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Abstract—Internet video traffic exhibits considerable variation
as new video services continue to emerge. Some videos require strict
real-time performance, while others may aim for a minimal packet
loss rate or sufficient bandwidth. Therefore, it is important to
develop fine-grained classification mechanisms to realize effective
resource management and quality of service (QoS) provisioning.
However, the existing methods for classifying video traffic always
suffer from two problems: payload inspection and feature selection.
In this paper, we propose a novel method that uses fractal
characteristics to achieve traffic classification at a fine-grained
level. This method requires neither payload signatures nor
statistical features. Through rigorous analysis, we prove the
feasibility of employing fractal characteristics for video traffic
classification and further develop a theoretical framework for
the proposed scheme. For the specific scenario of video flow
classification, we improve the theory of fractals in terms of
estimated spectrum, core domain, segmentation, and threshold
setting. The results of an extensive experimental study on several
real-world video traffic datasets show that the classification
accuracy of the proposed scheme is higher than that of existing
methods.

Index Terms—Fine-grained classification, fractal charact-
eristics, quality of service (QoS), spectrum, video traffic.

I. INTRODUCTION

W ITH the development of 4G and 5G technologies, video
traffic has become one of the most popular network ser-

vices, and it is growing rapidly on a tremendous scale [2], [3].
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Different video traffic flows have varying requirements for qual-
ity of service (QoS) and network resources. For example, video
conferencing and telemedicine applications strictly require good
real-time performance, and any unexpected delay can result in
a wrong decision and cause considerable economic loss [4],
[5]. On the other hand, high-quality video streaming requires
substantial network bandwidth to provide a good user experi-
ence [6]. Internet service providers (ISPs) are expected to al-
locate suitable network resources for different video flows [7],
[8]. Therefore, fine-grained classification of video traffic is nec-
essary for effective network resource management and QoS en-
forcement [9], [10]. For example, Liu et al. [11] presented a
transmission delay control module to ensure the on-time ar-
rival of various types of multimedia data, including VoIP (Voice
over Internet Protocol), video streaming, and online gaming.
They aimed to achieve the best transmission to satisfy diverse
user demands. In the system modeling, transmission delay con-
trol is based on the initial classification of traffic into different
fine-grained types. Lima et al. [12] formulated an algorithm,
named Reallocation-based Assignment for Improved Spectral
Efficiency and Satisfaction (RAISES), to solve the resource as-
signment problem subject to user satisfaction constraints. In their
approach, similar to the method in [11], the flows must first be
classified according to their different network resource and QoS
requirements, and then RAISES assigns different resources for
these different types of flows.

It is apparent that fine-grained classification differs from
coarse-grained classification. The latter is used to classify flows
into categories such as text flows, voice flows, and video flows,
while the former further classifies video flows into multiple
classes. An example of coarse-grained classification is the work
in [13], which was devoted to distinguishing video flows from
non-video flows but could not further classify the video flows
into multiple classes.

A. Motivation and Challenges

From the perspective of QoS, the most effective and direct
fine-grained classification is to distinguish the video traffic by
quality [14]. on the basis of the video quality evaluation standard
known as the mean opinion score (MOS), Canovas et al. [15]
extracted useful traffic patterns from the peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM), and
new quality index (NQI) to classify video flows into five types:
non-critical, low critical, some critical, critical, and very critical.
However, the international MOS standard only has five levels,
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i.e., {1, 2, 3, 4, 5}, so the number of classes is limited to five.
In order to generate more classes, Yang et al. [16] further di-
vided the MOS values into nine levels: {1, 1.5, 2, 2.5, 3, 3.5, 4,
4.5, 5}. However, the greater the number of classes defined, the
more ambiguous the boundaries between the classes. Quality of
experience (QoE) offers another kind of calibration for video
quality [17], but it cannot accurately determine the boundaries
of classes, either [18].

Therefore, researchers have explored many other methods to
define fine-grained classes with clear boundaries, and they have
made several achievements [19]. For example, Shim et al. [20]
proposed an application-level traffic classification method us-
ing a payload size sequence signature, which can classify each
application’s traffic into its respective individual application.

In general, previous works on the fine-grained classification
of video flows can be grouped into two main categories: (i)
classification based on payload inspection, such as deep packet
inspection (DPI) [21], and (ii) classification based on statisti-
cal features with machine learning (ML). The first group re-
quires the inspection of the packet’s payload to obtain applica-
tion signatures. Consequently, it has a relatively high accuracy
rate [22]. However, it does not perform well for encrypted video
flows [23]. The second group requires the extraction of statistical
features from given flow samples [24]. Such classification meth-
ods involve feature selection, which is usually time-consuming,
especially when new applications are generated irregularly [25].
In addition, some of the statistical features are particularly re-
stricted. For example, the feature X4−packet (referring to the
size of the first four packets) cannot be obtained if the flow is
captured from the middle instead of from the beginning. The
feature Xmax−size (referring to the maximum packet size) can
only be obtained at the last moment after all packets have been
statistically analyzed.

Furthermore, video flow is affected by a series of complex
processes, such as codec design, transport layer protocol, con-
gestion control, retransmission mechanism, and priority. These
complex factors are challenging for the classification of video
traffic at the fine-grained level.

Motivated by the above observations, we propose a novel
method based on fractal characteristics to achieve the fine-
grained classification of video traffic with high accuracy.

B. Contributions

The major contributions of this paper are summarized below.
� On the basis of the existing traffic fractal theory, we devised

the flow fractal theory with rigorous theoretical proof.
� According to the fractal characteristics of flows, a novel

classification method for video flows was developed at the
fine-grained level. The proposed scheme addresses some
of the drawbacks of existing approaches: (i) It does not
require the inspection of the payload content, so it can
be used to process encrypted video flows to preserve user
privacy. (ii) It avoids the time-consuming process of fea-
ture extraction, which is generally required in traditional
machine learning methods. (iii) Fractal characteristics are
quite different from statistical features and can be obtained

at any stage of the flow (in the beginning or middle of the
flow).

� Fractal theory has been widely used for classification and
detection in fields such as agriculture, medicine, and chem-
istry. With our new contributions to fractal theory on the
aspects of estimated spectrum and core domain, we aim to
further promote its development in these fields, in which
datasets also exhibit fractal features.

C. Organization of the Paper

The remainder of the paper is organized as follows. We discuss
related work and introduce the fractals in Section II. The flow
fractal theory is theoretically proven in Section III. The proposed
classification scheme is described and analyzed in Section IV.
We describe the datasets in Section V and present performance
evaluation in Section VI. Section VII concludes this paper with
a discussion of our future work.

II. RELATED WORK AND PRELIMINARIES

Because of its limitations in processing encrypted flows and
related privacy concerns, the DPI approach has become nearly
obsolete in the classification of fine-grained video flows [26].
Most recent studies have focused on statistical features-based
ML methods.

A. Statistical Features Based ML Methods

The procedure of statistical features-based ML methods can
be summarized as follows. First, flow samples are observed and
analyzed; then, useful features, such as the flow size, transmis-
sion rate, duration time, packet number, and average size of pack-
ets, are extracted on the basis of statistics. Next, depending on
those features, flows can be divided into different classes by ML
classifiers, such as support vector machine (SVM), k-Nearest
Neighbor (KNN), decision tree, and naive Bayes.

