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Abstract—The surging demand for high-definition video stream-
ing services and large neural network models implies a tremendous
explosion of Internet traffic. To mitigate the traffic pressure, ar-
chitectures with in-network storage have been proposed to cache
popular contents at devices in closer proximity to users. Corre-
spondingly, in order to maximize caching utilization, it becomes
essential to devise an effective popularity prediction method. In
that regard, predicting popularity with dynamic graph neural net-
work (DGNN) models achieves remarkable performance. However,
DGNN models still suffer from tackling sparse datasets where most
users are inactive. Therefore, we propose a reformative tempo-
ral graph network, named semantics-enhanced temporal graph
network (STGN), which attaches extra semantic information into
the user-content bipartite graph and could better leverage implicit
relationships behind the superficial topology structure. On top of
that, we customize its temporal and structural learning modules to
further boost the prediction performance. Specifically, in order to
efficiently aggregate the diversified semantics that a content might
possess, we design a user-specific attention (UsAttn) mechanism
for the temporal learning. Unlike the attention mechanism that only
analyzes the influence of genres on content, UsAttn also considers
the attraction of semantic information to a specific user. Meanwhile,
as for the structural learning, we introduce the concept of positional
encoding into our attention-based graph learning and novelly adopt
a semantic positional encoding (SPE) function, which effectively
boost the performance of lightweight algorithms. Finally, extensive
simulations verify the superiority of our models and demonstrate
their effectiveness in content caching.

Index Terms—Content caching, dynamic graph neural network,
popularity prediction, semantics.
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I. INTRODUCTION

THE surging demand for high-definition video streaming
services and large neural network models results in tremen-

dous pressure on the Internet [2], [3], [4]. It is pointed out that
caching popular contents in advance has the potential to reduce
the backhaul traffic up to 35% [5]. Correspondingly, in-network
caching for multimedia contents emerges as a promising tech-
nique and garners extensive attention [6], [7]. Moreover, Ref. [8]
outlines a framework that manages and orchestrates diverse
deep neural network (DNN) models at the network edge to
satisfy heterogeneous service requirements, and demonstrates
its contribution on alleviating peak backhaul traffic as well.
Therefore, large DNN models are as equally marketable as
multimedia videos in content caching [9]. But for the sake
of simplicity and dataset availability, the prime focus of our
investigation remains centered on the video content, with a
flexible extension to cache DNNs. On the other hand, compared
with the continual explosion of content volume, it is infeasible
to increase the device caching capability immoderately due
to the practical economic and technical limitations [10]. This
predicament makes the design of competent caching strategies
much more crucial, wherein accurate popularity prediction plays
a decisive role.

Recently, DNNs have demonstrated their remarkable poten-
tial in unveiling the embedded temporal correlation for popu-
larity prediction [11], [12], [13]. Meanwhile, along with users
requesting contents, the interactions between users and contents
gradually constitute a dynamic bipartite interaction graph. Some
recent graph neural network (GNN) model-based methods,
which resort to exploiting the inherent structural pattern in such
a bipartite graph, manifest themselves in providing superior
prediction accuracy within a recommendation system (RS) [14],
[15]. In particular, such GNN models enable us to speculate
for inactive users with few requests in an interaction-intense
graph by associating them with other active users that exhibit
similar behaviors. However, these GNN models [14], [15] are
contingent on an assumption of a static bipartite graph. In order
to blend the merits of both structural learning and temporal
learning, recommendation with dynamic graph neural network
(DGNN) models emerges [16], which is always synergistic with
caching [17]. Thus, caching with DGNN models also achieves
satisfactory improvement [18].

Nevertheless, our prior work in [18] discovers that the model’s
performance is not gratifying for cases where most users in
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Fig. 1. Example of the dynamic interaction graph and the implicit semantic
relationships between contents.

the bipartite graph are inactive. To overcome the data spar-
sity, enlarging the receptive field of the DGNN model (e.g.,
the stacking of GNN layers or an increase in the number of
first-order neighbors) can be productive [19], but it usually
incurs significant computational complexity and time cost. On
the contrary, along with fine-grained methods, enlarging the
breadth of available information, such as considering the side
information of users and contents in DGNN, sounds more ap-
pealing [20], [21]. Specifically, the side information enriches the
sparse graph and may also reflect user’s intention, both of which
would benefit the reasoning and interpretability of user’s future
behavior. But given the importance of user privacy, it is more
appropriate to conduct an excavation for the general content
information (e.g., analyzing the semantic correlations among
the genre information of contents).

Fig. 1 presents an example of the dynamic interaction graph
and the implicit semantic relationships between contents. The
requests of two users, u1 and u2, only intersect at content i3. The
sparsity of data makes it intractable for classical GNN-based
methods to accurately predict the preference of u1 for content
i4. On the other hand, the content genre information and their
underlying similarities in the semantic sphere, which are indi-
cated by the red dotted lines in Fig. 1, reveal a strong correlation
between i4 and i3 as well as a weak correlation between i4
and i1, respectively. Thanks to the attachment of semantics,
these two kinds of underlying connectivity between i4 and i1
are unveiled to assist the prediction, and an inference that u1

is likely to request i4 can be boldly triggered. Furthermore,
as demonstrated in Fig. 2, there exist several natural language
processing (NLP) methods, such as one-hot, BERT [22], and
Glove [23], available for computing the semantic similarities. It
is also natural to conjecture that a more precise computation of
semantic similarities might benefit a superior speculation.

