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Abstract—Unmanned aerial vehicles (UAVs) have a significant
potential for sensing applications in further cellular networks due
to their extensive coverage and flexible deployment. In this paper,
we consider a multi-cell cellular network with a cellular-connected
UAV, which senses data with onboard sensors and uploads sensory
data to the ground base stations (BSs). To evaluate the freshness of
sensory data, we employ the concept of age of information (AoI),
which is defined as the time elapsed since the latest successful
transmission of sensory data. A lower AoI implies fresher sensory
data, which may lead to the increase of UAV operation time. To
balance such tradeoff, we aim to minimize the weighted sum of
operation time and total AoI for the UAV by jointly optimizing
transmission scheduling, BS association, as well as UAV trajec-
tory. The problem is formulated as a mixed-integer nonlinear
programming (MINLP) problem, which is difficult to solve due
to the time-varying propagation channels. To this end, we first
characterize the average communication performance with statistic
channel information, and then develop a search algorithm to obtain
the optimal solution via employing the optimal structure as well
as convex optimization techniques, while a low-complexity Double
Graph based Algorithm (DGA) is developed to obtain a suboptimal
solution. Then, by taking into account the site-specific performance
and making fast decisions online, we propose a Deep reinforcement
Learning Algorithm (DLA). Compared to DGA, DLA can adapt to
the specific local environment and obtain a solution more rapidly
once the training process is completed. Simulation results show
that the proposed algorithms outperform the benchmarks about
30%, and achieve flexible tradeoff between operation time and
AoI of UAV sensing, which is not available by considering just one
objective.

Index Terms—Multi-cell cellular network, UAV sensing,
operation time, age of information (AoI).
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I. INTRODUCTION

THANKS to the advantages of high mobility and large
service coverage, unmanned aerial vehicles (UAVs) are

being applied in more and more civilian and commercial ap-
plications [1], [2], including precision agriculture, forest fire
surveillance, aerial imaging, disaster response, monitoring so-
cial distancing for combating COVID-19 [3], etc. Due to their
high altitude above the ground, UAVs are more likely to have
line-of-sight (LoS) links with their ground users, which can
be efficiently exploited to enhance the communication perfor-
mance [4]. As the number of UAVs increases dramatically, it is
more promising and cost-effective to exploit the 5G-and-beyond
cellular networks to support UAV communications. In this case,
UAVs can be integrated into cellular networks as cellular-
connected aerial users [5], [6], [7], where high-rate air-to-ground
communications and ultra-reliable beyond-visual-line-of-sight
(BVLOS) operation can be achieved by cellular networks, and
remote sensing with cellular-connected UAVs over wide range
areas becomes more feasible.

Equipped with cameras or a multitude of sensors of various
types, UAVs have been widely employed to execute multiple
sensing tasks, where the sensory data is transmitted to ground
base stations (BSs) over a cellular network for further process-
ing [8], [9]. Compared with conventional terrestrial sensing,
UAV sensing typically has a wider field of view due to its
elevated altitude and reduced signal blockage. In addition, sens-
ing performance can be further enhanced by introducing new
degree of freedom brought about by trajectory optimization due
to the high mobility of UAVs. For example, compared to the
conventional ground image/video surveillance system whose
cameras are deployed at fixed and pre-configured locations,
aerial surveillance system (e.g., UAVs equipped with cameras)
is able to fly flexibly to avoid blockage along the view path due
to its high mobility, and thus the the surveillance performance
can be drastically improved and even the surveillance targets
can be actively tracked. Since the collected sensory data at
the UAV changes rapidly with time, it is important to evalu-
ate the performance of data freshness, i.e., age of information
(AoI), in UAV sensing. To be specific, the AoI of sensing
applications is defined as the time that has elapsed since the
most recent successful transmission of a sensing result [10].
Several existing works have been focused on analyzing the AoI
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Fig. 1. Illustration of different trajectories for cellular-connected UAV sensing.

metric for UAV sensing [11], [12], [13], [14], [15]. However,
the aforementioned works assumed a single cell network, while
how to effectively leverage cellular-connected UAVs for remote
sensing over multi-cell cellular networks has been neither well
understood nor thoroughly studied.

The UAV operation time for completing specific tasks is a
critical performance metric, and there are various surveillance
and sensing applications which are concerned with the timeli-
ness of the collected information and require minimizing the
UAV operation time [16], [17], [18], [19]. For example, in
some emergency situations, such as geological surveys, dis-
aster investigations, industrial emergencies, and even military
conflicts, gathering data requires strict deadline of UAV oper-
ation time. Specifically, to ensure that the critical information
at Point-of-Interests (PoIs) in disaster areas are collected in
time for aiding rescue activities, it is important to monitor
PoIs as quickly as possible. As shown in Fig. 1, there exists
a fundamental tradeoff between the AoI and the operation time
of the UAV. Intuitively, to minimize AoI, a UAV tends to move
closer to the associated BSs to achieve a smaller duration of
sensory data transmission, which leads to a longer UAV opera-
tion time since it may moves farther from the target locations or
destination. It is a non-trivial problem to achieve the optimal
performance while balancing the AoI and operation time of
the UAV. In this context, how to achieve the above tradeoff
through appropriate joint design of transmission scheduling
and association as well as UAV trajectory becomes one of the
major challenges in UAV remote sensing over multi-cell cellular
networks.

On the other hand, the BS antenna is generally designed to
point downward towards ground users for good performance.
As a result, aerial users will be served by the sidelobes of
ground BSs where significant performance degradation may
be suffered [20]. In urban areas, the building blockage gen-
erally deteriorates the local radio propagation environment.
Although probabilistic LoS model is usually adopted [21], it
is only meaningful for a large number of realizations of similar
communication environments. In practice, for a particular en-
vironment under consideration, the existence/absence of a LoS
link is in fact determined by checking whether any obstacles
exist between ground BSs and the UAV, which can be obtained
by environment interaction [22], [23]. In order to properly
design and optimize the UAV sensing system, environment-
aware realistic air-to-ground (A2G) propagation channels are
essential.

To overcome the above challenges, in this paper, we propose
a sensing framework with a cellular-connected UAV over multi-
cell cellular networks in urban areas, which provides flexible
sensing services for wide areas through adjusting UAV-BS as-
sociation as well as the UAV’s position dynamically. Our aim
is to minimize the weighted sum of AoI and operation time of
the UAV via jointly optimization of UAV trajectory and oper-
ation time as well as transmission scheduling and association,
where the sensory data are transmitted to the BSs in the urban
area. We summarize the main contributions of this paper as
follows.
� First, we propose a novel design framework for cellular-

connected UAV remote sensing over multi-cell cellular
networks. To balance the tradeoff between operation time
and AoI of the UAV, we minimize the weighted sum of
the above two metrics and formulate the problem as a
mixed-integer nonlinear programming (MINLP) problem,
which is challenging to solve due to the existence of
environment-aware channels.

� Second, we characterize the average communication per-
formance and proposed two optimization based algorithms
to obtain useful insights. Through utilizing the optimal
structure of the problem, we first develop a search algo-
rithm to obtain the optimal solution using convex opti-
mization techniques. To further reduce the computational
complexity, we develop a low-complexity Double Graph
based Algorithm (DGA) to obtain a suboptimal solution by
employing shortest path and Traveling Salesman Problem
(TSP) path techniques in graph theory.

� Third, by taking into account the site-specific performance
and making fast decisions online, we propose a Deep
reinforcement Learning Algorithm (DLA). We decompose
the problem into subproblems and reformulate each sub-
problem as a Markov Decision Process (MDP), based on
which the UAV is trained by Double Deep Q-Network
(DDQN) to be aware of its surrounding environment, and
intelligently transmits sensory data to the cellular network
by taking advantage of environment awareness.

� Finally, the tradeoff between operation time and total AoI
for UAV sensing has been demonstrated through simu-
lations and the impact of different weighting factors is
analyzed.

The remainder of this paper is organized as follows. Section II
discusses the related work. Section III establishes UAV sensing
models with the practical A2G channel model. Section IV for-
mulates and solves the weighted sum minimization problem for
average communication performance. Section V introduces the
Deep Reinforcement Learning (DRL) based solution framework
for site-specific performance. Section VI presents extensive
simulation results and analyzes the system performance. Finally,
conclusions are given in Section VII.

