offers huge amount of bandwidth, which
can be utilized to support bandwidth-intensive applications.
However, due to the high carrier frequency, mmWave commu-
nications suffer from more severe propagation loss than sub-
6 GHz systems. To combat the high channel attenuation, both
the transmitter and receiver should adopt high gain directional
antennas to achieve directional transmission. Besides, owing to
the small wavelength and the directional transmission, mmWave
links are sensitive to the random blockage by the obstructions
in the environment.

In HetNets, because of the dense deployment of small cells,
deploying wired fiber backhaul for each small cell is costly [4].
Therefore, 3GPP advances the integrated access and backhaul
(IAB) architecture for 5G cellular network [5], which can pro-
vide wireless backhaul connection and support wireless access
and backhaul simultaneously with shared time or frequency
resources. Two scenarios have been considered for IAB by
3GPP: the in-band backhaul scenario and the out-of-band back-
haul scenario [6]. In a mmWave system, the in-band backhaul
scenario means that the access links and backhaul links share the
same mmWave band to improve spectrum utilization and achieve
closer integration. However, this resource sharing makes the
available spectrum limited, and the interference between access
and backhaul will be introduced into the system, which is more
serious in small cells densely deployed [7], [8]. In comparison,
an out-of-band backhaul scenario with two different mmWave
bands allocated for the access and the backhaul will alleviate
the resource pressure resulting from the dense deployment of
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small cells and eliminate the backhaul-access link interference.
Consequently, the network throughput can be further improved,
and the design and optimization of the HetNets can be more
flexible. Besides, considering the different characteristics of
different frequency bands of mmWave, we can choose the ap-
propriate frequency band for access and backhaul respectively
according to the actual propagation environment, which exploits
the value of mmWave band to a greater extent [9]. Therefore,
this scenario has great potential in future networks with higher
data rate requirements and ultra-dense heterogeneous network
deployments.

For the mmWave HetNets, the performance of the system is
influenced by both the access link and the backhaul link, so it is
important to jointly design both of them [10]. Specifically, there
are two vital problems to be solved in the design. The first one is
the backhaul resource allocation. Because of the randomness and
dynamics of wireless networks, the design of resource allocation
strategy needs to be robust to deliver satisfactory performance
with regard to the network throughput and resource utilization.
The other problem is the user association. With a properly
designed user association strategy, users can compare the quality
of service of different BSs and choose to associate with the best
choice, so as to improve the user experience. When a BS serves
too many users, some of its users can be handed over to an
adjacent BS to reduce the traffic load at this BS. However, in
the mmWave HetNets, the user association and the backhaul
resource allocation are coupled. The allocation of backhaul
resources needs to be decided based on the number of users
associated with different BSs, and the backhaul resources of each
BS will also affect the decision of the user association. To this
end, how to jointly optimize backhaul resource allocation and
user association in the HetNets is a key problem to be solved [11],
[12], [13], [14].

With the development of artificial intelligence, there is an
increasing interest in applying promising learning based al-
gorithms to address wireless communications problems [15],
[16], [17], [18], [19]. One of such effective techniques is re-
inforcement learning (RL) [20]. By interacting with envi-
ronment and training agents, RL can evaluate policies and
adaptively select the optimal policy. The RL based algorithm
does not need to know detailed information of the environ-
ment, and is adaptive to the changes in the environment. The
classical RL, such as Q-learning, has been shown to achieve
superior performance in small-sized systems [21]. However,
as Q-learning needs to store the Q-value of each state-action
pair in a Q-table, such storage and computing cost could be
prohibitively high for systems with high-dimensional state and
action spaces. To address this problem, a deep neural network
(DNN) can be leveraged to approximate the Q-value, thus the
Q-table can be replaced. Such a model is usually referred to
as deep reinforcement learning (DRL) [22]. Moreover, when
there are more than one agents in the system, the state of
environment depends on the joint actions of all the agents [23].
Such a model, termed multi-agent reinforcement learning
(MARL), has a great potential in solving distributed optimiza-
tion problems such as resource allocation and user association
[24].

In this article, we conduct research on the joint design of the
access link and the backhaul link for the mmWave HetNets.
The access link and the backhaul link adopt different mmWave
frequency bands for data transmission in the two-layer HetNets,
which can be considered as out-of-band IAB networks with
single-hop backhaul. Small cells are densely deployed in the
HetNets and the access link is considered to be affected by the
random blockage. We focus on the joint optimization of the user
association and the backhaul resource allocation to improve
long-term total link throughput in the HetNets. We develop
an effective MADRL based method, which allows each UE to
select the associated small base station (SBS) and determine the
backhaul resource requirements based on its state observations.
The method does not require the full channel state information
(CSI) and uses a distributed architecture to improve training
efficiency. Based on the MADRL algorithm, our scheme can
adjust the user association and backhaul resource allocation
strategy according to the change of the access link blockage
state in time and obtain satisfactory throughput performance.
The contributions of this article are summarized as follows:
� We focus on the joint optimization of the backhaul resource

allocation and the user association in a HetNet with the
dense deployment of mmWave small cells. The access
links and the backhaul links in the HetNet adopt two
different mmWave frequency bands and the access links
are subject to random blockage. We formulate the joint
optimization as a mixed integer nonlinear programming
(MINLP) problem, with the purpose of maximizing the
long-term total link throughput in the HetNet.

� We develop a MADRL based method to solve this joint
optimization problem. Specifically, we consider each UE
as an agent and define the state, action, and reward for UEs.
Then, with the help of the double deep Q-learning algo-
rithm (DDQN), each UE learns an effective joint optimiza-
tion policy to maximize the long-term total link throughput.
Through distributed training, each UE can make decisions
independently based only on partial observations of the
environment and adjust the user association and backhaul
resource allocation policies in time when the link blockage
state changes.

� We evaluate the MADRL scheme and show that the pro-
posed learning framework has good convergence perfor-
mance. When the link blockage state changes, the network
throughput performance can be guaranteed by adjusting
the user association and backhaul resource allocation strat-
egy. Besides, the scheme contributes to a better balance
between access throughput and backhaul throughput, and
also achieves higher network link throughput in various
network scenarios with different numbers of UEs and SBSs
over several baseline schemes.

The rest of the article is organized as follows. Section II
reviews related work. The system model and problem formu-
lation are presented in Section III. We present the joint design
scheme based on MADRL for both radio access and backhaul
network in Section IV. Our simulation results are discussed
in Section V. Section VI concludes this article. We list the
abbreviations commonly appeared in this article in Table I.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:22:25 UTC from IEEE Xplore.  Restrictions apply. 



14500 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 11, NOVEMBER 2023

TABLE I
LIST OF ABBREVIATIONS

II. RELATED WORK

There have been several related works studying joint re-
source allocation and user association for HetNets. For ex-
ample, Fooladivanda et al. [25] investigated the performance
of different user association policies under three predefined
spectrum allocation strategies in HetNets. Lin et al. [26] fo-
cused on jointly optimizing user association and spectrum al-
location for multi-tier HetNets in both downlink and uplink
to maximize network utility. Chen et al. [27] aimed to maxi-
mize the system sum rate and design a distributed algorithm
for jointly optimizing user association and resource allocation.
Zhuang et al. [28] proposed an optimization-based framework
to reduce network energy consumption in the HetNets by jointly
optimizing user association and spectrum allocation. With huge
available bandwidth, mmWave can be adopted in HetNets,
significantly increases the network capacity. In [29] and [30],
the user association and the resource allocation were jointly
optimized in the HetNets with the coexistence of sub-6 GHz
BSs and mmWave BSs. Liu et al. [9] investigated the joint
user association and resource allocation in mmWave HetNets
under two access modes: single-band access and multi-band
access.

However, the above works only considered the optimization of
the access side. In HetNets with wireless backhaul, the balance of
the access and backhaul link throughput needs to be guaranteed
for better total throughput. Therefore, it is necessary to consider
a joint design of access and backhaul. Many works considered
the scenarios where access and backhaul operate at the same
frequency band [11], [12], [13], [14]. Liu et al. [11] formu-
lated the joint optimization of user association and resource
allocation in in-band full-duplex wireless backhaul HetNets as

a MINLP problem. They decomposed the original problem and
proposed an iterative algorithm to solve the MINLP problem.
Khodmi et al. [12] adopted non-cooperative game theory to
solve the joint power allocation and user association problems
in heterogeneous ultra-dense networks (UDNs), in order to
guarantee throughput balance between the access and backhaul
links. Su et al. [13] adopted a distributed optimization algorithm
based on primal and dual decomposition to jointly optimize
the user association and the backhaul bandwidth allocation.
Liu et al. [14] proposed a coalition game based joint user asso-
ciation and bandwidth allocation algorithm for mmWave UDNs
to maximize network sum rate. However, the fact that access
and backhaul share the same frequency band makes frequency
resources limited and introduces backhaul-access interference.
The interference is exacerbated by the dense deployment of
small cells, which limits the further improvement of network
throughput [7]. There has been some works focused on the
HetNets with mmWave backhaul and sub-6 GHz access [31],
[32], [33]. Despite the elimination of interference between the
access and backhaul, the limited bandwidth of the sub-6 GHz
band makes it difficult to support higher data rate transmissions.
In addition, allocating different mmWave bands to access and
backhaul may be another effective solution. However, few works
have focused on the joint optimization of access and backhaul
under this solution.