In this paper, we propose a semantics-enhanced temporal
graph network (STGN) to strengthen the DGNN model perfor-
mance in dealing with sparse datasets and improve popularity
prediction for content caching. In particular, semantics amelio-
rates the temporal learning module to better track the dynamical
variations in a user-content bipartite graph, and circumvents the
difficulties of discovering patterns in a sparse dataset through
the supplement to content-centered sub-graphs for the structural

learning. Besides, we adopt several mature NLP methods to
encode genre messages as semantic information, and then treat
the embedded semantic information as part of the input to the
predictive model. Additionally, considering that a content might
possess multiple genres (e.g., a fictional action movie containing
both fiction and action genres) and the predilection might vary
across users as well, we further design a user-specific attention
(UsAttn) mechanism for a more fine-grained aggregation of
various semantics, so as to improve the utilization of the diversi-
fied semantic features. Unlike the attention mechanism that only
considers the influence of genres in content, UsAttn leverages
user-content pairs in the bipartite graph to calculate the attention
coefficients and capably analyzes the attraction of semantic
information to a specific user during the prediction. Meanwhile,
given the complication of distinguishing one specific user from
a content-centered sub-graph where the same content contains
massive user relevancy, as shown in Fig. 1, the aforementioned
enhancement with UsAttn cannot be applied into the seman-
tic analysis in our attention-based structural learning module.
Instead, it requires some alternative options from an innovative
perspective. Specifically, inspired by the preliminary effective-
ness of a dot-product-based positional encoding (PE) function
in Transformer [24], we develop a semantic positional encoding
(SPE) function, deduced from a Fourier kernel-based method,
to improve the effectiveness of incorporating multi-dimensional
semantics in structural learning. Particularly, we think that it
might provide a viable answer to efficiently incorporate and
utilize the aggregated semantics on top of DGNNs, especially
for the lightweight models. Furthermore, we apply our proposed
model to a caching strategy in a multi-tier caching system and
conduct extensive simulations to evaluate its superiority. In brief,
the main contributions of this paper are summarized as follows.
� To deal with the data sparsity, we propose an STGN, which

leverages the implicit connections between requested con-
tents and their semantic features from both temporal and
structural learning perspectives.

� Motivated by the fact that a content usually carries rich
semantic information, we devise a UsAttn mechanism
to exploit potential semantic correlations within the user-
content bipartite graph and enhance the temporal learning.

� In order to improve the effectiveness of semantics in
structural learning, we incorporate a theoretical-grounded
multi-dimensional SPE from the Fourier kernel into the
attention-based graph learning module, which benefits the
lightweight models particularly.

� Extensive experiments based on a real-world dataset ver-
ify the improvement in prediction performance achieved
by our STGN model and validate the effectiveness
of the STGN model-based proactive caching strategy
in terms of several widely-adopted metrics (i.e., cache
hit rate, cumulative transmission delay and hop count
[25], [26], [27]).

The remainder of this paper is organized as follows. The
related works are discussed in Section II. Then, we introduce
system models and formulate the problem in Section III. We
elaborate on the details of the proposed prediction model and its
modified versions for effective semantic learning in Sections IV
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Fig. 2. Visualization of cosine similarities between some genres’ embeddings computed by different NLP methods.

TABLE I
MAJOR NOTATIONS USED IN THE PAPER

and V, respectively. In Section VI, we present the experimental
results and discussions. Finally, we draw the conclusion and
future directions in Section VII.

For convenience, we also list the mainly used notations of this
paper in Table I.

II. RELATED WORK

A. Content Caching and Popularity Prediction

Traditionally, albeit the remarkable portability, the widely-
mentioned reactive caching strategies, such as least recently
used (LRU) and least frequently used (LFU), only focus on
the patterns of local requests, thus failing to handle the un-
expected requests [28]. Accordingly, it becomes inevitable to
design proactive caching strategies, wherein accurate popularity
prediction plays a decisive role [10]. With the development of

artificial intelligence (AI), applying DNNs to predict popularity
has thrived. For instance, in Ref. [11], a model based on stacked
autoencoders (SAE) is proposed to compute the popularity from
the content request sequence. In addition, Refs. [12], [13] use a
recurrent neural network (RNN) and its variant, long short-term
memory (LSTM), to discover the patterns within the temporal
content requests, so as to facilitate popularity-assisted content
caching. Nevertheless, due to the insufficient historical data,
LSTM or other sequence-based prediction models may fail to
accurately predict for those inactive users.

Furthermore, the user-content interactions constitute a bipar-
tite graph and lay the very foundation for adopting GNN to
enhance the learning performance [15]. Although GNN has won
remarkable achievement in RS [14], most existing works assume
that the underlying graph is static, which does not conform
to the real-life [16]. Consequently, popularity prediction with
DGNN has been attracting significant attention. Different from
the conventional GNN, a DGNN model is able to jointly learn
the structural and temporal patterns of dynamic graphs. For
example, Ref. [29] proposes a DyRep model to calculate the dy-
namic graph with a recurrent architecture. Besides, in Ref. [30],
the authors employ a temporal graph convolutional network
(T-GCN) model that combines GCN and the gated recurrent unit
for traffic forecasting. To further improve the temporal learning
and ameliorate the scalability issue of T-GCN, a spatial-temporal
prediction algorithm stacking the dilated temporal convolution
network (TCN) and the dynamic GCN is proposed in Ref. [31]
to make prediction for mobile multi-sensor network. Learning
from the “positional encoding” of the self-attention mechanism
in Transformer [24], Ref. [19] proposes a “time encoding func-
tion” to encode the timestamp information for the graph attention
network (GAT) [32], which is called the temporal graph attention
mechanism (TGAT). Notably, due to the utilization of GAT, it
also mitigates the universal deficiencies of GCN in previous
works, i.e., the scalability and neglect of importance difference
among vertexes. TGN in [33] introduces an additional temporal
learning module on top of the TGAT for a deeper refinement of
the temporal characteristics. Ref. [18] optimizes the temporal
learning module of TGN with an age of information (AoI)
based attention mechanism to filter and aggregate fresh historical
messages, and realizes satisfactory results in content caching.
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TABLE II
SUMMARY OF DIFFERENCES WITH RELATED LITERATURE ON POPULARITY PREDICTION

Nevertheless, when most users in the graph are inactive, it is in
general difficult to obtain satisfactory caching performance by
deploying existing DGNN models in a straightforward way.

B. Tackling Data Sparsity

To overcome the data sparsity, Ref. [19] suggests that it is
beneficial to stack more TGAT layers for enlarging the receptive
field, but it comes at the expense of massive computation cost.
On the other hand, some works attempt to solve this problem
by supplementing the side information of the bipartite graph
(e.g., user social influence [20]). Refs. [21], [34], [35], [36], [37]
propose to introduce a knowledge graph (KG) for incorporating
the side information of the requested contents into a static graph
model, which leverages the implicit associations among the
contents and yields superior prediction performance. However,
these works ignore the dynamics of the interaction graph, while
the KG construction also implies the demand for a significant
amount of side information (e.g., the director and release date
of the content), which may not be available in many cases.
Therefore, it is more worthwhile to leverage limited content
information (e.g., genre information) with a deeper excavation.
In that regard, the astonishing development of NLP, such as
one-hot, BERT [22], and Glove [23], makes it promising to
capture the implicit semantic relations between the words.

