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Abstract—In recent years, human pose tracking has become an
important topic in computer vision (CV). To improve the privacy of
human pose tracking, there is considerable interest in techniques
without using a video camera. To this end, radio-frequency iden-
tification (RFID) tags, as a low-cost wearable sensor, provide an
effective solution for 3-D human pose tracking. In this article,
we propose RFID-Pose, a vision-aided realtime 3-D human pose
estimation system, which is based on deep learning assisted by
CV. The RFID phase data are calibrated to effectively mitigate
the severe phase distortion, and high accuracy low rank tensor
completion is employed to impute the missing RFID data. The
system then estimates the spatial rotation angle of each human
limb, and utilizes the rotation angles to reconstruct human pose
in realtime with the forward kinematic technique. A prototype
is developed with commodity RFID devices. High pose estimation
accuracy and realtime operation of RFID-Pose are demonstrated
in our experiments using Kinect 2.0 as a benchmark.

Index Terms—Computer vision (CV), deep learning, high
accuracy low rank tensor completion (HaLRTC), human pose
estimation, Radio-frequency Identification (RFID).

I. INTRODUCTION

IN RECENT years, human pose tracking has become an
important topic in computer vision (CV), evolving from

2-D [1] to 3-D poses [2]. The accuracy of human pose tracking
technique is continuously improved by more advanced hard-
ware and machine learning (i.e., deep learning) techniques.
Camera-based techniques have been shown effective for human
pose tracking. However, such vision-based techniques also raise
security and privacy concerns. It is usually annoying if one is
being watched by a video camera all day. It is reported that
millions of wireless security cameras deployed around the world
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are at risk of being hacked [3]. The video data used for pose
tracking could be intercepted and illegally used by hackers. The
privacy issue draws increasing concerns in the age of Internet of
Things (IoT), where eHealth based on IoT is an important part.
Many techniques have been proposed to improve the privacy and
reliability of the IoT [4]–[6].

With rapid development of machine learning, deep learning
has been highly promising for improving the safety and reli-
ability of personal software and the IoT, which usually relies
on sufficient and high-quality data [7]–[9]. If the human pose
data are obtained without using a camera, people will no longer
worry about their privacy being threatened. To address this issue,
several radio frequency (RF) sensing-based schemes have been
proposed for human pose estimation, such as WiFi [10], [11],
frequency-modulated continuous wave (FMCW) radar [12], and
mmWave radar [13]. Unlike camera-based techniques, such
RF sensing-based schemes estimate the human joints from a
confidence map constructed by RF signals, so the user’s privacy
will be preserved. For example, channel state information (CSI)
is utilized in WiFi-based systems [11], and the human pose can
be estimated with a deep neural network such as a convolutional
neural network (CNN). However, due to the multipath effect,
WiFi signals are highly sensitive to interference (e.g., move-
ments) in the surrounding environment. Although FMCW radar
is more robust to the environment interference than WiFi-based
systems, the cost of the system is higher than commodity WiFi,
which hinders its wide deployment.

To this end, radio frequency identification (RFID) provides
a promising solution for human pose estimation. Compared
with the above contact-free RF sensing systems, RFID tags
can be used as wearable sensors because of their small size.
The interference caused by the multipath effect is much smaller
in the RFID system. Furthermore, the cost of RFID systems
is lower than the advanced radar-based systems such as the
FMCW radar. However, because of the low data rate in RFID
systems, generating a joint confidence map for all joints, as in
other RF-based systems, is highly challenging. Consequently,
the existing RFID-based pose tracking systems are focused on
monitoring the movements of one particular limb using the phase
data sampled from multiple tags [14], [15]. When multiple joints
are moving simultaneously, the performance could be affected
by the disturbance of other RFID tags (e.g., the mutual coupling
effect) or the intertag collisions. Thus, tracking the entire body
with RFID tags is still a challenging and open problem.
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In this article, we address the challenges in human pose esti-
mation using RFID tags with a novel vision-aided, deep learning
solution. We propose the RFID-Pose system for tracking the
movements of multiple human limbs in realtime. In the proposed
system, RFID tags are attached to the target human joints. The
movement of the tags are captured by the phase variations in
the responses from each tag. We propose a vision-aided solution
to help the proposed deep learning model to learn the features
of tag phase variations, rather than localizing these tags with
traditional tag localization techniques [16]. The collected RFID
phase data are first preprocessed to improve the quality of the raw
sampled data, in particular, to mitigate the phase distortion and
estimate the large amount of missing samples. Then, we leverage
a deep kinematic neural network to learn the features of RFID
phase data, where a Kinect 2.0 is used to obtain the ground truth
(i.e., labeled data for training). With the assistance of vision
data, the deep learning model transforms the phase variation
into the spatial rotation angle of each human joint. Since the
spatial rotation angle estimation does not require generating a
confidence map, the low data rate limitation of RFID systems
is no longer an issue. In realtime estimation, human pose is
reconstructed by estimated rotation angles from RFID data and
the initial human skeleton. The vision data will not be needed
anymore in this stage, and so the user’s privacy can be well
protected.

The main contributions of this article are summarized as
follows.

1) To the best of our knowledge, this is the first work for 3-D
human pose estimation using commodity RFID reader and
tags, which can effectively monitor multiple human joints
simultaneously in realtime.

2) We propose a novel data preprocessing approach to mit-
igate the severe RFID phase distortion and compensate
the large amount of missing data in sampled raw RFID
data. The tensor completion technique is utilized for data
imputation, so that phase data for all RFID tags can be
estimated. The greatly improved data quality leads to more
effective learning for human pose estimation.

3) We propose a vision-aided solution for training the pro-
posed deep kinematic neural network, to transform sensed
RFID phase variations to the spatial rotation of each
limb. The proposed approach effectively addresses the
challenges of the low data rate in RFID systems, because
rotation angle estimation requires much less data than
generating a joint confidence map.

4) We develop a prototype system with commodity RFID
devices and Kinect 2.0, to evaluate the system perfor-
mance. Our experimental study validates that the proposed
RFID-Pose system can effectively track the human pose
with different types of motions in realtime.