ML methods based on statistical features have been proved
to be feasible. For example, Nossenson et al. [27] classified
videos into live streaming and VOD according to the statis-
tical features of packet length and information offset, among
other characteristics. Hao et al. [28] investigated the classifi-
cation of P2P and WWW video flows; in their research, the
extracted features, such as maximum packet size and minimum
packet size, were assigned suitable weights. Garcia et al. [13]
used composite (cp) features to quickly distinguish video flows
from non-video flows using only the initial 20 packets of a flow.
Composite features, such as the size of the largest packet, re-
quire minimal computational effort, which contributes to an
outstanding execution performance, with 1 million classifica-
tions per second. Thay et al. [29] provided a classification tech-
nique that used the number of peer connections (in both the
incoming and outgoing direction) in a 5-minute period to clas-
sify P2P traffic in distributed applications, including BitTorrent,
Skype, and SopCast. Qin et al. [30] aimed to identify VoIP flows
in P2P applications by using packet size distribution (PSD)
as a feature. However, some important issues still need to be
addressed:
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i) It has been recognized that, sometimes, a large num-
ber of features can only be used to identify very few
classes. For example, Cheng et al. [31] extracted more
than 10 features from a given dataset to identify YouTube
video flows from traditional streaming videos. Takeshita
et al. [32] designated several features, including packet
size and packet number, to identify HTTP video flows.

ii) Even though such features can be used to effectively clas-
sify a specific set of flow samples, they are often not
effective for the next set. Any variation in the feature
set may lead to considerable computation. For example,
Nair et al. [33] explored the behavioral patterns of P2P
and non-P2P traffic, and they proposed useful features to
classify P2P traffic by a decision tree classifier. However,
the decision tree needs to be regenerated when features
are changed, and the updating process requires a large
amount of computation. Wu et al. [34] proposed the chain
and hierarchical structure (CHS) for the fine-grained clas-
sification of network video flows. CHS combines sev-
eral base classifiers to obtain superior performance and a
higher accuracy rate compared with those of a single clas-
sifier. However, when the number of classes is increased,
the whole classification structure of CHS must be up-
dated; thus, the corresponding feature sets should also be
updated, which necessitates enormous computation.

iii) Generally, better performance can be achieved by adding
more features, but this significantly increases the com-
putation and storage costs [35]. On the other hand, there
is evidence of a strong correlation among features. More
features will lead to higher redundancy, which will greatly
reduce the accuracy and efficiency of flow classifica-
tion [36]. For example, Zhang et al. [37] classified flows
with naive Bayes, assuming all features to be independent
Gaussian distributions. However, the assumption of inde-
pendence may not hold in the environment of a real net-
work, and thus, the method can only ensure an accuracy
rate of about 80% when used in the online environment.

Therefore, existing methods for fine-grained video flow clas-
sification may not be effective, and more research is needed to
explore new methods.

B. Fractal Characteristics Based Classification Methods

According to fractal theory, different areas of the same frac-
tal material generally have the same fractal characteristics.
Therefore, many researchers have explored the inherent frac-
tal characteristics of objects to distinguish them. For example,
Pratiher et al. [38] used multifractal parameters of EEG (elec-
troencephalogram) signals for the classification of epileptic
seizures. Livi et al. [39] applied fractal properties to the dis-
crimination of Parkinsonism. Hernández-Carrasco et al. [40]
put forward a new approach to classify ocean maps at high reso-
lution using multifractal variables. For the recognition of natural
scenes, Al-Saidi et al. [41] proposed a new fractal descriptor to
classify different land covers. In [42], Akar et al. presented a
fractal dimension (FD)-based analysis of cerebellar tissues in

magnetic resonance (MR) images to identify Chiari Malforma-
tion type-I (CM-I) patients. Allwright et al. [43] proposed the
fractal advection-dispersion equation to achieve the classifica-
tion of groundwater transport and contamination. Neto et al. [44]
developed a method to classify the genotype of the wings of
Drosophila melanogaster flies by combining stationary wavelet
transformation, Canny filter, and fractal dimensions. In [45],
on the basis of a multifractal downscaling model, the levels of
soil moisture were correctly calculated and scaled for differ-
ent irrigated fields (including semiarid sites, sparser agricultural
districts, and temperate regions).

The above analysis demonstrates the wide use of fractal theory
for classification and detection in various fields [46], such as
agriculture, medicine, and chemistry. However, to date, it has
never been applied to the classification of network flows.

C. Preliminaries

Fractal theory was first proposed by Mandelbrot, who
recorded his findings in the book “The Fractal Geometry of Na-
ture,” published in 1983. He found that many objects in nature
show the property of self-similarity. For example, a small part
of a leaf is quite similar to the whole leaf.
α, called the Holder exponent or the singularity exponent, is

used to describe the fractal characteristic of an object. Here, we
use a simple and comprehensible description to demonstrate the
calculate of α. Suppose that the sides of a large square are 1,
and use a small square with the scale r = 1

2 to segment the large
square. To cover the large square, we need N(r) small squares,
that is, N( 12 ) =

1

( 1
2 )

2 = ( 12 )
−2

. If r = 1
4 , then N( 14 ) = ( 14 )

−2
.

In general, if r = 1
k (k = 1, 2, 3, · · · ), then N( 1k ) = ( 1k )

−2
.

Similarly, we use N(r) small boxes with scale r to cover a
d-dimensional object. Then, the relationship between N(r) and
r is

N(r) = r−d, (1)

that is,

d =
lnN(r)

ln(1/r)
, (2)

where d is the fractal characteristic α. In this case, the object
only has one fractal characteristic, so we describe it as single-
fractal. Some objects, such as network traffic, have several fractal
characteristics, so they are multifractal. In 1993, Leland et al.,
who analyzed captured Ethernet traffic using several statistical
tools, were the first to discover that network traffic is multifractal.
Consequently, they proposed the traffic multifractal theory [47].

According to the traffic multifractal theory, if each unit k has
the fractal characteristic αk, then

μk(ε) ∝ ε−αk , (3)

where μk(ε) represents the measurement of subset k of scale ε,
and αk is the fractal characteristic of subset k. Then, the fractal
spectrum fG(α) can be described as

N(α) ∝ ε−fG(α), (4)
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Fig. 1. Block diagram for Section III.

where N(α) denotes the number of subsets with a value of α
under scale ε.

In general, the above Holder exponentα, known as the single-
fractal, is the core concept of the fractal theory proposed by
Mandelbrot. The fractal spectrum fG(α) proposed by Leland
et al. (termed multifractal) is a significant improvement in fractal
theory. Broadly speaking, the single-fractal and multifractal are
called fractal in this paper.

III. FLOW FRACTAL THEORY

A. Assumption

Fractal characteristics are often used to distinguish materials
at a fine-grained level, and this inspired us to classify flows on the
basis of fractal characteristics. However, an important question
is raised, as shown in Fig. 1: Are flows fractal?

To this end, although Leland et al. proved the fractal char-
acteristics of traffic, the fractal characteristics of flows have
never been explored. Therefore, we make an important assump-
tion: if flows are as multifractal as general network traffic, then
the fractal characteristics of flows can be used to classify them
at the fine-grained level. If our assumption is correct, then the
novel classification method based on the fractal characteristics
of flows does not need to inspect the payload content or extract
features through statistical analysis, thus addressing the issues
in fine-grained classification methods discussed in Section I-A.

In the next subsection, we theoretically prove that flows are
as multifractal as network traffic. For ease of reading, the math-
ematical symbols and variables used in this paper are listed
in Table I.

B. Fractal Characteristics of Flows

Leland et al. proved that network traffic is multifractal. In
this paper, we aim to prove that flows are also multifractal. The
theoretical proof consists of two steps: (i) sufficiency: that is,
given the condition that traffic is multifractal, we aim to prove
that flow is multifractal; (ii) necessity: that is, given the con-
dition that flow is multifractal, we aim to prove that traffic is
multifractal.

i) Sufficiency: According to the traffic fractal theory, traffic
is defined as the amount of data transmitted through a network
device or a transmission medium per time unit X = {X(t) :
t = 1, 2, 3, · · · } [47], while flow is defined as a set of packets
with the same properties of <Src IP, Dest IP, Src Port, Dest
Port, Protocol> [48]. In order to present the fractal spectrum
of flows, we redefine flow F = {F (t) : t = 1, 2, 3, · · · } as the
amount of data with the same properties of <Src IP, Dest IP,
Src Port, Dest Port, Protocol> transmitted through a network
device or a transmission medium per time unit.

TABLE I
GLOSSARY OF KEY VARIABLES AND ABBREVIATIONS

According to multifractal theory, the fractal spectrum of traffic
X is fX(α). Now, we define special traffic Xs:

Xs = X|<SrcIPs,DestIPs,SrcPorts,DestPorts,Protocols>. (5)

Therefore, the fractal spectrum of traffic Xs is fXs
(α). Ac-

cording to the definition of flow, traffic Xs is flow Fs. Then,
flow Fs has the fractal spectrum fXs

(α).
The sufficiency is thus proved: if traffic is multifractal: the

fractal spectrum of traffic X is fX(α), then flow F is also mul-
tifractal: its fractal spectrum is fF (α).

ii) Necessity: Suppose that there are two flows: X and Y .
The fractal spectra of flow X and Y are fG1

(α) and fG2
(α),

respectively. X and Y are aggregated into traffic Z = X + Y .
According to the above definitions of flow and traffic,

Flow X + Flow Y → Traffic Z(not Flow Z);

Then, fG1
(α)⊕ fG2

(α) →? Here, we use the symbol ⊕ to rep-
resent the possible superposition of the fractal spectra of X and
Y . We are not sure what happens to the spectra of X and Y after
they are aggregated. Maybe it turns out to be nothing! Now we
calculate fG1

(α)⊕ fG2
(α) as follows.