Finally, in order to further highlight the contributions of our
work, we summarize the distinctions between our method and
other relevant literature on popularity prediction in Table II.

C. Positional Encoding in Transformer

It is meaningful to develop effective means of computing em-
beddings, so as to better unveil correlations. As for the temporal
learning, it is simple and sufficient to adopt a UsAttn-based
mechanism to discover the relationships between multiple gen-
res related to contents and users. However, it becomes trouble-
some for the application in structural learning module, consider-
ing the massive relevance among users to the same content. The
illuminated work in Ref. [19], which generalizes the definition
of position and encodes the timestamps with a customized PE
function, motivates us to treat the semantic information as a spe-
cial kind of position. Therefore, we adopt an SPE to strengthen
the association analysis between two semantics-attached content
embeddings. As a specially designed PE function, it is also
inspired by works with learnable approaches to encode posi-
tions [22], [38]. Besides, considering the heavy computational
cost and non-uniform decay in different dimensions to encode
each dimension independently before the concatenation [39],

Fig. 3. Requests and responses in a multi-tier caching system.

[40], the proposed SPE treats the multi-dimensional position
as a whole and then encodes it directly by learnable Fourier
features [39]. To our best knowledge, our SPE belongs to the
first work to view the multi-dimensional semantic information as
the position and encode from the perspective of Fourier features.

III. SYSTEM MODELS AND PROBLEM FORMULATION

A. System Models

1) Network Model: As shown in Fig. 3, we concentrate on a
multi-tier caching system, where caches are scattered over the
devices close to users, such as the edge routers, switches, and
some access nodes. We conceptually simplify the network as a
three-layer topology as below.
� Top Layer – It is composed of core routers, which are

responsible for connecting content providers with other
network elements.

� Middle Layer – It encompasses edge routers and switches.
In particular, the switches usually connect various devices
in a network and communicate with the core network
through the edge routers. And the location of switches is
lower than the edge routers, while they are in the same
layer.

� Bottom Layer – It consists of access nodes, which are
deployed to connect users with the switches.

In this paper, we primarily take account of the in-network
caching capability of the devices in Bottom and Middle layers,
i.e., the access nodes, switch, and edge router, and denote them
as Tier 1, Tier 2, and Tier 3, respectively. Moreover, as depicted
in Fig. 3, once a copy of the target content is cached at a lower-tier
device, the request will be directly responded and no longer be
sent to any higher-tier devices.

2) Request Model: In this paper, we model the request
records in the format of user-content pairs as a graph. We denote
the set of users as U = {u0, u1, . . . , uj} and the set of contents
as I = {i0, i1, . . . , ik}, where uj and ik denote user j and
content k, respectively. Furthermore, according to the indices,
we allocate the randomly-initialized embeddings as their raw
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features and create the sets of users and contents, which are
deemed as the input of the predictive model. The raw feature sets
of users and contents are denoted as VU = {vu0

,vu1
, . . . ,vuj

}
and VI = {vi0 ,vi1 , . . . ,vik}, where vuj

and vik are the ver-
texes in the dynamic bipartite graph corresponding to uj and
ik, respectively. The interactions, i.e., users requesting contents,
can be naturally regarded as the edges, which can be denoted
as E = {eT0

00 , e
T1
01 , . . . , e

Tn

jk }. Herein, eTn

jk represents the embed-
ding vector of interactions betweenuj and ik atTn, and indicates
the user-behavior type (e.g., watching videos or listening to
music).

Next, we formulate the evolving interactions as a dynamic
graph using a set of quadruples, G = {(vu0

,vi0 , e00, T0), . . . ,
(vuj

,vik , ejk, Tn)}, where Tn denotes the timestamp of the
n-th interaction.1 In addition, we integrate each quadruple into
a piece of historical message as the input of our DGNN model.
For instance, the interaction occurred at Tn between uj and ik
is formulated as Msgjk = [vuj

||vik ||ejk||Tn], where || is the
concatenation operator. Moreover, as presented before, content
may contain various semantic genres, and we need to encode all
Nk genres of content ik with the NLP methods for fully utilizing
inherent semantic characteristics in the subsequent prediction.
Correspondingly, the encoded semantic features are represented
as Sk = {sk1, . . . , skNk

}.

B. Problem Formulation

In this paper, we evaluate the performance of our STGN
model in caching task with the widely-accepted cache hit rate.
Considering the existence of a maximum number of caching
items K, only the top-K contents C̃K(ΔP ) in a popularity
ranking list C̃(ΔP ) are cached during the cache updating period
ΔP . Given the real request set is C(ΔP ), we calculate the hit
rate during the cache updating period ΔP with

h(ΔP ) =
I(C(ΔP ), C̃K(ΔP ))

I(C(ΔP ), C(ΔP ))
, (1)

where I(X ,Y) represents the hit number for the elements in Y
to X .

Based on (1), we can further calculate the cache hit rate
hx(ΔP ) for each tier, where x ∈ {1, 2, 3} denotes the tier index
in Fig. 3. Correspondingly, K1,K2,K3 are the diverse caching
capacity in each tier. Notably, for a more complicated network
topology, where Tier 1 contains several devices, we assume
that the popularity ranking list of each equipment is calculated
according to the requests of the attached users. Simultaneously,
Tier 2 and 3 cache the top-K2 and top-K3 contents in the overall
ranking list C̃(ΔP ) excluding the cached contents in lower-tier
devices.

Notably, though cache hit rate is sufficiently compelling for
assessing the effectiveness of a caching strategy, and can par-
tially reflect the influence of popularity prediction on content

1Notably, for simplicity of representation, we omit the Tn in eTn
jk

and the

superscript j and k of the vertexes T jk
n , which represents the n-th interaction

that happens between uj and ik .

caching, it will be more intuitive to further assess the effec-
tiveness of caching from a quality-of-service (QoS) perspective.
Therefore, we also evaluate the performance of cumulative trans-
mission delay and hop count, as suggested in [25], [26], [27].
Specifically, the transmission delay, which measures the elapsed
time that users have to wait until receiving the first piece of data,
is related to the location of content and the transmission rate.
The hop count denotes the number of retrieving hops for catering
user’s demand, and a smaller hop count usually connotes a lower
probability of network congestion. It can be observed that all the
aforementioned metrics unanimously imply to cache the more
popular content closer to users [41]. For simplicity, we primarily
treat the cache hit rate as the foundation of our investigation.

