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Abstract—Employing massive Mobile AI-Generated Content
(AIGC) Service Providers (MASPs) with powerful models, high-
quality AIGC services become accessible for resource-constrained
end users. However, this advancement, referred to as mobile AIGC,
also introduces a significant challenge: users should download large
AIGC outputs from the MASPs, leading to substantial bandwidth
consumption and potential transmission failures. In this paper,
we apply cross-modal Generative Semantic Communications (G-
SemCom) in mobile AIGC to overcome wireless bandwidth con-
straints. Specifically, we utilize cross-modal attention maps to indi-
cate the correlation between user prompts and each part of AIGC
outputs. In this way, the MASP can analyze the prompt context
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and filter the most semantically important content efficiently. Only
semantic information is transmitted, with which users can recover
the entire AIGC output with high quality while saving mobile
bandwidth. Since the transmitted information not only preserves
the semantics but also prompts the recovery, we formulate a joint
semantic encoding and prompt engineering problem to optimize
the bandwidth allocation among users. Particularly, we present
a human-perceptual metric named Joint Perceptual Similarity
and Quality (JPSQ), which is fused by two learning-based mea-
surements regarding semantic similarity and aesthetic quality,
respectively. Furthermore, we develop the Attention-aware Deep
Diffusion (ADD) algorithm, which learns attention maps and lever-
ages the diffusion process to enhance the environment exploration
ability of traditional deep reinforcement learning (DRL). Exten-
sive experiments demonstrate that our proposal can reduce the
bandwidth consumption of mobile users by 49.4% on average, with
almost no perceptual difference in AIGC output quality. Moreover,
the ADD algorithm shows superior performance over baseline DRL
methods, with 1.74× higher overall reward.

Index Terms—Cross-Modal attention, diffusion, generative
semantic communications, mobile AIGC.

I. INTRODUCTION

A S THE latest paradigm for content creation, AI-Generated
Content (AIGC) [1], [2] has attracted great attention from

both academia and industry. Recently, we have witnessed the
phenomenal success of AIGC in various fields, such as Stable
Diffusion and DALL-E· 3in text-to-image generation, ChatGPT
in Q & A, and MusicLM in music composition [3]. Nonethe-
less, the strong power of AIGC models relies on extremely
large neural networks with billions of parameters. For instance,
DALL-E· 2 and GPT-3 contain 3.5 and 175 billion parameters,
respectively [3]. Moreover, considering the difficulty of gen-
erating high-dimensional content, such as images and videos,
each round of generative inference costs considerable power.
Such resource-intensive features severely hinder the further
application of AIGC, especially in mobile/edge scenarios with
resource constraints.

To overcome resource limitations and provide ubiquitous
high-quality AIGC services, researchers sought help from
mobile-edge computing and presented the concept of Mobile
AIGC [1]. Specifically, massive end users can offload their
AIGC tasks to Mobile AIGC Service Providers (MASPs), e.g.,
base stations. With abundant computing resources to operate
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AIGC models, the MASP can provide paid AIGC inference
services according to users’ task description/input, so-called
prompts. In this way, users can receive high-quality AIGC
outputs while circumventing hefty computation costs on their
mobile devices. Recently, a series of breakthroughs regarding
optimizing AIGC models and managing mobile AIGC networks
have been proposed. For instance, Qualcomm published the
world’s first on-device Stable Diffusion [4]. Chen et al. [5]
performed GPU-aware optimization on large diffusion models,
accomplishing fast text-to-image AIGC on mobile-edge servers
and devices. From the network perspective, Du et al. [6] and
Wen et al. [7] scheduled the task allocation between users and
the MASPs and designed the incentive mechanism for mobile
AIGC, respectively.

Despite the achievements that have been made, the existing
works ignore the bandwidth consumption of mobile devices.
We observe that mobile AIGC just reduces users’ computation
overhead at the expense of increasing bandwidth consumption
since users should download large AIGC outputs from the
MASP after each round of inference. Hence, two challenges
exist in the current paradigm.
� Modality Transfer during AIGC Inference: AIGC inference

generally involves generating high-dimension informa-
tion from low-dimension prompts, e.g., generating images
(hundreds of KBs) from texts (hundreds of bytes). Such
modality transfers might cause failed transmission if large
AIGC outputs block the downlink channel. Incomplete
or damaged AIGC outputs are less useful to users and
downstream applications.

� Contradiction between Generation Quality and Bandwidth
Consumption: The higher the quality of AIGC outputs,
typically, the larger their sizes, and the more bandwidth
is required for transmission. Therefore, if encountering
transmission failure, users need to adjust and/or reduce
their requirements for the quality of AIGC outputs and ask
the MASP for regeneration. Such a contradiction prevents
users from receiving high-quality AIGC outputs. More-
over, regeneration consumes additional bandwidth.

In this paper, we adopt Semantic Communications (Sem-
Com) [8] in mobile AIGC to overcome the bandwidth con-
straints. Instead of transmitting every bit, SemCom circumvents
the channel capacity limitation by only transmitting critical
semantic information, enabling users to accomplish specific
applications while saving wireless bandwidth [8]. In SemCom-
aided mobile AIGC, a MASP can extract semantic features
of the AIGC outputs, thereby compressing the content to be
transmitted. Then, the users can apply a lightweight decoder
to recover the source AIGC outputs with high fidelity. Note
that several studies have explored the potential of SemCom in
mobile AIGC [9], [10]. However, they do not implement the
systematic SemCom-aided mobile AIGC and perform intensive
experiments to illustrate how much bandwidth can be saved
by SemCom without affecting the AIGC output quality on the
user side. In contrast, we present a novel SemCom framework
containing three designs oriented to mobile AIGC: i) To ex-
tract AIGC outputs’ semantics and perform output recovery
efficiently, we introduce a semantic extraction module in the

MASP’s AIGC model and equip users with generative decoders,
forming the Generative SemCom (G-SemCom). ii) Noticing the
modality transfers during AIGC inferences, our semantic infor-
mation takes the form of a series of cross-modal attention maps,
which associate each prompt word to certain parts of the AIGC
output by attention scores. Hence, we can perform fine-grained
semantic analysis of the AIGC outputs, filtering the content with
the most important semantic meaning for users. iii) Traditional
SemCom only optimizes the semantic similarity between the
source and recovered information. However, in mobile AIGC,
users require the recovered AIGC outputs to be high-quality.
To this end, we present the joint optimization, which performs
prompt engineering to ensure output quality when allocating
wireless bandwidth for output transmission.

The main contributions of this paper can be summarized as
follows:
� G-SemCom Framework for Mobile AIGC: To the best of

our knowledge, we are the first to present the cross-modal
G-SemCom framework for mobile AIGC. Supported by G-
SemCom, each MASP only needs to transmit compressed
semantic information of the AIGC output. On the user side,
a generative decoder is deployed for recovery. In this way,
the users can acquire high-quality AIGC outputs while
saving considerable computation and bandwidth resources.

� Attention-Aware Semantic Extraction: Noticing the cross-
modality feature of mobile AIGC, we propose an attention-
aware method to extract semantic features of the source
information. Specifically, we visualize the activation of
the cross-attention layers in diffusion-based AIGC models,
forming a series of cross-modal attention maps. By scoring
the correlation between the user prompt and each part of the
generated AIGC output, efficient semantic encoding can be
performed from the user’s perspective, thereby ensuring the
semantic correctness of the recovered AIGC output.

� Joint Semantic Encoding and Prompt Engineering: We
formulate a joint optimization problem to optimize the
bandwidth allocation. Particularly, since the information
sent by MASP not only preserves semantic features but
also serves as the prompt for guiding the recovery of
AIGC outputs, we consider the joint semantic encoding
and prompt engineering with the goal of simultaneously
maximizing the semantic similarity and output quality
while saving wireless bandwidth. To do so, we define
a novel human-perceptual metric called Joint Perceptual
Similarity and Quality (JPSQ) to indicate the efficiency
of G-SemCom in mobile AIGC. Moreover, we develop the
Attention-aware Deep Diffusion (ADD) algorithm to solve
the optimization, which utilizes diffusion steps to achieve
strong exploration ability.

� Experimental Results: Extensive experiments prove the
validity of our proposals. Specifically, the bandwidth con-
sumption of mobile users can be reduced by 49.4% on
average, while the perceptual output quality score [11] only
drops by 0.0299. Moreover, the ADD algorithm signifi-
cantly outperforms baseline Deep Reinforcement Learning
(DRL) algorithms regarding converge speed and efficiency
for bandwidth allocation.
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Fig. 1. An example of AIGC (left). The comparison between traditional
communication and SemCom (right).