II. RELATED WORK

In the literature, there are flurry of works on UAV enabled
sensing, which can be mainly divided into two categories: UAVs
serving as data collection platforms for wireless sensor networks
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(WSNs) [24], and UAVs directly acting as aerial sensing plat-
forms to provide wireless sensing service. In the first scenario,
the UAVs serve as aerial communication platforms, such as data
collectors or data fusion center, to collect sensory data gener-
ated from ground sensor nodes. The work in [25] studied the
age-optimal data collection problem for UAV-enabled WSNs,
where the AoI was defined as a weighted sum of sensor nodes’
data uploading time and the corresponding flight time. The
fine-grained trajectory plan for multi-UAVs was investigated
in [26] to minimize the maximum flight time of UAVs for data
collection. An AoI-optimal trajectory planning in UAV-assisted
wireless sensor networks was studied in [27], which consists
of a clustering module and a neural trajectory solver. The work
in [28] proposed a time-efficient data collection scheme, where
sensory data from multiple ground devices were uploaded to the
UAV via uplink non-orthogonal multiple access (NOMA). The
work in [29] studied the minimum UAV deployment problem to
find the data collection tours for multiple UAVs to collect data
from ground devices within a delay threshold. However, UAVs
were only considered as data collection platforms in the above
works.

The other emerging scenario is that the UAVs equipped
with various sensors are regarded as aerial nodes to directly
provide wireless sensing support from the sky, such as im-
age/video surveillance, etc. The work in [30] studied UAV
enabled surveillance of uneven surface to achieve a maximal
compact coverage, where a centralized algorithm and two dis-
tributed algorithms were proposed. The work in [19] minimized
the maximum time spent by the UAVs for disaster area surveil-
lance through developing approximation algorithm. The work
in [31] developed a UAV-assisted surveillance framework by
utilizing random walks with consideration of battery constraints
of the UAVs. The deployment of UAVs for anisotropic moni-
toring tasks was investigated in [32], where the anisotropy of
monitoring angle was taken into account. The work in [33]
studied the problem of UAV-assisted multi-task allocation for
mobile crowd sensing to maximize sensing coverage with deep
reinforcement learning. However, the air-to-ground sensory
data transmission to BSs have not been captured in the above
works.

Cellular-connected UAVs have been increasingly considered
for UAV sensing due to their operability and applicability to
UAV operations over wide areas [34], where UAVs act as aerial
users in cellular networks and the sensory data are transmit-
ted to ground BSs by leveraging the 5G high-speed wireless
infrastructures. AoI was minimized in [11] by joint design of
sensing time, transmission time, UAV trajectory, as well as
task scheduling. The work in [12] considered underlay UAV-
to-device communications and studied the AoI minimization
problem over a cellular internet of UAVs via trajectory design.
AoI-driven quality of service (QoS) provisioning schemes over
UAV sixth generation (6G) multimedia mobile networks was
proposed in [13] to efficiently support massive ultra-reliable
and low latency communications. The work in [14] studied
delay-sensitive energy-efficient UAV crowdsensing to maximize
the data collection ratio from PoIs, while keeping data freshness

and minimizing energy consumption of all UAVs. The work
in [15] studied the framework of image surveillance UAVs for
relay communication between ground users and a remote BS.
However, the aforementioned works only considered a single
cell network. In this work, different from the aforementioned
works, we study the UAV sensing over multi-cell cellular net-
works in urban areas, where flexible tradeoff between AoI and
operation time for UAV sensing has been investigated.

III. SYSTEM MODEL

In this paper, we consider a multi-cell cellular network en-
abled UAV sensing scenario, which consists of a target sensing
region Ŝ ⊆ R2×1, M > 1 ground BSs denoted by set M =
{s1, . . . , sM}, and one UAV embedded with sensors and com-
munication devices. The UAV collects various required data
(e.g., aerial surveillance) from Ŝ with their sensors in each
time instant [8], where the sensing data are transmitted to
the ground BSs for further processing or delivery. The UAV
is assumed to fly at a constant altitude of H since frequent
descending and ascending are energy-inefficient [35]. The hor-
izontal location of the UAV in time instant t is denoted by
{u(t)|u(t) ∈ R2×1, 0 ≤ t ≤ T}, whereT denotes the total time
horizon of the UAV flight, also named as UAV operation time
(or mission completion time). All BSs are assumed to have
the same height of HG, HG � H , where gm ∈ R2×1 denotes
the horizontal coordinate of BS sm, 1 ≤ m ≤M . There are K
important target locations (e.g., well-known attractions for aerial
filming) in the sensing region Ŝ , which are required to be reached
during the flight [36], denoted by K = {ρ1, . . . , ρK}. Denote
wk ∈ R2×1 as the horizontal coordinate of ρk, 1 ≤ k ≤ K. The
mission of the UAV is to sense and transmit data over region
Ŝ from an initial location uI to a final location uF , while
accessing all important target locations in K. For example, the
aerial filming not only film the target locations in K, but also
the region along its flight [15]. At the end of the mission, the
whole aerial film can be generated. Another example is the
aerial virtual reality (VR) applications with cellular-connected
UAV [37], where the VR users can experience a aerial view
flight along target locations in K, and the UAV’s vision is
transmitted to BSs all the time. Thus, we have the target
constraint

{wk|1 ≤ k ≤ K} ⊆ {u(t)|t ∈ [0, T ]}, (1)

In practice, uI and uF may correspond to different charging
stations or the target locations for its pre- and post-mission. As
such, the UAV operation time T corresponds to the total time
horizon for the UAV flying from uI to uF , while accessing all
important target locations inK, which is a design variable in this
paper. We assume that the UAV battery capacity is enough for
the UAV to visit all target points. Note that our design framework
can also be extended to the multi-UAV scenario with different
missions by separating different UAVs in operation time or flying
altitude to avoid collision. Let v(t) � u̇(t) be the UAV velocity
at time t, with ‖v(t)‖ ≤ Vmax, ∀t ∈ [0, T ] where Vmax is the
maximum speed due to the mechanical limitation. The distance

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:28:26 UTC from IEEE Xplore.  Restrictions apply. 



ZHAN et al.: TRADEOFF BETWEEN AGE OF INFORMATION AND OPERATION TIME FOR UAV SENSING OVER MULTI-CELL CELLULAR NETWORKS 2979

between BS sm and the UAV at time t is calculated as dm(t) =√
(H −HG)2 + ‖u(t)− gm‖2.

A. Channel Model

Through A2G channels, the data sensed by the UAV are trans-
mitted to the ground BSs. The UAV is assumed to be assigned to
a dedicated subchannel without inter-cell interference [37], [38].
As we consider UAV sensing for urban environments, buildings
will affect the radio propagation by blocking LoS paths. We
assume that the buildings are distributed in the considered
area, where the locations and heights of buildings follow the
model suggested by the International Telecommunication Union
(ITU) [39]. With a given building distribution, the UAV will have
an unobstructed LoS link with BS sm at time t if there exist no
buildings intersecting the straight line between horizon location
gm at height HG and u(t) at height H . Otherwise, if there is
at least one building that intersects with this line, then the A2G
channel is non-Line-of-Sight (NLoS).

Assuming that the complete channel state information (CSI)
for the A2G channels in the considered area is not known a priori,
while the UAV can estimate the instantaneous CSI by receiving
signals from the BSs within its communication coverage or
leveraging the existing handover mechanisms with continuous
reference signal received power (RSRP) measurements [23].
We characterize the A2G channels by both large-scale and
small-scale fading. Denote βm(t) as the large-scale channel
gain at time t between BS sm and the UAV, which can be
represented by the LoS and NLoS components. Specifically,
βm(t) = β0dm(t)−α for LoS links while βm(t) = μβ0dm(t)−α

for NLoS links as in [22], [40], where α ≥ 2 denotes the path
loss exponent, β0 is the channel gain at the reference distance
1 m, andμ < 1 denotes the additional attenuation factor which is
brought from NLoS propagation. The small-scale fading h̃m(t)
for the A2G link between the UAV and sm at time t can be
modelled as Rayleigh fading for the NLoS case and Rician
fading for the LoS case with Rician factor Kc [41], where
E[|h̃m(t)|2] = 1.

Typically, ground BSs are equipped with downtilted anten-
nas to ensure good performance of ground users. We adopt
a practical BS antenna radiation pattern with downtilt angle
φD ∈ [0◦, 90◦], and each BS is assumed to be equipped with
a vertical uniform linear array (ULA) with n0 elements [16],
[42]. Then the power gain of each antenna element at time t
along the direction between the UAV and BS sm is calculated by

Ge(φm(t)) � −min
(
12
(

φm(t)
HPBWv

)2

, G0

)
, where Ge(φm(t))

is measured in dB and φm(t) � arcsin
(
H−HU

dm(t)

)
represents the

elevation angle between the BS sm and UAV at time t,HPBWv

and G0 denote the half power beamwidth and antenna nulls
threshold, respectively. As derived in [16], the array factor at
time t for the ULA on BS sm is calculated by Af (φm(t)) =

1√
N0

sin(
n0π
2 (sinφm(t)−sinφD))

sin(π
2 (sinφm(t)−sinφD)) . As a result, the overall antenna

gain can be given by Gm(t) = 10
Ge(φm(t))

10 Af (φm(t))2, and
the baseband equivalent channel between the UAV and sm
at time t, denoted by hm(t), can be expressed as hm(t) =√

Gm(t)βm(t)h̃m(t).