In line with the previous analysis, it becomes essential to know
the popularity of each content for the future cache update period
ΔP and obtain the popularity ranking list C̃(ΔP ) in advance.
We assume the list is sorted based on the popularity combining
outcomes from several time slots sampled by the predicting
period δp � ΔP . Therefore, the overall popularity of ik during
the update period ΔP can be formulated as

P ik(ΔP ) =
∑

nδ∈Nδ

Popik(nδ × δp), ∀ik ∈ I, (2)

where Nδ = {0, 1, . . . , �ΔP

δp
�}, �� is a floor operator, and

Popik(T̂ ) represents the popularity of ik at the future time
T̂ = nδ × δp. Consequently, the popularity ranking list can be
obtained to guide the content caching task. Notably, in order
to distinguish the contents with the same popularity, we decide
their prioritization consistent with LRU.

Obviously, the popularity Popik(T̂ ) is indispensable, and it
can be obtained by gathering the preferences of all users [42],
which we calculate as

Popik(T̂ ) =
∑
uj

1
(
pjk(T̂ ) > pthre

)
, ∀ik ∈ I, (3)

where pjk(T̂ ) indicates the real preference of uj for ik at T̂ ,
pthre is the threshold value for judging emergence of such a
request, and 1(ζ) is an indicator function that only equals 1
if the condition ζ is satisfied.

As real preference pjk
2 is unknown a priori, we aim to

calculate a predicted result p̃jk with the embeddings of uj and
ik at T̂ , namely Euj

(T̂ ) and Eik(T̂ ). That is,

p̃jk(T̂ ) = F
(
Euj

(T̂ ),Eik(T̂ )
)
, (4)

where a multi-layer perceptron (MLP) can be adopted to realize
the function F (·). In this regard, our target in (1) converts to
generating feasible representations with the predictive model
from the dynamic interaction graph, so as to minimize the binary
cross entropy loss (BCELoss) between the real preference, pjk,
and the predicted one, p̃jk, ∀uj ∈ U , ik ∈ I [16],

L = −
∑
uj ,ik

(pjk log(p̃jk) + (1− pjk) log(1− p̃jk)) . (5)

2Notably, for simplicity of representation, we omit the T̂ of the pjk(T̂ ),
p̃jk(T̂ ), the embeddings Euj (T̂ ) and Eik (T̂ ) in the following equations.
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IV. SEMANTICS-ENHANCED TEMPORAL GRAPH NETWORK

In this section, we focus on the design of the STGN, so as
to obtain the desired embedding representations, Euj

(T̂ ) and

Eik(T̂ ), ∀uj ∈ U , ik ∈ I, from a sparse dataset.

A. Conventional TGN

According to the different roles in prediction, the conventional
TGN model consists of two prime segments, including the
temporal learning module and the structural learning module.

1) Temporal Learning Module: The temporal learning mod-
ule, which consists of a message aggregator and a memory
updater, is adopted to compress a user’s historical messages into
a refined representation. Specifically, the message aggregator
leverages several fresh historical messages of uj before the
prediction time T̂ to obtain a compressed feature hj(T̂ ). Thus,
hj(T̂ ) can also be deemed as a feature that is able to represent
the short-term preference of uj , which can be formulated as

hj(T̂ ) = Agg
(
Msgj0, . . . ,Msgjk

)
, (6)

where Agg(·) is a filtering and aggregation function that can
be implemented diversely. In the remainder of this paper, we
primarily consider three approaches, including filtering the latest
message, using the mean value of all messages [33], and an
attention-based weighted summation of limited fresh messages
with an AoI filter [18]. We denote them as TGN-L, TGN-M, and
TGN-A, respectively.

Subsequently, in order to acquire a much more representative
temporal feature, a memory updater is adopted to update the
long-term preference Memj based on the compressed short-
term preference hj(T̂ ). In order to realize the updater, a learn-
able function, such as LSTM or the gated recurrent unit (GRU),
is necessary. Here, considering the advantage in convergence
speed [43], we complete the update procedure with a GRU,
which is mathematically formulated as

Memj ← Z ·H + (1−Z) ·Memj ,

Z = σ
(
hj(T̂ )W hZ +MemjWMZ + bZ

)
,

H = tanh
(
hj(T̂ )W hH + (F ·Memj)WMH + bH

)
,

F = σ
(
hj(T̂ )W hF +MemjWMF + bF

)
, (7)

where W hZ , W hF , W hH , WMZ , WMF and WMH denote
the trainable weights, while bZ , bF and bH are the learnable bias
values of the GRU. σ(·) and tanh(·) are the activation functions.

2) Structural Learning Module: The structural learning
module aims to generate embeddings for future prediction. In
particular, it is also responsible for keeping the representations
of the inactive users up-to-date by exchanging features among
neighbors in the graph. Obviously, the timestamp of each interac-
tion also plays a vital role in the mapping procedure. Therefore,
we adopt a TGAT model [19] to accomplish this unconventional
structural learning. Notably, the TGAT mechanism is a module
that deploys a learnable time encoding function on the basis of a
classical GAT module [32]. In particular, the specially designed

time encoding function is formulated as

ΦdT
(Δt) =

√
1

dT
[cos(ω1Δt), . . . , cos(ωdT

Δt)]
ᵀ, (8)

where ω1, ω2, . . . ωdT
are the trainable parameters, the super-

script ᵀ indicates the transpose operator, Δt denotes the time
slot between the interaction-occurring time Tn and the time to
predict T̂ , (i.e., Δt = T̂ − Tn). dT is the dimension number of
the desired time encoding.

