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Unsupervised Drowsy Driving Detection With RFID
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Abstract—With the increasing number of vehicles and traffic
accidents, driving safety has become an important factor that
affects human daily life. As the primary cause of driving acci-
dents, driving fatigue could be prevented by a sensing and alarm
system built in the vehicle. In this paper, we propose an effective,
low-cost driving fatigue detection system to sense driver’s nodding
movements using commodity RFID. The system measures the phase
difference between two RFID tags attached to the back of a hat worn
by the driver. To accurately extract nodding features, we propose an
effective approach to mitigate the environment noise, the interfer-
ence caused by surrounding movements, and the cuamulative error
caused by the frequency hopping offset in FCC-compliant RFID
systems. A long short-term memory (LSTM) autoencoder is utilized
to detect nodding movements using calibrated data. The highly
accurate detection performance of the proposed system is validated
by extensive experiments in various real driving scenarios.

Index Terms—Radio-frequency identification (RFID), channel
state information (CSI), deep learning, drowsy driving detection,
unsupervised learning.

1. INTRODUCTION

RIVING fatigue is now considered as a primary cause of
D traffic accidents. It is reported by the National Highway
Traffic Safety Administration (NHTSA) that, over 72,000 re-
ported crashes involved drowsy driving from 2009 to 2013, and
16.5% of fatal crashes are caused by driving fatigue [1]. Human
lives are at high risk in such accidents caused by drowsy driving.
The situation is even worse with the increasing popularity of
autonomous driving [2]. Such risks and losses can be greatly
reduced if an effective driving fatigue alarm system is in place.
However, most drowsy driving events are hard to detect with
existing technologies in commodity vehicles. Thus, there is a
compelling demand for an effective driving fatigue detection
system, which can accurately detect driving fatigue and alarm
drivers to avoid accidents [3]-[5].

Driving fatigue detection is a popular topic in the research
community in recent years, and various types of signals have
been exploited in prior works, such as electroencephalogram
(EEG) [6], video camera [7], WiFi [8], and ultra sound [9].
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As a straightforward signal from human brain, EEG signal
can achieve an excellent performance on fatigue detection [6].
However, because of the complex equipment required, the EEG
system is currently not suitable for practical use in cars. As
a non-intrusive approach, vision based techniques can detect
the driving fatigue by recognizing eyelid movements [7]. The
required hardware of vision based system, i.e., a camera, is
much cheaper than that in EEG based techniques, but the system
requires sufficient lighting inside the vehicle, and the perfor-
mance could be heavily affected if the driver wears sunglasses.
Without the lighting requirements, radio frequency (RF) and
acoustic signals are also leveraged to detect driving drowsiness.
For example, channel state information (CSI) of WiFi signals
can be used to detect driving fatigue by detecting the respiration
rate and movements of the driver [8]. Unfortunately, due to the
large range, the WiFi signal is sensitive to the interference from
surroundings, such as the movements of the driver and passen-
gers, and of objects outside the vehicle. The same challenge also
exits for the current acoustic-based techniques [9], which detects
drowsy-driving with the embedded microphone and speaker in
smartphones.

RFID sensing has drawn considerable attention recently,
with interesting new applications for remote temperature sens-
ing [10], drone navigation [11]-[13], gesture recognition [14],
[15], localization [16], and breathing monitoring [17]-[19]. The
passive RFID tags can be directly attached to the target object.
Due to the near-field nature, the interference of surrounding
noises can be effectively mitigated. Furthermore, the cost of
tags is low and the performance can hardly be affected by the
lighting condition inside the vehicle. However, there have only
been very limited work on application of RFID in vehicles,
which are mostly focused on localization [20]-[22]. There are
many challenges to build a highly accurate RFID based driving
fatigue detection system, such as effectively extracting driving
drowsiness features and the discontinuity in collected phase data
as caused by frequency hopping.

In this paper, a driving drowsiness detection system is pro-
posed to fully exploit advanced machine learning and RFID
based sensing [23]. We firstly introduce the collected phase
model in commodity RFID systems, as well as the challenges
caused by channel hopping, such as the discontinuity of the
sampled phase and the cumulative error caused by the frequency
hopping offset. We then introduce the design of the proposed
system, which is composed of four main components, including
data sensing, movement feature extraction, offline training, and
online drowsiness detection. Specifically, to effectively detect
the nodding features with RFID tags in a driving environment,
we deploy two RFID tags on a hat worn by the driver, and employ
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the phase difference between two RFID tags to mitigate the noise
caused by vehicle vibration. According to the FCC policy, phase
data of both tags are sampled sequentially, while the reader
hops among various channels. A novel algorithm is proposed
to estimate the phase difference between two RFID tags. With
an analysis of the collected phase data, the cumulative error
caused by the channel hopping offset will also be eliminated
by a novel differentiation process of collected phase differ-
ence. Finally, to avoid the high cost of collecting labeled data
from driving environments, an unsupervised LSTM autoencoder
model is proposed to distinguish the nodding movement from
other driving movements. This is achieved by measuring the
divergence between the input and reconstructed signal from
the well trained autoencoder model. We have implemented the
proposed system using commodity RFID tags and readers, and
carried out extensive emulations and experiments in real driving
settings, e.g., parked, city street driving, and high way driving,
to validate the performance of the proposed system.

The main contributions made in this paper can be summarized
as follows.

e To the best of our knowledge, this is the first work that
leverages passive RFID tags for driving drowsiness detec-
tion under real driving settings.