B. Data Transmission

Define xm(t) ∈ {0, 1} as the data transmission scheduling
indicator, where xm(t) = 1 if the UAV transmits the sensed
data to BS sm at time t and xm(t) = 0 otherwise. We assume
that at most one ground BS is scheduled for reception at each
time instant t, then we have

∑M
m=1 xm(t) ≤ 1, t ∈ [0, T ], where

the BS association is also implied in transmission scheduling
indicator. Denote Rm(t) as the achievable rate from the UAV to
BS sm if scheduled at time t, then Rm(t) is calculated as

Rm(t) = B log2

(
1 +

P |hm(t)|2
σ2

)
, (2)

where σ2 and B denote the noise power and channel band-
width, respectively, andP denotes the UAV’s maximum transmit
power.

We consider the real-time transmission with just-in-time
transmission policy where data is required to be transmitted
immediately after it is generated from the sensors on the UAV.
In particular, we assume that the UAV generates sensory data
with a sensing rate of Rs in each time instant, while the UAV
is required to finish the data transmission process concurrently
with the data sensing process to keep the sensory data up-to-date
for further processing at BSs [43]. In practice, Rs is determined
by the size of UAV sensing data, which depends on intrinsic
proprieties such as the resolution of the sensors on the UAV. As
a result, the transmission rate of the UAV should be no less than
its sensing rate, i.e.,

M∑
m=1

xm(t)Rm(t) ≥ Rs, ∀t, (3)

We assume that the above immediate sensory data transmission
happens perfectly once (3) is satisfied; otherwise, the immediate
data transmission fails. The corresponding problem for non-
real-time transmission will be left as our future work. However,
the A2G channel quality are highly dependent on the distance
between the UAV and BSs, as well as the channel randomness,
which is brought from random small-scale fading and building
blockages, and thus the constraints in (3) may not be always
satisfied. To tackle such an issue, we adopt the AoI to measure
how timely the transmission of sensory data is, i.e., the freshness
of the sensory data [44]. It is worthwhile to note that the sensory
data is only generated from the sensors or cameras on the UAV
(e.g., video surveillance), and data is transmitted immediately
after it is generated from the UAV that is successfully received
once (3) is satisfied. Denote λ(t) as the latest time t that the
immediate data transmission of the UAV is successfully received
at BSs, i.e., λ(t) � maxτ{τ |

∑M
m=1 xm(τ)Rm(τ) ≥ Rs, τ ∈

[0, t]}. Thus, for each time instant t, the time duration t− λ(t)
can be regarded as the time elapsed since the latest time when
freshest information is successfully received, which specifies the
age of such freshest information received and thus we refer it
as AoI. As such, denote the AoI of the UAV at time t as A(t),
which can be defined as

A(t) � t− λ(t). (4)

Thus, we have λ(t) ≤ t, A(t) ≥ 0, ∀t. If λ(t) = t, then the UAV
transmits the sensory data on time, and AoIA(t) = 0; otherwise,
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the AoI A(t) will increase with time. Therefore, the total AoI
throughout the UAV mission can be calculated as

∫ T

0 A(t)dt.
In this paper, we aim to minimize the total AoI to reduce the
overall effect of the disconnected events/durations for freshness
of sensory data.

C. Problem Formulation

Note that the UAV makes its sensory data fresher with a
smaller AoI. To ensure the freshness of sensory data, the UAV
should transmit data to ground BSs as quickly as possible using
a clean channel such that the AoI can be kept small. On the
other hand, the UAV operation time T should be minimized to
increase the operation efficiency. Intuitively, with a larger T , the
UAV has more flexibility to move closer to ground BSs for better
channel quality, leading to a timely transmission of sensory data
and a smaller AoI. Thus, a fundamental tradeoff exists between
minimizing UAV operation time T and minimizing the total
AoI

∫ T

0 A(t)dt. To balance such a tradeoff, in this paper, we
associate each of them with a weighting factor and minimize
the weighted sum, by optimizing UAV trajectory {u(t)} and
transmission scheduling {xm(t)} as well as UAV operation time
T , subject to the target location constraint and UAV’s mechanical
constraints. The optimization problem is formulated as

(P1) : min
T,{u(t)},{xm(t)}

θT + (1− θ)

∫ T

0

A(t)dt

s.t. xm(t) ∈ {0, 1}, ∀m, t, (5)

M∑
m=1

xm(t) ≤ 1, ∀t, (6)

{wk|1 ≤ k ≤ K} ⊆ {u(t)|t ∈ [0, T ]}, (7)

‖v(t)‖ ≤ Vmax, ∀t, (8)

u(0) = uI ,u(T ) = uF , (9)

where θ and 1− θ, 0 ≤ θ ≤ 1, denote the weights of the opera-
tion time and the total AoI of the UAV, respectively. The tradeoff
between T and

∫ T

0 A(t)dt can be obtained by solving problem
(P1) for a given value of θ. With a large θ, the UAV is expected to
navigate through the target points where the AoI issue is almost
ignored. Otherwise, the UAV tends to keep connectivity with the
BS for better channel quality, leading to a smaller AoI.

Note that the optimal solution to problem (P1) is difficult
to obtain, since (P1) consists of continuous optimization vari-
ables {u(t)} and binary variables {xm(t)}. Furthermore, (P1)
is an MINLP which contains the complicated target location
constraint and an integral upper limited by a design variable T .
In addition, an accurate channel coefficient hm(t) is usually
unavailable due to the channel randomness and the frequent
switching between LoS/NLoS connections during a flight.

To address such difficulties, we first consider the average
communication performance with statistic channel information
and obtain a statistically favorable formulation in Section IV,
based on the expected communication rate over the probabilistic
LoS channel model. By analyzing the optimal structure, we

develop a search algorithm to obtain the optimal solution and
a low-complexity DGA to obtain a suboptimal solution by em-
ploying shortest path and TSP path techniques. Next, we address
the site-specific performance for a specific local environment in
Section V, and the UAV acts as an agent to interact with the
environment by CSI measurement. We propose a DLA to learn
from the specific local environment and make fast decisions. In
particular, the sampled rate measurements by the UAV is used
as input, based on which a function that maps the input local
environment to the output flying decisions can be learnt with a
DDQN. Note that the DDQN-based offline model training can be
conducted at the UAV control center or BSs, which usually have
a more powerful computation capability. Then the well-trained
learning model can be transferred to and executed on the UAV
to perform model inference locally and make fast decisions.

IV. PROPOSED GRAPH BASED ALGORITHM

In this section, we first characterize the average communi-
cation performance with statistic channel information, and then
reformulate the problem into a more tractable form by analyzing
the structure of the optimal solution. We then obtain the optimal
and low-complexity suboptimal solutions by employing the
graph based algorithms.

A. Problem Reformulation

We adopt the probabilistic LoS channel model [21] to charac-
terize the average communication performance under building
blockages over a large number of similar communication envi-
ronments, which is assumed to be known in advance. In particu-
lar, the LoS probability at time t between ground BS sm and the
UAV is denoted by PL

m(t) = 1
1+a exp(−b[|φm(t)|−a]) , where a and

b are two environment dependent parameters, andφm(t) is the el-
evation angle at time t. As a result, βm(t) = β0dm(t)−α for LoS
link with probability PL

m(t) while βm(t) = μβ0dm(t)−α for
NLoS link with probability PN

m (t) � 1− PL
m(t). As such, we

obtain E[|hm(t)|2] = Gm(t)P̂L
m(t)β0dm(t)−α, where P̂L

m(t) �
PL
m(t) + (1− PL

m(t))μ is a regularized LoS probability with
additional factor μ for NLoS occurrence.

Since the channel gains hm(t) are random variables, the
channel achievable rates Rm(t) are also random variables. Thus
we are interested in the expected achievable rate, i.e., E[Rm(t)],
whose closed form expressions are also difficult to obtain due to
the difficulty of deriving its probability distribution. To address
such issue, we obtain its approximation based on the following
result from [45].