In dynamic wireless networks, it is difficult to obtain the ac-
curate and complete information about the environment. There-
fore, model-free RL has been widely used to solve optimization
problems in wireless communication [24]. Feng et al. [34]
applied deep Q-learning (DQN) to find the resource allocation
strategy under different system states. The proposed DRL-based
approach achieved effective utilization of limited backhaul re-
sources. Wei et al. [35] focused on the user scheduling and re-
source allocation scheme for HetNets with hybrid energy supply.
Considering the stochastic property of wireless channel condi-
tions and renewable energy arrival rates, they proposed a policy-
gradient-based actor-critic RL algorithm to obtain the optimal
policy. Shen et al. [19] established a DRL framework to optimize
the resource allocation and scheduling for time-sensitive traffic
in a 5G system subject to mmWave channel variations. However,
these works considered centralized optimization, which induces
a heavy computational pressure on the central controller. Be-
sides, the communication overhead of collecting global network
information cannot be ignored either. Therefore, distributed
optimization methods based on MARL are more advantageous
in the large-scale dynamic HetNets with the dense deployment of
small cells. For example, Zhao et al. [36] regarded each user as an
agent and proposed a distributed optimization method based on
MADRL to achieve the jointly optimal resource allocation and
user association strategies in HetNets. Yang et al. [37] proposed
a multi-agent dueling deep-Q network-based algorithm com-
bined with distributed coordinated learning to jointly optimize
device association, spectrum allocation, and power allocation in
dynamic HetNets. Sana et al. [38] developed a MADRL based
user association scheme under the time-varying nature of the
mmWave channels for dense mmWave HetNets. However, these
works [36], [37], [38] did not consider the joint design of access
and backhaul.
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Fig. 1. Dense deployment of small cells underlying the macrocell network
with different mmWave bands for access and backhaul.

Motivated by these prior works, we focus on the joint design
of access and backhaul networks in densely deployed small
cells, where different mmWave bands are used for access and
backhaul. We propose a MADRL-based scheme for joint user
association and wireless backhaul bandwidth allocation over the
access and backhaul networks. The proposed scheme considers
the dynamic characteristics of mmWave communications as well
as the interaction between backhaul bandwidth allocation and
user association in HetNets, aiming to maximize the long-term
overall system throughput.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a two-tier downlink HetNet composed of a macro
base station (MBS), S SBSs, and N randomly located UEs, as
shown in Fig. 1. The MBS is connected to the core network
through optical fiber. The SBSs are densely deployed within the
coverage of the MBS. Data transmission is carried out between
the MBS and SBSs through mmWave backhaul links. We assume
that the MBS and SBSs can be appropriately deployed to avoid
the blockage of the backhaul link [10]. Thus, the stable line-of-
sight (LOS) connection can be established between the MBS and
each SBS without relaying through other SBSs. Each UE can be
associated with a SBS and served by the associated SBS through
a mmWave access link. It is worth noting that we do not consider
the direct communications between the MBS and UEs. Although
this is beneficial to improve the received signal strength for UEs
near the MBS, few UEs can benefit from such an improvement
due to the large coverage area of the macro cell and the severe
path loss and signal blockage suffered by the mmWave signal. In
addition, the introduction of direct communications causes more
severe interference to UEs served by SBSs, thus degrading their
throughput performance.

In this article, we adopt different mmWave bands for the data
transmission of access and backhaul. The 28 GHz band and
the 73 GHz band are used for the data transmission of access
and backhaul, respectively. Both the BSs and UEs are assumed
to be equipped with antenna arrays for performing directivity
beamforming. Besides, since mmWave is very sensitive to the
blockage of environmental obstructions, we further assume that

the BSs and the UEs are also equipped with omnidirectional an-
tennas in sub-6 GHz for reliable transmission of the transmission
requests and signaling information [39]. Let U = {1, 2, . . ., N}
and B = {1, 2, . . ., S} denote the sets of UEs and SBSs, respec-
tively.

1) Access Transmisson Model: The access transmissions are
performed in 28 GHz. Channel multiplexing can be adopted
in the system for saving channel resources. However, the conse-
quent interference needs to be considered in the network design.
In the access network, frequency resources are multiplexed in
different small cells. Time is assumed to be partitioned into
multiple superframes and each superframe consists of many
nonoverlapping time slots. Each SBS uses TDMA to serve its
associated UEs, which allows different UEs in the small cell to
occupy all the access link bandwidth for data transmission in
different time slots. Moreover, each SBS evenly allocates time
slots to its associated UEs in the small cell. Suppose that at each
time t1, each SBS can be associated with up toNs UEs, and each
UE can only be associated with one SBS. We use a variable yij,t
to indicate user association, which is defined as

yij,t =

{
1, if UE i is associated with SBS j at time t

0, otherwise.
(1)

The number of UEs associated with SBS j at time t is given by

Nj,t =
∑
i∈U

yij,t. (2)

In the downlink of the access network, we assume that the
antenna arrays of each SBS and its served UE at each time
slot perform directivity beamforming before transmission. The
received power at UE i from BS j at time t, can be written as

pacji,t = PSGs(j, i)Gr(j, i)Lt (dji) , (3)

where PS is the transmit power at SBS j, Gs(j, i) denotes the
transmit antenna gain in the direction of BS j → UE i and
Gr(j, i) denotes receive antenna gain in the opposite direction,
dji denotes the distance from SBS j to UE i, andLt(dji) reflects
the path loss and shadow fading of the access link. In this article,
we adopt the close-in free space reference distance path loss
model at 28 GHz in [40], which is based on the real propagation
measurements at 28 GHz in downtown Manhattan. Therefore,
the model can better reflect the propagation characteristics of
28 GHz signals in the real environment. The path loss is ex-
pressed as

Lt (dji) [dB]=10log10

(
4πd0

λ

)2

+10n̄aclog10

(
dji
d0

)
+Xac,

(4)
where λ denotes the wavelength, d0 is the far field reference
distance, n̄ac is the path-loss exponent and Xac represents the
log-normal shadowing in dB, which is a zero-mean Gaussian
random variable with variance σ2

ac. Both n̄ac and σ2
ac are the

best fit over all measurements from the particular measurement
campaign at 28 GHz in downtown Manhattan [40].

1Note that the time t corresponds to the time when the link blockage state
changes. The change is a large-scale characteristic of the wireless channel. The
time scale of a time t is much larger than the superframe length of the access
link.
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TABLE II
DIRECTIVITY GAIN OF UNINTENDED SBS-UE PAIR (k, i)

Unlike sub-6 GHz frequency band, high gain directional link
is always established in mmWave communication to compen-
sate for the high path loss and penetration loss of mmWave.
Thus, both UEs and SBSs are equipped with antenna arrays for
directional beamforming to direct beams towards each other. In
this article, for tractability of the analysis, we utilize a sector
antenna model to approximate the actual antenna patterns [41]:

Gd(θ) =

{
Gmax

d , |θ| ≤ ωd

Gmin
d , |θ| > ωd,

(5)

where d ∈ {s, r}, θ denotes the angle off the boresight direction,
θ ∈ [−π, π), ωd denotes the beamwidth of the main lobe, Gmax

d

and Gmin
d is directivity antenna array gain of the main lobe

and the side lobes, respectively. We assume that there are no
alignment errors in this system, so each intended SBS-UE pair
has the maximum directivity gain Gmax

SBSG
max
UE . The beams of

other unintended pairs are randomly oriented towards each other
and uniformly distributed in [−π, π). Therefore, the directivity
gain of unintended pair is a discrete random variable. The four
possible gain values and their corresponding probabilities are
given in Table II.

Besides, due to the small wavelength and the directional
transmission, the mmWave link is sensitive to the blockage
of environmental obstructions like trees, buildings, and human
bodies. The most significant difference between the microwave
band and the mmWave band is that in many locations, especially
when the distance from the transmitter is >200 meters, no
mmWave signal with transmit powers between 15 and 30 dBm
can be detected. It means that all the paths to the receiver in these
locations are blocked by obstructions [42].

Therefore, we consider the three possible states of the access
link, including line-of-sight (LOS), non-line-of-sight (NLOS),
and outage [40]. The path loss in the outage state is infinite,
which means the links between SBS and UE are completely
blocked by environmental obstructions. The access link in the
NLOS state will experience more serious path loss than in the
LOS state, which is reflected in parameters n̄ac and σac in (4).
Due to the dynamic and random nature of link blockage, three
states of access link are assumed to appear randomly over time,
and the path loss of the access link will follow the changes of the
access link state at different time t [34]. We use cji,t to indicate
the state of the access link between SBS j and UE i at time t,
defined as

cji,t =

⎧⎨
⎩

0, if the state of the access link is LOS
0.5, if the state of the access link is NLOS
1, if the state of the access link is outage,

(6)

which can be estimated by BS j through the statistics of UE
i signal. The set of the states of all the possible access links

between UE i and all the SBSs can be denoted as

ci,t = {c1i,t, c2i,t, . . ., cSi,t} . (7)

The probability functions of three states is related to the distance
between the transmitting and receiving antennas:

PLOS (dji) = (1 − Poutage (dji))e
−alosdji (8)

PNLOS (dji) = 1 − Poutage (dji)− PLOS (dji) (9)

Poutage (dji) = max
(
0, 1 − e−aoutdji+bout

)
. (10)

where the parameters alos, aout, and bout, and the other channel
parameters corresponding to the three states can be determined
by fitting the equations to the measured data in downtown
Manhattan via maximum likelihood estimation [40].