The rest of this article is organized as follows. Section II
reviews the related work. Section III presents the RFID Pose
system overview. In Section IV, the challenges and solutions
to RFID data preprocessing are presented. In Section V, the
challenges and solutions to RFID-based pose estimation are
analyzed and introduced. In Section VI, we present our prototype
system evaluation. Finally, Section VII concludes this article.
The notation used in this article is summarized in Table I.

TABLE I
NOTATION

II. RELATED WORK

This article is closely related to prior works on RFID–based
sensing [17] and human pose estimation [18]. We mainly focus
on these two classes of systems in the following.

Recently, passive RFID tags have attracted great interest
because of their easy deployment and low-cost features [19].
The low level reader protocol used by the reader can provide
useful low-level information such as received signal strength
indicator (RSSI), phase, Doppler frequency shift, timestamp,
etc. [20]. As a result, many RFID-based sensing techniques
have been developed for many applications, such as indoor
localization [16], [21]–[24], vital sign monitoring [25]–[31],
user authentication [32], material identification [33], object
orientation estimation [34], vibration sensing [35], anomaly
detection [36], temperature sensing [37], and drone localization
and navigation [38]–[40]. Particularly, the RF-wear system [15]
and RF-Kinect system [14] utilize RFID tags attached to the
human joints to estimate the movement of a particular limb,
such as front arms, front legs, and thighs [14], [15]. We adopt
the same approach in RFID-Pose. However, these systems may
not be suitable for realtime human pose estimation, especially
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when multiple moving joints need to be tracked simultaneously.
These RFID-based sensing systems inspire us to develop an
RFID-based pose estimation system.

Prior works on human pose estimation are mainly based on
CV techniques [18], [41]. For human pose estimation using
video data, deep learning-based method has been shown effec-
tive for 2-D human pose with conventional RGB cameras [1],
[42], and 3-D human pose with RGB-Depth cameras [43]
and VICON systems [44]. These camera-based techniques can
achieve high accuracy, but all require sufficient lighting condi-
tion and may raise privacy concerns.

These limitations motivate the development of RF-based pose
estimation techniques, because detecting RF signals do not
require any lighting [45]. Moreover, since no video is used in
the RF systems, the privacy issues are effectively addressed.
However, collecting labeled pose data from RF signals is very
challenging. Therefore, several RF-based techniques leverage
vision data as labeled pose data to train the deep learning
network. This approach is also taken in the proposed RFID-Pose
system. For example, RFPose is the first work to use RF signals
with an FMCW radar for 2-D human pose estimation, where a
teacher–student deep learning model is utilized [12]. RFPose3D
is the later version for 3-D human pose estimation with FMCW
radar [45]. Moreover, mmwave radar is also utilized for human
pose estimation with deep learning [13]. Recently, WiFi CSI
has been exploited to create 2-D skeletions [10] and 3-D human
poses [11] using cross-modal deep learning techniques. How-
ever, Radar and WiFi-based human pose estimation are easily
influenced by the environment noise and interference, and the
FMCW radar technique is limited by the relatively higher cost
[e.g., implemented with universal software radio peripherals
(USRP)].

The proposed RFID-Pose system, to the best of our knowl-
edge, is the first to apply RFID-based sensing for 3-D human
pose estimation. The proposed system consists of a novel and
effective solutions for cross-modal 3-D human pose estimation
using RFID and CV, which is much more robust compared with
WiFi and Radar-based methods.

III. RFID-POSE SYSTEM OVERVIEW

In this article, we propose an RFID-based sensing system,
termed RFID-Pose, to estimate and track 3-D human pose in
realtime. The RFID-Pose system can sense the 3-D positions
of all the RFID tags attached to the human body by exploiting
the phase data collected at the reader antennas. The training
process of the system is supervised by the labeled vision data
collected by a Kinect2.0 device, but only RFID data will be
required for online human skeleton estimation. Human pose
can be effectively constructed by mapping the positions of the
attached RFID tags into 3-D coordinates. The overview of the
RFID-Pose system architecture is presented in Fig. 1, which
is mainly composed of four components, including 1) RFID
phase data collection, 2) Kinect skeleton data collection, 3) RFID
data preprocessing, and 4) Skeleton reconstruction using a deep
kinematic neural network.

Fig. 1. Overview of the RFID-Pose system architecture.

A. RFID Phase and Kinect Pose Data Collection

In the proposed system, training data are sampled by both
the RFID antennas and the Kinect 2.0 device simultaneously.
The collected RFID data will be used as the input to the deep
kinematic neural network, and the Kinect 3-D pose data will
be used as labeled data for the supervised training. To collect
RFID data, we attach passive RFID tags on the 12 joints of the
human body. Three reader antennas are used to collect the phase
and timestamp data from all the attached RFID tags. Kinect
2.0 is a depth camera widely used for capturing 3-D poses in
interactive video games. The 3-D position of each human joint
is estimated by both the RGB camera and the infrared sensors,
and all measured joint positions are stored as 3-D coordinates.

B. RFID Data Preprocessing

Since the sampled RFID raw phase data suffers from consider-
able distortion caused by channel hopping and phase wrapping,
the RFID phase calibration must be applied to cleanse the data
before using it to train the deep neural network. We first calibrate
the phase variation to mitigate the influence of channel hopping
and phase wrapping. Next, we downsample the calibrated RFID
data and synchronize it with the 3-D pose time sequence obtained
by Kinect. However, because of the slotted ALOHA-like trans-
mission in the RFID system, tags are not evenly interrogated by
the antennas. In order to synchronize the RFID data with the
collected pose data from Kinect, we should obtain the phase for
all tags corresponding to each Kinect data frame. To this end,
we propose to employ low rank tensor completion to estimate
the missing phase values from the tags. Finally, the calibrated
phase data are used as input to train the deep neural network for
human skeleton reconstruction.