According to Proposition 1 (see the Appendix),

inf(fG1
(α)⊕ fG2

(α)) =
1

2
(fG1(α) + fG2(α)), (6)

sup(fG1
(α)⊕ fG2

(α)) = max(fG1(α), fG2(α)). (7)
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According to Proposition 2 (see the Appendix),

d(fG1
(α)⊕ fG2

(α))

dα

=
f ′
G1

(α) + f ′
G2

(α)

fG1
(α) + fG2

(α)
max (fG1

(α), fG2
(α)) . (8)

It can be seen from (6)–(8) that the superimposed spectra of
X and Y are determined by fG1

(α) and fG2
(α). Therefore, we

provide a new definition of fG1
(α)⊕ fG2

(α):

fG(α) = fG1
(α)⊕ fG2

(α). (9)

Eq. (9) means that whenX andY are aggregated into trafficZ,
the superimposed spectrum of Z is fG(α), which is determined
by fG1

(α) and fG2
(α). Thus, the necessity is proved.

Therefore, the two conditions—traffic is multifractal, and flow
is multifractal—are verified to be mutually necessary and suffi-
cient. Since traffic is multifractal, flow must also be multifractal.

In addition, we can derive another important conclusion
from (6)–(8). When fG1

(α) = fG2
(α) = fG(α), we have

inf(fGZ
(α)) = sup(fGZ

(α)) = fG(α), (10)

f ′
GZ

(α) = f ′
G(α). (11)

(10) and (11) indicate that, if flow X belongs to the same
class as flow Y , then the aggregated flow Z = X + Y will fall
into the same class; if flow X is different from flow Y , then the
aggregated flow Z does not belong to the flow of either X or
Y . That is, each class of flow has a unique spectrum that can
be used to identify it. Next, on the basis of the traffic multifrac-
tal theory, we describe the procedure for calculating the fractal
spectrum of flow. As in the case of traffic X(t), flow F (t) is a
stochastic process. A time interval I = [t1, t2] can be divided
into N subsections

Ik =

[
t1 +

k

N
(t2 − t1), t1 +

k + 1

N
(t2 − t1)

]
, (12)

where k = 0, 1, . . . , (N − 1), and N is defined as the reso-
lution. In order to simplify the calculation, we assume that
t1 = 0, t2 = 1, and N = 2n. Therefore, Eq. (12) is simplified
to Ik = [k2−n, (k + 1)2−n]. Thus, flow F (t) is sampled and
converted to a discrete sequence. An increment process of flow
F (t) involves the same sampling process, and the discrete flow
sequence is

Δk[F ] =
∣∣F ((k + 1)2−n)− F (k2−n)

∣∣ . (13)

On the basis of (13), the merged sequence for calculating the
fractal spectrum can be described as

Δk
n
m
[F ] =

∣∣F ((k+1)2−
n
m )− F (k2−

n
m )
∣∣ , (14)

where m = 1, 2, . . . , N . According to (3) and (14), the Holder
exponent α for the flow sequence can be obtained as

αk
n
m
= −m

n
ln
∣∣F ((k+1)2−

n
m )− F (k2−

n
m )
∣∣ . (15)

On the basis of (4) and (15), the fractal spectrum of the flow
sequence is derived as

fG(α)
Δ
= lim

ε→0
lim
n→∞

1

n
lnN(αn

N
m
)

∣∣∣∣αn
N
m

∈(α−ε,α+ε) . (16)

τ

τ

Fig. 2. Block diagram for Section IV.

IV. FRACTAL CLASSIFICATION MODEL

A. Problem Statement

At present, network devices based on xFlow technology (such
as Netflow and OpenFlow) can be used to easily divide bit-
streams into flows. Then, these flows are grouped into different
classes. ISPs will allocate suitable network resources for differ-
ent classes to meet the flows’ QoS requirements.

Mathematically, the classification model can be defined as

Mf =
(
F, fG

⋃
{Ci}

)
, (17)

where F denotes a group of flows, and fG refers to the fractal
spectrum fG(α). By using fG, these flows are classified into
class Ci, i = 1, 2, . . . , L, where L is the number of classes.

In the model of (17), it is non-trivial to employ the fractal
spectrum to classify flows, as shown in Fig. 2.

i) According to fractal theory, it is difficult to calculate
the fractal spectrum fG(α) by (16). Are there any al-
ternative, more computationally effective ways to com-
pute the fractal spectrum fG(α)? In Section IV-B, we
explore the relationship between the scaling function τ(q)
and the fractal spectrum fG(α); then, the fractal spectrum
can be described by τ(q) instead of fG(α).

ii) For τ(q), the range of q should be (−∞,+∞). Can we
narrow it down to speed up computation without sacri-
ficing performance? In practical implementation, we find
that when q exceeds a certain level, further increasing
its value does not achieve significant gains in the results.
Hence, we assert that the range of q can be reasonably nar-
rowed. Thus, the core domain is defined as Q|(−q,+q)
in Section IV-C.

iii) Overall, τ(q) is the estimated fractal spectrum of fG(α),
as shown in Section IV-B. How can a stable spectrum of
τ(q) be obtained to achieve a stable classification? As
shown in Section IV-D, we solve this problem by seg-
menting the flow sequence.

iv) How can the spectra of two different flows be compared?
In Section IV-E, the differences between spectra are cal-
culated by the gray correlation, which is generally used
to quantitatively measure the similarity between curves.

Before proceeding, we emphasize the following two points:
� We classify flow F (t) according to its bitstream (see the

definition of flow in Section III-B). Our method does not
check the payload content, so it is able to deal with en-
crypted video flows without breaching user privacy.

� In Section III-B, we calculate the fractal spectrum during
the time interval I = [t1, t2] of F (t). That is, the fractal
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Algorithm 1: Fractal Classification of Traffic Flows

1: Input flow F (t);
2: Thus achieve flow sequence Δk[F ] by (13);
3: Partitioned flow sequence into S segments (see

Section IV-D);
4: Calculate spectrum τfs (q) in the core domain

Q|(−q,+q) (see Sections IV-B and IV-C).
5: For each class cl|l≤L:
6: Compare τfs (q) with typical spectrum Pl : τ

pl
s (q)

(see Section IV-E);
7: Difference between spectra is φl (see Section

IV-E):
8: Select the minimum φl;
9: If φl ≤ Tl, then F and Pl are the same class.

characteristics can be obtained at any stage of the flow’s
lifetime (in the beginning, in the middle, and even near the
end of the flow), which is quite different from statistical
features.

The process of our fractal classification Mf () is illustrated in
Algorithm 1.

B. Fractal Spectrum fG(α) and Scaling Function τ(q)

In accordance with the theory of fractals, it is difficult to ac-
curately calculate the fractal spectrum fG(α) with (16). There-
fore, in this paper, the fractal spectrum of flow is modeled by
exploring the estimated spectrum on the basis of the Legen-
dre transformation [49]. Specifically, we focus on deriving the
relationship between the scaling function τ(q) and the fractal
spectrum fG(α). Then, τ(q), instead of fG(α), is used to de-
scribe the fractal characteristics of flows. Now, we introduce the
scaling function τ(q).

First, the flow sequence in (14) should be normalized to pro-
cess data from different sources

Δk
N
m
[F̄ ] =

Δk
N
m

[F ]∑
j Δ

j
N
m

[F ]
. (18)

We define the scaling function [49] as follows:

τ(q)
Δ
= lim

m→∞
1

m
logSm(q), (19)

Sm(q)
Δ
=

N
m∑

k=1

∣∣∣∣∣∣
m∑
j=1

Δ
(m(k−1)+j)
N
m

[X̄]

∣∣∣∣∣∣
q

. (20)

According to (15), Sm(q) can be further defined as

Sm(q) =

2n−1∑
k=0

2
−nqαk

N
m ≥

∑
(2−nα)

q
= 2−n(αq−fG(α)).

(21)

On the basis of (19) and (21), the relationship between τ(q)
and fG(α) can be derived as follows:

τ(q) = fG
∗(α)

Δ
= inf

α
(αq − fG(α)) , (22)

where ∗(·) denotes the Legendre transformation, and fG(α) is
the estimated spectrum derived from the Legendre transforma-
tion of τ(q).

In accordance with the Gärtner–Ellis theorem [50], if τ(q)
exists and is differential, then the estimated spectrum fG(α)
derived from the Legendre transformation of τ(q) is a minimum
bias estimator. The estimated spectrum of fG(α) ∼ α can be
calculated from the scaling function curve of τ(q) ∼ q:{

fG(α) = αq − τ(q)

α = dτ(q)
dq .