In this system, we assume that TDMA is adopted in each small
cell and different frequency bands is allocated for access and
backhaul, so no intra-cell interference and backhaul interference
exist. However, since small cells are densely deployed and
different small cells reuse the access spectrum resources, it is
necessary to consider the inter-cell interference. Therefore, the
interference at UE i associated with SBS j at time t, which is
denoted as Iji,t, can be expressed as

Iji,t =
∑

k∈B\{j}
PSGs(k, i)Gr(k, i)Lt (dki) . (11)

The interference comes from signals sent from SBSs other than
the SBS j associated with UE i, and the values of antenna gain
Gs(k, i)Gr(k, i) are shown in Table II.

Assume that the bandwidth of the access link is Wac, and let
N0 denote the one-sided power spectra density of white Gaussian
noise. The signal-to-interference-plus-noise ratio (SINR) at UE
i associated with SBS j at time t can be calculated as

γac
ji,t =

PSGs(j, i)Gr(j, i)Lt (dji)

N0Wac +
∑

k∈B\{j} PSGs(k, i)Gr(k, i)Lt (dki)
.

(12)
Consider all the UEs associated with the same SBS j. Then,
the average throughput of one of the UEs, UE i, in the access
downlink at time t is given by

raci,t =
∑
j∈B

yij,tWac

Nj,t
log2

(
1 + γac

ji,t

)
. (13)

Since we assume that each UE is associated with one SBS, if UE i
is associated with SBS j∗, i.e., yij∗,t = 1, the average throughput
of UE i in the access link can be written as

raci,t =
Wac

Nj∗,t
log2

(
1 + γac

j∗i,t
)
. (14)

2) Backhaul Downlink Model: The backhaul transmissions
are performed in 73 GHz. We assume that the MBS can establish
directional backhaul connections with all SBSs at the same
time. Each SBS is assumed to be allocated orthogonal backhaul
frequency resources without interference between each other.

In the downlink of the backhaul, the antenna arrays of each
MBS and all the SBSs perform directivity beamforming before
transmission. The received power at SBS j at time t is

pbkMj,t = PMGs(M, j)Gr(M, j)Lt (dMj) , (15)
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where PM is the transmit power of the MBS; Gs(M, j) and
Gr(M, j) denote the transmit and receive directivity antenna
gain, respectively, from the MBS to SBS j, dMj is the distance
from the MBS to SBS j; and Lt(dMj) reflects the path loss
and shadow fading of the backhaul link. We adopt the close-in
free space reference distance path loss model at 73 GHz in [40],
which is based on the real propagation measurements at 73 GHz
in downtown Manhattan. The path loss is expressed as

Lt (dMj)[dB]=10log10

(
4πd0

λ

)2

+10n̄bklog10

(
dMj

d0

)
+Xbk,

(16)
where n̄bk is the path-loss exponent of the backhaul link, and
Xbk ∼ N(0, σ2

bk) is related to shadow fading in the backhaul
link. Both n̄bk andσ2

bk are the best fit over all measurements from
the particular measurement campaign at 73 GHz in downtown
Manhattan [40]. Considering the high gain directional backhaul
link achieved by beamforming at antenna arrays, we adopt
the same sector antenna in the backhaul link as in the access
link. In addition, as mentioned before, we assume that with
the appropriate deployment of BSs, the backhaul links can be
regarded as LOS connections.

The total bandwidth of the backhaul network is Wbk. We
assume that MBS allocates orthogonal backhaul frequency re-
sources to each SBS, and we denote the bandwidth allocated by
the MBS to the SBS j at time t as wj,t. In this article, in order to
allocate the backhaul resources more effectively, we consider the
available backhaul resources for each UE. In this way, according
to the access link state of each UE, different backhaul resources
can be allocated to different UEs, and the allocation of backhaul
resources can better adapt to the dynamic changes of access link
state. Accordingly, the backhaul resources of each SBS, i.e., the
bandwidth of each backhaul link, is the sum of the backhaul
resources of all the associated UEs.

If UE i is associated with SBS j, the proportion of the backhaul
bandwidth that is allocated to UE i at time t is given by the
backhaul bandwidth factor βij,t ∈ [0, 1], and the amount of
bandwidth assigned to UE i is βij,tWbk. So the total proportion
of the backhaul bandwidth allocated to SBS j at time t is

βj,t =
∑
i∈U

yij,tβij,t, (17)

and the total amount of bandwidth for SBS j is

wj,t = βj,tWbk. (18)

In the backhaul link, due to the different frequency bands used
for access and backhaul and the orthogonal resource allocation,
we don’t need to consider the access interference and the inter-
ference between SBSs. Besides, we consider the single MBS in
our system, and assume the sufficient long distances between
the SBSs in the HetNet with the neighbouring MBSs. So the
signal-to-noise ratio (SNR) at SBS j at time t can be calculated
as

γbk
j,t =

PMGs(M, j)Gr(M, j)Lt (dMj)

N0wj,t
. (19)

Then, the throughput of backhaul link between MBS and SBS
j at time t is given by

rbkj,t = wj,tlog2

(
1 + γbk

j,t

)
. (20)

And the achieveable throughput of UE i in the backhaul link at
time t is given by

rbki,t =
∑
j∈B

yij,tβij,tWbklog2

(
1 + γbk

j,t

)
. (21)

Since we assume that each UE is associated with one SBS, if UE i
is associated with SBS j∗, i.e., yij∗,t = 1, the average throughput
of UE i in the backhaul link can be written as

rbki,t = βij∗,tWbklog2

(
1 + γbk

j∗,t
)
. (22)

B. Problem Formulation

We consider both the access link and backhaul link. At time t,
in order to serve UE i, the actual achievable link throughput in
the HetNet is determined by the small one between the backhaul
link throughput and the access link throughput, which is given
by

Ri,t = min
(
rbki,t, r

ac
i,t

)
. (23)

The total actual link throughput of all the UEs at time t in the
HetNet is

Rt =
∑
i∈U

Ri,t. (24)

In the mmWave HetNet, we aim to maximize the long-term total
throughput of all the UEs over a finite period T . The joint user
association and backhaul resource allocation problem can be
formulated as

max
y,β

T∑
t=1

Rt (25)

s.t.
∑
j∈B

yij,t = 1, ∀i ∈ U, ∀t (26)

∑
j∈B

βj,t ≤ 1, ∀t (27)

Nj,t =
∑
i∈U

yij,t ≤ Ns, ∀j ∈ B, ∀t (28)

yij,t ∈ {0, 1}, ∀j ∈ B, ∀i ∈ U (29)

βij,t ∈ [0, 1] , ∀j ∈ B, ∀i ∈ U. (30)

This joint optimization problem can be solved by finding the
optimal backhaul bandwidth factor setβ and the user association
indicator set y. Due to the dynamically changing blockage state
of the access links, the user association and backhaul resource
allocation strategy need to be adjusted in time in order to
ensure good throughput performance. Constraint (26) indicates
that each UE can only be associated with one SBS at a time.
Constraint (27) indicates that the bandwidth resources shared by
all backhaul links does not exceed the total available bandwidth
resources. Constraint (28) ensures that the number of UEs served
by each SBS does not exceed the upper limit of the SBS.
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TABLE III
NOTATION SUMMARY

Problem (25) is a MINLP problem, which is difficult to
solve for the global optimal solution. Many state-of-the-art
approaches are helpful to solve the MINLP problem, includ-
ing heuristic-based, optimization-based, and game theory-based
approaches [24]. However, in our system, the access link state
changes over time, such approaches will not be accurate. They
need to reconfigure to reflect the new environment. Besides,
most of these approaches rely on accurate and complete knowl-
edge of wireless environment or a large amount of information
exchanged between network entities (e.g., BSs and UEs). They
are difficult to perform in the large-scale HetNets. Therefore, we
propose a MADRL-based method to solve these problems. The
method allows each agent to learn to adapt to the environment
without the knowledge of environment in advance and locally
find the optimal policy through effective learning. Table III
summarizes the notations adopted in this section.

IV. MULTI-AGENT DEEP REINFORCEMENT LEARNING

BASED METHOD

In this article, we propose a MADRL based method to solve
problem (25). Considering the difficulty in obtaining full and
perfect CSI in HetNets with small cells densely deployed, this
method does not require complete CSI information. Besides,

Fig. 2. The Markov game model.

through the extensive training, this method can quickly adjust the
user association and backhaul resource allocation policy when
the access link state changes.

Note that although single-agent deep reinforcement learning
(SADRL) method also has the above advantages, it is not practi-
cal to use SADRL method for this problem. On the one hand, the
state and action space will grow dramatically, which makes the
convergence of the algorithm extremely difficult. Specifically,
if we denote the size of action space for each agent of the
MADRL method as A, the size of action space for the agent
of the SADRL method is AN . Thus, we can see that the growth
is even more significant in the HetNets we considered with small
cells densely deployed. On the other hand, the SADRL method
needs a network controller with agent to collect information
from all the network entities, make decisions centrally and then
broadcast the decisions to each network entity. The considerable
communication overhead will be intolerable in large-scale Het-
Nets. In comparison, the MADRL method we proposed supports
that each agent obtain state observations independently and
make decision locally, which greatly reduces communication
overhead. Besides, the MADRL method we proposed trains all
the agents in parallel, thus reducing the training time.