® A specific tag deployment and several signal processing
algorithms are proposed to effectively distinguish the nod-
ding features from the strong environment noises and other
types of driving related movements. An effective algorithm
is proposed to estimate, on real-time, the phase difference
between two RIFD tags that are interrogated with slot-
ted ALOHA and under frequency hopping in commercial
RFID systems.

® We analyze the cumulative error caused by the frequency
hopping offset in FCC-compliant UHF RFID systems, and
propose a differentiation based method to mitigate the
influence of cumulative error.

® Driving fatigue is detected by an unsupervised LSTM
autoencoder model, which does not require labeled training
data of various types of driving movements, which are hard
and costly to obtain.

® A prototype system is built with commodity RFID devices,
deployed in a car, and validated in both an emulated envi-
ronment and real driving environments. The experiments
are conducted in various driving scenarios, where excellent
performance of the proposed system is demonstrated.

In the rest of this paper, the related works are discussed
in Section II. The preliminaries are introduced in Section III.
We present the system design in Section IV and performance
evaluation in Section V. Section VI summarizes this paper.

II. RELATED WORK

This work is highly relevant to the prior work on driving
fatigue detection and RFID based sensing systems. Driving
safety is a hot topic for recent years, and several techniques
are proposed to detect drowsy driving to prevent drivers from
falling asleep when driving [4]. For example, physiological
signals, such as electrooculograms (EOG) and cephalography
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(EEG), are used to detect driving fatigue [6], [24]. Compared
with EEG, EOG is more robust to noise because of its higher
amplitude values. Drowsiness can be effectively detected when
the physiological signal is labeled correctly. These systems
usually have the highest sensitivity to drowsiness, because of
they directly monitor the human brain. However, the EOG and
EEG equipment are expensive and not suitable for deployment
in vehicles.

Other types of systems are also proposed to achieve higher
flexibility and reduce cost. Various types sensors, such as video
camera, smartphone, and RF devices, are used. Different from
physiological sensors, such sensors detect driving drowsiness
by analyzing the movement of drivers, such as blinking, yawn-
ing, and nodding. Camera based systems could detect the eye
location or eyelid movement [7], [25]. However, the accuracy of
the system is highly dependent on the lighting condition inside
the vehicle. It may also raise concerns of violating the privacy
of drivers.

In addition, vital signs can also be effective indicators of
drowsiness, which has been used in RF based techniques. Since
drowsiness is closely related to respiration rate [26], respiration
rate monitoring in driving environment becomes a promising
approach. To this end, ultra-wideband (UWB) radar has been
adopted to detect the breathing rate of drivers [27]. WiFi has
also been utilized for this purpose [8]. Movements of the driver’s
chest could be captured by the chestreflected WiFi signal, and by
examining the Channel State Information (CSI), the respiration
rate can be estimated. One shortcoming of this approach is that
the RF signals are sensitive to environment interference, such
as the movements of the driver and passengers, as well as the
movements outside the car. It is a big challenge to mitigate the
impact of such strong interference.

Smartphones are considered as a type of multifunctional
platform for sensing because of its embedded sensors, such
as video camera, microphone, and gyroscope, which enable
numerous smartphone based sensing system designs. With the
embedded video camera, smartphone can also be used to detect
driving fatigue by capturing eye movements [28]. By incor-
porating the microphone and speaker, acoustic systems have
also been developed to detect the movements of the driver,
such as yawning, steering, and nodding [9]. High flexibility and
low-cost are the two key benefits of smartphone based acoustic
systems. However, acoustic signals are also very sensitive to
the movements of the driver and passengers, as well as vehicle
vibration, which may hurt the performance of such systems.

Recently, passive RFID tags, as a kind of wearable sensors,
have attracted increasing interest because of its low-cost and
easy deployment features. RFID based sensing has been used
for many applications, such as user authentication [29], material
identification [30], object orientation estimation [31], vibration
sensing [32], and anomaly detection [33]. For indoor localiza-
tion [16], [34], [35] and gesture recognition [36], [37], the RFID
based techniques are mainly focused on the analysis of low
level data collected at the reader. For example, the received
signal strength (RSS) has been utilized for tag localization
in [38], while the phase values have been used to recognize
different kinds of gestures [14]. In addition, vital signs can also

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 18:26:16 UTC from IEEE Xplore. Restrictions apply.



YANG et al.: UNSUPERVISED DROWSY DRIVING DETECTION WITH RFID

be detected by the low level data. Specifically, TagBreathe is
the first work to estimate breathing rates using RFID tags [17],
while TagSheet uses RFID Tags for breathing monitoring and
sleep posture recognition [39]. Even heart rate variability can
be assessed with an RFID tag array attached to the human body.
However, these vital sign monitoring systems are not suitable
for detecting drowsiness in a driving environment, because the
small vital sign signal could be easily overwhelmed by vehicle
vibration and driving movements. The work presented in this
paper makes a first attempt on RFID based driving fatigue detec-
tion, where commercial RFID tags are utilized for detecting the
nodding movement of the driver. The proposed system consists
of several novel techniques to effectively deal with the strong
noisy driving environment, as will be elaborated in Section I'V.

III. PRELIMINARIES AND CHALLENGES
A. Measured Phase at an RFID Reader

To distinguish different types of head movements, we need
to detect and analyze the variation of the distance between the
reader and the tags attached to the driver’s hat. Such changes
are captured by the phase values collected by the RFID reader.
According to the low level reader protocol (LLRP), the reader
can provide low level data, such as Received Signal Strength
Indicator (RSSI), RF phase, and Doppler Shift, for each received
tag response [40].