Proposition 1. ([45, Theorem 1]): The approximation
E[log2(1 +

X
Y )] ≈ log2(1 +

E[X]
E[Y ] ) holds, where X and Y are

independent random variables, X ≥ 0, Y > 0.
Let X = P |hm(t)|2 and Y = σ2. By applying Proposi-

tion 1 over E[Rm(t)], we obtain E[Rm(t)] ≈ B log2(1 +
PE[|hm(t)|2]

σ2 ) = B log2(1 +
PGm(t)P̂L

m(t)β0

σ2dm(t)α ). Note that P̂L
m(t) is

still a complicated functions with UAV trajectory u(t), and it
is difficult to tackle. By applying homogeneous approximation
approach as in [40], [41], we let P̂L

m(t) ≈ P̄L
m andGm(t) ≈ Ḡm,

where P̄L
m and Ḡm are determined as the average value for the
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TSP path visiting the locations in K exactly once from uI to
uF due to the target location constraint (7), and this way, a
satisfactory approximation accuracy can be guaranteed [41].

Thus, we have E[Rm(t)] ≈ B log2

(
1 + PḠmP̄L

mβ0

σ2dm(t)α

)
� R̄m(t),

and the UAV’s total AoI can be approximated as
∫ T

0 (t− λ̄(t))dt,

where λ̄(t) � maxτ{τ |τ ∈ [0, t],
∑M

m=1 xm(τ)R̄m(τ) ≥ Rs}.
As such, the transmission scheduling can be approximately
obtained as

xm(t) =

{
1, m = argmaxm′∈{1,2,...,M} R̄m′(t),
0, otherwise,

(10)

and λ̄(t) is written as λ̄(t) = max{τ |τ ∈ [0, t],maxm R̄m(τ) ≥
Rs}.

It can be shown that the QoS requirementmaxm R̄m(τ) ≥ Rs

is equivalent to the constraint on the distance between the UAV
and its closest BS, i.e., minm ‖u(t)− gm‖ ≤ d̄m, where d̄m �√

( γm

2Rs/B−1 )
2
α − (H −HG)2 and γm = PḠmP̄L

m

σ2 denotes the
reference signal-to-noise ratio (SNR) at 1 m. As a result, the
UAV selects the closest BS for sensory data transmission at
each time t. Note that the above approximation solution for
transmission scheduling is only applied for the average com-
munication performance, which is not suitable for the site-
specific performance with given a specific local environment.
Define service areaAm � {u|u ∈ R2×1, ‖u− gm‖ ≤ d̄m} for
ground BS sm, which is exactly a disk region on the horizontal
plane centered at gm with radius d̄m. The QoS requirement
maxm R̄m(τ) ≥ Rs can always be satisfied as long as the UAV’s
horizontal position lies in the region Â �

⋃M
m=1Am. If the UAV

is out of region Â, then no immediate sensory data transmission
happen and thus the AoI of the UAV will increase.

We denote J , J ≤M , as the number of service areas
that the UAV flies over during the mission, and the corre-
sponding BSs set is denoted as J = {sω1

, sω2
, . . . , sωJ

} ⊆
M, where |J | = J and ωi ∈ {1, . . . ,M} is the BS index
in M, 1 ≤ i ≤ J . Denote tsωi

and tlωi
as the time instants

that the UAV starts to enter and leave service area Aωi
,

respectively. Thus, we can obtain the visiting order of J ,
π = (π1, π2, . . . , πJ ) by re-arranging {ωi}with increasing tsωi

,
which is exactly a permutation of (ω1, ω2, . . . , ωJ ). Thus, we
have tsπi

≤ tlπi
≤ tsπi+1

≤ tlπi+1
, 1 ≤ i ≤ J − 1, and ‖u(t)−

gπi
‖ ≤ d̄πi

, t ∈ [tsπi
, tlπi

]. Due to the definition of AoI, we have
λ̄(t) = t when t ∈ [tsπi

, tlπi
], 1 ≤ i ≤ J , and λ̄(t) = tlπi−1 when

t ∈ [tlπi−1 , t
s
πi
], 2 ≤ i ≤ J . As a result, the total AoI of the UAV

can be expressed as∫ T

0

(t− λ̄(t)) dt =

J+1∑
i=1

(tsπi
− tlπi−1)

2

2
, (11)

where we define tlπ0
� 0 and tsπJ+1

� T . Based on the above
discussions, problem (P1) can be reformulated in the following
equivalent form.

(P2) : min
T,J ,π,{u(t)},{tsπi

,tlπi
}
θT + (1− θ)

J+1∑
i=1

(tsπj
− tlπj−1)

2

2

s.t. J ⊆M, (12)

∥∥u(t)− gπj

∥∥ ≤ d̄πj
, t ∈ [tsπj

, tlπj
], i = 1, . . . , J,

(13)

tsπj−1 ≤ tlπj−1 ≤ tsπj
≤ tlπj

, 2 ≤ j ≤ J,

(7)–(9). (14)

Theorem 1: Problem (P2) is NP-hard.
Proof: We show the proof by a reduction from TSP, which

is a well known NP-hard problem [46]. We consider a special
case of problem (P2) by assuming that the service area of each
BS is sufficiently large, such that the UAV lies in service areas
of all BSs during its flight. In this case, the UAV can transmit
the freshest sensory data to any BS and the total AoI of the
UAV is always zero. Problem (P2) in this special case reduces
to a UAV operation time minimization problem under the target
location constraint (7), where the UAV should reach all the target
locations inK. To minimize the UAV operation time, the UAV is
required to fly at the maximum speed and all the target locations
in K are visited exactly once. Thus, this special problem is
equivalent to the TSP with given initial and end locations [47],
which is to find the shortest possible route that visits each city
exactly once with a given list of cities and the distance between
each pair of cities. By adding a dummy city with its distance to
the initial and end locations set to 0, while that to all other cities
set to a sufficiently large value, TSP with given initial and end
locations is equivalent to the standard TSP. Hence, problem (P2)
is NP-hard. �

In the following, we first analyze the structure of the opti-
mal solution to (P2), based on which both optimal and low-
complexity suboptimal solutions are derived by employing
graph theory.

B. Proposed Solution

To gain more insights into problem (P2), we consider a
special case when K = ∅, i.e., K = 0, where there exist no
important target locations that the UAV needs to visit. The above
special case of (P2) is named as problem (P2-s). Define the
UAV waypoints us

πj
� u(tsπj

), ul
πj

� u(tlπj
), 1 ≤ j ≤ J . It is

easy to prove by contradiction that the optimal UAV trajectory
to (P2-s) can be assumed to contain line segments connecting
uI ,u

s
π1
,ul

π1
, . . . ,us

πJ
,ul

πJ
,uF and the UAV flies at the maxi-

mum speed. As such, with given J and π, problem (P2-s) can
be written as the following problem (P3), where ul

π0
� uI and

us
πJ+1

� uF .

(P3) : min
{us

πj
,ul

πj
}

θ

Vmax

⎛
⎝ J∑

j=1

∥∥∥ul
πj
−us

πj

∥∥∥+J+1∑
j=1

∥∥∥us
πj
−ul

πj−1

∥∥∥
⎞
⎠

+
(1− θ)

2V 2
max

J+1∑
j=1

∥∥∥us
πj
− ul

πj−1

∥∥∥2

s.t.
∥∥∥us

πj
− gπj

∥∥∥ ≤ d̄πj
,
∥∥∥ul

πj
− gπj

∥∥∥ ≤ d̄πj
,

j = 1, . . . , J. (15)
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Note that (P3) is a standard convex optimization problem,
which can be solved with CVX [48]. As a result, the optimal
solution to (P2-s) can be obtained by an exhaustively search over
all possible subsets J ⊆M and the visiting order π of each J ,
and then solving (P3) to determine the minimum objective value.
However, searching all possible subsets ofJ has an exponential
complexity of O(2M ), which is infeasible for large values of
M . Therefore, we propose an efficient suboptimal solution to
(P2-s) by using a graph based algorithm. With given BS location
{gm} and corresponding service area radius {d̄m}, we define a
weighted graph Ĝ(V̂ , Ê, ŵ) as follows, and obtain the following
proposition.

Definition 1: Ĝ(V̂ , Ê, ŵ) is constructed by
� V̂ � {v̂0, v̂1, . . . , v̂M , v̂M+1}. We introduce a vertex v̂m

for the location of each BS sm, i.e., gm, 1 ≤ m ≤M ,
where v̂o and v̂M+1 represent the initial and final locations,
respectively.

� Ê � {(v̂i, v̂j)|0 ≤ i �= j ≤M + 1}. For any two different
vertices v̂i and v̂j , v̂i ∈ V̂ , v̂j ∈ V̂ , i �= j, there exists an
edge (v̂i, v̂j).

� ŵ : Ê → R+, where ŵ is a weight function. In particu-
lar, ŵ(v̂i, v̂j) =

θ
Vmax
‖gi − gj‖+ (1−θ)

2V 2
max
‖gi − gj‖2, 0 ≤

i �= j ≤M + 1, where g0 and gM+1 denote the initial and
final locations, respectively.