The remainder of this paper is organized as follows.
Section II presents some preliminary and reviews the related
works. Our motivation and system model are shown in Sec-
tion III. In Section IV, we elaborate on our G-SemCom frame-
work, especially the attention-aware semantic extraction, for
mobile AIGC. Then, Section V describes the joint optimization
of semantic encoding and prompt engineering via ADD. The
experimental results and analysis are illustrated in Section VI.
Finally, Section VII concludes the paper.

II. PRELIMINARY AND RELATED WORK

A. Preliminary

1) AIGC: AIGC aims to assist or replace manual content
generation by automatically generating content according to
user-inputted prompts [1]. The core of AIGC is Generative AI
(GAI) models, which are trained to produce data that mimic
the distribution described by the input. Representative GAI
models include diffusion, transformer, Generative Adversarial
Networks (GAN), etc [1]. These models are integral to appli-
cations like creating photorealistic images or composing music.
For example, users can request ChatGPT to generate an image of
”a serene beach at sunset.” As shown in Fig. 1(left), the generated
image visually represents this scene.

2) Semantic Communication: Traditional data transmission
methods primarily focus on transmitting every bit with min-
imal loss. In contrast, SemCom is task-oriented, prioritizing
the meaning and utility of the data over its exact form [12].
This shift allows for the elimination of redundant data, thereby
reducing transmission overhead. Hence, the process of SemCom
typically involves semantic extraction on the sender side, where
the vital semantics of source information that contributes to
task accomplishment is distilled and encoded. Afterward, on
the receiver side, such semantics can be decoded to efficiently
accomplish the designated task. For instance, consider a scenario
where the receiver needs to render 3D avatars. As shown in
Fig. 1(right), instead of sending the entire user photo, the sender
can train a semantic extractor, which only transmits the skeleton
of the user.

B. Mobile AIGC

Mobile Resource Constraints: Given the constraints of mo-
bile resources, a series of lightweight AIGC models have been
presented. For instance, Chen et al. [5] conducted GPU-aware
optimization on large diffusion models, realizing the on-device
text-to-image generation in 12 seconds. SnapFusion [13] utilized

step distillation and further reduced the inference time to 2 sec-
onds on mobile devices. On Feb. 2023, Qualcomm developed the
world’s first on-device Stable Diffusion [4]. Likewise, Google
and Apple also presented MediaPipe [14] and Core-ML Stable
Diffusion [15], respectively. From the system perspective, the
architecture and management of mobile AIGC are also evolving
rapidly. Xu et al. [1] systemically introduced the potential of
mobile-edge networks for accommodating AIGC services. Du
et al. [6] discussed the task scheduling of mobile-edge AIGC,
improving the system capacity by assigning each AIGC task to
the most appropriate MASP. Wen et al. [7] designed the incentive
mechanism for rewarding MASPs, ensuring the participation
and economic sustainability of mobile AIGC. Despite reducing
computing consumption, mobile AIGC users need to frequently
download large AIGC outputs from MASPs, which costs huge
wireless bandwidth. To this end, we present an end-to-end
SemCom framework for mobile AIGC.

Modality Transfer during AIGC Inferences: AIGC inferences
refer to the process of generating high-dimensional content from
user-friendly low-dimensional prompts [1]. To semantically
align the generated content with prompts, cross-modal attention
mechanisms are pivotal and widely adopted by Stable Diffusion,
CLIP, etc. [16]. As presented in Transformer [16], attention
mechanisms enable neural networks to focus dynamically on rel-
evant parts of the input during the training process, ensuring that
the output adheres closely to the input’s described attributes and
context. In AIGC, cross-modal attention extends this concept
to bridge data in different modalities, aligning features across
these modalities and ensuring the accurate translation of the
prompt’s semantics into the generated content [17]. Hence, this
paper exploits semantics from cross-model attention maps.

C. Generative Semantic Communications (G-SemCom)

Generative models have shown great potential to be incorpo-
rated into SemCom, which we coin as G-SemCom [18]. On
the sender side, generative models can help extract human-
interpretable semantic features. For instance, Wang et al. [8] gen-
erated semantic triples (formed by object A-relationship-object
B) to compress source textual message. For image-oriented G-
SemCom, Liu et al. [19] evaluated various formats for represent-
ing visual semantics, e.g., skeleton and depth maps. Compared
with parameterized semantic features used by traditional Sem-
Com, such human-interpretable semantics are easy to analyze,
making human-in-the-loop SemCom optimization possible. On
the receiver side, efficient semantic decoding and information
recovery can be realized by generative decoders. For instance,
He et al. [20] and Grassucci et al. [18] adopted GANs and
diffusion models to reconstruct images that are semantically
equivalent to the source images. Finally, by training on huge
datasets, large generative models can serve as powerful shared
knowledge bases between senders and receivers [21]. For ex-
ample, Jiang et al. [21] developed a training-free knowledge
base by Meta Segment Anything, realizing zero-shot semantic
extraction and supporting fast information recovery. Motivated
by such progress, this paper leverages G-SemCom to help relieve
the heavy transmission burden of mobile AIGC.
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Fig. 2. Local AIGC (left) and Traditional Mobile AIGC (right).

D. Prompt Engineering

Prompt engineering refers to the process of crafting/finding
the most appropriate prompt for the given downstream task,
aiming to maximize the generation quality [22]. According to the
specific prompt form, various prompt engineering methods have
been proposed. Taking textual prompts, e.g., the instructions
that we input to ChatGPT, as an example, the authors in [23]
and [24] presented the prompt paraphrasing and searching,
respectively. Despite adopting different strategies, the common
principle is finding the best textual template for reformulating
raw prompts, facilitating pretrained generative models to asso-
ciate downstream tasks with the learned knowledge. Apart from
determining the generation quality, in mobile AIGC, prompt
engineering also directly affects the network-level performance.
Liu et al. [3] stated that if users keep using low-quality prompts,
frequent re-generation will cause considerable service fees, extra
service latency, and bandwidth consumption. To this end, we
jointly perform semantic encoding and prompt engineering on
the sender side, thereby optimizing the input fed to the receiver’s
generative decoder while saving bandwidth.

III. MOTIVATION AND SYSTEM MODEL

A. Motivation

Without loss of generality, we consider the text-to-image
AIGC scenario in this paper. However, the proposed framework
and algorithms are applicable to other forms of AIGC, which
will be discussed in Section VI-E. Suppose that users adopt
“A blue car driving through the city.” as the prompt for image
generation. The existing AIGC paradigms include:
� Local AIGC: Due to constrained computing resources, if

generating images locally, the users can only afford to
utilize compressed AIGC models [25], resulting in poor
generation quality [see Fig. 2(left)].

� Traditional Mobile AIGC: Leveraging mobile AIGC, the
users can call MASPs to generate high-quality images
using powerful AIGC models [26]. Nonetheless, repeated
image downloads from the MASPs consume considerable
communication resources. Moreover, given the limited
wireless bandwidth, large output images may not be fully
transmitted. Damaged or incomplete images are useless to
users [see Fig. 2(right)].

To this end, we develop G-SemCom for mobile AIGC. Our
goal is to enable mobile users to acquire high-quality images
under computing and communication resource constraints.

Fig. 3. The system model. Step 1: Cross-modal attention map generation,
Step 2: Attention-aware semantic extraction, and Step 3: Generative decoding.

B. System Model

As shown in Fig. 3, we consider the system with one MASP
and N users, denoted by U = {U1, U2, . . . , UN}. However, the
model can be extended straightforwardly for multiple MASPs.
To acquire high-quality images, the users first send their prompts
to the MASP. Serving by mobile edge servers and base sta-
tions [27], the MASP operates Stable Diffusion [26] 1, the
start-of-the-art text-to-image model, and provides generative
inference services for the users. In this way, high-quality source
images can be generated. Then, G-SemCom is applied to over-
come the bandwidth constraints. Specifically, the MASP gener-
ates a series of cross-modal attention maps during the inference,
which associate each prompt word with certain source image
pixels (Step 1). After attention-aware semantic extraction (Step
2), only the most semantically important pixels serve as semantic
information and are transmitted over a wireless channel. Then,
the users employ a generative decoder, taking semantic infor-
mation as the prompt to recover the source image (Step 3).
Particularly, to strike an optimal balance between the limited
bandwidth and the human-perceptual G-SemCom experience,
we formulate a joint semantic encoding and prompt engineering
problem. This aims to optimize the bandwidth allocation among
multiple mobile AIGC users. Next, we illustrate the transmission
model. Afterward, Sections IV and V discuss the G-SemCom
design and the joint optimization problem, respectively.