The received phase value can be written as [18]

27w (2L
@:mod( Tr()\' )+(I>R+(I)T+(I)tag;2ﬂ'>, (1)

where L is the distance between the reader antenna and the target
tag, A is the wavelength of the signal, ® z and &1 represent the
phase offsets caused by the receiver and transmitter, respectively,
and @, is the phase shift caused by the refection circuit of the
target tag. Since A, ®r, 7, and P, , are constant when the
reader operates on a given channel, the collected phase value ®
varies along with the change in the tag-to-reader distance L (i.e.,
chest movements).

B. Frequency Hopping Offset and Cumulative Error

According to FCC regulations, Ultra High Frequency (UHF)
RFID readers should adopt frequency hopping to benefit from
the maximum reader transmitted power allowances. When inter-
rogating tags, the reader periodically hops among 50 different
channels from 902 MHz to 928 MHz. Since the values of A, ® i,
®7, and P44 in (1) are all related to the operation frequency,
the measured phase is affected by both the tag-to-reader distance
and the current occupied channel.

The measured phase from a channel & can be written as

47TLfk

®(fr, L) = mod ( + <I>k,27r> , 2)
where c is the speed of light, fj is carrier frequency of channel
k, and @, represents the initial phase offset on channel & due to
(I)R, (I)T, and (I)tag-

Fig. 1 shows the raw phase data collected by the reader. It
can be seen that the reader hops 50 times in a period of 10
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Fig. 1. Raw phase data collected by the RFID reader.

seconds and the frequency hopping offset causes considerable
discontinuity in the measured phase data. Thus, the variation
of L, which represents the useful signal, is hard to be detected
from the raw phase data. To address this issue, two solutions
have been proposed in recent works. The Tagyro system adopts
a calibration process of 10 seconds to estimate the initial phase
offset for each channel, and then subtract it from the measured
phase data [31]. This method works well in a static environment;
but it is not suitable for RFID systems in a noisy driving environ-
ment. This is because the movements of the driver and vehicle
vibrations could hurt the accuracy of the calibration process. In
the respiration monitoring system Autotag [18], [19], areal-time
method is proposed to mitigate the frequency hopping effect.
Rather than estimating the initial phases on all channels with
a calibration phase, the Autotag system focuses on mapping
the phase data sampled in the current channel to the previous
channel, by removing the frequency hopping offset between two
adjacent channels.

The proposed method in [18], [19] can eliminate most of
the frequency hopping offset for realtime sensing applications.
However, there is still some residual error remains each time
when the reader hops to another channel, and the error will
accumulate to become larger and larger as the reader hops among
more and more channels. For the respiration rate monitoring
problem considered in [18], [19], such cumulative error can be
effectively removed with a detrending process, because breath-
ing rate detection only concerns the periodicity of the signal.
However, for the driving fatigue detection problem considered in
this paper, the information of head movements is also embedded
in the low frequency components of the signal. If a detrending
process is applied as in [18], [19], the useful nodding signal will
also be removed.

In Fig. 2, we plot the phase data collected from a tag attached
to an object (i.e., a book) in a stationary state. The sampled phase
data are calibrated by the proposed method in [18], [19]. It can
be seen that although the object is static, the calibrated phase
still exhibits large variations. For the first 10 seconds, the error
accumulates to 0.76 rad, which will greatly affect the accuracy
of phase measurements. This is because the residual error in
estimating the initial phase offset for each channel happens every
0.2 second (when the reader hops to a new channel), and the error
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Fig. 3. Architecture of the proposed system.

starts to accumulate over time. On the other hand, if we only use
the phase data collected from the same channel, it will take 10
seconds for the reader to return to the same channel, making it
unsuitable for realtime sensing applications. In order to detect
head movement features from the calibrated phase data from all
channels, accurate phase data should be firstly estimated. Thus,
extracting movement features from the calibrated phase signal
with cumulative error is a big challenge.

IV. SYSTEM DESIGN FOR DROWSY DRIVING DETECTION

A. System Overview

The proposed unsupervised driving fatigue detection system
is illustrated in Fig. 3. Our system is composed of four main
modules, including data sensing, movement feature extraction,
offline training, and online drowsiness detection. In the data
sensing module, head movement could be captured by received
phase values from the tags attached to the driver’s hat. Then, the
nodding features are distinguished from other head movements
in the movement feature extraction module. The phase difference
between two RFID tags are estimated to mitigate the influence of
vehicle vibration. Derivative calculation is proposed to remove
the cumulative error caused by the realtime frequency hopping.
Finally, an unsupervised learning model is proposed to learn the
nodding features, and the online nodding detection is executed
with the well-trained model. Nodding will be detected by calcu-
lating the divergence between the input and output signals of the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 8, AUGUST 2020

Head Shifting Head Rotation and Nodding

9

Three types of head movements.

Fig. 4.

autoencoder model. The detailed design of the proposed system
will be elaborated in the remainder of this section.

B. Nodding Feature Extraction

In many machine learning systems, offline training requires
a large amount of featured data. However, it’s a big challenge
to learn the features of normal driving based on head move-
ments, because drivers may randomly rotate their head to the
left or right to check side-view mirrors or traffic conditions in
different lanes. Such head movements during normal driving
are usually unpredictable. In contrast, nodding is a typical
symptom of driving fatigue, which can be easily labeled simply
from collected data. Therefore, we use the features of nodding
from collected data for training the model. There are still some
challenges remaining. First, drivers may change their posture or
move their head forward or backward during driving, and thus
the head movements include both 3-D rotations and position
shifts. It is difficult to separate the head shifting signal from the
collected signal, because phase value is affected by both types
of movements. Second, nodding features are hard to distinguish
from head rotation. This is because both movements can be
considered as a round-trip rotation of the head, which makes the
resulting phase variations very similar. Finally, as discussed in
Section III, the cumulative error caused by the channel hopping
offset is still a big problem. In the following subsections, we
address all these challenges and show how to effectively extract
the nodding features.