Proposition 2: The objective value of (P2-s) is upper bounded
by the weight of the shortest path between vertex v̂o and v̂M+1

over graph Ĝ.
Proof: Considering a special case of (P2-s) with d̄πj

= 0, ∀j,
which we call problem (P2-ss). Then us

πj
= ul

πj
= gπj

, ∀j.
Due to Definition 1, it is easy to see that problem (P2-ss) is
equivalent to finding the shortest path over graph Ĝ, and thus
the optimal value to (P2-ss) equals to the weight of the shortest
path �p∗ between vertex v̂0 and v̂M+1, i.e., J ∗ = {v̂i|v̂i ∈ �p∗},
while π∗ can be obtained by rearranging the vertices in J ∗ with
the order appearing in �p∗. In addition, the optimal solution to
(P2-ss) is also a feasible solution to (P2-s), since (P2-ss) is a
special case of (P2-s). Thus the optimal objective value of (P2-ss)
serves as an upper bound of that of (P2-s), which concludes the
proof. �

Note that Dijkstra algorithm can be used to find the shortest
path from v̂0 to v̂M+1 in Ĝ with complexity O(M2) [49]. Thus,
a suboptimal solution to (P2-s) can be obtained via finding the
shortest path in Ĝ using Dijkstra algorithm to determine the
serving BS set J as well as the visiting order π, and solving the
convex optimization problem (P3) to determine the waypoints
{us

πj
,ul

πj
}. It is worthwhile to note that such suboptimal solu-

tion is general for any initial location ũI and final location ũF .
Let us consider the general case when K �= ∅, i.e., K > 0,

where there exist K important target locations that the UAV
needs to visit. Then the UAV trajectory can be partitioned into
K + 1 segments, with Π = (Π1, . . . ,ΠK) denoting the visiting
order ofK. Specifically, the lth segment starts at wΠl−1 and ends
at wΠl

, 1 ≤ l ≤ K + 1, where wΠ0
� uI and wΠK+1

� uF .
Denote the optimal UAV trajectory for the lth segment as
{u∗l (t)} and the minimum weighted sum of operation time
and total AoI along the lth segment is denoted by Λ∗l . Thus,

Algorithm 1: Search Algorithm for Problem (P2).
1: Λ∗ ← ∞;
2: for each permutation Π of the target locations in K do
3: for l = 1 to l = K + 1 do
4: Set initial location ũI = wΠl−1 and final location

ũF = wΠl
. Let Λ∗Π,l ←∞;

5: for each subset J ⊆M do
6: for each visiting order π for J do
7: With given ũI , ũF , J , and π, solve the standard

convex optimization problem (P3) with CVX to
obtain the objective value ΛΠ,l and waypoints
{us

πj
,ul

πj
};

8: if ΛΠ,l < Λ∗Π,l then
9: Λ∗Π,l ← ΛΠ,l, J ∗Π,l ← J , π∗Π,l ← π,

U∗Π,l ← {us
πj
,ul

πj
};

10: end if
11: end for
12: end for
13: end for
14: if

∑K+1
l=1 Λ∗Π,l < Λ∗ then

15: Π∗ ← Π, Λ∗ ←∑K+1
l=1 Λ∗Π,i, J ∗Π ← {J ∗Π,l},

π∗Π ← {π∗Π,l}, U∗Π ← {U∗Π,l};
16: end if
17: end for
18: Construct the optimal UAV trajectory based on Π∗, J ∗Π,

π∗Π, U∗Π with line segments and the maximum speed;

we can conclude that the optimal objective value of (P2) for
the entire flight is equal to

∑K+1
l=1 Λ∗l , since otherwise we can

always replace the lth segment with {u∗l (t)}, which results in
a smaller weighted sum. As a result, we can search all the
possible permutations of the K target locations and minimize
the weighted sum along each segment of UAV trajectory. With
given permutation Π, the weighted sum minimization problem
for the lth segment can be regarded as (P2-s) with initial location
wΠl−1 and finial location wΠl

, where the solution has already
been obtained. Based on the above discussions, the optimal
solution to (P2) can be obtained by the following Algorithm
1, where the optimal solution to (P2-s) is obtained from Step
5 to Step 12. The complexity of Algorithm 1 is given by
O(2MM !K!K log(1/ζ)), where ζ is the solution accuracy.

To further reduce the complexity, especially when M and K
are large, we propose a DGA for finding a suboptimal solution
to (P2). Specifically, we define another graph Ǧ(V̌ , Ě, w̌) as
follows.

Definition 2: Ǧ(V̌ , Ě, w̌) is constructed by
� V̌ � {v̌0, v̌1, . . . , v̌K , v̌K+1}. We introduce a vertex v̌k for

the target location ρk, i.e., wk, 1 ≤ k ≤ K, where v̌0 and
v̌K+1 represent uI and uF , respectively.

� Ě � {(v̌i, v̌j)|0 ≤ i �= j ≤ K + 1}. For any two different
vertices v̌i and v̌j , v̌i ∈ V̌ , v̌j ∈ V̌ , i �= j, there exists an
edge (v̌i, v̌j).

� w̌ : Ě → R+, where w̌ is a weight function. In particular,
w̌(v̌i, v̌j) represents the weighted sum of the operation time
and total AoI starting from v̌i and ending at v̌j .
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Algorithm 2: Double Graph Algorithm for Problem (P2).

1: Construct graph Ǧ(V̌ , Ě, w̌) with Definition 2;
2: for each edge (v̌i, v̌j) ∈ Ě do
3: Let ũI and ũF be the initial and final locations

corresponding to vertices v̌i and v̌j ;
4: Construct graph Ĝ(V̂ , Ê, ŵ) with Definition 1, where

v̂0 corresponds to ũI and v̂M+1 corresponds to ũF ;
5: Obtain the shortest path in Ĝ(V̂ , Ê, ŵ) by utilizing

Dijkstra algorithm to determine the visited BS set Ji,j
and visiting order πi,j ;

6: With given ũI , ũF , Ji,j , and πi,j , solve convex
optimization problem (P3) with CVX to obtain
objective value Λi,j and waypoints Ui,j .

7: w̌(v̌i, v̌j)← Λi,j ;
8: end for
9: Find a TSP path �p over Ǧ(V̌ , Ě, w̌) starting from v̌0 and

ending at v̌K+1 with TSP algorithm [50] to determine
total weighted sum Λ and visiting order Π;

10: JΠ ← {Ji,j |(v̌i, v̌j) ∈ �p}, πΠ ← {πi,j |(v̌i, v̌j) ∈ �p},
UΠ ← {Ui,j |(v̌i, v̌j) ∈ �p};

11: Construct the UAV trajectory based on Π, JΠ, πΠ, UΠ
with line segments and maximum speed;

Note that weight w̌(v̌i, v̌j) can be obtained by solving problem
(P2-s) with given v̌i and v̌j . Due to Definition 2, solving (P2) is
equivalent to finding a TSP path starting from v̌0 and ending
at v̌K+1, while each vertex in V̌ is visited only once. Note
that although finding a TSP path is NP-hard, it has been well
studied and there exist many efficient algorithms to find an
approximate solution, e.g., with complexity O(K2) [50]. Based
on the above discussions, the suboptimal solution to (P2) can be
obtained by the following DGA given by Algorithm 2, where the
suboptimal solution to (P2-s) is obtained from Step 3 to Step 7.
Note that the main steps in Algorithm 2 are Step 2 to Step 8 for
weight calculation, whose complexity is given by O(K2M2).
Furthermore, the complexity of the TSP algorithm is O(K2). In
summary, the complexity of Algorithm 2 is given byO(K2M2).

Note that the above algorithms rely on the statistic channel
information, thus only average communication performance
over a large number of similar scenarios can be obtained, which
may not be suitable for the site-specific performance. Further-
more, these algorithms are time consuming, thus not suitable
for onboard implementation on the UAV, where fast decision
making is needed. The aforementioned limitations motivate the
DLA developed based on DRL, which will be presented in the
following section.

V. PROPOSED DDQN-BASED DLA

To analyze the site-specific performance for a specific local
environment and make fast decisions, the DLA is proposed in
this section. We first reformulate the problem as a Markov deci-
sion process (MDP), and then propose a DDQN-based DLA to
learn from the local radio propagation environment by sampled
rate measurements, where no prior knowledge about the radio

propagation environment is required. Specifically, the sampled
rates of the A2G channels measured by the UAV is used as input,
based on which a function that maps the local environment input
to the output flying decisions can be learnt with a DDQN-based
model. After suitable training, the DDQN can be utilized to make
quick decisions for the UAV.