C. Human Skeleton Reconstruction With
a Deep Kinematic Neural Network

In RFID-Pose, we incorporate the deep kinematic neural
network to learn the features of the RFID phase data. Un-
like monitoring one particular limb movement as in traditional
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Fig. 2. Raw phase sampled from one of the RFID tags by a single reader
antenna.

RFID-based skeleton tracking systems [14], [15], the deep kine-
matic neural network is designed to simultaneously estimate the
spatial rotation of all human joints relative to their parent joints.
Once the initial human skeleton (i.e., the length of the limbs of
target) is given, the network could effectively learn the features
of calibrated RFID tensor data, and reconstruct the positions
of human joints with estimated rotation angles. In RFID-Pose,
the Kinect pose data are only used as benchmark for evaluating
the accuracy of 3-D pose reconstruction in the online testing
process.

IV. CHALLENGES AND SOLUTIONS: RFID PHASE DISTORTION

MITIGATION AND DATA IMPUTATION

The proposed RFID-Pose system reconstructs 3-D human
pose from RFID phase data with a deep kinematic neural net-
work. However, the raw RFID phase data cannot be directly
used for training and testing. The raw phase dataset from one
of the tags sampled by a reader antenna in 500 time slots is
plotted as diamond in Fig. 2. The figure shows that the collected
RFID phase data are severely interfered during transmission
by channel hopping and phase wrapping. Furthermore, there
are many samples with a 0 value, which means the tag is not
successfully sampled in the time slot. This is due to the slotted
ALOHA transmission in RFID systems; only one tag is allowed
to respond to the reader’s query in each time slot. Such sparse,
low quality RFID data makes the RFID-based 3-D pose tracking
highly challenging unless an appropriate data preprocessing is
conducted.

Therefore, we propose the following RFID data preprocessing
for the sampled RFID phase data, as illustrated in Fig. 3. In
the preprocessing procedure, we first calibrate the overall phase
interference in the raw data and then synchronize the RFID phase
data with the collected Kinect data (used as labels for training).
Next, the RFID data are used to construct a third-order tensor,
where the element at location (x, y, z) is the data collected from
antenna x in time slot y from RFID tag z. We leverage high
accuracy low rank tensor completion (HaLRTC) to recover the
missing samples and form the input data tensor, which is fed into
the deep kinematic neural network for training and inference.
More details are provided in the following.

Fig. 3. Flow chart of RFID data preprocessing.

A. Combating Collected Phase Interference

1) Frequency Hopping Offset Mitigation: In the proposed
system, we leverage an RFID reader to extract the phase data
from received RFID tag responses using the low level reader
protocol, which is indicative of the tag-to-antenna distance [20].
The phase value is obtained when the RFID reader receives the
electronic product code (EPC) from the interrogated tag. The
sampled phase value can be written as

Φ = mod

(
4πSf

c
+Φtag +Φa, 2π

)
(1)

where S denotes the distance between the interrogated tag and
the reader antenna; and Φtag and Φa represent the phase offset
caused by the circuits in the RFID tag and the reader antenna,
respectively; f is the center frequency of the channel; and c is
the speed of light. The equation shows that the phase value is
indicative of the variation of the tag-to-antenna distance S, but
it is also affected by the phase offset caused by the tag Φtag and
the antenna Φa.

According to the FCC regulations, the Ultra-High Frequency
(UHF) RFID system should hop among 50 channels during
operation to avoid collisions among multiple RFID readers.
In (1), the sum phase offset Φα = Φtag,α +Φa,α is determined
by both the hardware and the current frequency fα used for the
interrogation. So a considerable phase offset will be generated
each time when the system hops to a new channel. As shown
in Fig. 2, the severe phase offset is caused by channel hopping,
which leads to considerable interference in the collected phase
data. To mitigate the interference, we first rewrite the sampled
phase in (1) from each channel α as

Φ = mod

(
4πSfα

c
+Φα, 2π

)
, α = 1, 2, . . ., 50 (2)

where α is the RFID channel index ranging from 1 to 50. The
equation shows that the channel hopping offset is a constant
value for each particular channel, which can be canceled by
subtracting two phase samples on the same channel. Thus, rather
than using the RFID phase data, we calculate the RFID phase
variation on the same channel to mitigate the interference caused
by the channel hopping offset.
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The phase variation is calculated by subtracting a sampled
phase data from the previous one on the same channel α, as

φ = mod

(
4π(Sn − Sn−1)fα

c
, 2π

)

α = 1, 2, . . ., 50, n = 2, 3, . . . (3)

where Sn represents the tag-to-antenna distance for the nth
sampled data on the current channel. It can be seen that the
phase variation in (3) is not affected by the phase offset anymore.
Since (Sn − Sn−1) is the change of distance relative to the
previous sample, phase variation is also suitable for tracking the
movement of RFID tags. Therefore, to mitigate the interference
caused by the frequency hopping offset, the input RFID data to
the deep kinematic network is composed of the phase variation
calculated for each RFID channel.

2) Phase Data Unwrapping: After calculating the phase
variation for each channel, the phase distortion caused by chan-
nel hopping will be effectively mitigated. However, as shown
in Fig. 2, since the sampled phase is wrapped in [0, 2π] rad,
the wrapped phase data also leads to severe interference in
calculated phase variation. For example, if the phase changes
from 0.1 rad to −0.1 rad, calculated phase variation will be
2π − 0.2 rad, but the real phase variation is only −0.2 rad.
To avoid the influence of phase wrapping, we apply a simple
algorithm to unwrap the phase variation.

Considering that the frequency range of the reader antenna is
902–928 MHz with a wavelength about 33 cm, we assume that
all the tag position variations between two adjacent samples
is smaller than 16.5 cm (half of the weave length), which is
reasonable given the 110-Hz sampling rate. Thus, we calibrate
the calculated phase variation when its absolute value is larger
than π as follows:

φ′ = φ− 2π
φ

|φ| , if |φ| > π. (4)

In (4), φ/|φ| returns the sign of φ. Then depending on whether
the phase variation is positive or negative, a−2π or a 2π offset is
added toφ. The calibrated phase variation, for the raw phase data
shown in Fig. 2, is presented as diamonds in Fig. 4. We can see
that, the channel hopping offset is eliminated in the calibrated
data, as well as the phase distortion caused by phase wrapping.
Notice that there are still missing data samples, which should
be addressed. Otherwise, the input data still contains too many
empty units (i.e., it is still highly sparse).