(23)

From (23), the Legendre transformation of τ(q) can be used
to represent fractal characteristics. fG(α) is a convex function,
0 ≤ fG(α) ≤ max = fG(α0). Therefore, the shape of τ(q) is a
monotonically increasing curve. After taking the extremum of
the derivative of τ(q) with respect to q, the extreme values of
the Holder exponent α can be obtained{

αmin = limq→+∞
dτ(q)
dq

αmax = limq→−∞
dτ(q)
dq .

(24)

In conclusion, fG(α) is derived from the Legendre trans-
formation of τ(q), and the τ(q) ∼ q curve uniquely maps to
fG(α) ∼ α. Therefore, instead of fG(α), τ(q) is used to repre-
sent the fractal characteristics of flows in this paper.

C. Core Domain

As in (24), the range of q should to be (−∞,+∞). In prac-
tice, however, we find that the workload rises exponentially with
the increase of q. Especially when q exceeds a certain level, it
has no significant effect on the results. Therefore, the range of q
can be reasonably narrowed down to Q|(−q,+q), which we call
the core domain. Of course, if Q|(−q,+q) is too small, leading
to serious defects of curve, the fragment of curve τ(q) cannot
offer sufficient details of the fractal characteristics. Therefore,
Q|(−q,+q) should be properly selected to reduce the workload
and provide enough details of the fractal characteristics. The op-
timal range of q can be determined with the following procedure.
First, we definev(q) as the changing rate ofΔτ(q) caused byΔq.

v(q) =

∣∣∣∣d2τ(q̈)dq̈2
|q̈=+q

∣∣∣∣+
∣∣∣∣d2τ(q̈)dq̈2

|q̈=−q

∣∣∣∣ . (25)

According to (25), v(q) is an even function. From (23)
and (24), when q → ±∞, v(q) → 0, but the computational com-
plexity is exponentially increased:

c(q) = θeq, (26)

where c(q) refers to the amount of computation. The parameters
of c(q) can be obtained through curve fitting.

The challenge is in obtaining a balance between v(q) and
c(q) by tuning q. On the one hand, c(q) should be as small as
possible, which means q should be small. On the other hand, v(q)
should be small, which means q should be large. Therefore, on
the basis of the weighted sum of squares (WSOS), we propose
the optimization model in (27) to reach an appropriate trade-off
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between v(q) and c(q).

q
Δ
=
⌈
argmin

(
λj(v(q)− V )2 + λk(c(q)− E)2

)⌉
, (27)

where V and E are the target values of v(q) and c(q), respec-
tively. On the one hand, q should be large enough to ensure that
v(q) is as small as possible, so the value of V is an infinitesimal
quantity ζ. On the other hand, q should be small enough to en-
sure that c(q) is as small as possible. Therefore, the ideal value
of E is also ζ.

In (27), λj and λk are the weights that satisfy λj + λk = 1
and λj � λk. We use λj � λk because v(q) and c(q) have dif-
ferent values. In this paper, the magnitude of v(q)2 is about
10−3, while that of c(q)2 is about 10−1. Therefore, λj should
be much larger than λk. For example, if λj = 0.99, and
λk = 0.01, then the value of λjv(q)

2 is about 10−3, and λkc(q)
2

is also about 10−3. In this manner, we can strike a balance
between v(q) and c(q) and obtain the core domain Q|(−q,+q)

using (27).

D. Segmentation

According to the Gärtner-Ellis theorem [50], if τ(q) exists and
is differentiable, then fG(α) derived from the Legendre trans-
formation of τ(q), as in (23), proves to be a minimum bias esti-
mator. Thus, spectrum τ(q) can be regarded as a mathematical
representation of complex fractal characteristics, which are esti-
mated by (18)–(22). The estimation results in the spectra of the
same class are usually slightly different. In special cases, such
as when φ is close to the threshold, it will lead to inaccurate
classification (see Section VI-C). To address this problem, we
segment the flow sequence.

We first divide the flow sequence into several segments; then,
we calculate τ(q) of each segment and, finally, obtain the su-
perimposed spectrum of all the segments. Compared with the
non-segmentation approach, segmentation can reduce random-
ness and obtain stabler classification results.

The flow sequence should be divided into S segments.
However, for a given resolution N , too many segments will
cause deviation of the spectrum estimation. Hence, S needs
to be optimized, as shown below. A flow sequence {F (t)},
t = 0, 1, . . . , N − 1, is partitioned into S segments:

Xs = {ΔNs
S [F̄ ],Δ

Ns
S +1[F̄ ],Δk+Ns

S +2[F̄ ],

· · · ,ΔN(s+1)
S −1[F̄ ]}, s = 0, 1, . . . , S − 1. (28)

For the rate of Δτ(q) caused by Δq, a correlation function
can be defined as

ρ(k, q) =
σ2

2

(
(k + 1)

2
d2τ(q̈)

dq̈2 − 2 k2
d2τ(q̈)

dq̈2

+ (k − 1)
2

d2τ(q̈)

dq̈2

)∣∣∣∣
q̈=q

, (29)

where σ is the mean value of τ(q). The correlation

function of segment s is

ρs(k; q) =
σ2
s

2

(
(k + 1)

2
d2τs(q̈)

dq̈2 − 2 k2
d2τs(q̈)

dq̈2

+ (k − 1)
2

d2τs(q̈)

dq̈2

)∣∣∣∣
q̈=q

, (30)

where σs is the mean value of τs(q). We then construct a cost
function based on the correlation information:

J

(
S−1∑
s=0

τs(q)

)
= E

[
‖ρS − γρ‖2

]
, (31)

where ρ represents the matrix form of ρ(k, q), ρS represents the
matrix form of

⋃
S ρs(k; q), and γ is a regulatory factor, which

represents the degree of consistency of information carried by
the original sequence and the segmented sequence.

The optimization objective is to minimize the cost function,
while the number of segments S needs to be sufficiently large:

S∗ Δ
=argmin J

⎛
⎝max(S)−1∑

l=0

τs(q)

⎞
⎠ . (32)

As shown in (32), the minimum and maximum objective func-
tion (MMOF) results in the optimal segment number S∗.

E. Calculating Spectrum Differences Using Grey Correlation

In Section IV-D, flows a and b are each divided into S∗ seg-
ments. Next, spectra τas (q) and τ bs (q) are calculated as in (20)
and (21) in the core domain Q|(−q,+q). In this subsection, the
difference between spectra is calculated according to the gray
correlation, which is generally used to quantitatively measure
the similarity between curves [51]. We define the coefficient of
difference between spectra as

φ =

⎛
⎝ 1

n2

n∑
i=1

n∑
j=1

γij

⎞
⎠

−1

, (33)

where n is the number of samples on each curve, and

γij =

min
1≤i≤n

min
1≤j≤n

{Δij}+ β max
1≤i≤n

max
1≤j≤n

{Δij}
Δij + β max

1≤i≤n
max
1≤j≤n

{Δij} (34)

Δij =
S∗∑
s=1

∣∣τas (qi)− τ bs (qj)
∣∣ , (35)

β is the resolution factor in [0, 1] and represents the proportion
of the difference (generally set to 0.5), and φ is the coefficient
of difference between spectra with the range of space (1,+∞).
The smaller the value of φ, the greater the similarity between
the two spectra. On the basis of φ, the typical spectrum Pl is
defined as follows.

Suppose there are L classes: {Cl}Ll=1. Each class has several
flows: Cl = {· · · , Fj , Fk, · · · }). L classes correspond to L typ-
ical spectra: {Pl}Ll=1. φ obeys the random distribution between
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Algorithm 2: Setting the Threshold

1: Initialization: k = 1, σ(k) = ∞, t(k) = t0;
2: Do { σ(k + 1) =

∑
i �=j σ

2
B(t(k); i ↔ j);

3: If (σk+1 > σk) t(k + 1) = t(k) + Δ;
4: Else If (σk+1 < σk) t(k + 1) = t(k)−Δ;
5: Else t(k + 1) = t(k);
6: k ++;
7: } While (σ(k)− σ(k − 1) > ε);
8: Output: T ∗ = t(k);

0 ∼ 1. Therefore, the typical spectrum Pl can be obtained as

Pl � min
Fk∈Cl

{
max

j �=k,Fj∈Cl

φ (Fk, Fj) |Fk

}
. (36)

From (36), the coefficient of difference φ between Pl and all
the flows {· · · , Fj , Fk, · · · } in Cl is the minimum; then, this
central spectrum Pl can represent class Cl.