C. Transmission Model

We utilize the orthogonal frequency division multiple access
(OFDMA) technique [8] to model the wireless transmission
between the MASP and users. Specifically, each user is allocated
one downlink orthogonal resource block (RB). Suppose that the
ith RB is assigned for transmitting semantic information Si to
user Ui, the corresponding downlink channel capacity is defined

1This paper selects Stable Diffusion as an example due to its well-proven
generation quality and easy accessibility. Our framework can adapt to vari-
ous mainstream AIGC models that incorporate attention mechanisms, such as
Sora [28] and StoryDiffusion [29].
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TABLE I
THE MAIN MATHEMATICAL NOTATIONS

as [8]

ci = W log2

(
1 +

Pφi

In +WN0

)
, i ∈ {1, 2, . . . , N} (1)

whereW is the bandwidth of each RB;P means the transmission
power of the MASP, Iq means the interference caused by the
base stations that are located in other service areas and use the
ith RB, and N0 is the noise power spectral density. φi = γi d

−2
i

represents the channel gain between the MASP and user Ui with
γi being the Rayleigh fading parameter and di being their phys-
ical distance. Here, we consider that the transmission latency
between the MASP and user Ui is limited to Li. Hence, given
the data rate ci, the maximum size of semantic information can
be determined. Note that the important mathematical notations
used in this paper are summarized in Table I.

IV. CROSS-MODAL G-SEMCOM FOR MOBILE AIGC

In this section, we illustrate the design of our G-SemCom
framework for mobile AIGC. First, we introduce the process
of source image generation. Then, we demonstrate the gener-
ation of cross-modal attention maps. Finally, we develop the
G-SemCom encoder and decoder.

A. Source Image Generation

According to the textual prompt, the MASP can generate a
source image using Stable Diffusion, depicting the objects and

scenes described by the user. As shown in Figs. 4(a) and (b), to
realize such text-to-image generations, Stable Diffusion adopts
a modular architecture with three components, namely a deep
visual-language model called CLIP [30], a variational autoen-
coder (VAE) [3], and a UNet-based noise predictor [17]. To train
Stable Diffusion, a large dataset containing massive caption-
image pairs is first prepared. During each training iteration, the
fetched image and its caption are encoded by VAE and CLIP into
a latent vector x0 and word embeddings w := [w1, . . . , wlW ],
respectively. Afterward, a Markov process called forward dif-
fusion is performed. Specifically, x0 is gradually perturbed by
adding noise for T times, until it becomes a pure Gaussian noise
xT , i.e.,

q (x1:T | x0) :=

T∏
t=1

q (xt | xt−1) , (2)

where each denoising step satisfies

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
, (3)

whereI represents the identity matrix. Note that{βt}Tt=1 follows
a pre-defined schedule so thatp(xT ) is approximately zero-mean
isotropic [16]. The forward diffusion aims to train the noise
predictor, which utilizes the UNet to learn the amount of noise
that should be added in each step. For generating new images,
Stable Diffusion first randomly generates a latent vector xT .
Then, it performs the reverse diffusion process to subtract noise
from xT . According to [31], such a denoising process can be
expressed as

pθ (xt−1 | xt) := N (xt−1;μθ(xt, t,w), βtI) , (4)

μθ(xt, t,w) =
1√
αt

(
xt −

βt√
1− ᾱt

εθ (xt, t)

)
, (4a)

αt := 1− βt, ᾱt :=

t∏
i=1

αi, (4b)

where εθ(xt, t;w) means the noise predicted by UNet with
parameters θ. Iteratively processing (4), the latent representation
of the required image, i.e.,x0, can be generated. Finally,x0 is de-
coded by VAE and becomes a high-quality and user-perceivable
source image.

B. Cross-Modal Attention Map

From (4), we can observe that text embeddings w condition
the image generation, which explains why the generated im-
ages are semantically equivalent to user prompts. As shown in
Fig. 4(b), in Stable Diffusion, the text embeddings and latent
image vector are bridged by UNet’s spatial transformer blocks
in the form of cross-modal attention. To be specific, UNet is ba-
sically composed of K downsampling convolutional blocks and
the corresponding upsampling blocks [see Fig. 4(b)]. Suppose
that given a latent image vector xt ∈ Rω×h (t ∈ {1, 2, . . . , T}),
first, the downsampling blocks output a series of vectors

{vdi,t}Ki=1, where vdi,t ∈ R�
ω
ci
�×� h

ci
� for some c > 1. Then, the

upsampling blocks iteratively upscale vdK,t to {vui,t}0i=K−1,
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Fig. 4. The illustration of generating source images and cross-modal attention maps. (a): The CLIP and VAE modules. (b): The UNet architecture and diffusion
process. (c): The attention map of word [car].

where vui,t ∈ R�
ω
ci
�×� h

ci
�. To support conditioned content gen-

eration, diffusion-based AIGC models like Stable Diffusion at-
tach two more blocks to each downsampling/upsampling block,
namely a resblock and a spatial transformer [17]. They are
responsible for providing t andw conditions in (4), respectively.
In this paper, we focus on the latter since the cross-modal
attention reflects the modality transfer happening during the
AIGC inference. For each downsampling/upsampling block, the
cross-modal attention corresponding to it can be denoted by

vdi,t := F
(i)d
t

(
v̂di,t,w

) (
W (i)

v w
)
, (5)

F
(i)d
t

(
v̂di,t,w

)
:= softmax

⎛
⎝
(
W (i)

q v̂di,t

)(
W

(i)
k w

)
T

√
d

⎞
⎠, (6)

where F
(i)d
t denotes the normalized downsampling attention

score array. The attention of each word wz, z ∈ {1, 2, . . . , lW }
on the 2D intermediate coordinate of the lth head (l ∈
{1, 2, . . . , lH}) belonging to the ith downsampling block can
be measured with a score within [0, 1]. W k, W q, and W v

are projection matrices with lH attention heads; d is a scaling
factor. Note that for simplicity, we do not show the equations of
upsampling attention score array F

(i)u
t , which are similar to (5)

and (6). As shown in Fig. 4(c), the intermediate coordinate, in
the form of [x, y], is locally mapped to a surrounding affected
square area in the source image. In this way, we can quantify
the correlation between the given prompt word and each image
pixel according to the attention score value. However, the down-
sampling/upsampling blocks of UNet vary in size, resulting in
a series of attention maps with different scales. Based on [16],
as shown in Fig. 4(c), we upscale all F (i)d

t and F
(i)u
t to the

original image size, i.e., ω × h, using bicubic interpolation.
Then, the attention scores are summed up over the heads, layers,
and diffusion steps, forming the cross-modal attention map as
follows

AR+

z [x, y] :=

T∑
t=1

K∑
i=1

lH∑
�=1

(
F

(i)d
t,(z,�)[x, y] + F

(i)u
t,(z,�)[x, y]

)
, (7)

where z and l represent the indexes of the word embedding and
downsampling/upsampling block, respectively. R+ indicates
that any AR+

z [x, y] belongs to positive real number. Finally, we
generate the binary cross-modal attention maps by

A{0,1}z [x, y] := H

(
AR+

z [x, y] ≥ ξmax
x,y

AR+

z [x, y]

)
, (8)

where ξmaxx,y A
R+

z [x, y] is the pre-defined threshold. H(·)
represents the Heaviside step function, which outputs 1 when
the value of A{0,1}z [x, y] exceeds the threshold, and 0 otherwise.
Compared with fine-grained attention scores, i.e., AR+

z [x, y],
A
{0,1}
z [x, y] facilitates the set operations on multiple attention

maps, which are discussed below.

C. Attention-Aware Semantic Extraction

With the cross-modal attention maps, in this part, we extract
semantic features from the source image. The entire procedure
is shown in Algorithm 1.