Then, the encoded time features are concatenated to the output
of the temporal learning module with Memj as the input for
the structural learning,

Mem′j = [Memj ||ΦdT
(0)], (9)

which supplements the updated long-term preference Mem′j of
uj with the time feature. It is noteworthy that uj is the center
vertex of a user-centered sub-graph that we want to learn, so we
define Δt = 0 for its prediction. As for uj’s neighbor k ∈ Nj ,
its modified preference term Mem′k is formulated as

Mem′k = [Memk||ΦdT
(Δtk)], ∀k ∈ Nj . (10)

Notably, Mem′j and Mem′k are the inputs to the structural
learning module. As depicted in Fig. 4, the GAT architecture [32]
is the paramount part of a TGAT layer to learn the structure of
uj’s dynamic sub-graph, and can be encapsulated as

Euj
(T̂ ) = GAT(Mem′j ,Mem′Nj

). (11)

Similarly, we can generate the embedding Eik(T̂ ) from the
content-centered sub-graph of ik with

Mem′k = [Memk||ΦdT
(0)],

Mem′j = [Memj ||ΦdT
(Δtj )], ∀j ∈ Nk,

Eik(T̂ ) = GAT(Mem′k,Mem′Nk
). (12)

Note that Euj
(T̂ ) and Eik(T̂ ) are utilized as the inputs to the

prediction module in (4). Furthermore, the stacking of multiple
TGAT layers can leverage more hidden information within the
graph by aggregating multi-hop neighbors. But the enlargement
of receptive field also implies greater computational complex-
ity [19]. Thus, we only investigate the performance with a
one-layer TGAT to speed up the training in our simulations.

B. Semantic Enhancement for TGN

Essentially, the temporal learning module in TGN can be
deemed as a procedure for refining the commonality from the
temporal perspective. However, the randomly initialized raw
features make it complicated to accurately extract and analyze
the patterns, especially for a sparse dataset. Consequently, we
resort to supplementing the raw input with semantic information,
so as to improve the abilities of reasoning and interpretability
of our model by extracting the implicit semantic correlations
among contents.

We use some pre-trained NLP models, such as one-hot,
BERT [22], and Glove [23], to encode the content genre informa-
tion as semantic messages, Sk = {sk1, . . . , skNk

}. For the sake
of simplicity, we adopt the summation as a semantic aggregator
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Fig. 4. Illustration of M2-STGN, a TGN model enhanced with semantics in both temporal and structural learning.

to generate the aggregated feature Sk from Sk, which is then
incorporated into the raw message as shown in Fig. 4(b). In
specific,

Sk =
∑
n∈Nk

σ(W sskn + bs), (13)

Msg′jk = σ(W t
1Msgjk +W t

2Sk), (14)

where W s, bs, W t
1 and W t

2 are the trainable parameters to
enhance the semantic features, while Msg′jk is the desired
semantics-enhanced historical message in (6). AsMsg′jk can be
directly applied to enhance the temporal learning by replacing
Msgjk in (6), we regard such an approach as the semantics-
enhanced TGN in a temporal manner, and denote it asM1-STGN.

As we discussed above, although the fresh features for inactive
users can be located with the help of the graph structure, the
performance still suffers from data sparsity. To address this
issue, we further attach the semantic features to the input of
the structural learning module, establishing implicit semantic
pathways for the dynamic graph from the semantic sphere. In our
experiments, we also discover that concatenation outperforms
summation for merging semantics in the structural learning
module. Then, (10) is further modified as

Mem′k = [Memk||Sk||ΦdT
(Δtk)], ∀k ∈ Nj , (15)

where Sk is calculated following (13). Similarly, we use M2-
STGN to represent the TGN model that is further facilitated by
the structural learning with semantics.

V. EFFECTIVE SEMANTICS-ENHANCED TEMPORAL GRAPH

NETWORK

Although semantic aggregation can be easily achieved with
the aforementioned frameworks, their utilization of semantics
is still coarse. Specifically, the summation semantic aggregator
doesn’t distinguish the impact of different semantics from the
same content on different users, while the concatenation in (15)
may be oversimplified to compute proper attention coefficients.
Thus, we propose two novel methods to utilize the semantics
efficiently.

A. User-Specific Attention Mechanism for Semantic
Aggregation

In order to aggregate multiple semantics fine-grainedly, we
can modify the semantic aggregator with an attention mecha-
nism that calculates attention coefficients by analyzing the influ-
ence of different genres on the same content. However, it ignores
the impacts from users, which are also critical for popularity
prediction. Thus, we adopt a UsAttn mechanism to aggregate
the multiple semantics, as shown in Fig. 5. For different users,
this mechanism enables the computation of different attention
scores for the diverse semantics of the same content and then
generates user-specific semantic features. Mathematically, for
each content and user, (13) is reformulated as a linear weighted
summation of Nk semantics of content ik. The weights are
calculated by the attention mechanism,

Sjk = σ

(∑
n∈Nk

αjnsknW V n

)
,

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:47:30 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: SEMANTICS-ENHANCED TEMPORAL GRAPH NETWORKS FOR CONTENT POPULARITY PREDICTION 8485

Fig. 5. Illustration of the semantics aggregators(Upper: Summation
Aggregator; Lower: UsAttn Aggregator).

αjn =
exp(EjkWQ · sknWKn)∑Nk

m=1 exp(EjkWQ · skmWKm)
, (16)

where WKn, WQ and W V n are the trainable parameters, and
αjn is the attention coefficient of the n-th semantic message of
the content. Especially, Ejk is a user-specific embedding, after
which the weight calculation will be forced to account for the
embeddings of both uj and ik. Accordingly, we define

Ejk = LeakyReLu(W uE
′
uj

+W iE
′
ik
+ bui), (17)

whereW u,W i and bui are the trainable parameters, whileE′uj

and E′ik
3 are the results generated in the last prediction or the

initialization values for the first round prediction of uj and ik,
respectively.

Moreover, the stacking of multiple DNN layers possibly
results in the over-smoothing issue. In this regard, we further
leverage the skip-connection in Transformer [24] to avoid this
issue and improve the overall performance. Specifically, for each
piece of historical message that happened between uj and ik,
the aggregated semantics is denoted as

Sk = Nk · Sjk +Ejk, (18)

which is the desired representation that we use in (14), so as to
further optimize M1-STGN or the temporal learning module of
M2-STGN.

B. Semantic Positional Encoding for Structural Learning

For different user-content pairs, the proposed UsAttnmech-
anism allocates different attention weights for content’s diverse
semantic messages in temporal learning. However, it is hard to
generalize this mechanism into the structural learning module.
Specifically, the structural learning for ik is generally conducted
by calculating a sub-graph centering around ik, where all its

3For simplicity, we omit the time information T̂ ′ of the last prediction in
E′uj

(T̂ ′) and E′ik (T̂
′).