1) Phase Difference Calculation: To mitigate the impact of
driver’s body movements and vehicle vibration on collected data,
we calculate the phase difference between two tags rather than
directly utilizing the calibrated phase data. Since the driver is
buckled up, the body movement is usually constrained, and the
typical head movements include shifting, rotation, and nodding.

Fig. 4 illustrates the three types of typical head movements
when driving. All types of movements generate phase variation
of RFID tags. It is hard to differentiate them with a single RFID
tag; so we leverage two tags to sense the head movement. We find
that, although head shifting and vibration affect the phase value
of each tag, the influence on the phase difference between the two
tags could be negligible [41]. This is because both head vibration
and head shifting generate the same alteration of tag-to-reader
distance for both tags, resulting in similar phase shifts that are
canceled when calculating phase difference. In contrast, both
nodding and head rotation could cause different alterations in
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Algorithm 1: Phase Difference Calculation Algorithm.

1 Input: Phase collected from two RFID tags (Tag A and Tag B)
from the same channel, denoted by P2 and P2, n=1, 2, ...,
N, and the timestamp for each data frame, denoted by 7}, and
Tt,n=1,2..,N;

2 Output: Phase difference between two tags P;f, n=1,2, ..,
N

3 //Search for the nearest sample ;
4 forn=1:N do

ab a b| .
5 Set Tprevious = ‘Tn - Tl| B
6 for m =2: M do

ab _ a b .
7 Tcu'rrent - |Tn - Tm| 5

. ab ab
8 if Tcurrent > TpTe'uious then
9 Pl=Pr—Ph_y;
10 break ;
11 else
ab ab .

12 ‘ Tpravious = Tcurrent s
13 end
14 end
15 end

the tag-to-reader distances of the two tags, resulting in a large
phase difference change. Thus, in order to mitigate the influence
of head shifting and vibration, phase difference is more suited
for extracting nodding features than phase values collected from
a single tag.

Unfortunately, following the RFID anti-collision protocol, the
communications between the tags and reader are based on slotted
ALOHA protocol, which means only one tag can send its EPC
and low level data to the reader in every time slot. The slotted
ALOHA based transmission determines that the phase values
are sampled sequentially. Therefore, it is impossible to obtain
the phase values from both tags at the same time to calculate the
phase difference. To address this issue, we propose an effective
algorithm to estimate the phase difference on each individual
channel, as shown in Algorithm 1.

First, we collect the phase sequences sampled from two
tags on the same channel, which are denoted by P2 and P?,
respectively, together with their corresponding time stamps 7+
and TS. Second, for each phase sample in P, we search for the
nearest Tag b phase sample by calculating the difference between
two time stamps as |7 — T? |. In the algorithm, we scan the
phase sequence P?, from 1 to M following the sampling order.
Since the phase data is sampled continuously, the timestamp
value for each tag is always increasing. Once the current time
difference |T¢ — TP | is larger than the previous one, the fol-
lowing calculated difference will keep on increasing. Thus, the
previous sample P2, rightbefore T2, > Tab. .., will be
the nearest sample with the minimum time difference. Finally,
the phase difference sample sequence PZ will be calculated
by subtracting each of the sampled phase data in P from the
selected, nearest phase sample in P?,.

2) Tag Deployment and Data Collection: After the influence
from head shifting is successfully mitigated, we next distinguish
nodding from head rotation. Fig. 5 shows the calibrated phase
data from a single tag after frequency hopping offset mitigation.
The data is sampled when the driver nods and looks around (i.e.,
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Fig. 5. Measured phase data from a single RFID tag when the driver looks

around and nods sequentially.
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Fig. 6. A special tag deployment scheme with two tags horizontally attached
to the back of head (e.g., on a hat).

head rotation) sequentially, as marked in the figure. However, it
is hard to differentiate nodding from head rotation based on the
calibrated phase data, because both movements generate sharp
peaks in phase values. For the purpose of extracting unique
nodding features, we adopt a simple solution with a specific
tag deployment. As shown in Fig. 6, the tags are attached to
the back side of the head horizontally (i.e., on a hat). When the
driver looks around to check traffic, the head movement can be
approximately considered as a horizontal rotation. Such a head
rotation causes similar changes in the tag-to-reader distance for
the two tags, so that the change in phase difference is negligible.
In contrast, during nodding, one tag moves closer to the reader
while the other tag moves away from the reader. Hence the phase
difference between the tags will increase sharply.

Fig. 7 shows the calibrated phase difference between two tags
placed horizontally on the back side of the head. The data is
sampled when the driver nods and rotates the head sequentially,
as marked in the figure. We find that the data sampled during
nodding is sufficiently different from that sampled in the ro-
tation period; head rotation does not generate sharp peaks on
the calibrated phase difference. Thus nodding features can be
effectively extracted from the phase difference between the two
tags deployed as shown in Fig. 6.