B. RFID Data Imputation

Following FCC regulations, the communications between the
RFID reader and tags are based on slotted ALOHA. It means
the back propagation data of all the tags are received randomly,
and only one tag can respond to the reader in each time slot (i.e.,
only one phase sample can be collected from one of the tags at
a time). In RFID-Pose, we employ a commodity RFID reader
with three antennas to scan the 12 tags attached to the human
joints. The sampling rate for each tag is thus very low. From
the calibrated phase variation data in Fig. 4, we can see that
this antenna only collects 38 samples for that tag in 500 time

Fig. 4. Calibrated phase variation data from one of the RFID tags (the raw
data is plotted in Fig. 2).

slots, while ideally we expect 500 samples. This means more
than 90% of the data are missing for this tag. Learning features
from such sparse datasets is highly challenging, and we should
estimate the missing samples for more effective learning.

1) Downsampling and Synchronization: With Np antennas
and Nq tags, we can create a Np ×Nq phase variation matrix
for all the tags and antennas and extend it into an order-3 tensor
structure for various time slots. The data tensor for Np antennas,
Nq tags, and Nt time slots is constructed as

ψ(:, :, q) =

⎡
⎢⎢⎢⎢⎣

φ1
q1 φ1

q2 . . . φ1
qNt

φ2
q1 φ2

q2 . . . φ2
qNt

...
...

...
...

φ
Np

q1 φ
Np

q2 . . . φ
Np

qNt

⎤
⎥⎥⎥⎥⎦ , q = 1, 2, . . ., Nq.

In the data tensor, φp
qt represents the calibrated phase variation

data from tag q sampled by antennap in time slot t. Note that only
one phase variation can be sampled in each ψ(:, t, :). So only
up to Nt samples are nonempty in this Np ×Nt ×Nq tensor,
i.e., it is highly sparse. The RFID-Pose system utilizes 12 tags
and 3 antennas. Thus the sparsity of the data tensor is as high
as 97.22%, which leads to poor learning performance. How-
ever, such highly sparse tensors are very hard to be accurately
completed with traditional compressed sensing techniques.

Fortunately, since the frame rate of the Kinect data is 30 fps,
we can compress the RFID data in multiple adjacent time
slots to match the corresponding, single Kinect data frame.
Furthermore, since the requirement on the frame rate is not very
high for human pose tracking (which mostly involve slow body
movements), we can further downsample the Kinect data so that
more slices in the sparse tensor can be grouped into one. If we
compress tensor ψ into Ψ with ratio ξ, the new tensor after
synchronization could be denoted as

Ψ(:, :, q) =

⎡
⎢⎢⎢⎢⎣

φ̄1
q1 φ̄1

q2 . . . φ̄1
qNT

φ̄2
q1 φ̄2

q2 . . . φ̄2
qNT

...
...

...
...

φ̄
Np

q1 φ̄
Np

q2 . . . φ̄
Np

qNT

⎤
⎥⎥⎥⎥⎦ , q = 1, 2, . . ., Nq
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Fig. 5. Downsampled and synchronized RFID phase variation from one RFID
tag with ξ = 50.

where NT is the number of synchronized time slots for RFID
data, which is the same as the number of downsampled Kinect
data units. As the equation shows, for each unit Ψ(np, nt, q)
in the tensor, the first coordinate np represents the index of the
sampling antenna, the second coordinate nt indicates the index
of the time slot, and the third coordinate q is the index of the
attached RFID tag. The tensor structure is also illustrated in the
right-hand-side of Fig. 3. In addition, φ̄p

q,T is the mean phase
variation from tag q sampled by antenna p in synchronized time
slot T , which is calculated for the ξ adjacent values in ψ as

φ̄p
qT =

1

ξ

T+ξ−1∑
t=T

φp
qt. (5)

After the downsampling process, the sampling period is also
multiplied by ξ. Since phase variation represents the velocity of
the overall phase changes, the mean value calculation still keeps
the phase variation velocity unchanged. With downsampling and
synchronization, the sparsity of the RFID data will be greatly
reduced, as illustrated in Fig. 5, which is obtained with ξ = 50
from the calibrated phase variation data shown in Fig. 4. As
the figure shows, there are now 38 valid data units in 70 time
slots. Compared to the original data in Fig. 4, the sparsity is
effectively reduced. However, there are still intervals of time
with no effective sampled data, which will be addressed next.

2) High Accuracy Low Rank Tensor Completion (HaLRTC):
The commodity RFID reader used in RFID-Pose has three
antennas. To accurately learn the RFID phase variation features,
all tags should be sampled by all antennas in each time slot
in the ideal case. However, the phase variations collected from
different antennas could be treated as different samples from
the same signal source (i.e., tag movement). Since the number
of signal sources equals to the number attached RFID tags,
the sparse tensor Ψ can be considered as a low-rank tensor,
which can be recovered by low-rank tensor completion. This
task is accomplished by solving the following optimization
problem [46]:

min
Ψ̂

‖Ψ̂‖∗

s.t.: Ω ∗ Ψ̂ = Ω ∗Ψ (6)

where Ψ̂ is an estimation of the ideal tensor data Ψideal, which is
composed of all the ideal phase variation data; and Ω is a tensor
of 0 and 1 elements, where ΩIJK = 1 when ΨIJK is sampled,
and ΩIJK = 0 otherwise. In (6), ‖ · ‖∗ denotes the trace norm of
tensors.