TABLE III
VARIANTS OF OUR PROPOSED STGN MODEL, WHERE Sum AND UsAttn ARE

THE SEMANTIC AGGREGATORS WHILE SPE IS THE EXTRA POSITIONAL

ENCODING FOR THE GRAPH ATTENTION MODULE

neighbors are users. In other words, it is elusive for us to deter-
mine a specific user before enhancing the structural learning with
UsAttn. This dilemma motivates us to find another method
to improve semantics utilization in structural learning. Inspired
by the positional encoding in Transformer and the expansion of
position definition in TGAT, it might be feasible to treat contents’
semantic features, generated by (13), as the positions in semantic
sphere and then encode them with a customized PE function
to strengthen the Transformer-alike structural learning module.
To extract useful characteristics from the multi-dimensional
semantic position Sk, calculated by (13), we adopt a learnable
Fourier features positional encoding function, which is derived
in Appendix and can be mathematically formulated as follows,

Rk =
1√
Dh

[cosW pφ1(Sk)|| sinW pφ1(Sk)]
ᵀ, (19)

where φ1(·) is an MLP layer to enhance the semantic features,
and Dh is the dimension of the hidden layer. Notably, the initial-
ized W p is drawn from a normal distribution [44]. Furthermore,
we also discover that an additional feature enhancement with
another MLP is beneficial to the final performance,

Rk ←W 2
pGeLU(W 1

pRk), (20)

where W 1
p and W 2

p is the trainable weights, and GeLU(·) is an
activation function that is widely adopted in NLP tasks [39].

After the calculation with (19) and (20), we concatenate the
encoded semantic positional embeddings into the input of TGAT
layer, as in (15). Finally, we summarize all variants of our STGN
model in Algorithm 1 and highlight their key differences in
temporal and structural learning modules in Table III.

C. Complexity Analysis

On the other hand, to address the practical concern, we further
conduct an analysis on the computational complexity for the ma-
jor variants of our proposed models, and the results are summa-
rized in Table IV. In the table, M = |Nj | or |Nk| is the number
of the neighbors in a sub-graph when executing the attention-
based structural learning, while N is the number of filtered
messages shown in (6) and Ns = |Sk| is the number of types
of semantic genre information within a content. Additionally, d,
ds and dS are introduced to represent the dimension numbers
of raw input, semantics Sk and the feature accompanied with
semantics (e.g., the Mem′k in (15)), respectively. Notably, we
employ a multi-head attention mechanism for the corresponding
calculations in (6) and (11) to improve the performance, where
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Algorithm 1: The Preference Prediction With STGN.
Require: Request dataset and pre-trained NLP model.
Ensure: The representations of uj and ik, (i.e., Eu

j and
Ei

k) and the preference between uj and ik.
1: Initialize the raw data and the parameters for the whole

network and encode contents’ semantics information
with pre-trained NLP model.

2: Divide the raw data into several mini batches.
3: for each

batch(vuj
,vik , eui, t,Sk) ∈ training dataset do

4: ṅ← Sample negatives;
5: if aggregate Sk by summation then
6: Aggregate Sk to compute Sk with (13);
7: else
8: Obtain user-specific embedding Ejk with (17);
9: Aggregate Sk and Ejk with (16) and (18);

10: end if
11: Concatenate the message Msgjk with the

aggregated semantics in (14);
12: Filter and aggregate historical messages in (6) to

obtain short-term preference hj(T̂ );
13: Update long-term preference Memj with hj(T̂ )

by the method (7);
14: Encode the time slot Δt with (8) for all vertexes;
15: if semantic positional encoding then
16: Encode the summarized semantics with (19)

and (20);
17: end if
18: Incorporate the encrypted time and semantics

features into the updated lone-term preference
Mem′j ;

19: Obtain Eu
j (Tp) and Ei

k(Tp) through a TGAT
module for the structural learning;

20: Predict the preference between users and contents
with (4);

21: Optimize with BCELoss(·).
22: end for

k, k0 = 2 denote their utilized head numbers. As demonstrated
in [18], [19], the complexity of TGN-L, TGN-M and TGN-A are
O(k0Md), O(Nd+ k0Md) and O(k(N2d+Nd2) + k0Md),
respectively. In our work, we augment the prediction perfor-
mance of the conventional TGN model in a sparse dataset by
incorporating extra semantic features, resulting in the increase
of complexity. Specifically, an additional increment ofO(Nsds)
for the semantic summation and O(N2

s ds +Nsd
2
s) for the user-

specific attention mechanism are introduced according to the
selection of semantic aggregator. Finally, with the incorporation
of SPE, we further need another O(Md2s) complexity for the
semantic enhancement and positional encoding. It is noteworthy
that the M2-STGN-A+U+SPE model owns the highest com-
plexity (i.e., O((N2ds +Nd2s) +Md2s + k(N2dS +Nd2S) +
k0MdS)), while the computational complexity for the variants
of lightweight models, TGN-L and TGN-M, are still in an ac-
ceptable level.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present the performance of our proposed
models in prediction and caching tasks. We also compare our
methods with three state-of-the-art models in processing dy-
namic graphs, including TGAT [19], DyRep [29], and TGN [33].
Besides, in order to analyze the effectiveness of semantic fea-
tures, we further adopt some widely-accepted NLP methods to
encode the genres, i.e., one-hot, BERT [22], and Glove [23].
Moreover, experiments with respect to the cache hit rate as well
as the transmission delay and hop count are also conducted to
validate the superiority of our model-based caching methods.

A. Experimental Settings

Dataset: In this paper, the experiments are carried out with
a public dataset, Netflix,4 which records a set of user behaviors
on Netflix in U.K.. Notably, there are many insignificant histor-
ical messages, such as some users only request once or watch
the content for an extremely short period. The burst behavior
is hard to be predicted accurately, and it may mislead other
predictions as well. Therefore, we select those users who have
more than 4 requests and view each requested content for more
than 3 minutes as the valid input for the prediction. The dataset
we actually adopt includes 86,889 interactions, which involve
11,254 different users and 4,057 pieces of content. The number
of interactions is less than the dataset5 used in Ref. [18], while
the numbers of users and contents are larger, making the Netflix
even much sparser. On the other hand, the content genres are
some summarizing keywords of the target, which are eligible to
encapsulate a video’s universal semantic attributes. For instance,
the genres of The Amazing Spider-Man 2 in this dataset are com-
prised of Action, Adventure, Sci-Fi. In this case, the related genre
dimension equals 3. Each content in the used dataset Netflix
usually contains 1 to 8 diverse genres, with a combination of 28
genres in total. Afterwards, we perform a 60%− 20%− 20%
chronological split of the dataset for training, validation, and
testing, respectively.