F. Setting the Threshold

As shown in Algorithm 1, it is important to properly set the
threshold for classification because it affects the performance
of the entire system. Generally, recognition systems use rela-
tively simple methods, such as the receiving operating charac-
teristic (ROC) curve, to determine an appropri threshold. It is
assumed that the threshold is optimal when frr = far, that is,
T ∗|frr=far, where frr is the false rejection rate and far is
the false acceptance rate. However, the classification of flows
at a fine-grained level requires the smallest overall false rate,
that is, T ∗|min(frr+far). Therefore, we adopted the maximum
between-class variance (Otsu) method [52] to establish an ad-
justment mechanism for the global optimal threshold.

T ∗ = argmax
∑
i�=j

σ2
B(t;Ci ↔ Cj), (37)

where σ2
B(t;Ci ↔ Cj) is the variance between classes Ci and

Cj when the threshold is set to t. According to Otsu, the maxi-
mum variance between classes implies the smallest false rate. In
addition, in order to increase the convergence speed, we set the
termination condition of the algorithm to σ(k), approximately
equal to σ(k − 1) as in Algorithm 2. Δ is calculated by the di-
chotomy method [53], and thus, the iterative calculation of T ∗

is linearly convergent. The size of the convergence step is 0.5,
which means the interval will shrink by a ratio of 0.5 in each
iteration.

G. Computational and Space Complexity

Our proposed method groups flows into different classes on
the basis of fractal characteristics. Flow is defined as discrete
sequence F (t)(t = 0, 1, . . . , (N − 1)), where N is the resolu-
tion. Both the core domain Q|(−q,+q) and threshold are deter-
mined in the training phase, and the complexity of the training is
O(max(M log(ε−1),MNQ log(N))), where M is the number
of flows, Q is the boundary value of the core domain, and ε is
the termination criterion of the threshold iterations.

In the testing phase, as shown in Algorithm 1, the calculation
of classification contains nine steps.

Steps 1–2: From flow F (t), we obtain the flow sequence
Δk[F ] by (13), where N is the resolution. The time complexity
is O(N).

Steps 3–4: On the basis of the above sequence Δk[F ], we
use (19) to compute the spectrum τfs (q) in the core domain
Q|(−q,+q) for each segment Si. The time complexity mainly
lies in the calculation of Sm(q), so it is O(SN log(N)).

Steps 5–7: For each class cl, we compare τfs (q) with the typ-
ical spectrum Pl. The time complexity of this comparison is
O(Q2S). Note that there are L classes, so the time complexity
is O(LSN log(N) +Q2SL).

Steps 8–9: The time complexity is O(L).
Therefore, the complexity of Algorithm 1 is O(N +

SLN log(N) +Q2SL+ L). Since N = 10000 is significantly
greater than Q = 15, S = 8, and L = 23, the time complexity
can be simplified to O(SLN log(N)). Here, we can also see
that the total time complexity mainly lies in the calculation of
Sm(q). When M flows are classified, the complexity in the test-
ing phase is O(MSLN log(N)). Note that segmentation only
occurs when φ is extremely close to the threshold. For most of
the flows (more than 95%) in Section VI, we do not need to im-
plement the segmentation, so S = 1. Then, the time complexity
can be further simplified to O(MLN log(N)).

Just as the time complexity mainly lies in the calculation
of Sm(q), the space complexity of Algorithm 1 mainly fo-
cuses on the storage of Sm(q). For each segment, we need
space O(N/S log(N/S)). Therefore, for S segments, the total
space complexity is O(N log(N/S)) ≈ O(N log(N)). When
M flows are classified into L classes, the overall space com-
plexity is O((M + L)N log(N)).

V. VIDEO CLASSES AND DATASETS

In the field of traffic classification, the first important issue
is defining the classes, such as port-based classes (e.g., VPN),
protocol-based classes (e.g., HTTP), quality-based classes (e.g.,
5 levels of MOS), application-based classes (e.g., YouTube)· · ·
What a variety! In particular, we aim to classify flows at a
fine-grained level. At present, application-based classes are con-
sidered to be the finest-grained. However, after carefully observ-
ing the datasets, we found the following:

i) Some applications, such as QQ and WeChat, were de-
veloped with similar mechanisms and thus have similar
network resource requirements (e.g., buffer, priority) dur-
ing scheduling and transmission, often generating similar
types of video bitstreams.

ii) One application can generate different types of flows. For
example, Youku can basically generate three flow types:
SD, HD, and UD, which refer to three different reso-
lutions: SD (≤ 480p), HD (720p), and UD (≥ 1080p).
SD/HD/UD video requires a bitrate of 1/1.5/3.5 Mbps
for H.264 and 2/3/5 Mbps for MPEG-4. Achieving ideal
playback qualities of SD, HD, and UD requires that ser-
vice providers and network operators implement differ-
ent transmission strategies and protocols. Consequently,

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 18:38:09 UTC from IEEE Xplore.  Restrictions apply. 



TANG et al.: FINE-GRAINED CLASSIFICATION OF INTERNET VIDEO TRAFFIC 2587

TABLE II
CLASSES OF DIFFERENT GRANULARITY

Fig. 3. Flow sequences of SD (left), HD (middle), and UD (right) by Youku.
Δ(X) is the amount of bits (in Section IV-B).

there are basically three types of bitstreams for Youku:
SD, HD, and UD, as shown in Fig. 3:

Youku → SD, HD, UD
iii) One application can freely switch back and forth between

encrypted and unencrypted patterns. The fact that we did
not find such videos in our datasets does not mean they
do not exist. We can foresee the flows generated by this
application must be changed, including the variance of
packet sizes, skew of packet sizes, number of bytes, etc.

Similar to SD, HD, and UD, encrypted and unencrypted flows
can substantially differ. We can define two subclasses for each
application that can switch between encrypted and unencrypted
patterns as follows.

Application A → encrypted and unencrypted
In summary, different applications may generate similar types

of bitstreams, while the same application may generate different
types of bitstreams. The type of bitstream is affected by a series
of complex factors, including the codec design, transport layer
protocol, congestion control mechanism, retransmission of lost
packets, and priority, which form the NRQ (Network Resource
and QoS Requirement) classes. The mapping relationships be-
tween the labels, NRQ classes, and applications are shown in
Table II.

Moreover, we cannot provide QoS restrictions for each NRQ
class because some of the NRQ classes are not differentiated ac-
cording to QoS provisioning but rather their transmission mech-
anisms, such as P2P unidirectional videos and P2P bidirectional
videos or encrypted and unencrypted flows.

Four types of network traffic traces were used in this study:
� The NJUPT traces were captured by Wireshark in the cam-

pus network of Nanjing University of Posts and Telecom-
munications. The traces were preprocessed by using Linux
shell scripts and divided into five-tuple flow sequences, as
described in Section III.

� The ISP traces were collected at a leading ISP of China
located in City A in southern China (the name is omitted for
commercial confidentiality), and they contained important
monitoring and conferencing videos, such as Ezviz and
Gotomeeting.

� The UNB ISCX Network Traffic (VPN-nonVPN) traces
contained a lot of network applications, such as
Vimeo, YouTube, ICQ, Skype, Facebook, and BitTorrent.
ISCXFlowMeter [54] was used to read the full payload
trace (a total of 28 GB) and create the csv file using se-
lected features.

� The UNIBS-2009 traces [55] were collected from the edge
router of the campus network of the University of Brescia,
and they included the applications Edonkey, Skype, and
BitTorrent.

From the above traces, we obtained several datasets, as sum-
marized in Table III.

VI. PERFORMANCE EVALUATION

In this research, we explored the fractal spectra of flows to
achieve the fine-grained classification of video traffic. Thus, in
this section, we first demonstrate the fractal spectrum of a flow.
After that, we discuss key parameters, such as the core domain
Q and segmentation S used in our proposed scheme. Then, we
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TABLE III
DATASETS

Fig. 4. Flow sequence of IM flow.

Fig. 5. The ln(Sm(q)) ∼ ln(m) curves.

compare the classification results with several state-of-the-art
methods, and finally, we analyze the computational and space
complexity from both experimental and theoretical perspectives.