In this section, we first establish a Markov game model
corresponding to the joint optimization problem. Then we intro-
duce DDQN algorithm and develop a multi-agent double deep
Q-learning (MADDQN) method to obtain the optimal solution
for the Markov game model.

A. Markov Game Model

In MADRL, the interaction between agents and the environ-
ment is usually described as a Markov game [23], as shown in
Fig. 2. There are four key elements in a Markov game: (i) a
finite environment state space S, (ii) a finite action space A,
(iii) the reward R, and (iv) the state transition probability P .
Suppose that there are n agents in the environment. At training
time t, each agent i observes the current environment state
si,t, and then takes an action ai,t. The joint actions of all the
agents in the environment are represented by at. Afterwards, the
environment feeds back the reward for each agent according to
the joint actions, while the state transition occurs simultaneously.
Each agent i then receives a reward ri,t+1 and observes a new
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environmental state si,t+1. Then the interaction between each
agent and the environment at training time t is completed. The
state transition probability and reward at time t+ 1 depend
only on the previous state and the previous action at time t,
regardless of the earlier states and actions (i.e., satisfying the
Markov condition).

Since machine learning algorithms are computationally and
memory intensive, some notable efforts have already been made
both in hardware design and software acceleration, which makes
it possible to move the optimization process at the UE [43], [44],
[45]. In this sense, [36] and [38] have treated UEs as agents
and proposed distributed MARL algorithms to solve the user
association problem. Thus, as for the joint optimization of user
association and backhaul bandwidth allocation, we regard each
UE i as an agent.

The entire mmWave HetNet system can be regarded as the
environment. At each time t, after the user association and back-
haul resource allocation strategies of all the UEs are adopted, the
environment can generate the link throughput corresponding to
each UE i and the total link throughput in the network according
to the link models. This can be used as the basis for UEs’
decision-making.

To transform the joint optimization problem into a Markov
game, which can be solved by MADRL, we design the key
elements of the corresponding Markov game below in detail.

1) State: State should fully represent the features of the
network environment at different times, when different resource
allocation and user association policies lead to different link
throughput. Moreover, due to the dynamic characteristics of
mmWave links, the access links will assume different states,
which change over time. Therefore, the state of the environment
should contain the total achieved link throughput in the HetNet,
the achieved link throughput of each UE and the states of all the
access links.

Besides, considering the constraint (27), since each UE makes
decisions independently, the total backhaul resources allocated
to UE may exceed the limit. Thus, each UE needs to observe
the allocation of backhaul resources in the network, which is
determined by actions of all the UEs at previous time. We can
use βt to represent the observation of the backhaul resource
allocation at time t, which is given by

βt =

{∑
j∈B βj,t,

∑
j∈B βj,t ≤ 1

0, otherwise.
(31)

Therefore, with regard to each UE i, the state observation ob-
tained from the environment consists of four parts: (i) the total
achieved link throughput, (ii) the observation of the backhaul
resource allocation, (iii) the achieved link throughput of UE i
and (iv) the states of all the possible access links of UE i. We
can write the state observation of UE i at time t as a tuple:
{βt−1, Rt, ci,t, Ri,t}.

In addition, in MADRL, since all the agents learn to select
their actions at the same time, each agent faces a non-stationary
environment, which is harmful to the experience replay in DQN.
Therefore, we adopt the fingerprint-based method designed
in [46] to deal with this problem. The main idea is to add the

estimate of other agents’ policies to the state space of each agent.
However, the policy of each agent includes a high-dimensional
DQN, which makes it difficult to act as a part of state. Con-
sequently, a low-dimensional fingerprint should be included in
the state of each agent to track the historical trajectory of other
agents’ policy. As for MADRL, the policy updates of each agent
are correlated with the number of training iterations, denoted by
e, and the exploration rate ε in the ε-greedy strategy. Therefore,
these two variables should be added to the observation space of
each agent as low dimensional fingerprints.

As a result, the state observation of each agent i at time t can
be designed as

si,t = {βt−1, Rt, ci,t, Ri,t, e, ε} , (32)

and the joint actions of all the agents can be expressed as

st = {s1,t, s2,t, . . ., sN,t} . (33)

2) Action: The action of each UE i consists of two parts: (i)
backhaul bandwidth allocation, and (ii) user association. How-
ever, the backhaul bandwidth factor indicating the bandwidth
allocation, i.e.,βij,t, is a fraction in [0,1], leading to a continuous
action space, which the DQN algorithm is not good at dealing
with. Therefore, discretization of the action space should be
considered.

We divide the total bandwidth of the backhaul network into L
non-overlapping bandwidth resource blocks. Thus the backhaul
bandwidth allocation problem is transformed into a bandwidth
resource block allocation problem. Suppose that each bandwidth
resource block can only be allocated to one UE, while a UE can
occupy multiple bandwidth resource blocks. At time t, if UE
i is associated with SBS j, the number of backhaul bandwidth
resource blocks that can be occupied by UE i is represented
by lij,t. Therefore, the backhaul bandwidth factors βij,t can be
written as

βij,t =
lij,t
L

. (34)

Accordingly, the constraint (27) is equivalent to
∑

j∈B
∑

i∈U
lij,t ≤ L, ∀t.

Then, we can use lij,t to represent the allocation of backhaul
bandwidth to UE i at time t in the algorithm. In order to reduce
the action space and avoid the case when the backhaul bandwidth
is allocated to only one or few UEs, we set an upper limit on
the bandwidth resource blocks that can be occupied by each UE
according to the number of UEs in the HetNet, denoted by lmax.
As a result, the action of each agent i at time t is designed as

ai,t = {j∗, lij∗,t} , (35)

where j∗ denotes the index of the SBS associated with UE i, and
lij∗,t satisfies lij∗,t ∈ [0, lmax]. Therefore, the size of the action
space, denoted by A, is the product of the size of the range
[0, lmax] and the number of SBSs in the HetNet, i.e., (lmax +
1)× S. The joint actions of all the agents are expressed as

at = {a1,t, a2,t, . . ., aN,t} . (36)

3) Reward: In the HetNet scenario, all the agents make
bandwidth allocation and user association decisions in order to
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maximize the long-term total link throughput. However, in the
training process, the total allocated backhaul resources may ex-
ceed the upper limit. At this time, constraint (27) is not satisfied.
In addition to add the observation of bandwidth allocation to the
state mentioned before, it is useful to constrain the reward value.
If the total allocated backhaul resources are more than the total
available bandwidth resources, the reward value is equal to 0.
This means that, if the joint actions of all the agents do not meet
the constraint (27), all the agents will not be rewarded. Besides,
if the number of UEs served by the BS j is more than Ns, which
means the constraint (28) is not satisfied, the UEs associated
with the BS j will not be rewarded. Therefore, agents can learn
to avoid the situation of not meeting the constraint in the training
process.

Moreover, it seems like all the agents assume a common goal
that maximize the long-term total link throughput. However,
this cannot be simply regarded as fully cooperative MARL [47].
Each UE has the selfishness to improve its own throughput.
Therefore, in the design of reward value, we need to consider
not only the total link throughput in the network, but also the
link throughput of each UE. We define δ as a factor representing
the degree of selfishness of each UE. The reward of each agent
i is written as

ri,t+1 =

{
δRi,t + (1 − δ) 1

NRt, if βt ≤ 1and Nj∗,t ≤ Ns

0, otherwise.
(37)

The larger the value of δ, the more likely UEs are to make
decisions conducive to improving their own throughput. We
will determine δ with the best network performance through
simulation experiments.

B. Double Deep Q-Learning (DDQN) Algorithm

To solve the Markov game, it is necessary to select appropriate
policy-making algorithm for each agent. The policy π refers to
the mapping from state s to action a, which defines the behavior
of agent. The policy is expressed by the probability of taking
action a in the current state s. Considering long-term reward,
the goal of the agent is to find an optimal policy that maximizes
the cumulative discounted reward Gt at each training step t,
which is given by

Gt
.
=

∞∑
k=0

γkrt+k+1, (38)

where γ is the discount rate, which reflects the importance of
future rewards, and rt denotes the reward value at training step t.

To evaluate the policies, the action-value function, a.k.a. the
Q-value, is adopted in Q-learning. It is defined as the expected
return of the discounted reward of all possible policy sequences
after taking action a in the current state s at training step t
according to policy π, which can be written as

Q(St, At) = Eπ [Gt | St = s,At = a] . (39)

Following the Bellman equation [20], the current action-value
function at training step t can be associated with the subsequent
action-value function at training step t+ 1. The optimal strategy

corresponds to the optimal action-value function in the finite
Markov decision process (MDP) [20]. Consequently, the optimal
action-value function Qtarget(St, At), which is also called the
target Q-value, can be written as

Qtarget(St, At) = rt+1 + γ ·max
a

Q(St+1, a). (40)

The Q-value is updated with the target Q-value at each training
step t, denoted as

Q(St, At) := Q(St, At) + α · [Qtarget(St, At)−Q(St, At)],
(41)

where α represents the learning rate, which determines the
updates of the Q-value.