During the optimization procedure, the trace norm of the
third-order tensor Ψ is calculated with the combination of its
unfolded matrix in different modes. The optimization problem
is represented as [46]

min
Ψ̂,Mi

3∑
i=1

hi||M i(i)||∗

s.t.: Ω ∗ Ψ̂ = Ω ∗Ψ
Ψ̂ =M i, i = 1, 2, 3 (7)

where hi’s are constants satisfying
∑3

i=1 hi = 1,M i is a tensor
with the same size as Ψ̂, and M i(i) is the matrix unfolded
from tensor M i in mode i. The equation shows that the trace
norm of a tensor is a convex combination of norms for all ma-
trices unfolded along each mode. In HaLRTC, the optimization
problem (7) is solved with the augmented Lagrange multiplier
method (ADMM) [47] with the augmented Lagrangian function
defined as

Lρ(Ψ̂,M i,Y i)

=

3∑
i=1

hi||M i(i)||∗ +
〈
Ψ̂−M i,Y i

〉
+

ρ

2
||M i − Ψ̂||2F

(8)

where 〈·, ·〉 represents the inner product of two tensors and || · ||F
is the Frobenius norm of the tensor; Y i is a zero tensor with the
same size as Ψ̂, and ρ > 0 is the penalty factor in the algorithm.
In our system we set ρ = 1e−4. Rather than iterate recursively to
optimize the target tensor Ψ̂. ADMM literately updates multiple
variables, i.e.,M i, Ψ̂, and Y i as follows:

1) M ′
i = arg min(M i) : Lρ(Ψ̂,M i,Y i)

2) Ψ̂′ = arg min(Ψ̂) : Lρ(Ψ̂,M ′
i,Y i)

3) Y ′
i = Y i − ρ(M ′

i − Ψ̂′).

These functions converge when the update between two adja-
cent iteration is sufficiently small. Thus, the update threshold is
set to determine whether Ψ̂ is successfully estimated or not. To
balance the data imputation performance and the convergence
rate of the algorithm, we set the convergence threshold to 1e−6

to make sure the data are effectively recovered with an accept-
able convergence rate. Compared with other low-rank tensor
completion algorithms, HaLRTC can solve the optimization
problem (6) more accurately with a lower complexity. The entire
tensor completion process in our system only takes less than
0.1 s to execute because the downsampling reduces the input
tensor size. As illustrated in Fig. 6, all the missing data can be
effectively estimated by HaLRTC. So the reconstructed tensor
Ψ̂ can be used by the deep learning model for 3-D human pose
estimation.
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Fig. 6. Missing data are estimated by HaLRTC.

Fig. 7. Sparse RFID phase variation matrix collected from one antenna.

To evaluate the performance of the HaLRTC algorithm, we
compare compare it with a conventional interpolation method,
i.e., the bilinear interpolation technique. Fig. 7 shows one slice of
phase variation data in tensor Ψ̂, which represents the synchro-
nized phase variation data for all tags sampled by one antenna.
As the figure shows, there are still many samples of value 0,
indicating that most data are still missing after downsampling,
especially for tags 6, 10, 11, and 12. Both HaLRTC and bilinear
interpolation techniques are used to interpolate the miss samples,
and the results are presented in Figs. 8 and 9, respectively.
From Figs. 8 and 9, it can be seen that the phase variation
data estimated by tensor completion shows high consistency
among all tags, while sharp variations are generated by bilinear
interpolation. Especially for the tags with high sparsity, e.g.,
tags 11 and 12, significant distortions have been introduced by
bilinear interpolation, which will cause considerable skeleton
estimation errors.

The superior performance of tensor completion in data im-
putation is mainly because the data are not evenly sampled
in the RFID system. The sampled data from different tags
usually have highly different sparsity (e.g., tag 1 versus tag
11 or 12 in Fig. 7). The traditional interpolation method is not
suitable for this significant uneven sparsity situation. However,
by solving the optimization problem (6), the missing samples

Fig. 8. Phase variation matrix completed by HaLRTC.

Fig. 9. Phase variation matrix completed by the bilinear interpolation method.

can be interpolated based on the low rank components of the
tensor data, which indicates the movement of the subject. In
addition, the tensor completion process in our system only takes
less than 0.1 s to execute because the downsampling has reduced
the input tensor size. Thus, HaLRTC is a well-suited method for
phase variation data imputation in RFID-Pose.

V. CHALLENGES AND SOLUTIONS: HUMAN POSE

RECONSTRUCTION WITH RFID DATA

A. Challenges in RFID-Based Human Pose Tracking

Tracking multiple joints of a human subject simultaneously
with RFID tags is highly challenging, because the data rate of
RFID systems is extremely low comparing to other wireless
systems. According to the RFID Gen2 protocol, the medium ac-
cess control (MAC) in RFID system follows the slotted ALOHA
protocol, which means only one tag can respond to the reader in
each time slot. Such a transmission scheme makes the data rate
of RFID much lower than other sensing systems such as video
camera [1], WiFi [10], and FMCW radar [12]. In these RF-based
skeleton tracking system, the human skeleton is extracted from
the confidence map of the target joints, which is usually gener-
ated by a neural network. The RFID system’s sampling rate is
about 110 Hz for each antenna. In order to generate a 100× 100
confidence map to localize the joint positions at a rate of 5 fps
(frames/second), only 22 phase data samples can be obtained
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for each frame. Recovering a map with 10 000 data samples
with only 22 phase data samples is a severely ill-posed problem,
which is extremely challenging to solve even with advanced
deep learning techniques.

The above ill-posed problem implies that the confidence map
method may not be suitable to estimate the 3-D pose of the
human body. Consequently, the existing RFID-based techniques
mostly focus on estimating the movement of a particular limb
movement, such as the front arm, the front leg, and thighs [14],
[15]. Although, theoretically, the entire body movement could
be reconstructed by combing all the limb movements, these
systems may not be effective for realtime human pose estima-
tion, especially when multiple moving joints need to be tracked
simultaneously.