3) Mitigating the Cumulative Error: To further improve the
feature extraction performance, the cumulative error due to
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Fig. 7. Calibrated phase difference between two horizontally attached tags
when the driver looks around and nods sequentially.

frequency hopping should be addressed, because the calibrated
phase difference may be significantly distorted after a long
period of driving. To address this issue, we first provide an
analysis of the cumulative error. According to (2), the raw
collected phase difference can be simply obtained by subtracting
the phase value from one tag (with distance L;) from the phase
value from another tag (with distance L, ), as

4m(La — Ly) fx

A®(L,, L) = mod <
c

+ A(I)lm 27T> ) (3)

where L, and L; are the tag-to-reader distance from Tag 1 and
Tag 2, respectively, A®; is the initial phase offset difference
between the two tags. Note that our analysis is mainly focused
on the influence of the initial phase offset. So we neglect the
multipath effect and mutual coupling between the two tags, and
assume the phase difference is only affected by the tag-to-reader
distances (i.e., L, and L;) and frequency hopping (i.e., A®y).

We calibrate the data by mapping all phase difference data
on the current channel to the previous reference channel [18],
such that all the calibrated data can be considered as sampled
from the same reference channel (i.e., to the first channel f; used
when the measurement starts, as a reference channel). With the
translation, all A®;.’s will be converted to A®,._; + d;, where
01 is the estimation error caused by each conversion. Although
the estimation error ¢; is negligible for each ith conversion, it
will accumulate overtime. After ¢ times of frequency hopping,
A®;, will be converted to A®; + > ¢;. Thus, the calibrated
phase difference after 7 hops is given by

ADP(L,, Ly)

~od (M AD Z@,zﬁ) W
¢ [

where f; and A®, are the frequency and initial phase offset
difference on the first (i.e., reference) channel, respectively, §;
represents the estimation error generated by the ith frequency

hopping.
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Fig. 8.  Derivative of the calibrated phase difference data given in Fig. 7.

In (4), >, 0; is hard to estimate from collected data, because
we do not know the accurate values of L,, L, and A®;. How-
ever, if we differentiate both sides of (4), the constant A®; will
be removed from the equation. The derivative of the estimation
error, 0’, only remains in the first sample for each channel, so
the error accumulation over time is effectively stopped. Suppose
channel hopping starts from channel 1. When the system hops to
channel k, it collects nj, samples (i.e., calibrated phase difference
data) on channel k. The derivative of the channel & samples at
time n, n € {1,2,...,n4}, can be derived as:

A® (Lq, Ly)

4
(L, L) 4 =
= 5
47Tf1 ’ ’ ()
(La - Lb)’ n= 2735"'ank:a
C

where L/, and L; are the derivative of the tag-to-reader distances
of Tag 1 and Tag 2, respectively, and §), is the derivative of Jj,
with 0, = 0. We can see from (5) that although estimation error
still remains in the derivative of the first sample when the system
hops to a new channel, it has been removed from the derivatives
of the remaining samples on the new channel.

Unfortunately, we find that the derivative of phase difference
cannot be directly used to extract nodding features because
of the large noise. To demonstrate this observation, in Fig. 8,
we plot the derivative of the signal plotted in Fig. 7. We find
that the nodding features, which are quite obvious in Fig. 7,
however, are completely overwhelmed by the white noise. This
is because the differentiation operation can be considered as a
high pass filter applied to the calibrated signal. For convenience,
we first assume that all phase differences are sampled at the same
sampling rate of 55 Hz (as tested in our experiments). Then the
differentiation operation can be transformed into a convolution
between the input signal and a vector [F, —F|, where F is the
sampling frequency. To get more data in the frequency domain,
we zero padding the vector by adding N — 2 zeros after —F'.
Thus we could obtain a vector with length N, and the Discrete
Fourier transform (DFT) result of the vector can be expressed
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Fig. 9. The differentiation effect in the frequency domain.

as

ne{0,1,...N—-1}ke{0,1,...N—1}, (6)

where f,, represent the nth sample in the vector before DFT.
Since we have fy=—F and f; = F, while f, =0, n=
2,3,...,N — 1, 'y, can be written as

T, = _Fe'®k0 + Fe'Mkl
ok Dk
Fcos(Z£ )F+isin<2£>. 7

The system gain in the frequency domain can be represented
as the modulo of I'y. From (7), we find that the gain equals to
0 when & = 0, which means the 0 Hz component is removed
by the differentiation operation. In contrast, when k = N/2,
which represents F'/2 Hz, the gain reaches its maximum value
of 2F. With I’ = 55 Hz used in the system, we can map Iy, for
different frequencies ranging from —27.5 Hz to 27.5 Hz. The
result is shown in Fig. 9, which shows that differentiation leads
to extremely large gains at high frequencies (higher than 10 Hz),
while significantly suppressing the signals below 5 Hz. However,
when we analyze the frequency domain response of calibrated
phase difference signal plotted in Fig. 10, we can see that the
power of the signal mostly concentrate in the low frequency
region, ranging from —5 Hz to 5 Hz. Thus, we can conclude
that both nodding movements and other driving movements are
mostly composed of low frequency signals, which is highly
attenuated by the differentiation operation. Besides, the white
noise existing in the high frequency region will be considerably
amplified. Consequently, only the high frequency noise remain
after the differentiation operation, as shown in Fig. 8.

To mitigate such negative influence caused by the differ-
entiation process, we firstly incorporate a low-pass filter with
a 5 Hz cutoff frequency to filter the calibrated phase signal
before applying differentiation. After filtering, the low frequency
component will be amplified while the high frequency noise will
be greatly suppressed, so that the movement related components
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could remain after differentiation. The final results after filtering
and differentiation are plotted in Fig. 11. The figure shows that
the high frequency noise is effectively removed, and there is
no cumulative error remaining in the signal anymore. The nod-
ding features can be clearly distinguished from other remaining
noises.