1) Textual Prompt Deconstruction: First, the MASP ana-
lyzes the textual prompts provided by users, denoted by p :=
[p1, p2, . . . , pM ], trying to understand the semantic meaning of
users’ requirements. To do so, we utilize Spacy [16] to perform
the Part-of-Speech tagging, i.e., classifying the words according
to their linguistic functions. As shown in Table II, we consider
seven part-of-speech types that are semantically important [16]
and use X to include all other types (e.g., determiner, inter-
jection, and conjunction) with less semantic meanings. Take
“A blue car driving through the city.” as an example. Words
[car] and [city] belong to NN ; [blue] belongs to
ADJ ; [driving] belongs to V ERB; [through] be-
longs to ADP; [A], [the], and [.] belong to X . Afterward,
we perform dependency parsing [32], aiming to analyze the
grammatical structure of p and find out related words as well as
their correlation. As shown in Fig. 5(a), each dependency item
takes the form of an arrow, from head to the word that modifies it,
called dependent. Similarly, this step can be realized by Spacy.
In this way, the Boolean dependency matrix C ∈ RM×M can
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TABLE II
THE PART-OF-SPEECH OF TEXTUAL PROMPTS

Fig. 5. Attention-aware semantic extraction. (a): Dependency parsing. (b):
Boolean dependency matrices C and C∗. (c): Dependency level matrix D∗ and
⊗ operation.

be constructed as follows

C =

⎡
⎢⎢⎣
R
{0,1}
(1←1) · · · R

{0,1}
(1←i) · · · R

{0,1}
(1←M)

R
{0,1}
(i←1)

. . . R
{0,1}
(i←i)

. . . R
{0,1}
(i←M)

R
{0,1}
(M←1) · · · R

{0,1}
(M←i) · · · R

{0,1}
(M←M)

⎤
⎥⎥⎦ , (9)

where R
{0,1}
(i←j) (i, j ∈ {1, 2, . . . ,M}) takes the value 1 if the

dependency exists between pi and pj , i.e., the head and the
dependent, respectively, and 0 otherwise.

Due to weak semantic meaning, the words belonging toX can
be filtered out to reduce the computation complexity. Accord-
ingly, C can be compressed to C∗ ∈ R(M−ζ)×(M−ζ), where ζ
represents the number of X-type words in p. The original and
compressed dependency matrices of “A blue car driving through
the city.” are shown in Fig. 5(b).

C∗ can reflect the importance of each word based on the
number of dependencies that it involves. Nonetheless, according
to the types of the head and the dependent, as well as the
function that the dependent acts on the head, there exist more
than 18 kinds of dependencies [32]. Some dependencies, such
as (amod: [blue] ← [car]), are strong, while the others,
such as (det: [A] ← [car]), are weak. To this end, we
leverage the Mean Intersection over Union (mIoU) to calculate
the fine-grained semantic importance of each word. Suppose that
the pixels of the entire source image construct the Universe S ,
and the pixels included by the binary attention maps of words
pi and pj are sets S

A
{0,1}
i

and S
A
{0,1}
j

, respectively. mIoU can be

derived as

mIoU(i←j) =
|S

A
{0,1}
i
∩ S

A
{0,1}
j
|

|S
A
{0,1}
i
∪ S

A
{0,1}
j
| . (10)

As shown in Fig. 5(c), mIoU(i←j) can measure the similarity of
the areas covered by the binary attention maps of words pi and
pj and is within [0, 1]. Consequently, the higher the mIoU value,
the stronger the dependency exists in two words. Using mIoU,
we can acquire the following dependency level matrix, denoted
by D∗ ∈ R(M−ζ)×(M−ζ).

D∗ =

⎡
⎢⎢⎣
L
{0,R+}
(1←1) · · · L

{0,R+}
(1←i) · · · L

{0,R+}
(1←σ)

L
{0,R+}
(i←1)

. . . L
{0,R+}
(i←i)

. . . L
{0,R+}
(i←σ)

L
{0,R+}
(σ←1) · · · L

{0,R+}
(σ←i) · · · L

{0,R+}
(σ←σ)

⎤
⎥⎥⎦ , (11)

where L
{0,R+}
(i←j) (i, j ∈ {1, 2, . . . , (M − ζ)}) takes the value of

mIoU(i←j); σ equals M − ζ. Finally, the semantic importance
of each word, denoted as s := {s1, s2, . . . , sM−ζ}, in which the
X-type words have been filtered out, can be derived as

s = softmax(C∗ ⊗D∗), (12)

where ⊗ represents the matrix multiplication operation and
is shown in Fig. 5(c). Note that s is normalized by softmax,
ensuring that every si (i ∈ {1, 2, . . . , (M − ζ)}) is within [0, 1]
and

∑M−ζ
i=1 si = 1. In our example, the importance of [blue],

[car], [driving], [through], and [city] are 0.16,
0.20, 0.31, 0.17, and 0.16, respectively. Hence, two major objects
and their relationship, i.e., [car], [city], and [driving],
convey the major semantic meaning of the entire source image.
In contrast, the preposition, i.e., [through], is weak in terms
of semantic importance.

2) Visual Prompt Segmentation: Up till now, we can evaluate
the semantic importance of each word and link it to certain
areas of the source image. However, as shown in Fig. 6(a),
the attention distribution of some words (especially ADV- and
VERB-type ones) in the source image is scattered, containing
a lot of outlier noise. Such noise not only wastes bandwidth
resources but also increases the difficulty of image recovery.
To this end, we intend to perform clustering on the cross-modal
attention maps according to the attention density and remove the
noise. Therefore, leveraging Density-Based Spatial Clustering
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Fig. 6. Illustration of attention clustering. (a): The raw and binary attention
maps. (b): The illustration of the DBSCAN algorithm. (c): The clustering results.
Note that noise and noise clusters refer to scatters and clusters with less than
30 points, respectively. Due to the limited size, they cannot convey enough
semantics. Hence, they will be filtered out.

of Applications with Noise (DBSCAN) [33], we perform the fol-
lowing three-step attention-aware visual prompt segmentation.

Attention Point Clustering: Given a cross-modal attention
map, i.e., A

{0,1}
z (z ∈ {1, 2, . . . , (M − ζ)}), we first cluster

dense attention points and filter the noise, using a sophisticated
clustering algorithm called DBSCAN2. DBSCAN conducts
clustering by first detecting all the core points that have at least
Ω neighbors, i.e.,

Nε(p) ≥ Ω, Nε(p) = |{q ∈ SA{0,1}z
|d(p, q) ≤ ε}|, (13)

where ε and Ω are user-defined and represent the distance
threshold and the required number of neighbors within ε, respec-
tively. d is the function for distance measurement. As shown in
Fig. 6(b), DBSCAN starts from a random core point, e.g., p1, and
iteratively groups all neighboring core points (i.e., p2 . . . , p6)
into the same cluster. The border points that are close to any of
the aforementioned core points are also included (i.e., p7 and
p8). Afterward, another core point that has not been clustered,
e.g., p8, can be selected, and the above process is repeated. The
algorithm will stop when all the core points are clustered. Ac-
cordingly, the remaining points are viewed as noise. More details
are shown in Algorithm 1. Fig. 6(c) illustrates the clustering
results of the attention map of the word [blue].

Source Image Segmentation: Step 1 will be performed for
all the acquired attention maps. Afterward, we can acquire
a series of clean image segments, denoted by S∗

A
{0,1}
z

(∀z ∈
{1, 2, . . . , (M − ζ)}).

Semantic Information Packing: Finally, the MASP packs se-
mantic information, which guides the users to recover seman-
tically similar and high-quality images. Therefore, the pixels

2DBSCAN is applied due to its wide adoption and well-proven performance
in clustering points following complex distributions. The cluster algorithm is
designed as a pluggable module in our framework. Other algorithms, such as
k-means and OPTICS [34], can also be applied.

Algorithm 1: The Operations on the MASP-Side.

Require: g0, p = [p1, p2, . . . , pM ],
A
{0,1}
z [x, y], z ∈ {1, 2, . . . ,M} ## source image, prompt,

and binary attention maps
Ensure: I ## semantic information
1: procedure Textual Prompt Extractionp
2: Call spacy to perform text-to-speech tagging and

dependency parsing
3: Initialize C = 0M×M

4: for all pi ∈ p do ## row iteration
5: for all pj ∈ p do ## column iteration
6: if i = j then
7: Cij = 1 ## each world is correlated to itself
8: else
9: if pi and pj has dependency with pi as the

head and pj as the dependent then
10: Cij = 1 ## mark the dependency
11: end if
12: end if
13: end for
14: end for
15: for all pi ∈ p do ## filter non-important words,

acquiring C∗

16: if pi belongs to X-type then
17: Delete the ith column and row of C
18: end if
19: end for
20: Initialize D∗ = C∗ ## the compressed

dependency matrix
21: Initialize D∗ = 0(M−ζ)×(M−ζ)

22: for all D∗ij ∈D∗ do
23: D∗ij = IoU(i←j)

24: end for
25: s = softmax(C∗ ⊗D∗)
26: end procedure
27: procedure Visual Prompt SegmentationA{0,1}z [x, y]
28: for all z ∈ {1, 2, . . . , N} do
29: Call DBSCAN to cluster the attention points of

A
{0,1}
z [x, y]

30: Filter noise points, as well as the clusters with
less than 30 points

31: end for
32: end procedure
33: procedure Semantic Information

PackingA{0,1}z [x, y], g0, p
34: for all A{0,1}z [x, y], z ∈ {1, 2, . . . , N} do
35: Sort the attention maps according to s
36: end for
37: Construct S according to (14)
38: Send as many tokens in S as possible
39: end procedure

owning stronger semantic meanings should be prioritized. Next,
we reorder p according to the semantic importance of each
word, i.e., s. Then, the semantic information matrix S can be
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generated.