A. Evaluating the τ(q) Spectrum of a Single Flow

In this experiment, we used instant messaging video flows (IM
flows) generated by applications such as QQ and WeChat. The
flow sequence is shown in Fig. 4. The duration was set to 100 s,
and the resolution N was set to 10000. Therefore, the maximum
of ln(m) is ln(10000) = 9.21, which is sufficient to achieve
a reliable estimation of τ(q) ∼ q from ln(Sm(q)) ∼ ln(m), as
shown in Fig. 5.

Fig. 5 shows approximately straight lines with different slopes
according to different values of m and q. If the flow sequence
is not fractal, then there will be no such straight lines. It is the
slopes of these lines that form the scaling function space. Then,
according to (19), the curve of τ(q) ∼ q can be plotted with the
least square method (LSM), as shown in Fig. 6. Here, note that:
� When q → 1, the line of ln(Sm(q)) ∼ ln(m) is parallel to

the horizontal coordinate axis.

Fig. 6. The τ(q) ∼ q curves.

Fig. 7. The τ(q) ∼ q curves of SD, HD, and UD in video streaming.

� Regardless of the value that q takes, when m → N ,
ln(Sm(q)) → 0. In addition, the slope of the line is posi-
tive when q is positive, and the slope of the line is negative
when q is negative.

� Regardless of the type of flow, when q = 0, the slope of
the line ln(Sm(q)) ∼ ln(m) is the same. In other words,
the curves of τ(q) ∼ q of all flows intersect at q = 0.

The monotone curves τ(q) ∼ q of IM flows, P2P unidirec-
tional video flows (PU), and MMORPG game flows (MG)
are plotted in Fig. 6. These curves are significantly different
from each other. The curves of SD, HD, and UD of video
streaming flows are plotted in Fig. 7, and their corresponding
flow sequences are shown in Fig. 3. The slope of the curve
τ(q) ∼ q at each point is the Holder exponent α, which rep-
resents the degree of data mutation. The minimum αmin is ob-
tained when q → +∞, while the maximum αmax is achieved
when q → −∞. In this paper, we use τ(q) ∼ q curves to repre-
sent the fractal characteristics of flows for classification.

B. Calculating the Core Domain Q|(−q,+q)

As discussed in Section IV-C, the workload increases expo-
nentially with the increase in q. However, when q exceeds a cer-
tain level, it has no significant effect on the curve τ(q) ∼ q. Here,
we still use the above IM, PU, and MG flows as an example. As
shown in Fig. 8, the changing rate of Δτ(q) is gradually stabi-
lized when |q| increases from 10 to 20. The substantial increase
in |q| to 30 does not result in any change in Δτ(q). Therefore,
the range of q can be reasonably narrowed, but it cannot be too
small. As shown in Fig. 8, when |q| is smaller than 10, the rate
of Δτ(q) caused by Δq changes drastically, which will result in
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Fig. 8. Curves τ ′′(q) of IM, PU, and MG flows.

Fig. 9. Coefficient of variation for different Q values.

serious curve defects. Therefore, the core domain Q should be
properly selected by using the WSOS method according to (27).

For IM flows, the optimal value of Q is 15. As shown in
Fig. 9, when Q = 15, the variation coefficient of spectrum τ(q)
is around 0.02, which means that the spectral difference between
inside and outside the core domain is 0.02. When Q = 10, the
variation coefficient is about 0.2, and the difference becomes
more pronounced. With the continuous decrease in Q, the vari-
ation coefficient increases greatly, and therefore, the difference
is more significant.

We repeatedly calculated the optimal value of Q with other
classes of flows. Q varies from 13 to 16. Note that the smaller
the value of Q, the lower the classification accuracy. On the
other hand, the larger the value of Q, the more computations it
requires. Since similar results are obtained with Q = 15 and 16,
the optimal value of Q is set to 15 to strike a balance between
classification accuracy and computation complexity.

C. Effect of Segmentation

On the basis of the previous two experiments, the aim of
this experiment was to compare the effects of segmentation and
non-segmentation by calculating φ between IM and P2P unidi-
rectional (PU) video flows. In order to simplify the calculation,
we set the threshold to T = 1.16 and the segmentation to S = 8.

As shown in Table IV, in the case of non-segmentation, φ
varies from 1.159 to 1.164. When φ is close to the threshold,
the random variation in φ will lead to unstable classification.
Sometimes, the classification result is Y (Yes), and the flows are
identified as the same class; sometimes, the classification result
is N (No), and the flows are identified as different classes. In the

TABLE IV
DIFFERENCES BETWEEN SEGMENTATION AND NON-SEGMENTATION

case of segmentation, φ is relatively stable, so the classification
result is also relatively stable. The above results are obtained
by setting the threshold to T = 1.16. If the threshold is set to
T = 1.1 or T = 1.2, then there is no difference between seg-
mentation and non-segmentation.

According to the related statistics, segmentation helps to ob-
tain stable φ, and more segments of flows indicate higher stabil-
ity of classification. However, under given resolution N , exces-
sive segmentation will result in deviation of spectrum estimation.
According to the MMOF function (32), the optimal segmenta-
tion is S∗ = 8 in terms of IM and PU flows in this experiment.
We repeatedly calculate the optimal segmentation S∗ with other
classes, and findS∗ varies from 8 to 9. So we setS∗ at 8 in this pa-
per, which is proved to be appropriate considering both stability
of flows classification and deviation of spectrum estimation.

D. Performance of Classification

In this experiment, 3000 flows were randomly selected from
the NJUPT dataset for IM flows, PU flows, MG flows, video
streaming SD flows (VSS), video streaming HD flows (VSH),
and P2P bidirectional videos (PB), with 500 flows for each class.
Here, two questions are addressed.

i) Why did we select 500 flows for each class? We selected
500 flows because there is a typical imbalance in our
datasets; the number of flows for different classes is quite
different, which is typical for most datasets (since it is
impossible to guarantee the number of users of a campus
network to generate a similar number of flows for each
class during the data collection period). For example, in
the NJUPT dataset, classes 3, 11, and 12 account for more
than 80% of the flows. In the IU dataset, fewer than 900
flows were generated by the application FsMeeting. Of
course, there have been many studies on such imbalanced
classes. Several studies have used relatively simple re-
sampling methods, including random undersampling and
random oversampling. In this experiment, we adopted the
random undersampling method; that is, we randomly se-
lected 500 flows for each class.

ii) Why did we not use all the classes? In this study, we aimed
to classify flows at a fine-grained level, so it is important
to observe changes in classification performance with the
increase in L (the number of classes). For example, when
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TABLE V
CONFUSION MATRIX (%)

a dataset contains only 6 classes, CHS achieves excellent
performance with an overall accuracy of 97.35%, which
is much higher than the accuracies of all the other existing
methods. However, when L is increased, its classification
performance declines greatly. We wanted to observe the
changes in classification performance and analyze the im-
portant factors that influence the performance to predict
its response when L continues to grow.

Therefore, in the evaluation of classification, we first tested
the classification performance for L = 6, with classes 3, 7, 8,
11, 12, and 20 from the NJUPT dataset. Next, L was increased
to 12, with classes 1, 2, 3, 7, 8, 11, 12, 13, 17, 18, 19, and 20
from the IU dataset. Finally, we continued to increase L to 20,
with all 20 classes from the NIUI dataset, as shown in Tables II
and III. We certainly could omit the experiments on 6 classes
and 12 classes and show only the results of experiments on
20 classes. However, it would be hard to show the impact of
L with this approach. When L increases, different methods re-
spond in unique ways. We aim to show these changes to explore
the main issues that can occur during classification and analyze
the major causes.

Two-fold cross-validation was carried out on these flows. That
is, the flows were randomly and equally divided into two groups:
one group comprised training samples, and the other comprised
testing samples. The final result was obtained by averaging the
results of 20 runs, and it is presented in a confusion matrix in
Table V. The rate of correctly identifying IM flows is 92.35%,
and the rates of misidentifying IM flows as PU, MG, VSS, VSH,
and PB are 1.45%, 1.36%, 1.32%, 1.47%, and 2.05%, respec-
tively; the rate of correctly identifying PU flows is 91.76%, and
the rates of misidentifying PU flows as IM, MG, VSS, VSH, and
PB are 1.41%, 1.79%, 2.21%, 1.22%, and 1.61%, respectively.

From Table V, we can compute the frr of IM, PU, MG, VSS,
VSH, and PB flows as 7.65%, 8.24%, 9.53%, 8.4%, 9.32%,
8.41%, respectively, and the far for the six types of flows is
8.71%, 8.65%, 8.46%, 8.86%, 8.26%, and 8.61%, respectively.
These results are consistent with the Otsu scheme given in (37),
which claims to establish a global optimization and avoid the
local worst case.