C. Driving Fatigue Detection

We utilize an unsupervised LSTM variational autoencoder
to learn the nodding features from sampled, calibrated data
during driving. After the model is well trained, the input signal
can be well reconstructed by the autoencoder if it is sampled
during nodding. Otherwise, the reconstructed signal will contain
high distortion. Thus, we can detect nodding by calculating the
divergence between the input signal and the reconstructed signal.
The details of the training model and divergence calculation are
presented in the following.

1) The Learning Model and Training: The learning model
adopted for offline training is composed of an LSTM-based
variational autoencoder [18], which is an unsupervised learning
model as shown in Fig. 12. As we known, drivers could have
numerous types of driving movements, which introduce two
challenges. First, it is hard to distinguish the nodding move-
ment from all types of other driving movements with a simple
threshold-based method. Thus, a learning-based method could
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Fig. 12.  The recurrent variational autoencoder for driving fatigue detection.

be a better choice for nodding detection. Second, training the
network with labeled data for all movement types (which could
be many) is challenging and costly. To address the problems,
we intend to collect and learn the features of nodding instead of
learning all kinds of driving movements. In this case, autoen-
coder is a good choice because, as an effective unsupervised
learning algorithm, no labeled data is required for the training
process. Furthermore, compared with deep learning models,
autoencoder has a simpler model structure and lower complexity,
which translate to shorter training time. Thus, we propose the
unsupervised LSTM variational autoencoder model for nodding
detection, which can effectively reduce the cost of collecting
labeled data for various driving movements.

Consider that all the data are sampled as a time sequence,
and nodding causes an obvious change of calibrated phase
difference, as shown in Fig. 11, LSTM is an effective model for
capturing the nodding features, because LSTM can better learn
the long-range dependency in data than traditional recurrent
neural networks. Then, the variational autoencoder model is
applied to reconstruct the input signal. The goal is to maximize
the marginal likelihood given below.

po(z) = / po(e| Z)p(2) dz, ®)

where z, 6, and z are the observed variables, the set of param-
eters, and the latent random variables, respectively; p(Z) is the
prior over the latent random variables Z; and pg(z|Z) is the
posterior conditional probability, representing an observation
model under the parameter set.

Usually py () is hard to estimate because of the integral op-
eration. The computation usually introduces considerable com-
plexity, even though the size of the dataset is small. To reduce
the computational cost for training, the autoencoder leverages
the variational approximation ¢,4(Z|x), rather than calculating
the true conditional probability pg(x|Z). Thus, the autoencoder
model has ¢ as encoder to approximate ¢,(Z|x), and set 6 as
the parameter for py(z|Z) in the decoder. The reparametrization
technique is implemented in the autoencoder model to mitigate
the training overhead. The latent vector Z is computed by the
mean vector ji,(x) and the variance vector aé(m) generated by
the two linear modules from the LSTM outputs as

Z = pg(x) +04(2) O€, ©)

where € represents a Gaussian noise and © represents the
element-wise product operation. Based on the latent vector,
the variance vector O’é(Z ) and mean vector p,(Z) for the
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reconstructed signal can be decoded from the LSTM network.
Eventually, the input signal can be reconstructed as the output
of the decoder.

In the proposed LSTM autoencoder network, the dimension
of the LSTM layer is set to 20, and 10 units are used in the latent
Z layer. The offline training process aims to learn the features of
nodding, so all training data is sampled when the volunteers are
nodding their heads. Specifically, the volunteers are sitting in a
parked car and nodding their heads randomly when the reader is
interrogating the RFID tags attached to the hat. To achieve a high
success rate for nodding detection, we collected 3000 nodding
samples from three volunteers. We use 2400 samples from the
collected data for training, and the other 600 samples for testing.

2) Online Drowsiness Detection: After offline training, the
newly collected signal in realtime can be fed into the autoen-
coder, and the autoencoder will generate the reconstructed sig-
nal. Figs. 13 and 14 show the reconstructed signals when the
input is a nodding signal and a normal driving signal, respec-
tively. We can see that the nodding signal is well reconstructed by
the autoencoder, while the reconstructed normal driving signal
is quite different from the input signal. The input signal is flat,
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Fig. 15. CDFs of the mean absolute errors for normal driving and nodding.

while the reconstructed signal has large variations similar to
nodding features. This is because our LSTM-autoencoder model
has been trained by nodding features. Therefore, the new signals
sampled during nodding can be better reconstructed than the
signals sampled during other types of head movements (as well
as when there are no head movements). Thus, we can detect if the
driver is nodding or not, by calculating the divergence between
the input signal and the reconstructed signal.

We adopt a sliding window with 2 second duration to extract
the input signal from calibrated phase difference, in order to
guarantee that all nodding movement can be captured in the
window. The divergence is calculated in the form of Mean
Absolute Error (MAE), given by

l & i,
MAE = =3 "y = ],

i=1

(10)

where n is the total number of samples in the sliding window, y;
is the ¢th sample of the input signal, and y; is the ith sample of the
reconstructed signal. Then we group the MAEs from nodding
and normal driving, respectively, and plot all the errors in the
form of cumulative distribution function (CDF) in Fig. 15. The
figure shows that 91.26% MAEs of the nodding signal is lower
than the minimum error of the reconstructed normal driving
signal, which is 0.21. Thus, we conclude that nodding movement
can be effectively distinguished by MAE from other types of
head movements.