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 = S∗
A
{0,1}
1

,

s2 = S∗
A
{0,1}
2

\ s1,
s3 = S∗

A
{0,1}
3

\ (s1 ∪ s2),

. . .

sM−ζ = S∗
A
{0,1}
M−ζ
\ (s1∪. . .∪ sM−ζ−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

The MASP will send [s1, s2, . . . , sM−ζ ] in sequence until all
available bandwidth is used.

3) Discussion: By generating cross-modal attention maps,
analyzing the semantic meaning of user prompts, performing
attention-aware segmentation of the source image, and only
transmitting the semantically important pixels, the size of data
that users should download can be efficiently reduced. Fur-
thermore, the proposed G-SemCom framework will not incur
considerable workloads for the MASP. First, the cross-modal
attention maps can be regarded as by-products during the source
image generation, causing no additional computation costs. The
computation complexity of DBSCAN is O(n log n), where n
represents the number of attention points [35]. The remaining
operations, such as matrix filtering and multiplications, have
the complexity of O(M − ζ) to O((M − ζ)2). Despite expo-
nential complexity, the practical computation overhead can be
ignored since the length of textual prompts is typically 10-100
words [36]. Hence, we can conclude that the proposed mecha-
nisms will not bring a considerable burden to the MASP.

D. Generative Semantic Decoder

After the MASP finishes textual prompt deconstruction and
visual prompt segmentation, it can send well-packed semantic
information to users. Users then recover the source image by
inpainting the pixels that are not transmitted. Note that un-
transmitted parts only have weak semantic importance. Take “A
blue car driving through the city” as an example. The illustration
of the road and sky will not affect the semantic correctness of the
recovered images since they are not mentioned in the prompt.
Moreover, from the image composition perspective, the road and
sky are only used as a background to connect semantically strong
objects (i.e., cars and cities), slightly influencing the image’s
aesthetic quality. Hence, the users can adopt various lightweight
open-source image inpainting models based on diffusion or
generative adversarial networks. We can consider that the image
recovery model (e.g., [37] or [38]) is well-trained and shared
among all users as the generative semantic decoders.

V. JOINT SEMANTIC ENCODING AND PROMPT ENGINEERING

To effectively reflect the human-perceptual experience of
the G-SemCom-aided mobile AIGC services, this section first
presents a novel metric named JPSQ. Then, we formulate the
joint optimization problem for bandwidth allocation and present
the ADD algorithm to solve it.

A. JPSQ Definition

Traditionally, to evaluate the effectiveness of SemCom, users
can adopt pixel- or structure-level metrics, such as Mean Square
Error and Structural Similarity Index Metric, to measure the
similarity between the source and recovered images [39]. How-
ever, these metrics can only capture the difference in terms of
luminance, contrast, and structure while failing to consider the
image semantics. Then, task-oriented metrics for SemCom have
been presented, emphasizing whether the proposed SemCom
framework can accomplish specific communication tasks [40].
For instance, the authors in [41] utilized the classification ac-
curacy for the observed objects to evaluate the effectiveness of
the UAV-based SemCom. Following this principle, we design
a novel task-oriented metric for G-SemCom in mobile AIGC
called JPSQ. Particularly, in G-SemCom-aided mobile AIGC,
the semantic information sent by the MASP undertakes two
tasks. First, it guarantees that users can recover images that
maintain the same semantics as source images. Meanwhile,
recall that the users aim to acquire high-quality AIGC images.
Hence, the semantic information also serves as the prompts fed to
the generative decoder, facilitating it to recover images with high
aesthetic quality. Motivated by this, we jointly consider the se-
mantic similarity and image quality when designing JPSQ. Fur-
thermore, considering that AI-generated images are consumed
by human users, we utilize learning-based metrics trained on
large-scale human feedback datasets rather than mathematical
methods to capture human perceptual similarity and quality. Last
but not least, we adopt the Weber-Fechner Law [42] to fuse these
two aspects and construct JPSQ.

1) Perceptual Semantic Similarity: To evaluate the percep-
tual semantic similarity from the user perspective, we utilize the
state-of-the-art learning-based metric called DreamSim [43]. As
shown in Fig. 7(a), the difference between each pair of images
(g0, g1) is measured by the cosine distance, i.e.,

D(g0, g1; fθ) = 1− cosine(fθ(g0), fθ(g1)), (15)

wherefθ represents the learnable network that extracts important
perceptual semantic features from input images. Such a network
is assembled by multiple pretrained models, such as DNIO [44]
and OpenCLIP [45] and fine-tuned by Low-Rank Adaptation
(LoRA) mechanisms, which align the backbone models with
the similarity evaluation task. The smaller the DreamSim value,
the more similar the two images are.

2) Perceptual Aesthetic Quality: To measure the aesthetic
quality of the recovered images, we adopt a learning-based
image assessment framework called NIMA [11]. As shown
in Fig 7(b), NIMA converts the image quality measurement
to a classification problem, with ten possible classes repre-
senting the quality score from 1 to 10. Such classification is
realized by a pluggable classifier network, supporting VGG16,
Inceptio-v2, and MobileNet [11]. Accordingly, the classification
output is defined as c(g) = [c1, c2, . . . , c10], where ci indicates
the probability that the given image g achieves score i. Note
that

∑10
i=1 ci = 1 can be guaranteed since a softmax operation

is employed. Finally, the aesthetic quality of image g can be
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Fig. 7. The definition of JPSQ metric for G-SemCom-aided Mobile AIGC, which consists of perceptual semantic similarity and aesthetic quality. (a): The
framework of DreamSim metric. (b): The framework of NIMA metric. Note that these two metrics are flexible. Hence, the CLIP and VGG 16 can be replaced by
other models for different application scenarios.

Algorithm 2: The Procedure of ADD Algorithm.
Require: s, Nb, T , η, γ ## AIGC environment, batch size,

diffusion step number, discount factor, and learning rate
Ensure: b ## bandwidth allocation scheme
1: procedure ADD Trainings, Nb, T , η, γ
2: Initialize networks: policy generation network εθ,

Q-networks Qv1
, Qv2

, Q∗v1
, and Q∗v2

.
3: while not converged do
4: Initialize random noise bT ; generate bandwidth

allocation scheme b0 by denoising process shown in
(20).

5: Add exploration noise to b0.
6: Execute resource allocation and calculate utility u

by (19).
7: Store the record (s,b0, u) in the replay buffer
8: Randomly select Nb records
9: Update the policy generation network by (22)
10: Update the Q-networks by (23)
11: end while
12: end procedure
13: procedure ADD Inferences, Nb, T , η, γ
14: Observe the environment s
15: Generate bandwidth allocation scheme b0

16: Return b0

17: end procedure

expressed as:

Q(g) ∼ N (μ, σ),

μ =
10∑
i=1

i× ci, σ =

√(∑10

i=1
(i− μ)2 × ci

)
. (16)

In this paper, we utilize μ acquired by NIMA to reflect the
aesthetic quality of images.

3) Metric Fusion: Finally, we fuse the perceptual semantic
similarity and aesthetic quality by Weber-Fechner Law [42].
Denoting source and recovered images as g0 and g1, respectively,

JPSQ can be calculated as

J (g0, g1) = T (D(g0, g1; fθ)) ln

(
ω0Q(g1)

Qth

)
, (17)

where ω0 serves as a weighting factor and Qth indicates the
minimal image quality required by users. T is defined as

T (t) = tmax − t

tmax − tmin
, (18)

where tmin and tmax represent the lower and upper bounds of
the DreamSim score, respectively, and tmin is 0. In this paper,
we acquire tmax for our case by generating 1000 AIGC images,
measuring their DreamSim scores with a pure Gaussian noise,
and calculating the average. Function T (·) plays two roles.
First, the denominator inverts the differences reflected by the
DreamSim score into similarities. In addition, the effect of the
magnitudes can be eliminated.

