
5280 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Distributed Computing and Networking Coordination
for Task Offloading Under Uncertainties

Shichao Xia , Member, IEEE, Zhixiu Yao , Yun Li , Member, IEEE, Zhitong Xing ,
and Shiwen Mao , Fellow, IEEE

Abstract—The multi-access edge computing (MEC) and ultra-
dense network (UDN) are regarded as essential and complementary
technologies in the age of Internet of Things (IoT). Deploying MEC
servers at the macro-cell and small-cell stations can significantly im-
prove user experience as well as increase network capacity. Never-
theless, there still remain many obstacles in practical MEC-enabled
UDNs. Among them, a unique challenge is how to coordinate
computing and networking to fit the diverse offloading demands
of IoT applications in dynamic network environments. To this end,
this paper first investigates a distributed delay-constrained compu-
tation offloading methodology based on computing and networking
coordination in the UDN. An extended game-theoretic approach
based on the Lyapunov optimization theory is designed to achieve
adaptive task offloading and computing power management in
time-varying environments. Furthermore, considering the uncer-
tainty in users’ mobility and limited edge resources, distributed
two-stage and multi-stage stochastic programming algorithms un-
der various uncertainties are proposed. The proposed algorithms
take posterior recourse actions to compensate for inaccurate pre-
dicted network information. Extensive simulations validate the
effectiveness and rationality of the proposed algorithms and their
superior performance over several benchmark schemes.

Index Terms—Multi-access edge computing (MEC), ultra-
dense network (UDN), distributed game, stochastic programming,
uncertainty.

I. INTRODUCTION

W ITH the rapid development and convergence of the
mobile Internet and the Internet of Things (IoT), the

number of mobile devices (e.g., smartphones, wearable devices,

Manuscript received 9 January 2023; revised 18 June 2023; accepted 8 August
2023. Date of publication 15 August 2023; date of current version 4 April 2024.
This work was supported in part by the National Natural Science Foundation
of China under Grants 62071077 and 62221005, in part by the Natural Sci-
ence Foundation of Chongqing under Grant 2022NSCQ-LZX0191, in part by
the Scientific and Technological Research Program of Chongqing Municipal
Education Commission under Grant KJQN202200606, and in part by China
Postdoctoral Science Foundation under Grant 2023MD734137. Recommended
for acceptance by J. Ren. (Corresponding author: Yun Li.)

Shichao Xia is with the School of Software Engineering, Chongqing Uni-
versity of Posts and Telecommunications, Chongqing 400065, China (e-mail:
xiashichao65@163.com).

Zhixiu Yao, Yun Li, and Zhitong Xing are with the School of Commu-
nication and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China (e-mail: zhixiuyao@163.com;
liyun@cqupt.edu.cn; xingzt@cqupt.edu.cn).

Shiwen Mao is with the Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL 36849-5201 USA (e-mail: smao@ieee.org).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMC.2023.3305013, provided by the authors.

Digital Object Identifier 10.1109/TMC.2023.3305013

Fig. 1. Typical MEC-enabled UDN scenario.

and intelligent sensors) and computation-intensive applications
(e.g., virtual reality (VR), augmented reality (AR), autonomous
driving, and online gaming) are increasing dramatically, which
keep on driving the computing power and storage resources to
the edge of network to reduce transmission latency and avoid
network congestion. Driven by this trend, multi-access edge
computing (MEC) has become a hot research topic, which can
significantly enhance users’ experience by offloading some or
all computation tasks to edge-cloud servers [1], [2].

In order to meet the requirements (including large system
capacity, high peak data rate, and massive connection density)
of the fifth generation (5G) mobile communication systems,
ultra-dense network (UDN) has been recognized as a highly
promising technology, and can effectively improve network
throughput and access capacity by deploying some low-power
and short-range small base stations (SBSs) over the coverage of
the macro base station (MBS) [3], [4]. Existing studies show
that integrating MEC into UDN has important and realistic
significance [5]. As shown in Fig. 1, a general way is to deploy
some lightweight MEC servers at the SBS side, and to offload
parts of the computation loads to SBSs to relieve the burden at the
MBS. It can further improve mobile services and allow users to
enjoy ubiquitous computation services anytime and anywhere.
However, such an integration has also brought about many new
challenges.