A. Problem Reformulation

In practice, the rate Rm(t) can be measured in a specific local
environment by leveraging the existing handover mechanisms
with continuous RSRP measurements [23]. Similar as in Section
IV, the transmission scheduling for (P1) can be obtained by

xm(t) =

{
1, m = argmaxm′∈{1,2,...,M}Rm′(t),
0, otherwise,

(16)

where Rm′(t) is the actual measured rate. As a result,
the UAV selects the BS with the maximum measured rate
for sensory data transmission at each time t. Then, λ(t) =
maxτ{τ |maxm Rm(τ) ≥ Rs, τ ∈ [0, t]}. Due to (7), the op-
timal UAV trajectory to (P1) can be partitioned by the target
locations inK intoK + 1 segments, and we can solveK + 1 in-
dependent subproblems for each segment of the UAV trajectory
as in Section IV. As such, we first obtain the visiting order of the
target locationsΠ = (Π1, . . . ,ΠK)by the offline Algorithm 2 in
Section IV. The subproblem for each segment l can be written
as the following (P4), 1 ≤ l ≤ K, where we omit the subscripts
of segment l for ease of exposition, i.e.,

(P4) : min
T̃ ,{u(t)}

θT̃ + (1− θ)

∫ T̃

0

(t− λ(t)) dt

s.t. ‖v(t)‖ = Vmax, ∀t ∈ [0, T̃ ], (17)

u(0) = ũI ,u(T̃ ) = ũF . (18)

where T̃ is the UAV operation time along the lth segment, ũI

and ũF are the start and end points of the lth segment of the
UAV trajectory, respectively. Note that ũI and ũF are exactly
determined by the given visiting order Π. In the following, we
will only focus on solving problem (P4).

Since no prior knowledge about the specific radio propagation
environment is given, then the UAV can make sequential deci-
sions regarding its trajectory in each time step, and the trajectory
design influences its states as well as the AoI in the future. As
such, we first transform problem (P4) into an MDP. For ease of
exposition, the time horizon T̃ is discretized into Ñ equal time
slots, i.e., T̃ = Ñδ, where the slot duration δ is appropriately
chosen such that the UAV’s location can be assumed to be
approximately unchanged within each time slot. As such, the
UAV trajectory can be approximated by a sequence {u[n]|1 ≤
n ≤ Ñ}. The discretized form of Rm(t), λ(t), βm(t), hm(t),
h̃m(t) are represented by Rm[n], λ[n], βm[n], hm[n], h̃m[n],
respectively. Thus, (P4) can be approximated as

(P5) : max
{u[n]},Ñ

−θÑ − (1− θ)

Ñ∑
n=1

(n− λ[n])

s.t. u[n+ 1] = u[n] + δVmax�v[n], ∀n, (19)
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‖�v[n]‖ = 1, ∀n, (20)

u[1] = ũI ,u[Ñ ] = ũF , (21)

where �v[n] denotes the UAV flying direction at time slot n.
Note that the UAV is at waypoint u[n] at time slot n, and

the LoS/NLoS states can be exactly determined by checking
whether obstacles exist between BSs and the UAV in the specific
local environment, where the large-scale channel power gain
βm[n] is thus determined. On the other hand, we can also
measure h̃m[n] with the existing handover mechanisms with
continuous RSRP measurements. Note that each time slot may
contain multiple fading blocks, e.g., Ω ≥ 1 fading blocks. Then
the UAV can perform Ω measurements and adopt the average
value for Rm[n]. In other words, Rm[n] = 1

Ω

∑Ω
j=1 Rm[n, j],

where Rm[n, j] is the jth measurement at time slot n, 1 ≤ j ≤
Ω. Although such an estimation causes a performance gap, the
gap is practically negligible with a sufficiently small δ [22]. As
a result, rate Rm[n] can be measured at location u[n], which is
utilized in the following for reward calculation of DDQN.

Problem (P5) can be modeled as an MDP. In particular, the
UAV is regarded as an agent and all of the network settings
(including the local radio propagation environment, target loca-
tions and BSs) are regarded as the environment. As such, we
can characterize the UAV by a tuple <S,A,P,R>, where S
is the state space, A is the action space, P is the state transition
function, and R is the reward function. By formulating the
problem as an MDP, the UAV acts like an agent which finds
the peak of the reward by interacting with the environment. In
the following, we define the above elements.
� State Space: We define the state of the UAV at the beginning

of the nth time slot as the UAV’s horizontal location, i.e.,
u[n]. Thenu[1] = ũI is the initial state while ũF is the final
state. As a result, S ⊆ R2×1 denotes the continuous state
space that contains all possible UAV horizontal locations.

� Action Space: We define the actions of the UAV as its
flying directions. In particular, the UAV’s action within
the nth time slot is expressed as �v[n], where ‖�v[n]‖ = 1.
Note that the UAV updates its decisions at the beginning of
each time slot, and will keep its decision unchanged within
each time slot. As a result, A � {�v|‖�v‖ = 1} denotes
the action space that contains all the possible UAV flying
directions. For simplicity, we uniformly discretize the set
of actions into κ values to ensure finite action space, i.e.,
A = {�v(1), . . . , �v(κ)}.

� State Transition Function: The UAV’s current state before
the (n+ 1)th time slot is determined by the UAV’s state
before the nth time slot. With given the current action �v[n],
we can obtain the movement of the UAV within the time
slot n with (19), i.e., u[n+ 1] = u[n] + δVmax�v[n].

� Reward Function: For (P5), the reward function is defined
to award the UAV for reaching its destination, and penalize
the UAV for moving and the increase of AoI. At time slotn,
we define an indicator In = 1 when maxm Rm[n] ≥ Rs,
and In = 0 otherwise. Let λ[1] = 1. For n ≥ 2, we have

λ[n] =

{
n, In = 1,
λ[n− 1], In = 0.

(22)

Due to the objective function of (P5), the reward at time
slot n is defined as

Φ[n] = −θ − (1− θ)(n− λ[n]). (23)

Therefore, the UAV is motivated to minimize its weighted
sum of operation time and total AoI by making decisions
on its flying directions. Note that if there exist two flying
paths with the same total AoI, we prefer the one with
minimum operation time. In this case, we take the total
AoI as performance metric which tilts the problem towards
solutions that reduce the mission duration.

After obtaining the discretized actions, the state space can be
further discretized into finite space since position increments and
directions are both discrete. In the following, a DLA is proposed
based on DDQN with a dueling network architecture. Our pro-
posed DLA consists of an offline training process and an online
execution process. During the training process, the training data
is collected and the DDQN model is trained offline. After the
training process, we execute the well-trained DDQN model to
learn the optimized flying strategy for the UAV according to its
current state.

B. Proposed Solution

In the following, we adopt a DQN with the dueling network
architecture [51], termed as dueling DQN, to approximate the
state-action value Q̂(s, a) with weights η. Compared to the
standard DQN, the dueling DQN consists of two streams that
represent the value and advantage functions, which are com-
bined in a smart way via a special aggregating layer to estimate
the state-action value function Q. In particular, Q̂(s, a;α, β) =
V(s;β) + (G(s, a;α)− 1

|A|
∑

a G(s, a;α)), where α and β are
the parameters of fully-connected layers. The value function
V corresponds to how good it is in a particular state s, while
the advantage function G decouples the state value from the
Q-function such that the importance of each action can be
measured. In this case, more robust estimates of state value
can be achieved, and thus stability and convergence rate can
be significantly improved [51].

We adopt the multi-step bootstrapping which can effectively
accelerate the training [52]. In particular, the truncated N0-step
return is given by

Φ[n : n+N0] =

N0−1∑
k=0

γΦ[n+ k + 1], (24)

with γ denoting the discount factor. In (P5), the objective func-
tion corresponds to γ = 1, which means that all rewards are
equally important. Furthermore, it is shown that Q-values are
always overestimated by DQN training. We adopt DDQN to
tackle such issue [23], [52]. DDQN includes two neural networks
named the primary neural network and the target neural network,
both of which adopt the dueling structure. The key idea of DDQN
is to select an action by using the primary network with weights
η, while uses the target network with η′ to compute the target
Q-value for the action. By decoupling Q value evaluation and
action selection, DDQN can efficiently mitigate overestimation
and enhance stability during model training.
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For the training process of DDQN with the dueling network
architecture, the UAV obtains a state from the state space S and
selects an action from the action spaceAwith the ε-greedy policy
to balance exploitation and exploration. To be specific, the action
�v[n] that maximizes the Q-value is chosen with a probability of
1− ε, while a random action is chosen with probability ε, i.e.,

P (�v[n]) =

{
1− ε, �v[n] = max

�v′∈A
Q̂(u[n], �v′;η),

ε/(|A| − 1), otherwise.
(25)

A replay bufferD, i.e., memory pool, is used to store theN0-step
transitions (or, experience) (u[n], �v[n],Φ[n : n+N0],u[n]),
and a mini-batch of experiences are randomly sampled from
it to update the weights η by minimizing the loss function

(
Φ[n : n+N0] + γN0Q̂(u[n+N0], �v

∗;η′)

−Q̂(u[n], �v[n];η)
)2

, (26)

where �v∗ = argmax�v′∈A Q̂(u[n+N0], �v
′;η). Here, the first

part Φ[n : n+N0] + γN0Q̂(u[n+N0], �v
∗;η′) represents a

target that the Q-value needs to move and the second part
Q̂(u[n], �v[n];η) denotes the estimation of Q-value. As a result,
the loss function indicates the estimation error of a DDQN
model, where better estimation performance of DDQN can be
achieved with smaller loss function. The pseudocode of DLA
for problem (P5) is summarized in Algorithm 3.