B. Problem Formulation

In this part, we formulate the joint semantic encoding and
prompt engineering problem based on JPSQ. Recall that in our
OFDMA-based transmission model, each user can be assigned
an RB to receive data from the MASP. However, the overall band-
width resources of the MASP are limited. Therefore, we intend
to optimize the bandwidth allocation among users, acquiring
the best trade-off between the overall G-SemCom performance
and consumed bandwidth. The optimization problem can be
formulated as follows:

max
bi

N∑
i=1

[(
ω1J (gi0, gbi1 ) ·H(Q(gbi1 )≥Qth)− ω2bi

)]
(19)

s.t. 0 ≤ bi ≤ min{Lici, O|Si|}, ∀i ∈ {1, 2, . . . , N} (19a)

where bi means the bandwidth resources allocated to userUi. g
bi
1

represents the recovered image using the bandwidth of bi, and
gi0 is the corresponding source image. Note that a step function
H(·) is applied since the images whose quality is lower than the
user threshold are unacceptable in AIGC. Additionally, (19b)
constrains the range of bi. Specifically, Li means the latency
threshold between userUi and the MASP. Hence,Lici represents

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:05:20 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: CROSS-MODAL GENERATIVE SEMANTIC COMMUNICATIONS FOR MOBILE AIGC: JOINT SEMANTIC ENCODING 14881

the maximum bandwidth that can be transmitted within the
required latency. O indicates the bandwidth consumption for
transmitting each item in Si. Hence, O|Si| means the required
bandwidth for transmitting the entire semantic information. The
upper bound of bi is the smaller value between these two terms.

C. Components of Attention-Aware Deep Diffusion

Traditionally, the joint optimization problem can be solved
by DRL-based methods, such as Proximal Policy Optimiza-
tion (PPO) and Soft Actor-Critic (SAC) algorithms. However,
since the state of our problem, i.e., attention maps, is high-
dimensional, the existing methods may lack enough exploration
ability and yield only sub-optimal solutions. Hence, to realize
efficient bandwidth allocation in complex environments, we
introduce a deep diffusion module into traditional DRL for
policy optimization, forming the ADD algorithm. Next, we
demonstrate the components of ADD.

Agent: In the proposed G-SemCom-aided mobile AIGC, the
agent represents the MASP, which allocates available bandwidth
among multiple users for transmitting semantic information.

State: The state of the mobile AIGC environment takes the
form of s := [S1,S2, . . .,SN ], i.e., the attention-based semantic
information of the source images generated for users U1 to UN .
Note that to reduce the complexity of ADD for representing and
learning the states, the original 512 × 512 attention maps are
resized to 16 × 16. The state space is a discrete space, using
Boolean values to indicate whether a certain pixel is associated
with the user prompts.

Action: The action of ADD is a vector b := {b1, b2, . . . , bN},
denoting the bandwidth allocating to each user. With b, the
MASP encodes the semantic information for each user Ui

(i ∈ [1, 2, . . . , N ]), i.e., calculating the number of pixels that can
be sent by bi/O and sending the pixels following the mechanism
stated in Section IV-C.

Policy: The policy refers to the probability of the agent taking
action b at the state s. Particularly, the ADD algorithm adopts a
deep diffusion network parameterized by θ to learn the relation-
ship between the input state s and the output action b that can
optimize the reward defined below. Such a policy network can
be expressed as πθ(s,b) = P (b|s).

Reward: Finally, given the environment state s, The re-
ward of taking action b can be defined as R(b|s) =∑N

i=1[(ω1J (gi0, gbi1 ) ·H(Q(gbi1 )≥Qth)− ω2bi)]. Note that if
the constraint is not satisfied, we use a negative reward as the
penalty term.

D. Attention-Aware Deep Diffusion for Optimization

The deep diffusion network is introduced to learn the opti-
mized policy πθ(s,b) [2]. Following the diffusion principle, the
final action b0 can be generated from random noise bT after T
steps of denoising, i.e.,

πθ(s,b) = pθ(b0:T |s)

= N (bT ; 0, I)

T∏
t=1

pθ(bt−1|bt, s). (20)

Recall that the definition of pθ(bt−1|bt, s) has been shown in
(4). Based on (4), the probability of each denoising step can be
derived as [31]

bt−1 =
1√
αt

(
bt −

βt√
1− ᾱt

εθ (xt, t)

)
+ σtz, (21)

where z ∼ N (0, I), and according to [31], σt = βt can achieve
good performance. Then, we adopt a Double Deep Q-Network
(DDQN) learning architecture [46] to organize the ADD train-
ing. Specifically, with the actionb0 generated by policyπθ(s,b),
ADD appliesb0 in the mobile AIGC environment s and acquires
R(b0|s). The solution evaluation network Qv can help train
parameter θ in εθ and optimize the policy πθ(s,b). To do so, Qv

calculates the Q-value of P (b0|s), and the optimal θ is the one
that can lead to the highest expected Q-value. In this case, the
optimal policy generation network can be obtained by

argmin
εθ

Lε(θ) = −Eb0∼εθ [Qv (s,b0)] . (22)

The Qv should be trained to predict the best Q-values, which
is achieved by minimizing the Bellman operator [46]. In the
proposed ADD, there are two Q-networks to be trained, namely
Qv1

and Qv2
, with the corresponding target networks Q∗v1

and
Q∗v2

, respectively. Note that the target networks are used to
compute the target for the Q-value updates. The weights of Q∗v1

andQ∗v2
are kept fixed for a number of steps and then periodically

updated to match the weights of Qv1
and Qv2

, respectively. By
decoupling the targets from the parameters, the learning process
can be stabilized. Based on (22), the joint optimization of the
two Q-networks can be expressed as minimizing the following
expectation

Eb0∼π∗θ

⎡
⎣
∥∥∥∥∥∥

(
R (b0|s) + γmin

i=1,2
Qv′i

(s,b0)

)

−Qvj
(s,b0)

∥∥∥∥∥∥
2⎤
⎦ , (23)

where γ is the discount factor; j ∈ {1, 2} equals the value
of i that leads to the minimum Qv′i

(s,b0). The policy can
be optimized with the optimal Q-networks, and the optimal
bandwidth allocation scheme b in any given AIGC state s can
be generated. The detailed training and inference procedures of
ADD are shown in Algorithm 2.

E. Complexity Analysis

Here, we analyze the complexity of the proposed ADD algo-
rithm. Suppose that the sizes of the diffusion-based policy net-
work and Q-network are Sp and Sq , respectively. The architec-
tural complexity is O(Sp + 2Sq). Since generating each band-
width allocation scheme requests T times diffusion denoising,
the policy generation complexity isO(TSp). Hence, the overall
complexity can be derived as O((T + 1)Sp + 2Sq). Accord-
ingly, supposing that δ epochs are performed, and the batch size
is Sb, the computational complexity for training isO(δSb((T +
1)Sp + 2Sq)). Finally, the corresponding inference-stage com-
plexity is O(Sp).
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Fig. 8. The case study to illustrate the effectiveness of G-SemCom-aided mobile AIGC. (a): The case of prompt: An old man is wearing an odd hat. (b): The
case of prompt: A bus is stopped on a dark road. (c): The case of prompt: A bowl that has orange in it. (d): The case of prompt: A blue car driving through the
city. For each case, the three rows are cross-modal attention maps, binary attention maps, and clustering results, respectively.

VI. PERFORMANCE EVALUATION

In this section, we implement the proposed G-SemCom
framework and build the experimental mobile AIGC system.
Then, we conduct extensive experiments that aim to answer two
questions: 1) whether the proposed G-SemCom framework for
mobile AIGC can effectively reduce the bandwidth consumption
of users while ensuring them acquire high-quality AI-generated
images and 2) whether the ADD algorithm can efficiently al-
locate bandwidth resources among users, thus maximizing the
overall reward defined by JPSQ. The analysis of the experimen-
tal results is also described.