Q-learning needs to establish a Q-table to store the Q-values of
all the state-action pairs. For high-dimensional state and action
spaces, the Q-table will be very large, which brings a great
burden on storage and computing. To address this issue, DQN
leverages a DNN to learn and approximate Q-values, which is
referred to as the Q-evaluate network. Nevertheless, DNN needs
a large number of labeled data for training, while RL has to
generate the training data in the learning process, i.e., it does not
provide a labeled dataset in advance. In addition, the training data
should be uncorrelated, but RL obtains highly correlated data
during its operation, which could cause the training process to
be unstable. Therefore, in order to leverage a DNN in Q-learning,
experience replay and fixed Q-target network are used to improve
the stability of the training process [22].

Experience replay refers to storing the experience obtained
from interaction with the environment at each training step t,
i.e., {St, At, rt+1, St+1}, in the replay memory. Then, when
the Q-evaluate network needs to be updated, a mini-batch of
replay memory D is randomly selected from the replay memory
as training data, both the new data and historical data will be
included for training, thus breaking the correlation in the data.

In addition, fixed Q-target network means the use of an
independent Q-target network to generate the target Q-value.
The update of the Q-target network is slower than that of the
Q-evaluate network, and is achieved by replacing the parameters
of the Q-target network θ− with the parameter of the Q-evaluate
network θ.

Therefore, unlike the update of Q-table in Q-learning, as
in (41), DQN updates the parameter θ of the Q-evaluate network
using mini-batches randomly selected from the replay memory
D to minimize the following loss function.

L =
∑
D

[
rt+1 + γ ·max

a
Q(St+1, a; θ

−)−Q(St, At; θ)
]2

.

(42)
Moreover, when calculating the target Q-value, both the se-
lection and the evaluation of actions based on the maximum
Q-value are estimated by the Q-target network, which is prone
to overestimation. To this end, DDQN decouples the selection
and evaluation to solve the above problem [48]. In the calculation
of the target Q-value, action selection uses the Q-value estimated
by the Q-evaluate network, and the Q-target network is only used
to evaluate actions. The loss function of the DDQN is modified
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as

L =
∑
D

[
rt+1 + γ ·Q

(
St+1, argmax

a
Q(St+1, a; θ); θ

−
)

−Q(St, At; θ)

]2

. (43)

C. Multi-Agent Double Deep Q-Learning (MADDQN) Method

Taking DDQN as the policy-making algorithm of each agent,
we design MADDQN method to solve the Markov game model.
We assume the Markov game model is episodic. Each episode
includes T steps. Each step t corresponds to the time t. The state
of the access link between each UE and each SBS changes over
training time steps, so that agents can learn the link blockage
pattern and adaptly make optimal decisions. Our goal is to
maximize the sum of the total link throughput in an episode,
corresponds to (25).

In this article, we mainly consider the design of joint optimiza-
tion scheme that can effectively cope with random and dynamic
link blockage. In fact, the network may change in other aspects
at the same time, such as the rapid movement of UEs and the
increase or decrease of the number of UEs, etc. If we spend
too much time for training, these changes in the network during
the training stage may affect the results of the training. Thus,
we adopt a distributed architecture to design algorithm training,
each UE can train its Q network locally. From the perspective of
the entire network, training is done in parallel, greatly reducing
the training time. Besides, the increase in computing power is
rapid, so the time cost of training models will be greatly reduced
in the future.

The detailed training procedure is presented in Algorithm 1.
The agent at each UE i has two dedicated DQNs: the Q-evaluate
network and the Q-target network. At each episode, all the
agents’ states are first initialized. The UE-SBS association has
not been established in the initial state, so the link throughput
of all the agents are zero at this time. Then, at each training step
t, after each UE agent observes the environment state si,t, the
Q-evaluate network uses it as input and outputs the Q-values
of all the state-action pairs in the current state. The choice of
action is based on the Q-values with the ε-greedy policy, which
means that action is randomly chosen with probability ε while
the action with the maximum Q-value is chosen with probability
(1 − ε).

However, if all the agents randomly select lij,t between
[0, lmax], the number of total backhaul resource blocks allocated
to UEs in the network may be all the values between 0 andNlmax.
The probability of L resource blocks being fully utilized is only

1
Nlmax+1 . Actually, we hope thatL resource blocks can be utilized
as much as possible, and L should be the maximum number of
resource blocks available. Therefore, we implement ε-greedy
strategy centrally. Specifically, all the UEs are consistent in
the mode of selecting actions, i.e., randomly or according to
the output of Q-evaluate network. The mode is controlled by a
network controller located in the MBS.

If the network controller decides to select actions according to
the output of the Q-evaluate network, all the UEs can make action

Algorithm 1: The MADDQN Method for Joint Optimiza-
tion of User Association and Resource Allocation in the
HetNet.

1: Initialize the parameters of the Q-evaluate network and
the Q-target network of all the UE agents randomly;

2: Initialize the replay memory at each agent;
3: for each episode e do
4: Initialize st;
5: for each step t do
6: for each agent i do
7: Observe environment state si,t;
8: The Q-evaluate network uses si,t to choose

action ai,t from A with the centralized ε-greedy
policy;

9: end for
10: All agents take actions and obtain reward ri,t+1;
11: Update access link states cji,t;
12: for each agent i do
13: Observe environment state si,t+1;
14: Store {si,t, ai,t, ri,t+1, si,t+1} in the replay

memory Di;
15: end for
16: end for
17: for each agent i do
18: Sample minibatch Di from the replay memory

randomly;
19: Calculate the loss function using the Q-target

network;
20: Update the parameters of the Q-evaluate network

using stochastic gradient descent;
21: For every C episodes, update the parameters of the

Q-target network;
22: end for
23: end for

selection decisions independently according to their Q-evaluate
network. Then, each UE sends the access request and the number
of required backhaul resources to the SBS that the UE has
chosen. If the number of UEs associated with the SBS satisfies
constraint (28), the SBS accepts the access request and sends
a feedback signal to the UE to establish an access connection.
Otherwise, the SBS rejects the access request and the access
throughput of all associated UEs is 0. Then, all the SBSs send
the total backhaul resource requirements of the associated UEs
to the MBS. The MBS determines whether the total backhaul
resource allocation satisfies the constraint (27). If satisfied, the
MBS allocates the corresponding backhaul resources to SBSs
and feeds back the information of the allocated total backhaul
resources to each UE. If not, the backhaul resources will not be
allocated. At this time, the throughput of all the UEs is 0.

If actions are decided to be selected randomly, the network
controller randomly generates rational action selection for each
UEs. Specifically, the user association policy should meet the
constraint (26), while the backhaul resource allocation policy
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should meet: ∑
j∈B

∑
i∈U

lij,t = L, (44)

so as to make sure all the backhaul resources can be fully
utilized. The MBS can directly determine the allocation of the
backhaul resource based on the action selection and send the
action selection scheme to each SBS. Then, each SBS sends
the action selection scheme to the previous associated UEs. After
receiving the new scheme, each UE sends an access request to
the corresponding SBS. The SBS directly accepts the request
and sends a feedback signal to the UE to establish an access
connection.

After all the agents take actions at each training step t, the
achievable link throughput of each UE can be observed locally.
Each UE can send its achievable link throughput to the MBS
through the associated SBS. The MBS will calculate the current
total achievable link throughput, and then feed it back to each
UE, which makes each UE can calculate its complete reward
ri,t+1. When the access link state of UE i changes, each SBS j
estimates its current access link state cji,t, and sends the state to
UE i. It should be noted that taking into account the blockage
characteristics of the mmWave link, we use the sub-6 GHz band
to reliably transmit access requests and signaling information.
Therefore, we can see that through information exchange, the
state observations of each UE at step t+ 1 can be completely
obtained, which can be used as the basis for action selection at
step t+ 1. Then, the tuple {si,t, ai,t, ri,t+1, si,t+1} of each UE
i is stored in its replay memory for the update of the Q network.

Furthermore, at the end of each episode e, a mini-batch of
memory Di is randomly sampled from the replay memory as
training data for the Q-evaluate network at each UE agent i.
With the target Q-value calculated by the Q-target network, the
loss function of the Q-evaluate network can be written as

Li =
∑
Di

[ri,t+1 + γ ·Q(si,t+1, argmax
a

Q(si,t+1, a; θt); θ
−
t )

−Q(si,t, ai,t; θt)]
2. (45)

Stochastic gradient descent is used to update the Q-evaluate
network. The Q-target network of each UE agent i is updated in
every C episodes according to the fixed Q-target.

After completing training of the multi-agent system, the
trained Q-evaluate network of each UE i can be used to make
user association and backhaul bandwidth allocation decisions in
the current system scenario. At this time, each agent i can inde-
pendently choose action without the assistance of the network
controller. Specifically, when the access link state changes, each
UE agent i uses the state observation with e and ε from the last
training episode as input to the Q-evaluate network. According
to the output of the Q-evaluate network, the action with the
maximal Q-value is chosen by each UE i. The information
exchange in the process of taking action and observing state
is similar to the Q-value based action selection in the training
stage. Thereafter, at each time t, all the UEs will be associated
with the corresponding SBS and the corresponding backhaul
bandwidth will be allocated to each SBS.