E. Comparison With Benchmarks

Based on the experiment in Section VI-D, we further train
and test several state-of-the-art schemes, including CHS, CPRF,
I-SVM, K-L, TCC, and HNB. We provide the details of these
baseline methods as follows:

In [34], Wu et al. proposed a novel classification structure
called the chain and hierarchical structure (CHS), for fine-
grained classification of network video flows. CHS combines
several base classifiers to achieve a better performance and
higher accuracy rate than a single classifier. Garcia et al. [13]
developed a method, which we call CPRF, to rapidly distin-
guish video flows from non-video flows using only the initial
20 packets of a flow. The authors found that some of the sta-
tistical features, such as the deviation and kurtosis of packet
sizes, are highly computationally expensive to extract. Thus,
composite (cp) features, which require minimal computational
effort, were introduced to achieve an outstanding runtime per-
formance, with 1 million classifications per second. I-SVM [28]
is a representative supervised machine learning method (SVM).
In the traditional SVM network traffic classification, all fea-
tures are treated equally. Then, Hao et al. proposed the I-SVM
method, which employs a weight-learning algorithm to assign a
weight to a feature according to its importance in classification.
Kim et al. [9] used the Kullback-Leibler divergence to mea-
sure the divergence between the Markov models of the flows.
A test flow is classified as the application whose Markov model
has the smallest divergence. Zhang et al. [24] proposed the bag
of flow (BoF) concept and improved the near neighbor (NN)
classifier, which can effectively improve classification perfor-
mance by incorporating correlated information into the classi-
fication process. Their network traffic classification using cor-
relation information is abbreviated to TCC. In [26], Ghofrani
et al. applied a hidden naive Bayes (HNB) structure for traf-
fic applications using a supervised discretization method, which
is different from traditional classification methods because it
assumes the independence of all features. The classification of
new flows is based on the maximum likelihood of the HNB struc-
ture, and the model yields a posteriori probability for the given
features.

According to [9], [13], [24], [26], [28], [34], the features
adopted by the CHS, CPRF, I-SVM, K-L, TCC, and HNB
schemes are summarized in the first column (feature set A) of
Table VI. The two-fold cross-validation is also shown here, with
3000 flows (the flows reported in Section VI-D) as the training
samples and testing flows. They were randomly selected from
six classes of the NJUPT dataset, namely, IM, PU, MG, VSS,
VSH, and PB. The final results were obtained by averaging the
results of 20 runs.

The classification results are presented in Table VII. It can
be seen that CPRF is barely able to classify the PU and PB
flows. The cp features are effective for classifying video flows
from non-video flows, but they fail to further classify them since
most of the video flows have a similar duration, size of the largest
packet, etc. The recognition accuracy rate of I-SVM for IM flows
is considerably high, but it is unsatisfactory for PU flows and
VSS flows. The accuracy rate of K-L does not achieve satisfac-
tory results. In K-L, four packet patterns are defined for flows
from two different applications. However, it may need more
packet patterns to classify flows at the fine-grained level. The
accuracy rates of HNB for the six classes are around 80%, and
the accuracy rate of TCC is slightly higher than that of HNB.
By contrast, the accuracy rate of the CHS scheme is as high
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TABLE VI
FEATURE SET

TABLE VII
COMPARISON OF RECOGNITION RATES WITH FOUR BENCHMARKS (%)

as 94.73%. CHS combines several base classifiers and thus has
better performance and a higher accuracy rate than those of a
single classifier.

F. Adaptability to Dynamic Flows

In order to check whether these schemes can adapt to vary-
ing classes, we randomly selected 12 classes of new flows

TABLE VIII
AVERAGE RECOGNITION RATES WITH DIFFERENT

DATA AND FEATURE SETS (%)

Fig. 10. Statistics of tests on the ability of responsiveness.

(500 flows for each class) from the IU dataset. The 12 classes
were video conferencing flows, telemedicine flows, instant mes-
saging video flows, video streaming SD, video streaming HD,
video streaming UD, P2P unidirectional videos, P2P bidirec-
tional videos, video broadcasts, video surveillance, console
games, and MMORPG games. Their labels correspond to 1, 2, 3,
7, 8, 11, 12, 13, 17, 18, 19, 20, respectively, as shown in Table III.

As shown in Table VIII, when the number of classes increases
from 6 to 12, the average accuracy rates of CHS, CPRF, K-L,
I-SVM, HNB, and TCC markedly decrease. The accuracy rate
of the CPRF scheme declines considerably. When the number
of classes increases, the differences between classes decrease.
Therefore, cp features (flow duration, size of largest packet, etc.)
are almost unable to classify video flows. When we replaced
these cp features with feature set B, the average accuracy rate
rose to 85.34%. It can be seen that the selected features have
a significant impact on classification performance. In general,
statistical features, which can be used to effectively identify the
previous set of flow samples, do not work well for the new set.
Therefore, feature set A should be updated to regain ideal clas-
sification performance.

In contrast, for Fractals, the average accuracy rate of 12 classes
is close to that of 6 classes. Fractal characteristics are different
from statistical features in that they reflect the essence of things
(as a fingerprint or iris) that do not change when the classes
of flows increase or other variables of external environments
change. As shown in Table IX, our proposed scheme consistently
achieves a higher accuracy rate for all 12 classes of video flows
and shows stable classification performance.
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TABLE IX
CONFUSION MATRIX (%)

We continued to increase the number of classes from 12 to 20.
In Fig. 10, thex-axis represents the label of 20 classes, and the y-
axis represents the recognition accuracy rate. The accuracy rates
of Fractals are consistently higher than that of other methods,
and the average accuracy rate reaches around 90%. In addition,
the Fractals method shows stable classification performance for
all classes, while the CHS, CPRF, K-L, I-SVM, HNB, and TCC
methods exhibit poor performance.

The CPRF method, in particular, lost the ability to classify
video flows. When the number of classes increases to 20, the
differences between classes are further decreased. Thus, the cp
features of CPRF do not work at all. In addition, some issues
remain with CHS. In particular, when the number of classes
increases, its recognition accuracy rate declines greatly. We an-
alyzed the reasons and found that CHS has a chain effect of er-
ror propagation. Specifically, the error in classifier 1 can spread
backward to classifiers 2, 3, and 4. Similarly, the error in clas-
sifier 2 can spread backward to classifiers 3 and 4. When the
number of classes increases, the number of classifiers also in-
creases; thus, the accumulative error for each classifier increases
considerably. As a result, for a large dataset with more classes,
CHS cannot provide satisfactory performance.

In contrast to the state-of-the-art schemes, our scheme based
on fractal characteristics does not require application signatures
or statistical features, so it can achieve better performance in
response to increased classes.

G. Computational and Space Complexity

For real-time applications, the classification of video flows
should ensure not only high recognition accuracy but also low
time and space complexity. Time complexity involves the learn-
ing time, storage time, and classification time. Compared with
the supervised methods (CHS, I-SVM, and HNB), CPRF, K-L,
TCC, and Fractals have no additional learning procedure. Fur-
thermore, the same set of flows was used for all methods, so
they have almost the same storage time. Thus, the performance
of time complexity is differentiated mainly on the basis of the
classification time.

In accordance with international practice, we used the special
length of flows to compute the classification time. The baseline
methods CHS, CPRF, I-SVM, K-L, TCC, and HNB all have
different requirements for the duration of flows. For example,
CPRF was designed to only employ the 20 initial packets to

Fig. 11. Comparison of classification time.

TABLE X
COMPARISON OF TIME AND SPACE COMPLEXITY

extract the features, and would hence require on average less than
1 second of flow duration. However, for Fractals, the duration
of the flows was set to 100 s, as described in Section VI-A. If
the flow is shorter than that, then we cannot obtain enough data
to compute the fractal characteristics. Hence, the duration of the
flows was set to 3 minutes. As a result of such restrictions on
duration, Fractals cannot be applied to classify certain flows,
such as the Web browsing data in Table II. Our scheme only
shows significant superiority for the fine-grained classification
of video flows.

In this experiment, 100 flows were randomly selected from
the NJUPT (6 classes), IU (12 classes), and NIUI (20 classes)
datasets to evaluate the classification time. As shown in Fig. 11,
the Fractals method took 1.851 s for the NJUPT dataset, 1.88 s
for the IU dataset, and 1.924 s for the NIUI dataset.