Evaluation Tasks and Training Configuration: To verify
the effectiveness of our proposed models, we compare our
models with the state-of-the-art models, including TGAT [19],
DyRep [29], TGN [33] and its variants (i.e., TGN-L, TGN-M
and TGN-A). Notably, the receptive field for the graph in GNN
is proportional to the number of GNN layers l and the neighbors
M in each sub-graph. As Ref. [19] suggests, we set l = 2 and
M = 10 inTGAT, while l = 1 andM = 10 inTGN. Besides, we
also compare our models to the TGN model with larger receptive
field, i.e., l = 1, 2 and N = 11, 12, 13, 14, 15, 20.

Furthermore, as for pre-trained NLP models, Glove [23] is
conducted by global word-to-word occurrence statistics from
a large corpus, while BERT [22] is a neural network model
based on 12-layer Transformer. Due to the various techniques
to encode genre information into embedding representations,
the semantic feature dimensions of input in our model are also

4https://www.kaggle.com/datasets/vodclickstream/netflix-audience-behavio
ur-uk-movies

5The dataset used in Ref. [18] involves 5,763 users and 56 contents, which
consists of 175,856 interactions.
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TABLE IV
COMPUTATIONAL COMPLEXITY FOR THE MAJOR VARIANTS OF OUR PROPOSED MODELS

different. Specifically, the raw semantic dimension for encoding
with one-hot is 28, while that BERT and Glove are 738 and
50, respectively. In particular, through the subsequent graph-
based calculation, the final representations with the dimension
of 172 for users can be deemed as encompassing the semantics
as well. Notably, to further reduce the computational cost, we
also adopt an MLP to compress the representations of BERT.
Besides, Ref. [45] also discovers that the outputs from the 6-th to
10-th layers outperform in semantic tasks. Therefore, we average
the embeddings from the 6-th to 10-th layers to investigate the
performance.

Moreover, we conduct experiments under two tasks, i.e.,
transductive task and inductive task. Different from the transduc-
tive task, the validation set and test set in an inductive task may
contain some vertices that have not been observed by models
during the training phase. For both tasks, we adopt the average
precision (AP) and the area under the ROC curve (AUC) as
evaluation metrics.

Caching Policy Setting: As depicted in Fig. 3, we configure
a multi-layer network architecture. The storage capacity for
devices in different tiers is diverse and that in the device closer to
users is typically smaller [41]. Hence, we assume that the Tier
1 can store 5 contents, while 7 and 8 contents can be cached
at Tier 2 and Tier 3, respectively. In other words, based on the
prediction results, we can obtain the content popularity for each
access node as well as an overall rating list. The access nodes
in Tier 1 cache the top-5 content according to their respective
results, while the Tier 2 and Tier 3 deploy the subsequent 7 and
8 contents in the overall rating list that excludes the union set
within Tier 1.

As for the content caching task, our target is to predict con-
tents’ popularity during 24 hours in the test phase. We assume
that the candidate content set I is known apriori. To make the
simulations more practical, we supplement the candidate content
set with a noise set, which consists of the contents that have
been requested within a 50-hour duration before the prediction
starting time. Besides, the user setU of each hour is also assumed
to be known in our simulation. As for other hyperparameters, we
compute the per-hour popularity with ΔP = 1h and δP = 60s
while the threshold valuepthre = 0.995. Notably, our simulations
are conducted with an assumption that more popular content is
cached at devices in closer proximity to users (e.g., mobile edge
nodes). The dynamic bipartite graph is constituted according to
the recorded timestamps Tn, user index uj and content index ik,
which can be easily recorded by edge devices. Therefore, the

Fig. 6. Network with different topologies and their transmission rate.

latency has trivial impact, especially given the latency to collect
data is far smaller than the prediction interval δp.

To verify the superiority of our models in content caching, a
comparison between the traditional caching method, LRU, and
the prediction results based strategy is also carried out. We de-
ploy TGN-A and its variants, i.e., M2-STGN-A and M2-STGN-
A+U, as the predictive models. Due to the tradeoff between
training speed and prediction performance for M2-STGN-L+U
and M2-STGN-L+U+SPE, simulations based on them are exe-
cuted as well. Moreover, testing in the inductive setting, we also
conduct extensive ablation studies with M2-STGN-A+U, whose
performance in preference prediction is the most superior, so
as to examine the influence of different hyperparameters (i.e.,
different sizes of content supplement set and values of δp & pthre)
on content caching. Notably, we adjust the size of the content
supplement set by changing the duration before the starting time.

Apart from the cache hit rate, to further validate the superiority
of our model from a QoS perspective, we also measure the delay
of downloading the first 1 MB packet and the transmission hops
with the assumed topologies illustrated in Fig. 6. The compari-
son is mainly conducted between LRU, and the strategies with
the best-performing model (i.e., M2-STGN-A+U). Moreover,
although Topology 1 in Fig. 6 (i.e., the topology in Fig. 3) is
the topology that we mainly use within the above simulations,
we also verify the performance of deploying our model in
networks characterized by other diverse topologies. Particularly,
compared to Topology 2, an extra connection between two access
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TABLE V
TRAINING TIME AND THE PERFORMANCE OF PREDICTING CONTENT REQUESTS IN BOTH TRANSDUCTIVE AND INDUCTIVE TASKS

TABLE VI
TEST AVERAGE PRECISION RESULTS OF M2-STGN+SPE WITH DIFFERENT

NLP METHODS FOR ENCODING THE GENRE INFORMATION

nodes is constructed in Topology 3, which constitutes a simple
cooperation for the content caching. Besides, in Topology 2
and 3, we randomly allocate the users into two access nodes
and make prediction with the best predictive model for each
community.

B. Results Analysis

Table V demonstrates the prediction performance of our
proposed TGN models as well as the baseline models. It can
be clearly observed that our models are able to yield better
results in both transductive task and inductive task, and even
the primitive models in M1-STGN outperform the counterparts
of TGN. Moreover, the superiority of M1-STGN+U and M2-
STGN+U also proves the effectiveness of the UsAttn semantic
aggregator. In addition, due to the introduction of SPE, we can
also find that the prediction capabilities of most models have
been enhanced, especially for the variants of the lightweight
models (i.e., TGN-L and TGN-M).