Fig. 3. The deployment scenario of the HetNet used in our simulation study.

TABLE IV
SIMULATION PARAMETERS

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
MADDQN method through simulations. Specifically, we first
investigate the impact of the selfish factor δ on the performance
of our scheme. Then, we compare our scheme with the other
four schemes in terms of the throughput performance.

A. Simulation Setup

Consider a two-tier HetNet as shown in Fig. 3, where the
SBSs and UEs are randomly distributed within a radius of 200 m
centered at the MBS. In the HetNet, small cells are densely
deployed, and we set the density of SBSs to be more than 100
BSs/km2 accordingly [49], [50]. MmWave communications are
used in the HetNet, where the access links and the backhaul
links use the 28 GHz band and the 73 GHz band, respectively.
The link parameters are determined by fitting the equations
to the measured data in downtown Manhattan via maximum
likelihood estimation [40]. The settings of simulation parameters
are summarized in Table IV.

In the MADDQN method, the Q-evaluate network of each
UE has the same structure as the Q-target network, i.e., having
three fully connected hidden layers with 400, 350, and 300
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neurons, respectively. The replay memory size is 150,000 and
the minibatch size is 1,000. Rectified linear unit (ReLU), i.e.,
ReLU(x) = max(x, 0), is adopted as the activation function.
The RMSProp optimizer [51] is used to update the Q-evaluate
network, where the learning rate is set to 0.0001. The discount
rate γ is set to 0.9. The total training steps T of each episode is
1,000, and the total number of episodes E is set on the basis of
ensuring the convergence of the algorithm. The exploration rate
ε is set to attenuate linearly from 1 to 0.002 with the increase of
episode e over the first 80%E training episodes and be stable at
0.002 afterwards.

It is worth noting that the dynamic changes of the system
are reflected in the dynamic and random access link blockage,
which results in dynamic changes in the access link state cji,t
over time. The probability of each access link state is given
by (8-10). For the proposed MADDQN method, we first perform
algorithm training using Algorithm 1 and then test the trained
MADDQN. In the training stage, the state of the access link
between each UE and each SBS changes once at each training
time step. Since each episode contains 1,000 training steps, the
access link states change 1,000 times in each episode, which
facilitates the MADDQN algorithm to learn the underlying
correlation between the dynamics of the link blockage, the joint
optimization strategies, and the system throughput performance.
In the testing stage, we test the performance of the algorithm over
1,000 time steps, and the access link state between each UE and
each SBS changes with time steps. At each time step, all UEs
make quick decisions with their trained Q-networks based on
the current access link state.

In order to show the advantage of our proposed algorithm
in the improvement of link throughput, the proposed user as-
sociation and backhaul bandwidth allocation scheme based on
trained MADDQN is compared with the three baseline schemes
for HetNets and one baseline schemes for the macrocell:

1) HL (heuristic based user association and load based back-
haul bandwidth allocation): the user association scheme is
proposed in [52]. Since we do not consider optimization of
power and beam width, we adapt the algorithm as shown
in Algorithm 2. When the access link between SBS j and
UE i is not in the outage state, we treat it as a feasible
user association. The algorithm first orders all the feasible
user associations according to their respective SNRs, and
then validates in order whether the current association can
increase the total access link throughput of the HetNet.
The MBS allocates backhaul bandwidth proportional to
the load on each small cell.

2) SL (SNR based user association and load based backhaul
bandwidth allocation): each UE is associated with the
SBS which can provide the maximum SNR, and the MBS
allocates backhaul bandwidth proportional to the load on
each small cell. If the number of UEs requested to associate
with a SBS exceeds Ns, the SBS selects Ns UEs with the
maximum SNR for access, and other UEs select the SBS
providing the maximum SNR among the remaining SBSs
to associate.

3) DA (distance based user association and equal backhaul
bandwidth allocation): Each UE is associated with the

Algorithm 2: Heuristic scheme for User Association.
1: Set yij,t = 0, ∀i ∈ U,∀j ∈ B at time t;
2: Get the SNRij,t if the access link state cji,t 	= 1 at time

t;
3: Sort the SNRij,t values in descending order into

Zt = {z1,t, z2,t, . . ., zk,t, . . ., zK,t}. k = φ(i, j) denotes
the mapping between k and the SBS-UE pair (i, j);

4: Initialize Rac
t = 0;

5: while k ≤ K do
6: Set yk,t = 1;
7: Compute Rac

t (k);
8: if Rac

t (k) > Rac
t (k − 1) and constraint (28) is satisfied

then
9: Set yk,t = 1;
10: else
11: Set yk,t = 0;
12: end if
13: end while

nearest SBS, and the backhaul bandwidth is evenly al-
located to each SBS. If the number of UEs requested to
associate with a SBS exceeds Ns, the SBS selects the
nearestNs UEs for access, and other UEs select the nearest
SBS among the remaining SBSs to associate.

4) MBS-only (MBS serves UEs directly): There are no small
cells deployed in the macro cell. Each UE is associated
with the MBS. The MBS communicates with UEs at
28 GHz band, and allocates equal bandwidth to each UE.

B. Choice of the Selfish Factor

Since the choice of the selfish factor δ defined in (37) has a
significant impact on the throughput performance of our scheme,
we now investigate it for better choice.

First, in Fig. 4, we test the effect of different δ on the conver-
gence performance of the algorithm. There are 30 UEs, 20 SBSs
and a MBS in the HetNet as Fig. 3 shows, and the number of
training episodes E is set to 3,000. The average link throughput
of each episode represents the average of the link throughput of
1,000 training steps in this episode. If the action selection at a
training step does not satisfy the constraint (27) and (28), we set
the throughput of this training step to 0. As we can see, when δ
is 0 and 0.2, the fluctuation of convergence curve is small, and it
can converge stably in about 2400 training episodes. However,
as δ increases, the convergence curve fluctuates more and more
sharply. In addition, the convergence value of the average link
throughput is maximum at δ = 0.2 and decreases with increas-
ing δ when δ > 0.2. To better explain these observations, we test
the trained MADDQN of different δ in the same scenario. The
test results are shown in Figs. 5 and 6.

Fig. 5 shows the average total link throughput of effective
decisions achieved by the trained MADDQN over 1,000 time
steps under different δ. The effective decision means that the user
association and the backhaul bandwidth allocation strategy made
by MADDQN can meet the constraints (27) and (28). It can be
seen that with the increase of δ, the average total link throughput
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Fig. 4. Convergence performance on the choice of δ for MADDQN. (a) δ = 0. (b) δ = 0.2. (c) δ = 0.5. (d) δ = 0.8. (e) δ = 1.

Fig. 5. Average total link throughput of effective decisions achieved by
MADDQN under different δ.

Fig. 6. Number of effective decisions of MADDQN under different δ.

for effective decisions is improved. This is because each UE can
make action selections independently by its Q-network based on
its state observations, and does not have access to information
about other UEs’ action selections. So the backhaul resource
blocks in the network are difficult to be fully utilized. In other
words, Equation (44) is hard to hold. As δ increases, UEs tend
to occupy more resource blocks to improve their throughput
Ri,t. This is reflected in the larger lij,t in action selection.
The utilization of backhaul resources in the network is more
sufficient at this time, thus improving the average throughput of
the network.

However, the increase in δ also brings a problem. Fig. 6 shows
the number of effective decisions made by MADDQN in 1,000
time steps under different δ. As we can see, when δ is 0 and
0.2, all the 1,000 decisions are effective decisions. But when δ

Fig. 7. Total link throughput with different time steps.

increases to 0.5, 0.8, and 1, the proportion of effective decisions
decreases to 93.2%, 81.1%, and 72.8%, respectively. This is
because as δ increases, the UE’s aggressive resource block
occupancy strategy causes the allocated backhaul resources to
exceed the total available backhaul resources in the network, i.e.,∑

j∈B
∑

i∈U lij,t > L. For the actual communication system,
this situation will cause network congestion, which is unaccept-
able. Based on the observations in Figs. 5 and 6, we can see that
setting δ to 0.2 achieves a balance between improving through-
put and satisfying the backhaul resource constraint. Therefore,
δ = 0.2 is adopted in the subsequent simulations.

C. Comparison With Other Schemes

Fig. 7 shows the total link throughput performances of the four
schemes at 1,000 time steps in the scenario shown in Fig. 3. As
we can see, since the access link state changes over time steps,
the total link throughput of all the scheme varies at different
time steps. This intuitively reflects the impact of the dynamic
changes in the access link state on the system performance.
Besides, in 1,000 time steps, MADDQN can always achieve
the highest total link throughput compared with the other three
baseline schemes. This means that our algorithm can better adapt
to the dynamic mmWave scenario. Compared with the other
three schemes, the average total link throughput of MADDQN
of 1,000 time steps achieves improvements of 10.1%, 13.2%,
and 42.7%, respectively.

In addition, as shown in Fig. 7, the performance of the HL
scheme is similar to that of the SL scheme. This is because both
HL and SL schemes make user association decisions based on
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Fig. 8. Link throughput of each SBS at one time step under the four schemes: (a) MADDQN, (b) HL, (c) SL and (d) DA.

the SNR information of the network, and their backhaul resource
allocation schemes are the same. The HL scheme, however, takes
into account the impact of the user association strategy on the
throughput of the access links, so the throughput performance
is slightly better than that of the SL scheme. As for the DA
scheme, it cannot adjust the strategies according to the network
dynamics, so the performance is the worst.