To further investigate the most suitable threshold of MAE,
we test the system accuracy with different MAE thresholds. The
True Positive (TP) and True Negative (TR) rates are computed,
where the TP rate indicates the accuracy of nodding detection,
and the TN rate represents the accuracy of normal driving
recognition. Fig. 16 shows that the TN rate is 98.8% when the
threshold is set to 0.21, but the TP rate is low, which is 82.58 %, in
this setting. When the threshold is set to 0.25, although the TP
rate is as high as 94.31%, the TN rate decreases significantly
to 60.03%. This is because, a smaller threshold makes the
signal more likely to be considered as normal diving, which
makes it harder to recognize the nodding movements. Thus, an
appropriate threshold should be set to achieve a tradeoff. Finally,
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we set the threshold of MAE to 0.23 for the proposed drowsiness
detection system.

However, if an alarm is sent whenever a divergence lower
than the threshold is detected, there could be many false alarms
triggered. This is because the calculated divergence could have
fake peaks, which could cause a false alarm. To avoid the effect
of the sharp peaks and detect the nodding pattern accurately, we
leverage a simple counting algorithm. Only when the divergence
is larger the threshold and remains there for over a samples,
will the current driver movement be considered as nodding.
To investigate the appropriate number of samples for nodding
detection, we test the system with different sample threshold
values. The results are shown in Fig. 17. It can be seen that both
the TP rate and TN rate are lower than 80% when the threshold
is set to 5 samples. However, the TP rate becomes 85.02% when
the threshold is 25. This is because the duration of nodding
movement is usually very short, and 25 samples literally means
0.45 second given the 55 Hz sampling frequency, which is too
long for nodding detection. Finally, the sample threshold is set
to 15 to achieve highest accuracy.
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V. EXPERIMENTAL STUDY

A. Experiment Configuration

To evaluate the proposed driving fatigue detection system,
we build a prototype system with commercial RFID devices,
and test it in both an emulated environment and real driving
environments. The volunteers are required to wear a hat, with
two passive RFID tags of the ALE-9470 type are attached to the
back side. All tags are scanned by a commodity RFID reader
of the Impinj R420 model, which is equipped with a polarized
S9028PCR antenna. Following the FCC rules, the reader hops
every 0.2 second among 50 channels from 902 MHz to 928 MHz.
Low-level data, such as RSSI, phase, and timestamp will be
sampled by the reader and processed in an MSI laptop with an
Intel Core 17-6820HK CPU and a Navidia GTX 1080 GPU. One
possible limitation of the current prototype system is the rela-
tively higher cost compared with other driving fatigue detection
systems, such as smartphone-based system, WiFi-based system,
and camera-based system. Fortunately, the overall system cost
could be reduced by using cheaper readers. For example, since
only one antenna is required in our system, one port reader
like Impinj R120 can be used. Further, medium range readers,
such as Feig MRU102-PoE, will be another low-cost option,
because the interrogate range for car environment monitoring
is not demanding. Finally, the cost of the future commercial
system could be further reduced, if customized readers are used
and mass produced.

The system is firstly tested in an emulated environment, which
isin a 8.8 m x 4.5 m laboratory. The volunteer is seated on a
chair and nod or rotate his/her head naturally when the reader is
scanning the RFID tags. The antenna is placed on a shelf behind
the volunteer. All data sampled will be transmitted to the laptop
for data calibration and nodding detection. The system is also
evaluated in real driving environments. Specifically, the system
is deployed in a BMW 328i vehicle made in 2014, as shown
in Fig. 18. The polarized antenna is placed on the back of the
driver chair to continuously interrogate the two tags, which are
attached to the back side of the hat. The driver is required to
drive naturally in different scenarios, such as on a highway, in
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a parking lot, and in city streets, all the nodding movements
happens during driving are recorded as the ground truth.

B. Results and Discussions

1) Overall Performance: Experimental results of our drowsi-
ness detection system are presented in Fig. 19. The figure shows
the TP and TN rates in two different scenarios in the emulated
environment. Recall that the TP rate means the accuracy of
nodding detection, and the TN rate is the accuracy of normal
driving recognition. In the first scenario, the volunteer is asked
not to rotate his/her head, but only nod occasionally during
the test. In the other scenario, the volunteer can move his/her
head and body casually (i.e., to generate large interference).
The results show that our system can achieve a 97.23% TP rate
and a 96.72% TN rate when no other head movements present.
The achieved TP rate and TN rate are 91.48% and 95.38%,
respectively, even though the drivers rotate or shift their heads
during the experiment. The high detection accuracy in different
scenarios proves that our system can effectively mitigate the
influence of head rotation and shifting during driving, as well as
the other large noises in the driving environment.

Fig. 20 shows the accuracy of our system for all the volunteers
involved in the experiments. The TP rate is 95.08% and the TN
rate is 92.61% for the the 5th driver, which is the highest among
them. In contrast, the accuracy of nodding detection for the
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TABLE I
AVERAGE DETECTION ACCURACY COMPARISON OF DIFFERENT DRIVING
FATIGUE DETECTION SYSTEMS

System Average Detection Accuracy
Video Camera [7] 88.9%
WiFi Device [8] 89.6%
Smartphone (Acoustic-based) [9] 93.3%
RFID Tags and Reader 92.8%
100 T
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Fig. 21. Impact of the window size used for training.

second driver is the lowest. The difference in detection accuracy
is mainly due to the different driving and nodding movements of
different drivers. In addition, the height of the driver also affects
the relative location between the antenna and the tags, and thus
the sensitivity of nodding feature extraction. Fortunately, we find
that all the TP rates and TR rates are higher than 90.33% and
89.01%. respectively. We can thus conclude that the accuracy
of nodding detection is sufficiently high and robust for different
drivers.