In Algorithm 3, the training process consists of Ψmax

episodes, where ε-greedy approach is adopted to choose an
action with the given current state in each episode. The algorithm
starts with a fairly randomized policy at Step 7 and slowly move
to a deterministic policy later due to the update of ε at Step 13.
According to [51], it has been proved that the convergence of the
learning Algorithm 3 with DDQN can be guaranteed. As for the
DLA, the training procedure can be deployed in a simulator and
runs offline at BSs, where its time complexity is proportional
to the number of training time, i.e., O(ΨmaxNmax). Once the
neural networks are trained, the converged neural networks are
saved for testing and can be easily deployed at the UAV, where
the optimized policy can be generated very fast with only some
simple algebraic calculations. In particular, in each time slot, the
UAV’s action will be generated by the trained neural networks,
i.e., through the operation at Step 7, which guides the UAV by
making real-time decisions and will inevitably reduce the payoff
of practical implementation.

VI. SIMULATION STUDY

In this section, we provide the system settings and evaluate
the performance of both the DGA for average performance and
DLA for site-specific performance through simulation. We also
study the impact of different parameters on the performance of
the proposed algorithms.

Algorithm 3: Training Process for Problem (P5).

1: Initialize replay memory D with capacity |D|; Initialize
exploration probability ε and decaying rate ν;

2: Initialize the primary Q-network with weights η;
3: Initialize the target Q-network with weights η′ = η;
4: for episode = 1 to Ψmax do
5: Initialize the initial state u[1] = ũI . Initialize n = 1;
6: while n ≤ Nmax and u[n] �= ũF do
7: Choose a random action �v[n] in A with probability

ε; otherwise select �v[n] = max�v′∈A Q̂(u[n], �v′;η);
8: Perform action �v[n] and observe the next state

u[n+ 1];
9: Obtain λ[n] due to (22) based on measurement of

Rm[n], and calculate reward
Φ[n] = −θ − (1− θ)(n− λ[n]);

10: Calculate the N0-Step reward Φ[n−N0 : n]
according to (24), and store
(u[n−N0], �v[n−N0],Φ[n−N0 : n],u[n]) into
the replay buffer D;

11: Sample a random minibatch of transitions
(u[j], �v[j],Φ[j : j +N0],u[j +N0]) from replay
buffer D;

12: Update the weights η of the primary Q-network by
gradient descent with the loss function defined by
(26);

13: Update n← n+ 1; ε← εν;
14: Every B̂ steps, update the target network weights

η′ = η;
15: end while
16: end for

A. Simulation Setting

As shown in Fig. 2, we consider a cellular-connected UAV
sensing system with M = 7 ground BSs, which are uniformly
distributed in a square urban area (denoted by Ŝ ∈ R2) with
width 3.0 km. The UAV collects sensory data from Ŝ with
its sensors in each time instant, while the sensing data are
transmitted to the ground BSs for further processing. The target
locations inK are denoted by black squares in Fig. 2, which are
required to be visited during the flight. The mission of the UAV
is to sense and transmit data in region Ŝ from uI to uF , while
accessing all the target locations inK. The heights and locations
of the buildings in the considered urban area are generated
based on one realization of the statistical model specified by
ITU [39]. As such, the LoS/NLoS states at any location can be
exactly determined by checking whether obstacles exist between
ground BSs and the UAV, while the statistical model can be
used to obtain the LoS probability, which reflects the average
communication performance over a large number of realiza-
tions. In the following, the results of average communication
performance with the statistical model using DGA are given in
Section VI-B, while the results of site-specific performance us-
ing DLA are given in Section VI-C. Similar to [53], the antenna
patterns related parameters are set as: φD = 10◦, G0 = 30 dB,
HPBWv = 65◦, n0 = 8. The A2G channels parameters are set
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Fig. 2. Optimized trajectories with different values of weighting factor θ. The
blue triangles denote the initial and final UAV locations.

as: β0 = −60 dB, σ2 = −110 dBm, a = 10, b = 0.6, α = 2.2,
μ = 0.01, and Kc = 15 dB as in [21]. Unless otherwise stated,
other parameters are set as: HG = 25 m, H = 100 m, B = 1
MHz, P = 0.1 W, Rs = 1.5 Mbps, δ = 1 s, and Vmax = 50
m/s.

B. Average Performance of the Proposed DGA

We first consider the offline design with the average commu-
nication performance. To balance the tradeoff between the op-
eration time and total AoI of the UAV, the optimized trajectories
with different values of weighting factor θ are shown in Fig. 2.
The colored stars denote the ground BSs and the circle around BS
sm represents the service area Am (obtained in Section IV-A),
where timely transmission requirement can be always satisfied
if the UAV is within Am, ∀m. If the UAV is out of the service
areas, the sensory data cannot be transmitted timely and thus
the AoI of the UAV increases. It is observed that the ground
BSs have service areas with heterogeneous size even when the
UAV generates sensory data with a fixed sensing rate Rs and
transmits data with the same transmit power P , since the local
radio environment around different BSs are heterogeneous (e.g.,
with different building distribution). From Fig. 2, we can see that
the UAV enters and leaves the service areas of BSs sequentially,
where all the target locations are reached. With different values
of weighting factor θ, the visiting order of the target locations and

Fig. 3. Optimized trajectories with different values of weighting factor θ
(M = 5, K = 3, Rs = 1 Mbps).

BSs as well as waypoints may be different, which can be obtained
by the optimal Algorithm 1 and the suboptimal Algorithm 2. It
is observed that the suboptimal solution obtained by Algorithm
2 achieves similar trajectory as the optimal solution obtained
by Algorithm 1, thus validating the efficiency of the DGA. The
performance with different scenario configuration are provided
in Fig. 3 (e.g., withM = 5,K = 3,Rs = 1Mbps). It is observed
from Fig. 3 that similar trends can be obtained as in Fig. 2, where
the details are omitted for brevity. Thus, unless otherwise stated,
we only consider the scenario configuration as in Fig. 2 to avoid
redundancy.

Fig. 4 depicts the average performance comparison between
Algorithms 1 and 2 under different numbers of BSs when θ =
0.8, where the BSs are randomly distributed in the area and the
results are obtained by averaging over 100 random realizations
of the BS locations. Similar results can be obtained for θ = 0.2,
which are omitted for brevity. The required execution times for
the two algorithms are given in Fig. 4(a), which are obtained
over a computer with dual core CPU 3.4 GHz. It is observed
that the execution time of the search Algorithm 1 increases
exponentially with M due to the rapidly increased search space,
which is also verified by the complexity analysis in Section
IV. In contrast, our proposed suboptimal Algorithm 2 requires
much less execution time than Algorithm 1 and achieves a close
performance as Algorithm 1 (see Fig. 4(b)). Thus, the proposed
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Fig. 4. Performance comparisons between optimal Algorithm 1 and subopti-
mal Algorithm 2.

DGA is a practically appealing solution for the offline problem
(P2) from both complexity and performance considerations. In
the following, we only use DGA for performance comparison
with other benchmark schemes.

It can be seen in Fig. 2 that when the weighting factor θ is
large, the UAV is expected to fly directly to the target locations
to reduce the flying distance since minimizing UAV operation
time is more important, while the total AoI of the UAV increases
due to the long time out of service areas. This is also verified
in the tradeoff curves plotted in Fig. 5, which show the total
AoI and average AoI (i.e., 1

T

∫ T

0 A(t)dt) versus UAV operation
time obtained for the proposed DGA by using different values
of θ. For any point in Fig. 5(a), its values for x-coordinate and
y-coordinate represent for the contributions for operation time
and total AoI, respectively. As expected, the UAV operation time
decreases with θ while the total AoI increases with θ, which
shows that the decrease of total AoI is at the cost of an increase
of the UAV operation time. Similar trend is observed for average
AoI in Fig. 5(b), where the details are omitted for brevity. Thus,
θ can be flexibly set to achieve a good balance between the AoI
and operation time of the UAV according to practical system
requirements.

Fig. 5. Tradeoff between UAV operation time and AoI for UAV sensing.