Then, under different schemes, we test the access and back-
haul link throughput of each SBS at one time step as Fig. 8 shows.
The red mark in Fig. 8 represents the actual link throughput
of each SBS, which is determined by the small one between
the backhaul link throughput and the access link throughput. In
Fig. 8, we can observe whether the access link throughput and
the backhaul link throughput are matched for each SBS. From an
overall view, MADDQN is most advantageous in balancing the
access and backhaul link throughput, which is attributed to the
joint design of access and backhaul. As Fig. 8(a) shows, SBSs
with higher access throughput can always be allocated more
backhaul resources to obtain higher backhaul link throughput.
Accordingly, higher actual link throughput of these SBSs can be
achieved. This explains why MADDQN has the best throughput
performance in Fig. 7.

In comparison, the SL and HL scheme adopts the load based
backhaul resource allocation strategy. However, due to the dif-
ference between the access link states of different UEs, the SBS
that serves more UEs does not necessarily achieve higher access
link throughput, such as the SBS 9 and 19 in Fig. 8(b) and the
SBS 17 and 19 in Fig. 8(c). Allocating more backhaul resources
to these SBSs can not increase the actual link throughput. On the
contrary, it is harmful to the increase of the actual link throughput
because of reducing the available backhaul resources for the
remaining SBSs. As we can see in Fig. 8(b) and Fig. 8(c), the
actual link throughput of some SBSs is only half of the access
link or backhaul link throughput, which limits the actual link
throughput of the HetNet.

Furthermore, the user association and backhaul resource al-
location of the DA scheme are independent of each other. In
Fig. 8(d), since SBS 1, 3, 9, 12, and 13 have no UE associated,
the actual link throughput of these SBSs is equal to 0. As the
backhaul resources are evenly allocated among the SBSs, the
backhaul resources on these SBSs are not utilized. At the same
time, the evenly allocated backhaul resources can not meet
the requirements of the remaining SBSs with high access link
throughput, such as SBS 7, 8, 15, 17, and 18. Therefore, the
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Fig. 9. Average total link throughput under different numbers of UEs.

actual link throughput of these SBSs is limited by the backhaul
resources.

In order to test the scalability of our MADDQN scheme,
we evaluate the total link throughput performance in different
scenarios. First, under different numbers of UEs, the throughput
performance of the five schemes, including four schemes for
HetNets and one scheme for macrocell, is shown in Fig. 9. There
are 20 SBSs and a MBS in the HetNet as shown in Fig. 3. When
the number of UEs is 20, 25, 30, 35, and 40, lmax is set to 18, 15,
12, 10, and 9, respectively. The number of training episodes E
is set to 3,000. In each scenario, after the training of MADDQN,
we test the performance of the trained MADDQN and the other
four chemes over 1,000 time steps. The total link throughput
of these 1,000 time steps is averaged to obtain the average
total link throughput, which is used to evaluate the throughput
performance of five schemes. As shown in Fig. 9, the average
total link throughput of MADDQN under different numbers
of UEs is always higher than that of the other four baseline
schemes. When the number of UEs is 20, 25, 30, 35 and 40, the
improvements in the total link throughput of MADDQN over HL
are 11.8%, 11.5%, 10.1%, 9.39%, and 12.99%, respectively.

Besides, we can see that with the increasing number of UEs,
the average total link throughput of the four schemes for HetNets
increases. However, due to the limited resources of the HetNet,
the improvements of the four schemes get smaller when more
UEs are served by the HetNet. In contrast with the other three
schemes, the network throughput growth of the MADDQN
scheme is less constrained. The reason is that the MADDQN
scheme optimizes the user association and backhaul bandwidth
allocation jointly, which allows for more flexible and efficient
utilization of the resource in the HetNet. In addition, in Fig. 9,
we can see that the dense deployment of mmWave small cells
can provide a significant boost in system throughput compared
to the MBS-only scheme. For example, when the number of UEs
is 30, the average total link throughput of MADDQN scheme
for HetNet is 7.88 times higher than that of the MBS-only
scheme. This is because with the dense deployment of small
cells, the distance from UEs to SBSs can be reduced, which
achieves higher SNR and enhances network coverage. Besides,
UEs in different small cells can be served in the same spectrum

Fig. 10. Average total link throughput under different number of SBSs.

through frequency reuse, so the network spectrum efficiency can
be improved.

Finally, we examine the performance of the four schemes for
HetNets under different numbers of SBSs, and the results are
presented in Fig. 10. The MBS-only scheme is also used as a
comparison. There are 30 UEs and a MBS in the HetNet as
Fig. 3 shows. The number of SBSs is set to 10, 15, 20, 25, and
30, respectively and the number of training episodes E is 3,000.
Similarly, performance of five schemes is evaluated with the
average total link throughput of 1,000 time steps. As shown in
Fig. 10, the average total link throughput of MADDQN under
different numbers of SBSs is higher than that of the other four
baseline schemes. When the number of SBSs is 10, 15, 20, 25,
and 30, the improvements in average total link throughput of
MADDQN over HL are 7.3%, 9.7%, 10.1%, 10.4% and 10.7%,
respectively.

In addition, under different number of SBSs in the HetNet,
the throughput of the four schemes for HetNets is always signifi-
cantly greater than that of the MBS-only scheme. In the HetNet,
with the increasing number of SBSs, there are more available
access bandwidth resources for UEs due to the frequency reuse
in different small cells. Besides, UEs will find SBSs closer to
them with better service quality. The access load of each SBS is
also reduced. So as we can see in Fig. 10, the throughput of the
MADDQN, HL and SL schemes can be improved. Compared
with the MBS-only scheme, higher throughput gains can be
achieved with these three schemes when there are more SBSs
in the HetNet. However, since the increase in the number of
small cells causes more inter-cell interference and the backhaul
resources in the network are limited, the improvement of the
total link throughput gradually slows down with the increase in
the number of SBS.

Unlike the above three schemes, the average total link
throughput of the DA scheme decreases with the increasing num-
ber of SBSs when there are more than 20 SBSs in the HetNet.
The reason is that when there are more SBSs in the HetNet, the
available backhaul resources for each SBS become less due to
the equal backhaul bandwidth allocation. Besides, there may be
more SBSs with no UE association in the HetNet, which causes
more serious waste of backhaul resources. Although the access
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link throughput has been improved by the dense deployment of
SBSs, the actual total link throughput is limited by the backhaul
link throughput.

In contrast with the other four schemes, the MADDQN
scheme we proposed guarantees the balance of the access and
backhaul throughput with the joint design of access and back-
haul, so it can provide greater performance gains than the other
four schemes when more SBSs are deployed in the HetNet. This
also reflects that MADDQN is more suitable for the mmWave
small cells dense deployment scenarios with a large number of
SBSs.

VI. CONCLUSION

In this article, we investigated the problem of user associ-
ation and backhaul bandwidth resource allocation in two-tier
mmWave HetNets, where small cells are densely deployed
and two different mmWave bands are allocated to access and
backhaul. We formulated the joint user association and backhaul
resource allocation problem and then transformed the problem
into a Markov game. A joint design scheme based on MADRL
was proposed for the maximization of the long-term total link
throughput. The proposed scheme treated each UE as an agent
and allowed each UE to learn the optimal policy autonomously
by DDQN based on its state observations. Through extensive
training, each UE can dynamically adjust the policy to the time-
varying link state. Simulation results showed that the proposed
MADRL scheme could adapt to the dynamic mmWave link
states, and achieve high total link throughput under various sys-
tem configurations, and outperformed three baseline schemes.

Due to the appropriate deployment of SBSs, we assume
the LOS transmission between MBS and SBSs in this article.
However, the mmWave backhaul link may also be affected by
link blockage in real communication systems. Therefore, we will
consider a more realistic channel model for backhaul in future
work. Besides, multi-hop wireless backhaul helps to further
improve network coverage and combat mmWave link blockage,
enabling more flexible backhaul connectivity. In the IAB net-
works with multi-hop backhaul, the backhaul path selection is
introduced and the end-to-end latency, throughput, and fairness
are critical performance metrics. The joint design of access
and backhaul in such networks is an open research problem.
Moreover, we will evaluate the impact of introducing direct
communications between MBS and UEs on the system per-
formance and design an effective joint optimization algorithm
for the system. In addition, we will include UE mobility and
changes in the number of UEs as additional cases of environment
dynamics for future work.
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[47] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforce-
ment learning: An overview,” in Innovation in Multi-Agent Systems and
Applications-1, vol. 310, D. Srinivasan and L. C. Jain Eds. Berlin, Ger-
many: Springer, 2010, pp. 183–221.

[48] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016, pp. 2094–2100.

[49] T. Zhang, J. Zhao, L. An, and D. Liu, “Energy efficiency of base station
deployment in ultra dense HetNets: A stochastic geometry analysis,” IEEE
Wireless Commun. Lett., vol. 5, no. 2, pp. 184–187, Apr. 2016.

[50] T. Ding, M. Ding, G. Mao, Z. Lin, A. Y. Zomaya, and D. López-Pérez,
“Performance analysis of dense small cell networks with dynamic TDD,”
IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9816–9830, Oct. 2018.