In RF-wear [15], two RFID tag arrays are attached to the two
adjacent limbs of the subject, which are then used to estimate
the rotation angle of human limbs with good accuracy. However,
when tracking multiple limbs simultaneously, every limb should
be attached with an RFID array. In this scenario, there will be a
large number of tags to be interrogated by the RFID reader.
The severe mutual coupling effect and considerable intertag
collisions will cause a lot of missing samples and some tags
may even be hardly sampled by the reader. Similarly, in the
RF-Kinect system [14], the rotation angle of one particular limb
is estimated by the RF hologram technique [21]. Unfortunately,
since the angle estimation is based on the probability distribution
map built on the phase value of all attached tags, the accuracy
of angle estimation could be affected when multiple tags are
moving together. Moreover, the generation of the probability
distribution map for each joint requires phase measurements for
all possible rotation angles, which entail heavy calibration work.

Studying existing RFID-based pose tracking systems, we
found that, although generating the skeleton confidence map
is challenging, the rotation angles of all human limbs could be
relatively easily estimated from the scarce RFID data. This is
because, when the limb’s length is known, the system only needs
to generate three angle values to reconstruct the particular limb’s
movement. That is, only 3n angle values need to be estimated
when tracking n joints, which is considerably less than the num-
ber of samples required for confidence map generation, and is
highly suited for RFID-based sensing systems with constrained
sampling rates. Accordingly, our goal is to estimate the rotation
angle of each limb and leverage the forward kinematic technique
to reconstruct the human skeleton with the estimated rotation
angles.

B. Forward Kinematics

The technique to generate human 3-D pose from limb rotation
angles is Forward Kinematics, which is widely used in robotics
and 3-D animation [48]. An example of forward kinematic is
shown in Fig. 10. The left-hand-side figure shows a human
skeleton with a “T” pose, and the 12 joints with marked numbers
are the target joints to track in our RFID-pose system. In forward
kinematics, the 3-D position of a joint is generated by 1) the
rotation angle of the limb connecting the two joints; and 2) the
length of the limb, and 3) the position of its parent joint, which

Fig. 10. Example of limb rotation in the human skeleton.

is defined as the rotation anchor. For example, in Fig. 10, the
subject puts down his/her arms. Then joints 8, 9, 11, and 12
all move downward. Since joint 7 (i.e., the left shoulder) is the
rotation anchor of the left upper arm, it is considered as the
parent joint of joint 8 (i.e., the left elbow). The position of joint
8 can be calculated with the length of the upper arm and the 3-D
rotation angle. Similarly, the locations of joints 9, 11, and 12
can be estimated from their corresponding parent joints 8, 10,
and 11, and the 3-D rotation angles, respectively. Accordingly,
once the initial skeleton is given (i.e., the original locations of all
joints and the lengths of all limbs), each joint can be localized
recursively based on the position of its parent joint and rotation
angles.

The recursive rotation for the nth joint in time slot T can be
expressed as

�PT
n = �PT

parent(n) +RT
n
�P 0

relative(n) (9)

where �PT
n represents the position of joint n of time slot T ,

�PT
parent(n) denotes the position of joint n’s parent joint, RT

n ∈
SO(3) represents the corresponding rotation matrix (SO(3)

denotes the 3-D rotation group), and �P 0
-(n) is the 3-D offset of

joint n relative to its parent joint, given by

�P 0
relative(n) =

�P 0
n − �P 0

parent(n) (10)

where �P 0
n and �P 0

parent(n) represent the positions of joint n and its
parent joint in the initial 3-D skeleton, respectively. From (9),
we can see that, with the initial skeleton data, all joint positions
can be calculated by the corresponding rotation matrix RT

n .
According to Euler’s rotation theorem, a 3-D rotation can be

represented as a unit quaternion in the system with format

�+ xi+ yj + zk. (11)

In the unit quaternion �,x, y, and z are real numbers, and i, j, and
k are quaternion units. Given a 3-D position vector represented
as ai+ bj + ck and a 3-D rotation with unit quaternion r� +
rxi+ ryj + rzk. The rotation matrix R is derived as

R =⎡
⎢⎣
1− 2(ry

2 + rz
2) 2(rxry + rzr�) 2(rxrz − ryr�)

2(rxry − rzr�) 1− 2(rx
2 + rz

2) 2(ryrz + rxr�)

2(rxrz + ryr�) 2(ryrz − rxr�) 1− 2(rx
2 + ry

2)

⎤
⎥⎦ .

(12)
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Fig. 11. Deep kinematic neural network incorporated in RFID-Pose.

The new position vector, after the 3-D rotation, can be calculated
as ⎡

⎢⎣
a′

b′

c′

⎤
⎥⎦ = R

⎡
⎢⎣
a

b

c

⎤
⎥⎦ . (13)

The rotation matrix R is used in the forward kinematic (FK)
layer of the learning model in the RFID-Pose system, which is
to reconstruct the human 3-D pose with the initial skeleton and
the corresponding spatial rotations.

C. Deep Kinematic Neural Network

To reconstruct 3-D human pose, we leverage a deep kinematic
neural network to learn the features of RFID phase variation
collected when the subject is moving. The structure of the
learning model is illustrated in Fig. 11. The offline training goal
is to learn the relationship between the RFID phase variation
and the rotation of the human limbs. The 3-D pose ground truth
obtained from Kinect is in the form of 3-D coordinates for the
human joints. The initial target skeleton is required for each
training dataset to transform the estimated rotation angle to the
3-D positions through forward kinematic.

As Fig. 11 shows, the deep kinematic neural network is mainly
composed of two parts, i.e., the recurrent autoencoder and the
forward kinematic layer. The recurrent neural network (RNN)
is suitable for learning the features of phase variation sampled
in a time sequence, while the Autoencoder is a simple but
effective learning model to extract the features of RFID phase
data [29], [30]. The input training data are the RFID phase
variation sequence and the 3-D pose data sequence, which are
synchronized after data preprocessing (see the previous section).

The recurrent autoencoder consists of two key parts, an en-
coder and a decoder. In each time slot, the features in the input
RFID phase data are first extracted by the recurrent encoder and
stored in the hidden layers, which consist of 256 gated recurrent
units (GRU). Because of the recurrent structure, the hidden layer
outputs in the previous time slot are also fed to the following

Fig. 12. Illustration of the system setup for 3-D pose estimation.