Implementation: To generate high-quality source images, we
equip MASPs with Stable Diffusion v2 [26], the state-of-the-art
text-to-image AIGC model. The number of diffusion steps is
set to 25. On the user side, we deploy a diffusion-based image
inpainting model [37] as the generative decoders. Since the users
only need to recover the image background with less semantic
importance, the diffusion step number is set to 5 to reduce
resource consumption. The prompts that the users send to the
MASP are selected from the image captions in the COCO 2017
dataset [47]. We adopt the implementation of the DreamSim
metric in [43], which ensembles CLIP, OpenCLIP, and DINO to
construct the backbone model. For NIMA, we utilize MobileNet
to implement the image quality classifier and load the pretrained
model weights from [48]. All the steps of Algorithm 1 are packed
into a pipeline written in Python, based on diffusers, daam,
spacy, and sklearn libraries. Finally, we leverage PyTorch to
implement the proposed ADD algorithm, combining the basic
DDQN architecture in [49] and our deep diffusion module for
policy generation.

Testbed. The experiments are conducted on a server with an
NVIDIA RTX A5000 GPU with 24GB of memory and an AMD

TABLE III
THE SUMMARY OF EXPERIMENTAL SETTINGS [8]

Ryzen Threadripper PRO 3975WX 32-Core CPU with 263GB of
RAM. The operating system is Ubuntu 20.04 LTS with PyTorch
2.0.1. We utilize this server to simulate one MASP and multiple
uniformed distributed mobile users. The OFDMA transmission
model between the MASP and users is implemented based
on [8].

Experimental Settings. The important environmental and
hyperparameter configurations in terms of the proposed G-
SemCom pipeline and ADD are shown in Table III.

A. Effectiveness of G-SemCom Framework

In this part, we evaluate the effectiveness of the proposed
G-SemCom framework for mobile AIGC.

1) Case Study: First, Fig. 8 illustrates four cases where the
users request different images from the MASP. We can observe
that the cross-modal attention maps can effectively associate any
given word to certain pixels of the generated images. However,
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Fig. 9. The performance of different AIGC paradigms in terms of bandwidth
consumption and image quality. Note that Bounds include the theoretical upper
and lower bounds of the bandwidth consumption and NIMA score, respectively.

the attention distribution of ADJ - and V ERB-typed words,
e.g., [old] in case a and [stopped] in case b, are scattered
due to less clear semantic meaning. Take [old] as an example.
Its attention covers the entire image, while only those pixels
highlighting the character’s facial features are meaningful. To
this end, we utilize (14) to filter out attention points without
clear semantic meaning, forming the binary attention maps.
Note that we assign ξ in (14) with different values according
to the general semantic importance of different part-of-speech
types. Specifically, forPROPN -typed,NN -typed, and other
words, ξ equals 0.9, 0.8, and 0.5, respectively. We can observe
that the meaningless pixels are effectively removed. In contrast,
the pixels with strong semantic meaning, such as the pixels
associated with words[hat] and[bus], are fully maintained.
Atop binary attention maps, the proposed attention clustering
algorithm based on DBSCAN can further remove the noise
and noisy clusters, which are too small and will affect image
recovery. Finally, the recovered images can hold the high quality
of source images, with almost no perceptual quality difference.
Meanwhile, the semantic information takes only 80481, 163984,
105088, and 183296pixels compared with the 512× 512 source
image with 262144pixels, achieving 69.3%, 27.4%, 60.0%, and
30.1% reduction, respectively. More in-depth experiments on
bandwidth reduction are shown below.

2) G-SemCom Performance: Fig. 9 illustrates the average
performance of the traditional and our proposed G-SemCom-
aided mobile AIGC for generating 1000 images. Note that we
take the number of pixels as the bandwidth unit, which can
circumvent the errors caused by different standards for packing
images, e.g., . jpg and . png. From Fig. 9, we can observe
that compared with traditional mobile AIGC, the proposed
G-SemCom [with ξ = {0.9, 0.8, 0.5}] can reduce the bandwidth
consumption of the users by 49.4% on average, while the average
image quality, measured by NIMA score, drops only 0.0299.
Moreover, if ξ is relaxed to 0.8 or tightened to 0.5, the bandwidth
and quality will further decrease and increase, respectively,
exhibiting the outstanding flexibility of our proposal. Recall
that the generative decoder on the user side is a lightweight
image inpainting model, which inpaints the masked image with
5 diffusion steps. We then provide fully masked images to the
decoder, thereby exploring the quality of the images that the

Fig. 10. The service robustness of different AIGC paradigms to channel error.
Note that the blue bar indicates the effective zone of mobile AIGC since it can
only provide the users with useful images within this range.

users can generate locally using the same computation resources
with G-SemCom. As shown in Fig. 9, the image quality of local
AIGC is only 5.1301 due to less powerful models and fewer
diffusion steps. Given the lower bound of the NIMA score is
4.9827, the decrement from 5.2651 to 5.1301 means that the
image quality drops by 47.8%. Note that such a lower bound
is acquired by generating 1000 pure Gaussian noise images,
meaning their NIMA scores, and taking the minimum value.

3) Service Robustness: Besides saving bandwidth, another
significant advantage of our G-SemCom framework is enhanc-
ing the robustness of mobile AIGC services to channel errors.
Note that channel error means that the connection between
the user and MASP is interrupted due to unexpected circum-
stances, resulting in only a part of the semantic information
being transmitted. Traditionally, users need to download the
entire image from the MASP. Hence, the channel error will
cause transmission failure, in which the users can only receive
broken images. Assisted by G-SemCom, regardless of how
many bits have been transmitted, users can recover full images
using the generative decoders, which is extremely important if
the application has strict requirements for latency and cannot
tolerate re-transmission. As shown in Fig. 10, even though only
20000pixels are transmitted, the average NIMA score reaches
5.1390, which exceeds that of the local AIGC (i.e., 5.1301).
With the increasing number of transmitted pixels, the quality
of the recovered images grows gradually. In contrast, the image
quality of traditional mobile AIGC remains 0 until all the image
information can be transmitted. Apart from enhancing service
robustness, the proposed ADD can further determine the number
of pixels to be transmitted to achieve the best JPSQ bandwidth
balance in the given state. The corresponding experiments are
discussed in Section IV-B.

4) Resource Consumption on the User Side: Here, we ex-
plore the resource consumption of users to operate the generative
decoder. To this end, we first evaluate the relationship between
diffusion steps adopted by generative decoders and the image
quality. As shown in Fig. 11, the increasing diffusion step
number fails to improve the image quality linearly because the
pixels yet to be recovered only have weak semantics. Take case
a in Fig. 8 as an example. Compared with the man’s face, which
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Fig. 11. The aesthetic quality with the number of diffusion steps on the user
side.

TABLE IV
THE COMPUTATION AND MEMORY CONSUMPTION OF THE MASP AND USERS

accommodates rich semantics (e.g., facial features, expression,
and beard), human perception is much less sensitive to the cloth
and background. Therefore, increasing resources for rendering
such parts cannot improve the human-perceptual quality of the
recovered image. For the recommended ξ scheme, i.e., {0.9,
0.8, 0.5}, setting the diffusion step number as 5-7 can already
lead to satisfying image quality. Table IV illustrates the resource
overhead when the diffusion step number equals 5. We can
observe that compared with generating contents, decoding only
consumes 63.4%, 63.3%, and 51.1% of CPU time, GPU time,
and GPU memory, respectively.

B. Ablation Study

In this part, we perform an in-depth ablation study, aiming
to investigate the effectiveness of each proposed step performed
by the MASP in Algorithm 1.

1) Binary Attention Map: This operation refers to filtering
the less important attention points from the original attention
maps, whose major purpose is reducing semantic information
size. Fig. 12(a) illustrates the case a in Fig. 8 with and without
filtering. Note that we adopt the recommended ξ scheme, i.e.,
{0.9, 0.8, 0.5} when constructing the binary attention maps. We
can observe that without filtering, the attention maps contain all
the pixels, while the majority of them only have weak semantic
meaning. In contrast, by setting the threshold ξ and forming the
binary attention map, the size of the semantic information can
be reduced by 69.3%.

2) Dependency Parsing: Dependency parsing facilitates the
MASP in evaluating the importance of each word in the user
prompts. Without dependency parsing, the MASP can only
randomly select pixels when packing the semantic information.
As shown in Fig. 12(b), the resulting semantic information is
blurred, with a NIMA score of 4.9102. In contrast, we first
understand which pairs of words are correlated by dependency

Fig. 12. The ablation study. (a): The inspection on binary attention map.
(b): The inspection on dependency parsing. (c): The inspection on attention
clustering.

parsing. For instance, Fig. 12(b) shows the dependencies exist-
ing in our case. Then, theC∗ andD∗matrices can be established.
Finally, the semantic importance can be calculated, which is
s = [0.19, 0.25, 0.19, 0.18, 0.19]. The packing of semantic
information can then follow the order of s . We can observe
that the pixels associated with [man] are prioritized. In this
case, even though only 20000pixels are transmitted, the core
semantic information is well preserved in the recovered image,
resulting in a much higher NIMA score.