To compare the system accuracy with different existing driv-
ing fatigue systems, we summarize the average driving fatigue
detection accuracy values that are provided in the related pa-
pers [7]-[9] in Table I. From the table, we can observe that the
average detection accuracy of the proposed RFID based system
is 92.8%, which is sufficiently higher than the vision-based and
WiFi-based systems. The average accuracy of our system is only
0.5% lower than the acoustic-based system, which is imple-
mented with a smartphone. However, as a broadcast signal, both
WiFi signal and acoustic signal are sensitive to the movement of
passengers, especially for the passenger next to the driver. The
acoustic approach could also be interfered surrounding noise in
the same frequency when driving in traffic. Thus, we conclude
that the RFID based system is more suitable for the noisy driving
environment.

2) Impact of Model Parameter: Since the nodding features
are carried in a data sequence rather than single samples of data,
a sliding window is utilized to extract the data sequence. To
investigate the suitable size for the sliding window, we test the
system performance under different window sizes ranging from
0.5 s to 5 s. Fig. 21 represents the TP and TN rates when the
data is trained with different window sizes. It can be observed
that, when the window size is larger than 3.5 s, the TN rate
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and TP rate are lower than 85.24% and 74.64%, respectively.
When the window size is smaller than 1.5 s, the TN rate is
lower than 83.51% and the TP rate is lower than 79.67%. The
observations show that the system performance is sensitive to
the sliding window size. The highest detection accuracy requires
a suitably set sliding window size for learning and detection.
Based on the result shown in the figure, the sliding window of
our system is set to 2 s for the highest accuracy.

3) Different Driving Scenarios: To investigate the influence
of vehicle vibration on the detection accuracy, we evaluate the
system in three different scenarios, including (i) driving on a
highway, (ii) driving in city streets, and (iii) parked. Fig. 22
shows that the system can achieve the highest accuracy of a
96.78% TP rate and a 95.78% TN rate when the vehicle is parked.
For highway driving, the TP rate and TN rate are 93.67% and
94.66%, receptively, which means the influence of the vehicle
vibration is negligible in this case. This is because the vibration
generates similar variation on the phase data for both tags, which
can be effectively mitigated by using the phase difference.

However, for the city street driving scenario, the accuracy
decreases obviously to a 87.47% TN rate and a 84.75% TP
rate. We also present the corresponding false alarm rate in
different driving scenarios in Fig. 23. The figure shows that
the false alarm ratio is lower than 5.34% when driving on the
highway and when parked; but the false alarm ratio increases to
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12.53% in the in-town driving scenario. It can be concluded
that the detection accuracy is considerably degraded by the
more extensive driving movements for in-town driving (e.g.,
checking for traffic conditions, finding directions, and turning
the steering wheel for turning at street corners). In addition,
when the vehicles stops and restarts at traffic light or stop signs,
the driver may also nod his/her head because of inertia and
acceleration. These movements generate large interference and
cannot be effectively distinguished from the normal nodding
due to drowsiness. Fortunately, drowsy driving usually does
not happen in the city street driving case, where the drivers
turning wheels or stop/restart the vehicle frequently. The high
accuracy in the different real driving scenarios has proved that
the system can effectively detect driving drowsiness, especially
when driving on highways.

4) Impact of Passengers: Finally, Fig. 24 shows the impact of
various numbers of passengers in the car, whose movements also
generate interference to driver nodding detection. The experi-
ments are conducted to evaluate if the system can still achieve
high accuracy under the interference from an unstable testing
environment. As an in-car RF-based sensing system, the per-
formance could be affected by the surroundings because of the
multipath effect. A noisy testing environment could introduce
considerable variation to the wireless channel, which affects the
sampled phase value at the RFID reader. Since the movements of
other passengers mainly contribute to the environmental noise
in the driving environment, more passengers could generate
larger interference in the system. Thus, we test the system with
different number of passengers, increased from 1 to 4.

In the experiments, the passengers move naturally in the vehi-
cle. We can see that the system achieves the highest TN rate when
there is only one passenger in the car. With more passengers, the
system can still achieve high accuracy such as a 91.75% TP rate
and a 91.99% TN rate. The false alarm ratios shown in Fig. 25
are all lower than 8.01% even when four passengers are in the
vehicle. The results verify that the influence of passengers can
be effectively mitigated by the proposed system. This is because
the range of the polarized antenna is limited, so the multipath
effect is limited for transmissions between the tags and reader.
Thus, the movements of passengers can hardly affect the phase
information sampled by the reader, and drowsiness detection is
robust even when multiple passengers are loaded in the vehicle.
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VI. CONCLUSION

In this paper, we proposed a driving drowsiness detection sys-
tem by detecting the nodding movements of drivers. The nodding
movements were detected by using the received phase values in
RFID tag responses. We proposed a tag deployment scheme
to effective deal with the high noisy driving environment. To
mitigate the influence of vehicle vibration during driving, the
phase difference of the two tags were estimated by a proposed
algorithm. An unsupervised LSTM autoencoder model was in-
corporated to learn the nodding features, which can effectively
reduce the cost of collecting labeled data for various types of
driving movements. The high detection accuracy of the proposed
system was demonstrated by experiments in both an emulated
environment and real driving scenarios with commercial tags
and readers.
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