Encoder. Thus, the recurrent encoder can extract feature of the
RFID phase data from both the current time slot and previous
time slots. Then the recurrent decoder is leveraged to transfer
the extracted feature stored in the encoder hidden layer to 3-D
rotation data. Since the limb length data are required for the
3-D rotation estimation from extracted RFID feature, the initial
human skeleton should be added as another input to the decoder.
Moreover, the recurrent structure also feeds the previous hidden
layer outputs to the current decoder for learning the features in
the output data sequence. The unit quaternion QT for each joint
is obtained by normalizing the recurrent decoder output.

Next, with the initial skeleton and QT , the forward kinematic
layer leverages the rotation matrixR to generate 3-D coordinates
for the subject, which are in the same format as the Kinect ground
truth data. With the error calculated between the estimated pose
and the ground truth, the weights in the recurrent autoencoder
will be trained by using error backpropagation.

VI. IMPLEMENTATION AND EVALUATION

A. System Implementation

To evaluate the performance of the RFID-pose system, we
develop a prototype system with an off-the-shelf Impinj R420
reader equipped with three S9028PCR polarized antennas. The
RFID tags used for tracking human joint movements are ALN-
9634 (HIGG-3). The vision data used for training supervision
and test accuracy evaluation are collected with an Xbox Kinect
2.0 device. The sampling rate of the RFID phase data are around
110 Hz, and the frame rate of the Kinect 2.0 is 30 fps. All data are
downsampled to 7.5 Hz after preprocessing and synchronization.
The length of the RFID input tensor NT is set to 30 during the
experiments, which represents 4 s motion data.

The setup of the system is illustrated in Fig. 12. As the figure
shows, we attach RFID tags to the 12 joints of the human body,
which are the pelvis, neck, left hip, left knee, right hip, right knee,
left shoulder, left elbow, left wrist, right shoulder, right elbow,
and right wrist. To each joint, one passive RFID tag is attached
to monitor the joint movement. The head and feet are omitted
in our prototype system because of the limited scanning range
of the RFID antenna used. The antennas are placed at different
altitude positions to ensure that the antennas can interrogate all
the tags. If we want to scan all the joints from head to feet, more
antennas should be used in the system. However, the pose with
the 12 joints is sufficient to monitor human behavior in most
cases.
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Fig. 13. Illustration of two example poses. (Left) Standing still. (right)
Walking.

Fig. 14. Pose estimation when the subject is standing still.

An MSI laptop with a Nvidia GTX 1080 GPU and an Intel
Core i7-6820HK CPU is used as the processor for data training
and signal processing. The frequency used by the prototype
system hops among 50 channels from 902 to 928 MHz, and
it remains on a channel for 0.2 s.

B. Performance Evaluation and Results

1) Overall Accuracy for Different Motions: We train the
proposed deep kinematic neural network with different types
of motions. The first type of motions is simple motion, which is
only involved with the movement of a single limb. The second
type of motions is complicated motion, which is composed of
movements of the entire body, such as body twisting, deep squat,
boxing, and walking. Two examples of the motions are illustrated
in Fig. 13. The left-hand-side figure shows a subject simply
standing still, and the right-hand-side figure shows the subject
is walking. The estimation results for these two examples are
presented in Figs. 14 and 15, respectively, where the estimated
pose is marked with red lines, and the Kinect obtained ground
truth is marked with blue lines. We also present the estimation
results for other complicated motions, including squat, twisting,
and kicking, in Figs. 16, 17, and 18, respectively. From these
figures, we can see that the estimated poses are all highly close
to the ground truth collected by Kinect. These example results
show that the RFID-Pose system can adequately estimate the
3-D human pose whether the subject is moving or not.

Fig. 15. Pose estimation when the subject is walking.

Fig. 16. Pose estimation when the subject is squatting.

Fig. 17. Pose estimation when the subject is twisting.

The overall accuracy of human pose estimation is presented in
the form of cumulative distribution function (CDF) of estimation
errors in Fig. 19. The mean error of all the 12 joints for each time
slot T is calculated as follows:

ε(T ) =
1

12

12∑
n=1

||P̂T
n − ṖT

n || (14)
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Fig. 18. Pose estimation when the subject is kicking.

Fig. 19. Overall pose estimation accuracy in forms of CDF of estimation
errors.

where P̂T
n denotes the estimated position and ṖT

n is the ground
truth position collected by the Kinect in the 3-D space for joint
n at time T ; and ||P̂T

n − ṖT
n || is the Euclidean distance between

these two 3-D vectors. From the CDF curves, we can see that the
median estimation error is 2.83 cm for the single-limb motion
test and 3.75 cm for the complicated motion test. The results
show that the estimation accuracy of the entire body motion is
lower than one-limb motion, because more moving joints need
to be reconstructed in the former case. However, RFID-Pose still
achieves very high accuracy for all the complicated motions, and
the largest error among all the tests is 8.12 cm, which is smaller
than the maximum estimation error reported in the existing RFID
pose estimation system (i.e., 10 cm) [14]. The estimation results
validates that the proposed RFID-Pose system can estimate the
joints position more accurately and can effectively reconstruct
the pose of the entire moving body through RFID phase data.

2) Accuracy for Different Motions: To evaluate the estima-
tion performance for different motions, we plot the accuracy for
all the specific movements in Fig. 20, including body twisting,
squat, waving hands, kicking, walking, boxing, and standing
still. As the figure shows, the pose estimation accuracy is differ-
ent for different motions, where the highest accuracy 1.81 cm is
achieved when the human is in a stable state (i.e., standing still).

Fig. 20. Estimation errors for different types of motions.

Fig. 21. Estimation errors for different joints.

This is because no joint is moving when the subject stands still,
and thus no joint movements need to be estimated in this case.