To further illustrate the performance gain achieved by the pro-
posed DGA, we consider the following six benchmark schemes,
which are referred to as the Operation time minimization bench-
mark, the AoI minimization benchmark, the Min-max AoI bench-
mark, the Uploading rate maximization benchmark, the Sense
and transmit benchmark, as well as the Energy minimization
benchmark. In the operation time minimization benchmark, the
UAV operation time is minimized by visiting all target locations
with the TSP method as in [47], which corresponds to the case
when θ = 1. In the AoI minimization benchmark, the total AoI
of UAV sensing is minimized as in [54], which corresponds to the
case when θ = 0. In the min-max AoI benchmark, the maximum
AoI along the UAV’s flight is minimized with graph algorithm as
in [55]. In the uploading rate maximization benchmark, the UAV
flies to the top of the visited BSs for uploading rate maximization
of sensory data as in [22]. In the sense and transmit benchmark,
the UAV flies directly to the target points and then transmits
sensory data to the nearby BSs, similar as in [11]. For the energy
minimization benchmark, the UAV flies to the target points
with the minimum-energy speed, which is found numerically by
one-dimensional search based on the propulsion energy model
derived in [41].
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Fig. 6. Energy consumption of the UAV for different schemes.

From Fig. 5 we can see that each of the six benchmark schemes
only result in one singleton trade-off point. Unlike DGA, no
flexible trade-off between the operation time and AoI of the
UAV can be achieved with these benchmark schemes, since
they only optimize either the UAV operation time or the AoI.
Uploading rate maximization benchmark achieves a comparable
AoI as DGA, but it leads to a higher UAV operation time and
such gain is brought by the waypoint optimization of DGA.
The performance gap between the min-max AoI benchmark and
DGA illustrates the additional gain of joint optimization of the
AoI and the visiting order of target locations. The min-max AoI
benchmark corresponds to egalitarian bargaining for fairness
efficiency, while the AoI minimization benchmark corresponds
to utilitarian bargaining. It is also observed that the sense and
transmit benchmark results in higher AoI and UAV operation
time than DGA, which is mainly attributed to the performance
gain brought by the optimized BS selection in DGA. Although
energy minimization benchmark results in the minimum energy
consumption of the UAV, higher AoI and UAV operation time
are incurred. This can be verified in Fig. 6, where a comparison
of energy consumption among different schemes is presented,
utilizing the energy model in [41].

C. Site-Specific Performance of the Proposed DLA

Next, the site-specific performance is studied for a specific
urban local environment mentioned in Section VI-A, and we
evaluate the performance of the proposed DLA. For the DLA,
we set Ψmax = 5000, Nmax = 800, Ω = 100, κ = 8, ε = 0.5,
ν = 0.998, and B̂ = 5. There are 5 hidden layers in the DDQN,
where the numbers of neurons of the first 4 hidden layers are
512, 256, 128, and 128, respectively. There are κ+ 1 neurons
in the last dueling layer, among which κ neurons corresponds
to the action advantages of the κ actions and the extra neuron is
for the estimation of the state-value.

Fig. 7 depicts the convergence trends of the training process
of the proposed DLA. In particular, the moving average return
per episode for DLA with different values of N0 is given in
Fig. 7, where the length of moving window is 200 episodes. It
can be seen that the average return gradually increases with the

Fig. 7. Average reward trends versus training episodes for DLA.

training episode and finally tends to be stable with a sufficiently
large amount of episodes, which demonstrates the convergence
of the proposed DLA. This is because the UAV can learn from
its experience to improve the long-term reward. In addition,
the influence of the step size N0 of multi-step bootstrapping
on the convergence speed is also shown in Fig. 7. Intuitively,
small N0 leads to poor predictability. When N0 is very large,
the algorithm converges slower since the amount of calculation
is particularly large. Thus, N0 should be appropriately chosen
to improve performance throughout the learning process. It is
observed in Fig. 7 that the curve value fluctuates greatly with
smaller N0 due to the poor predictability. According to the
results, we choose N0 = 30 in the following to ensure faster
learning. Even for the curve with N0 = 30, it can be seen that
the moving average return decreases first and finally tends to
be stable as the value of episode increases. The reason is that
when the UAV starts to interact with the environment, due to
the lack of experience, it will fly off the area border prematurely
such that more punishment can be avoided, and thus the episode
terminates prematurely. As more experience has been accumu-
lated, the UAV tends to select a better strategy avoiding the blue
areas to reach the destination.

Fig. 8(a) shows the actual global service map for the con-
sidered area, which denotes whether the immediate data trans-
mission constraint in (3) is satisfied at any horizontal location
u[n] ∈ Ŝ , i.e.,

∑M
m=1 xm(t)Rm(t) ≥ Rs, ∀t, at u[n]. In other

words, if the UAV lies in the yellow areas in Fig. 8, then imme-
diate data transmission constraint can be achieved; otherwise
the AoI will increase with time. It is worthwhile to note that
such a global service map is numerically obtained based on the
building locations and heights as well as channel realizations
mentioned in Section VI-A via computer simulations, and it
is not available prior to our proposed algorithms are executed.
The circles around BSs represent the service areas obtained
by the statistical model in Section IV. It can be seen that the
actual global service map are similar as that obtained from the
statistical model, which verifies the approximation accuracy of
average communication performance. On the other hand, the
difference between actual global service map and that obtained
from statistical model (e.g., not the same regular disc areas as
red circle parts and many coverage holes exist) demonstrates
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Fig. 8. Optimized trajectories for site-specific performance.

the characteristic of site-specific performance, which depends
on the actual radio propagation environment with buildings and
downtilted BS antenna radiation pattern.

It is observed in Fig. 8 that the optimized trajectory obtained
from DLA follows the similar trend as the offline optimal Al-
gorithm 1 and DGA. In particular, the UAV tries to visit all the
target locations by avoiding service holes due to the values of
θ, such that the weighted sum of operation time and total AoI
is minimized. The solution obtained by Algorithm 1 and DGA
may lead to a longer distance or a larger AoI, which results in
a larger weighted sum, since it is only based on the statistical
model without no specific local environment information. Fig. 9
depicts the transmission scheduling for DLA, and we can see that
the UAV may not always transmit to its closest BS due to the
specific positioning of buildings as well as practical BS antenna
radiation pattern.

Fig. 10 depicts site-specific performance with different
schemes. In particular, Fig. 10 shows the weighted sum of
operation time and total AoI of the UAV versus the sensing
rate Rs when θ = 0.8. Similar results can be obtained for other
values of θ, which is omitted for brevity. When Rs increases,

Fig. 9. Transmission scheduling for site-specific performance with DLA.

Fig. 10. Performance comparisons with different schemes for site-specific
performance.

the service areas shrink and thus it is more difficult to satisfy
the immediate transmission constraint, leading to the increase
of AoI. It is observed that DLA performs better than not only the
benchmark schemes but also the offline Algorithm 1 and DGA.
The reason is that the benchmark schemes and offline algorithms
are all based on the graph model constructed by the statistical
model related disk coverage area with no specific local environ-
ment information. With DLA, the UAV can learn to effectively
avoid service holes from accumulated experience by interacting
with the specific local environment, and minimize the weighted
sum of operation time and total AoI, which demonstrates the
effectiveness of DLA. In addition, once the DDQN are properly
trained, it only needs a small amount of algebra calculations to
obtain the solution.

VII. CONCLUSION

In this paper, we proposed an AoI-driven UAV sensing
framework with a cellular-connected UAV to provide remote
sensing services over multi-cell cellular networks. In particular,
we developed a remote UAV sensing model over multi-cell
cellular networks in urban environments. Taking into account
the tradeoff between the AoI and operation time of the UAV,
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we formulated a weighted sum minimization problem through
jointly optimizing the UAV trajectory and operation time as
well as transmission scheduling and BS association. A search
algorithm and the low-complexity DGA are developed to obtain
optimal and suboptimal solutions for average performance, re-
spectively. A DLA is then proposed to analyze the site-specific
performance by employing a DDQN with dueling network
model. Simulation results validate the proposed schemes in
supporting remote UAV sensing and demonstrate the flexible
tradeoff between the AoI and operation time of the UAV. The
design framework can be extended by taking into the energy
issue such that both accurate propulsion energy model and com-
munication related energy model are included, which will be left
as future work. For scenario with multi-UAV sharing the same
mission, a comprehensive cooperative sensing design deserves
further study, where game theory may be adopted to tackle
the coordination among the UAVs. Furthermore, it would be
possible to construct a radio map of considered area with given
the locations of ground BS and the buildings [56], which may
provide environment awareness for the corresponding problem.
In the future work, the accurate radio map construction and
radio map based optimization needs to be further considered
in practice.
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