3) Attention Clustering: Finally, attention clustering means
adopting DBSCAN to remove noise and noisy clusters, which do
not carry enough image semantics due to small sizes. Moreover,
they might affect image recovery since the generative decoder
can hardly generate. Fig. 12(c) illustrates the clustering results
of [man] and [wearing]. The pixels marked by red and
yellow circles are noise and noisy clusters, respectively. We can
observe the noise associated with the word [wearing] affects
the recovery of the man’s hat, decreasing the image quality from
6.1171 to 6.0445. Using the 1000 images of Fig. 8, by perform-
ing attention clustering, the average bandwidth consumption
reduces by 6182pixels while the quality increases by 0.0185.

C. Efficiency of ADD

Then, we study the efficiency of the proposed ADD algorithm
in optimizing the resource allocation scheme.
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Fig. 13. The training curves of the proposed ADD (with T = 5 and 6) and
baseline PPO.

Fig. 14. The bandwidth allocation schemes and resulting reward in different
states. Note that state represents the semantic information S of a mobile user.

1) ADD Training: First, Fig. 13 illustrates the training curves
of the ADD algorithm with 5 and 6 steps of diffusion. Similar
to Section VI-A, the training dataset is constructed by images
generated from captions in COCO 2017 dataset [47]. Addition-
ally, to demonstrate the superiority of our proposal, we adopt
a standard DRL algorithm as the baseline, called PPO [50]. As
shown in Fig. 13, the ADD (T=5) and PPO take a similar time to
converge. The ADD (T =6) converges slower while achieving
almost 90% higher rewards than PPO. This can be explained
by the enhanced ability of ADD to explore the environment
since an exploration noise is added to the generated bandwidth
allocation scheme during each training iteration. Hence, the
training process can avoid getting trapped in sub-optimal so-
lutions. However, the number of diffusion steps is not always
better. This is because ADD will lose its ability to explore the
state effectively, as excessive denoising might lead to overfitting.

2) Optimization of JPSQ: Then, we investigate the efficiency
of ADD in scheduling bandwidth. Fig. 14 shows the bandwidth
allocation schemes for three images whose semantic information
sizes are 144433, 180508, and 196791pixels, respectively. We
can observe that the proposed ADD algorithm with T = 5 and 6
can achieve 32.2% and 40.9% higher utility [defined in (19)] than
PPO on average. Such results demonstrate that our algorithm
can better balance the human-perceptual AIGC service quality
and bandwidth costs. Take State 3 as an example. The PPO
algorithm only assigns 94156pixels for transmitting the semantic
information. In this case, even though bandwidth consumption is
low, the DreamSim score is 0.198, meaning the recovered image
holds 80.2% similarity with the source image at the semantic
level. In contrast, the ADD (T = 6) algorithm uses 173289pixels

Fig. 15. The total utility with increasing user number. Fixed allocation means
allocating bandwidth for the entire semantic information without optimization.

Fig. 16. (a): The average utility with varying number of users connected to
one MASP. (b): The generated bandwidth allocation schemes with the updated
weighting factors.

to achieve 96.7% similarity and a 5.56 NIMA score, resulting in
72.5% higher overall utility. Furthermore, we evaluate the total
utility with the increasing number of users, as shown in Fig. 15.
From Fig. 15, we can observe that the ADD algorithm with T =
5 and 6 significantly outperforms the PPO and default schemes.
Efficient bandwidth allocation is crucial for mobile AIGC to
meet users’ demand for high-quality AIGC outputs with limited
bandwidth resources.

D. Scalability Analysis

Finally, we analyze the scalability of our proposed framework
to support large-scale mobile AIGC networks with dense users.
First, we conclude that our proposals can scale linearly with the
increasing number of MASPs. This is because the G-SemCom
pipeline and ADD algorithm are deployed separately on each
MASP. Since all the MASPs serve mobile users independently,
the network-wide utility can increase linearly with the network
scale. Such scalability enables our framework to support large-
scale mobile AIGC applications.

Nonetheless, if the number of users connected to one MASP
keeps increasing and the required bandwidth resources exceed
the MASP’s capability, the average utility of connected users
will decrease. To demonstrate this statement, we suppose a batch
of users (the number increases from 1 to 12) submit service
requests to one MASP simultaneously, and the tolerance for
transmission latency is 2s. Different from Fig. 15, the bandwidth
of MASP is constrained. As shown in Fig. 16(a), initially, the
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average utility remains stable. Once the total required resources
exceed the MASP’s capability, the MASP should suspend some
service requests, causing a drop in average utility. To alleviate
such a performance drop, a mixture of expert architecture [51]
is worth developing, which dynamically schedules MASPs for
each user. Instead of working independently, these MASPs can
collaborate to undertake network-wide workload, realizing the
load-balancing.

E. Discussions and Future Work

1) Weighting Factors Setting: Here, we explore the impact
of weighting factors ω0, ω1, and ω2 on performance. To do
so, we reduce the values of ω0 and ω1 to 1 and 200, respec-
tively. Meanwhile, the value of ω2 is increased to 0.2. Such
adjustment represents the shift from seeking JPSQ-bandwidth
balance to emphasizing saving bandwidth resources. As shown
in Fig. 16(b), guided by the updated reward, the ADD algorithm
tends to allocate a small bandwidth to each user. In conclusion,
these weighting factors should be configured according to the
specific application scenarios or the requirements of users.

2) Security and Privacy: User privacy and data security are
critical concerns in mobile AIGC. First, AIGC outputs can be
regarded as digital assets and can be traded in the market [52].
In this case, attackers can plagiarize AIGC works generated
by MASP and sell them to make profits. In addition, attackers
can obtain sensitive information by eavesdropping on the com-
munication link between MASP and users. To defend against
plagiarism, a digital watermark can be embedded into the AIGC
output [52], which serves as a unique identifier that proves
ownership and authenticity of the digital asset. Additionally,
blockchains can help to maintain an immutable record of AIGC
ownership [52]. To protect the communications between the
MASP and users, advanced privacy protection techniques such
as differential privacy and covert communication can be applied.

3) Adaptability: Finally, we discuss the adaptability of our
proposals to other AIGC forms. It can be concluded that the
proposed G-SemCom framework and ADD algorithm are appli-
cable if two requirements are satisfied: i) The AIGC model used
by MASPs involves cross-modality attention, and ii) the users
utilize textual prompts. Since AIGC inferences are typically
cross-modality, attention mechanisms are widely adopted by
mainstream AIGC models. Similarly, most AIGC models, e.g.,
ChatGPT and Stable Diffusion, leverage textual prompts to
guide generation since human users are used to describe their
requirements in natural language.

Here, we showcase how to apply G-SemCom to text-to-video
AIGC, where MASPs generate transition videos by StoryDiffu-
sion [29]. First, since cross-attention is utilized by StoryDiffu-
sion to control the generation of each frame [29], we can fetch the
attention maps accordingly. Following the G-SemCom pipeline,
we then analyze the prompt logic, filtering the words/segments
with vital semantics. Note that given the complexity of prompts
used for video generation, we can perform fine-grained tex-
tual analysis, e.g., using a knowledge graph. Afterward, each
video frame can be regarded as an individual image. Only the
parts associated with the most semantically important prompt

words/segments are extracted and transmitted to save transmis-
sion resources. Finally, on the receiver side, the semantic infor-
mation can be decoded by a lightweight AIGC model to recover
the video. We consider the detailed mechanism reconfiguration
for supporting other AIGC forms as future work.

VII. CONCLUSION

In this paper, we have presented a novel G-SemCom frame-
work for mobile AIGC, where the MASP only sends com-
pressed semantic information, and users adopt a lightweight
generative decoder to recover high-quality images. Specifically,
by cross-modal attention maps, the MASP can filter the pixels
with the highest semantic importance for transmission. More-
over, considering the bandwidth limitation, we have defined a
joint optimization problem to allocate bandwidth among users.
Utilizing attention maps and the diffusion principle, we have
designed the ADD algorithm to maximize the human perceptual
JPSQ. Extensive experiments demonstrate that our G-SemCom
framework can reduce bandwidth consumption by 49.4% while
ensuring image quality on the user side. In addition, the ADD
has significantly outperformed traditional DRL, striking great
balances between bandwidth and JPSQ in mobile environments.
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