Table X presents a theoretical analysis of time and space com-
plexities. From Fig. 11 and Table X, it can be seen that the
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time and space complexities of CPRF are extremely low. In
CPRF, the random forest is established to classify video flows
according to cp features. Therefore, the time and space com-
plexities of CPRF are O(M1LJ) and O(M1 + LJN1). In this
experiment, the testing time of CPRF did not achieve the re-
sults reported in [13] for two main reasons. (i) Data preprocess-
ing was not taken into account in [13]. Garcia et al. classified
flows by using cp features and measured only the classification
time, not considering the time required to obtain these cp fea-
tures. (ii) The evaluation in [13] considered only the first 20
packets in a flow, while the present evaluation was performed
using up to 60 seconds of flow data. For the I-SVM method,
Hao et al. [28] proposed a weight-learning algorithm to assign
each feature a weight. Therefore, compared with the traditional
SVM method, I-SVM requires additional time to calculate the
weights, as shown in Table X. For K-L [9], the multiplication of
three transition probability matrices of the Markov models (the
matrix order is J) results in high time and space complexities.
The TCC method [24] adopts the nearest neighbor rule, which
requires the storage for all training data samples, and the space
complexity is O((M0 +M1)JN1). It compares all flows in one
KNN classifier, which results in O(M0M1) comparisons. CHS
combines several KNN classifiers to implement classification.
It divides the sample flows into several KNN classifiers, thus
reducing the number of comparisons to M1 log(M0). Ghofrani
et al. [26] proposed a structure of HNB to achieve classification,
and it must consider each pair of parent and child features within
each class. Therefore, the time and space complexities of HNB
are sensitive to J2 (more details can be found in [26]).

According to the previous experiments, the parameters M0,
M1, and N0 were fixed. As the video classes (L) increase from
6 to 12 and 20, J increases as a result. Here, we only focus on
these variable parameters. As shown in Table X, the time and
space complexities of Fractals depend only on L, while those
of the other methods depend not only on L but also on other
factors, such as J and N1.

In general, our proposed method Fractals relies neither on
application signatures (obtained by inspecting the payload con-
tent) nor on statistical features (extracted from given flow sam-
ples through a long-term statistical analysis), and as a result,
it has superior performance in the classification of flows at a
fine-grained level.

VII. CONCLUSION

In this paper, we investigate the classification of Internet video
traffic at the fine-grained level. To mitigate the limitations of ex-
isting techniques based on application signatures and statistical
features, we introduce the fractal characteristics of flows as a
new concept and propose the use of unique characteristics for
accurate classification. We first prove the fractal characteristics
of flows through rigorous analysis, and we then present a theo-
retical classification framework for the proposed scheme on the
basis of multifractal theory.

In our Fractals method, fractal characteristics can be obtained
at any stage of the flows, which are quite different from statis-
tical features. Moreover, our method does not require payload

inspection, and thus, it can be used to process encrypted flows.
It also avoids the time-consuming process of feature extraction
and shows robustness to varying classes. In general, the proposed
scheme demonstrates superior performance for the fine-grained
classification of video traffic.

However, there are some issues that need to be further ex-
plained and explored in the future.

i) We will propose a complete framework for classifica-
tion. We found that coarse-grained classification methods
(e.g., CPRF) show obvious superiority for coarse-grained
classes, but they do not work well for fine-grained classes,
as shown in Section VI. Although our proposed Frac-
tals scheme shows excellent performance for fine-grained
video classes, it does not work for certain coarse-grained
class (e.g., Web browsing data). In order to address the
above shortcoming, we propose a complete framework for
classification. In this framework, a coarse-grained clas-
sification method is used to classify the flows into text
flows, voice flows, and video flows, among other types.
Next, by using the fine-grained classification method,
video flows are further classified into categories such
as video conference, telemedicine system, and electronic
commerce.

ii) In this paper, the estimated spectrum τ(q) is used to rep-
resent the fractal characteristics of flows. In our future
research, other estimation spectra will be explored to fur-
ther improve accuracy and reduce complexity.

APPENDIX

Define two important functions:

X = N1(α) ∝ ε−fG1
(α), (38)

Y = N2(α) ∝ ε−fG2
(α), (39)

where N1(α) and N2(α) are > 0 (see Eq. (4)).
Proposition 1: If Z = X + Y , then the boundaries of Z is

determined by fG1
(α) and fG2

(α).
Proof: According to (38) and (39), we can obtain:

fG1
(α) = lim

ε→0

lnN1(α)

ln ε
, (40)

fG2
(α) = lim

ε→0

lnN1(α)

ln ε
. (41)

Note thatZ = X + Y = N1(α) +N1(α), and thus we define
a new function fGZ

(α) as:

fGZ
(α) = lim

ε→0

ln(N1(α) +N2(α))

ln ε
. (42)

It yields,

inf(fGZ
(α)) = lim

ε→0

ln
√

2N1(α)N2(α)

ln ε

=
1

2

(
lim
ε→0

ln 2

ln ε
+ lim

ε→0

ln (N1(α)N2(α))

ln ε

)

=
1

2

(
lim
ε→0

lnN1(α)

ln ε
+ lim

ε→0

lnN2(α)

ln ε

)
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=
1

2
(fG1(α) + fG2(α)).

sup(fGZ
(α)) = lim

ε→0

ln(2max(N1(α),N2(α)))

ln ε

= max(fG1(α), fG2(α)).

�
Proposition 2: If the derivatives of fG1

(α), fG2
(α) are

f ′
G1

(α), and f ′
G2

(α), respectively, then f ′
GZ

(α) is determined
by f ′

G1
(α) and f ′

G2
(α).

Proof: Based on the known conditions described above, we
have:

f ′
GZ

(α) = lim
Δα→0

1

Δα
(fGZ

(α+Δα)− fGZ
(α))

= lim
Δα→0

1

Δα
lim
ε→0

{
ln(N1(α+Δα) +N2(α+Δα))

ln ε

− ln(N1(α) +N2(α))

ln ε

}

= lim
ε→0

1

ln ε
ln

(
lim

Δα→0

1

Δα

N1(α+Δα) +N2(α+Δα)

N1(α) +N2(α)

)

= lim
ε→0

1

ln ε
ln

(
N ′

1(α) +N ′
2(α)

N1(α) +N2(α)
+ lim

Δα→0

1

Δα

)
.

= lim
ε→0

1

ln ε
ln

(
N ′

1(α) +N ′
2(α)

N1(α) +N2(α)
+ lim

ε→0

N ′(α)
ln εf ′

G(α)N(α)

)

= lim
ε→0

ln
(
N ′

1(α)+N
′
2(α)

N1(α)+N2(α)

)
ln ε

+lim
ε→0

1

ln ε
ln

(
1+

1

ln ε
(f ′

G(α))
−1

)

= lim
ε→0

1

ln ε
ln

{
f ′
G1

(α)ε−fG1
(α) + f ′

G2
(α)ε−fG2

(α)

ε−fG1
(α) + ε−fG2

(α)

}

=
f ′

G1(α) + f ′
G2(α)

fG1(α) + fG2(α)
lim
ε→0

× fG1(α)ε
−fG1(α) + fG2(α)ε

−fG2(α)

ε−fG1(α) + ε−fG2(α)

= · · ·
{
fG1

(α) + fG2
(α)− lim

ε→0

× fG1
(α)fG2

(α)(ε−fG1
(α) + ε−fG2

(α))

fG1
(α)ε−fG1

(α) + fG2
(α)ε−fG2

(α)

}

=
f ′
G1

(α) + f ′
G2

(α)

fG1
(α) + fG2

(α)
max (fG1

(α), fG2
(α)) .

�
See the last line in the proof of Proposition 2, where a special

limit is used. Now we prove it as follows.
Proposition 3:

a+ b− lim
e→0

ab(e−a + e−b)

ae−a + be−b
= max(a, b).

Proof:

a+ b− lim
e→0

ab(e−a + e−b)

ae−a + be−b

= lim
e→0

(a+ b)(ae−a + be−b)− ab(e−a + e−b)

ae−a + be−b

= lim
e→0

a2e−a + b2e−b

ae−a + be−b
.

Here, if a > b, then,

a+ b− lim
e→0

ab(e−a + e−b)

ae−a + be−b

= lim
e→0

a2 + b2e−b+a

a+ be−b+a
=

a2

a
= a.

If a < b, then,

a+ b− lim
e→0

ab(e−a + e−b)

ae−a + be−b

= lim
e→0

a2e−a+b + b2

ae−a+b + b
=

b2

b
= b.

Therefore,

a+ b− lim
e→0

ab(e−a + e−b)

ae−a + be−b
= max(a, b).

�
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