We also notice that the squat and walking motions have worse
estimation accuracy than others, which are 5.44 and 4.12 cm,
respectively. The pelvis joint position variation is the main cause
for the limited performance. Note that our network is designed
for learning the spatial rotation of each joint relative to the parent
joint. As a root joint of the human skeleton, the pelvis position
estimation does not benefit from the forward kinematic layer.
Thus, the pelvis joint’s position is not as accurate as the rotation
angle for each human limb, which also leads to higher errors
in all other joints. That is the reason for the lower accuracy
when the pelvis joint frequently varies during the monitoring
process. Nevertheless, the error 5.44 cm is still acceptable for
most pose-based applications, such as video gaming and motion
recognition.

3) Accuracy for Different Joints: The estimation error for
each of the 12 joints is presented in Fig. 21. The joint index map
is shown in Fig. 10. From joint 1 to joint 12, the joints are: Pelvis,
neck, left hip, left knee, right hip, right knee, left shoulder, left
elbow, left wrist, right shoulder, right elbow, and right wrist. As
the figure shows, RFID-Pose achieves high estimation accuracy
for joints 1, 2, 3, 5, 7, and 10, where the estimation errors are
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TABLE II
PERFORMANCE EVALUATION FOR DIFFERENT SUBJECTS

all lower than 3.55 cm. The estimation errors for the other joints
are all higher than 4.36 cm. This is because the joints in the
first group are on or close to the human torso, while the other
joints are on the limbs (i.e., arms and legs). The relatively worse
limbs tracking performance is mainly due to two reasons. First,
since the joints of the limbs are tracked based on the torso joints
with the forward kinematic technique, the estimation errors of
the parent joints on the torso will be accumulated and affect
the accuracy of tracking the limb joints. However, the pelvis
localization in each time slot is independent, and the estimation
error of the pelvis in previous time slots will not be accumulated
in the present time slot. Second, since human limbs usually move
at a larger extent than the torso joints, there are usually fewer
RFID samples for these joints, which leads to a higher estimation
error. However, notice that even the wrist estimation error, the
highest one, is lower than 5.28 cm. Such results prove that the
RFID-Post system can accurately estimate the human pose with
the vision-aided technique.

C. More Experiments Under Different Scenarios

In addition to evaluating the overall accuracy, we conduct
several additional experiments to test the system performance
under different scenarios, including different subjects, different
environments, and different standing positions in front of the
antennas. We also discuss the generalization issue based on the
experimental results.

1) Different Subjects: We conduct experiments with five
different subjects to examine the impact of different initial
skeletons. The training dataset includes three different subjects,
while the other two subjects are not trained but for testing
only. The mean estimation errors are presented in Table II.
As the table shows, the estimation errors for all the trained
subjects are lower than 4.55 cm, which means the system can
estimate the human skeleton for different subjects. However,
when the trained system is used to test the untrained subjects,
i.e., subjects 4 and 5, the performance becomes worse but still
acceptable. Furthermore, we find that the accuracy for subject 4
is higher than subject 5 because the initial skeleton of subject 4
is similar to trained subject 2. It implies that the performance of
testing untrained subjects could be improved when the network
is trained with more subjects with different skeleton patterns.

2) Different Environments and Standing Positions: The in-
fluence of different environments and standing positions are also
investigated. The experiments are conducted in four different
environments, including two different locations in the lab, a
corridor, and a living room. The first three environments are
illustrated in Fig. 22. As the figure shows, the first two locations

Fig. 22. Different deployment environments and standing positions.

TABLE III
PERFORMANCE EVALUATION UNDER DIFFERENT ENVIRONMENTS

TABLE IV
PERFORMANCE EVALUATION FOR DIFFERENT STANDING POSITIONS

are selected in the same lab but have highly different deploy-
ments, to introduce different environmental interference. The
other two locations are selected in the corridor and living room,
respectively, which also suffers from quite different multipath
effects. As Table III shows, the estimation error in different
environments changes from 3.75 to 4.03 cm, which means the
influence of the environments is limited. This is because the re-
ceived RFID signal is dominated by the line-of-sight component;
the other reflected signals are very weak. Thus, the multipath
effect from the environment is not strong and does not affect
much the performance of RF-Pose.

The interference of different stand positions is also investi-
gated in our experiments. As illustrated in Fig. 22, we com-
pare the system performance for six different positions in the
2.5 × 1.5 m scanning area in the Lab scenario. Data collected in
positions 1, 2, and 3 are used to train the system, while the data
collected in positions 4, 5, and 6 are only used for testing. The
estimation errors are presented in Table IV. As the table shows,
the estimation errors for the three untrained positions 4, 5, and 6
are all higher than 5.71 cm, while the errors for the three trained
positions 1, 2, and 3 are all lower than 4.75 cm. The results show
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that the estimation accuracy degrades when the subject stands
in an untrained position, especially the untrained position near
the border of the scanning area. Fortunately, the high accuracy
for the trained standing positions shows that the accuracy of
untrained positions could be improved by adding more training
data sampled from different training positions. Due to limited
scanning range of the polarized antennas, six different standing
positions for training are sufficient to combat the influence of
untrained standing positions.

3) Remarks on Generalization: Since the initial subject
skeleton is needed in the training process, the performance of the
proposed system could be affected when testing the subject with
an untrained subject or the subject is tested in a different standing
position/environment. In RFID-Pose, the initial skeleton is also
necessary to address the ill-posed problem caused by the low
data rate of RFID systems. This article is mainly focused on
the fundamental problem of transferring sparse RFID data to
3-D human skeleton. However, the experiment results shown in
Tables II and IV also demonstrate that the generalization issue
could be mitigated by extending the training dataset for different
subjects and standing positions. We will further tackle the gen-
eralization problem of RFID-based pose monitoring systems in
our future work.

VII. CONCLUSION

In this article, we proposed a vision-aided, realtime 3-D
pose estimation and tracking system named RFID-Pose. A
preprocessing module was proposed to effectively mitigate the
influence of phase distortion and missing samples in the RFID
data. The proposed system then leveraged a deep kinematic
network to estimate human postures in realtime from RFID
phase data, which was trained with the assistance of CV data
as labels collected by Kinect 2.0. The RFID-pose system was
prototyped with commodity RFID devices. Its high accuracy and
realtime operation were demonstrated in our experimental study
using Kinect 2.0 as a benchmark.
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