Fig. 7 presents the prediction performance ofTGN-Lwith dif-
ferent sizes of receptive field. As the receptive field enlarges, the
performance of TGN-L in both transductive and inductive tasks
improves. However, the average training time for obtaining a
single model is gradually increasing as well. Compared with the
corresponding results in Table V and Fig. 7, we can also discover
that most variant models of TGN-L, which try to have a deeper
insight into the available information through either UsAttn
or SPE, are superior than methods that enlarge the receptive
field (e.g., the stacking of GNN layers or an increase in the
number of first-order neighbors) in both prediction performance
and training speed. In order to achieve a comparable result to
the M2-STGN-L+U+SPE, it takes TGN-L with 2 TGAT layers
at least 4× more time. Obviously, our “breadth-first approach”
for excavating the inherent relationships is more efficient.

Together with the tradeoff between training latency and
accuracy shown in Fig. 8 and the computational complexity
demonstrated in Table IV, the excellent-performing models,
M2-STGN-A as well as its variants M2-STGN-A+U and M2-
STGN-A+U+SPE, achieve competitive accuracy (and possibly
reach a performance plateau even when we adopt Early Stopping
strategy to alleviate the overfitting issue) at the cost of a higher
expenditure of computation and training time, which makes
them primarily suitable for the accuracy-centric scenarios. It
should be noted here that the application of SPE success-
fully narrows the performance gaps between the fast-trained
lightweight models (i.e., M2-STGN-L+U and M2-STGN-M+U)
and the best-performing model (i.e., M2-STGN-A+U) while
maintaining the training latency in an acceptable level, as shown
in Fig. 8. Given the balance of computational complexity and
accuracy, the counterpart lightweight models equipped with
SPE emerge as a feasible choice for access nodes with limited
computing resources.
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Fig. 7. Test average precision (the bars) and training time (the lines) ofTGN-L
with different numbers of aggregating neighbors and TGAT layers.

Fig. 8. Tradeoff between accuracy (Average Precision in %) and latency
(Training Time per epoch in seconds) of different training strategies.

Fig. 9 compares the average hit rate of the caching strategy
based on prediction results and LRU for the whole network
architecture in both transductive and inductive tasks during 24
hours. It can be observed that relying on our proposed models,
the overall caching performance of the prediction-based strategy

Fig. 9. Average hit rate performance of different algorithms in 24 hours.

is always better than LRU. The improvement of prediction
accuracy increases the cache hit rate as well. In particular,
the caching strategy based on M2-STGN-A+U surpasses other
models, which is in line with the prediction performance. More-
over, even considering the final performance in caching, the
lightweight model, M2-STGN-L+U+SPE, is still a promising
choice for the resource-limited access node. Actually, we also
conduct simulations for the other two baselines, i.e., TGAT
and DyRep, but their poor performance results in too many
false positive predictions, failing to distinguish the popularity of
contents.

Fig. 10 reveals the hit rate performance in the inductive setting
with different hyperparameters for caching. It can be observed
in Fig. 10(a) that the caching performance with pthre < 0.8 is
equivalent to LRU. Since the caching strategy, introduced in
Section III-B, decides the prioritization for contents with the
same predicted popularity consistent with LRU, such an ab-
normal phenomenon implies that our model fails to distinguish
the popularity of contents when adopting an improper threshold
value. However, for a larger threshold, the caching gain from
our model becomes more evident, especially when the threshold
is close to 1, the strategy relying on our model outperforms
the traditional LRU at all tiers. Surprisingly, a more frequent
prediction operation does not always lead to an improvement
in the hit rate. The simulation results in Fig. 10(b) present
that when δp = 120s, our model brings the greatest gain to the
cache task. On the other hand, Fig. 10(c) shows that the size of
candidate content also affects the final caching results. As the
number of candidate content gradually increases, it gives rise to
a declined overall hit rate, but is still superior to LRU. To sum up,
these experiments demonstrate the robustness of the proposed
methods for caching in cases with large number of inactive users.

Fig. 11 shows the cumulative transmission delay and hop
count within 24 hours. It can be observed that caching based
on our M2-STGN-A+U model consistently outperforms the
strategy with the traditional LRU rule. Compared with caching in
Topology 2, the performance improvement observed in Topology
3 stems from the incorporation of the connection between two
edge nodes, facilitating a simple collaboration and compensating
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Fig. 10. Hit rate performance in the inductive setting with different hyperparameters for caching.

Fig. 11. Cumulative transmission delay and hop count within 24 hours under 3 topologies.

for the lack of cooperation in making caching decision. Con-
sequently, exploring a smarter caching decision strategy for a
complicated network topology is a promising direction for our
future research.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have developed an STGN architecture to
improve the performance of popularity prediction in a sparse
dataset. We have taken into account the genres of the contents
as semantic information and profiled users’ intentions by at-
taching the semantics into the conventional TGN. The proposed
STGN models have significantly ameliorated the user prefer-
ence speculation performance. Furthermore, we have devised a
UsAttnmechanism for a finer-grained semantic aggregation of
diverse genres related to the same content. Meanwhile, an SPE
function, targeting at assisting the association analysis in the
attention-based graph learning, has been adopted as well. Due to
the superior prediction performance, the caching strategy based
on our STGN model also wins a great improvement in cache hit
rate and other metrics from the QoS perspective under extensive
simulations.

Our model also provides a paradigm for the fusion of
semantics and AI models. Specifically, UsAttn suggests a
novel method to aggregate multiple semantic information fine-
grainedly. Moreover, the improvement with the maintained com-
putational efficiency manifested in the lightweight model (e.g.,
theM2-STGN-L+U+SPE) implies thatSPE is a feasible answer

on how to efficiently incorporate and utilize the aggregated
semantic information with AI models.

Finally, apart from utilizing the additional side information,
a video embedding obtained through an aggregation of its
spatial and temporal features, which embodies the semantics
substantially [46], is also viable. Although training a mature
video semantic extractor that can harness the inter-correlations
among videos is a great challenge, given its fundamental roles
in semantic video communications [47], it is also a promising
research that warrants future exploration. Meanwhile, besides
the application in caching, we also believe that it has the potential
to be generalized to other network architectures that desire AI
models to be integrated with semantic analysis, like intent-based
network (IBN) [48].
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