[51] S. Ruder, “An overview of gradient descent optimization algorithms,”
Sep. 2016, arXiv:1609.04747.

[52] P. Zhou, X. Fang, X. Wang, Y. Long, R. He, and X. Han, “Deep learning-
based beam management and interference coordination in dense mmWave
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 592–603,
Jan. 2019.

Ziqi Guo was born in Shandong, China, in 2000. He
received the B.E. degree in communication engineer-
ing from Beijing Jiaotong University, Beijing, China,
in 2021. He is currently working toward the M.S. de-
gree with the State Key Laboratory of Advanced Rail
Autonomous Operation, Beijing Jiaotong University.
His research interests include mmWave wireless com-
munications and reconfigurable intelligent surface.

Yong Niu (Senior Member, IEEE) received the B.E.
degree in electrical engineering from Beijing Jiaotong
University, Beijing, China, in 2011, and the Ph.D.
degree in electronic engineering from Tsinghua Uni-
versity, in 2016. From 2014 to 2015, he was a Visiting
Scholar with the University of Florida, Gainesville,
FL, USA. He is currently an Associate Professor with
State Key Laboratory of Advanced Rail Autonomous
Operation, Beijing Jiaotong University. His research
interests include networking and communications, in-
cluding millimeter wave communications, device-to-

device communication, mediumaccess control, and software-defined networks.
He was a Technical Program Committee Member for IWCMC 2017, VTC
2018-Spring, IWCMC 2018, INFOCOM 2018, and ICC 2018. He was the
Session Chair of IWCMC 2017. He was the recipient of the Ph.D. National
Scholarship of China in 2015, Outstanding Ph.D. Graduates and Outstanding
Doctoral Thesis of Tsinghua University in 2016, Outstanding Ph.D. Graduates
of Beijing in 2016, Outstanding Doctorate Dissertation Award from the Chinese
Institute of Electronics in 2017, and the 2018 International Union of Radio
Science Young Scientist Award.

Shiwen Mao (Fellow, IEEE) received the Ph.D. de-
gree in electrical engineering from Polytechnic Uni-
versity, Brooklyn, NY, USA, in 2004. He is currently
a Professor and Earle C. Williams Eminent Scholar
Chair in electrical and computer engineering with
Auburn University, Auburn, AL, USA. His research
interests include wireless networks, multimedia com-
munications, and smart grid. He is a Distinguished
Lecturer of IEEE Communications Society (2021-
2022), IEEE Council of RFID (2021-2022), Distin-
guished Lecturer (2014-2018), and a Distinguished

Speaker of IEEE Vehicular Technology Society (2018-2021). He is with the
Editorial Board of IEEE/CIC China Communications, IEEE TRANSACTIONS

ON WIRELESS COMMUNICATIONS, IEEE INTERNET OF THINGS JOURNAL, IEEE
OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, ACM GetMobile,IEEE
TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, IEEE
TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, IEEE TRANSAC-
TIONS ON MOBILE COMPUTING, IEEE MULTIMEDIA, IEEE NETWORK, and IEEE
NETWORKING LETTERS. He was the co-recipient of the 2021 IEEE Internet of
Things Journal Best Paper Award, 2021 IEEE Communications Society Out-
standing Paper Award, IEEE Vehicular Technology Society 2020 Jack Neubauer
Memorial Award, IEEE ComSoc MMTC 2018 Best Journal Paper Award and
2017 Best Conference Paper Award, Best Demo Award of IEEE SECON 2017,
Best Paper Awards of IEEE GLOBECOM 2019, 2016, and 2015, IEEE WCNC
2015, IEEE ICC 2013, and 2004 IEEE Communications Society Leonard G.
Abraham Prize in the Field of Communications Systems. He is a Member of the
ACM.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:22:25 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: JOINT DESIGN OF ACCESS AND BACKHAUL IN DENSELY DEPLOYED mmWAVE SMALL CELLS 14515

Ruisi He (Senior Member, IEEE) received the B.E.
and Ph.D. degrees from Beijing Jiaotong University
(BJTU), Beijing, China, in 2009 and 2015, respec-
tively. Since 2015, he has been with State Key Lab-
oratory of Advanced Rail Autonomous Operation,
BJTU, where he has been a Full Professor since 2018.
He has been a Visiting Scholar with the Georgia In-
stitute of Technology, Atlanta, GA, USA, University
of Southern California, Los Angeles, CA, USA, and
Universit Catholique de Louvain, Leuven, Belgium.
He has authored and coauthored five books, three

book chapters, more than 200 journal articles and conference papers, as well
as several patents. His research interests include wireless propagation channels,
railway and vehicular communications, and 5G and 6G communications. Dr. He
is a Member of the European Cooperation in Science and Technology. He is the
Editor of the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
IEEE Antennas and Propagation Magazine, IEEE COMMUNICATIONS LET-
TERS, and IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY. He is
also the Lead Guest Editor of the IEEE JOURNAL ON SELECTED AREA IN
COMMUNICATIONS and IEEE TRANSACTIONS ON ANTENNAS AND
PROPAGATION. He is the Early Career Representative (ECR) for Commission
C, International Union of Radio Science (URSI). He was the recipient of URSI
Issac Koga Gold Medal in 2020, IEEE ComSoc Asia-Pacific Outstanding Young
Researcher Award in 2019, URSI Young Scientist Award in 2015, and five best
paper awards in conferences.

Ning Wang (Member, IEEE) received the B.E. degree
in communication engineering from Tianjin Univer-
sity, Tianjin, China, in 2004, the M.A.Sc. degree in
electrical engineering from The University of British
Columbia, Vancouver, BC, Canada, in 2010, and the
Ph.D. degree in electrical engineering from the Uni-
versity of Victoria, Victoria, BC, Canada, in 2013.
From 2004 to 2008, he was with the China Informa-
tion Technology Design and Consulting Institute, as
a Mobile Communication System Engineer, special-
izing in planning and design of commercial mobile

communication networks, network traffic analysis, and radio network optimiza-
tion. From 2013 to 2015, he was a Post-Doctoral Research Fellow with the
Department of Electrical and Computer Engineering, The University of British
Columbia. Since 2015, he has been with the School of Information Engineering,
Zhengzhou University, Zhengzhou, China, where he is currently an Associate
Professor. He also holds adjunct appointments with the Department of Electrical
and Computer Engineering, McMaster University, Hamilton, ON, Canada, and
the Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, Canada. His research interests include resource allocation and
security designs of future cellular networks, channel modeling for wireless
communications, statistical signal processing, and cooperative wireless com-
munications. He was with the technical program committees of international
conferences, including the IEEE GLOBECOM, IEEE ICC, IEEE WCNC,
and CyberC. He was the Finalist of the Governor Generals Gold Medal for
Outstanding Graduating Doctoral Student from the University of Victoria in
2013.

Zhangdui Zhong (Fellow, IEEE) received the B.E.
and M.S. degrees from Beijing Jiaotong University,
Beijing, China, in 1983 and 1988, respectively. He is
currently a Professor and an Advisor of Ph.D. students
with Beijing Jiaotong University, where he is also the
Chief Scientist of State Key Laboratory of Advanced
Rail Autonomous Operation. He is the Director of the
Innovative Research Team, Ministry of Education,
Beijing, and the Chief Scientist of the Ministry of
Railways, Beijing. He is an Executive Council Mem-
ber of the Radio Association of China, Beijing, and

the Deputy Director of the Radio Association, Beijing. His research interests
include wireless communications for railways, control theory, and techniques
for railways, and GSM-R systems. His research has been widely used in railway
engineering, such as the Qinghai-Xizang railway, Datong CQinhuangdao Heavy
Haul railway, and many high-speed railway lines in China. He has authored and
coauthored seven books, five invention patents, and more than 200 scientific
research papers in his research area. He was the recipient of the Mao YiSheng
Scientific Award of China, Zhan TianYou Railway Honorary Award of China,
and Top 10 Science/Technology Achievements Award of Chinese Universities.

Bo Ai (Fellow, IEEE) received the M.S. and Ph.D.
degrees from Xidian University, Xian, China, in 2002
and 2004, respectively. He was an Excellent Post-
doctoral Research Fellow with Tsinghua University,
Beijing, China, in 2007. He was a Visiting Profes-
sor with the EE Department, Stanford University,
Stanford, CA, USA, in 2015. He is currently with
Beijing Jiaotong University, Beijing, China, as a Full
Professor and a Ph.D. Candidate Advisor. He is also
the Deputy Director of State Key Laboratory of Ad-
vanced Rail Autonomous Operation and International

Joint Research Center. He is one of the main responsible people for Beijing Urban
rail operation control system International Science and Technology Cooperation
Base, the Member of the Innovative Engineering based jointly granted by
Chinese Ministry of Education and the State Administration of Foreign Experts
Affairs. He has authored and coauthored eight books and more than 300 academic
research papers in his research area. He has held 26 invention patents. He has
been the Research Team Leader of 26 national projects and was the recipient of
some important scientific research prizes. He has been notified by Council of
Canadian Academies (CCA), that based on Scopus database. He has been listed
as one of the Top 1 authors in his field all over the world. He has also been Feature
Interviewed by ELECTRONICS LETTERS (IET). His research interests include
the research and applications of channel measurement and channel modeling
and dedicated mobile communications for rail traffic systems.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:22:25 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