First, compared with traditional central-cloud deployment
scenarios (e.g., single MBS with MEC servers), the distributed
edge cloud nodes disperse the computing power resources in the
MEC-enabled UDN. How to efficiently use the decentralized
computing power is an important issue. Meanwhile, dense and
heterogeneous network access also brings about new opportu-
nities and challenges to mobile communications and comput-
ing [3]. Consequently, to meet the ultra-reliable, low-latency, and

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2418-9736
https://orcid.org/0000-0002-7686-6754
https://orcid.org/0000-0001-8477-8845
https://orcid.org/0000-0001-7253-1220
https://orcid.org/0000-0002-7052-0007
mailto:xiashichao65@163.com
mailto:zhixiuyao@163.com
mailto:liyun@cqupt.edu.cn
mailto:xingzt@cqupt.edu.cn
mailto:smao@ieee.org
https://doi.org/10.1109/TMC.2023.3305013

XIA et al.: DISTRIBUTED COMPUTING AND NETWORKING COORDINATION FOR TASK OFFLOADING UNDER UNCERTAINTIES 5281

energy-efficiency computation offloading (ULECO) require-
ments in UDN, exploring the “computing + networking” based
computation offloading methodologies will be essential and
instrumental to enhance users’ quality of experience, especially
for delay-constrained applications.

Second, due to the random movement of mobile devices,
frequent service switching among different cloud access points
is unavoidable. Once a mobile device moves and is associated
with another access point, a general method is to re-transmit the
already offloaded tasks to the new MEC servers [6], which will
incur considerable re-offloading or/and resources re-allocation
costs, and even cause violation of offloading deadline. Propor-
tional computation offloading by predicting the residence time
under the coverage of MEC servers is an effective approach [7],
[8], but it is usually difficult or even impossible to obtain per-
fect predictions in time-varying environments. Furthermore, the
diverse lightweight edge-cloud servers with different function
characteristics may not be able to respond quickly and timely to
the bursty computation requirements. The random computation
waiting delay (including the task queueing delay, decompression
time, safety analysis time, etc.) of offloaded tasks also has a big
impact [9], [10]. Careful designs are needed to deal with the
stochastic residence time and computation waiting delay.

Finally, traditional centralized optimization frameworks re-
quire precise and timely updates of the global information of
system states (e.g., traffic characteristics, network loads, channel
state information (CSI), user mobility and association, etc.),
which are usually highly challenging to obtain (if not impossi-
ble) in practical scenarios. The distributed MEC-enabled UDN
provides an effective alternative solution. Tasks offloading and
computing power allocation decisions should be formulated with
a more efficient approach and in a distributed manner to increase
the flexibility, adaptibility, and scalability of the network.

This work aims to design a distributed task offloading and
computing power allocation methodology based on computing
and networking coordination under various uncertainties in the
random MEC-enabled UDN environment. The main contribu-
tions of this work can be summarized as follows:
� To meet the ultra-reliable, low-latency, and energy-

efficiency computation offloading requirements, we first
investigate a distributed delay-constrained computation of-
floading methodology based on “computing + networking”
coordination in the MEC-enabled UDN.

� In order to achieve distributed task offloading and adaptive
computing power management in time-varying network
environments, a multi-round pricing method is designed
by invoking an extended game-theoretic approach based
on the Lyapunov optimization theory, which determines
the computing power price dynamically by balancing the
offloading revenue and queue backlog.

� Considering the stochastic residence time and computa-
tion waiting delay, a distributed two-stage algorithm and
a multi-stage stochastic programming algorithm are pro-
posed. Moreover, the multi-stage stochastic programming
problem is transformed into a deterministic equivalent
problem (DEP) using a scenario tree to derive the optimal
computation offloading strategies.

� The performance of the proposed algorithms are evaluated
with extensive simulations and compared with existing
baseline schemes in terms of revenue, computation offload-
ing success probability, offloading cost, and tasks backlog
level, where their superior performance is demonstrated.

The rest of this paper is organized as follows. Section II
reviews some related work. In Section III, we describe the system
model and define the functions to formulate offloading and com-
puting power management problem. Game theory model with
Lyapunov optimization framework is designed in Section IV.
Sections V and VI introduce the two-stage and multi-stage
stochastic programming approach for the uncertain offloading
game, respectively. Optimal game strategies and equilibrium
existence are proved in Section VII. Section VIII evaluates
the performances and discusses the numerical results. Finally,
Section IX concludes this paper.

II. RELATED WORK

The gap between the ever-increasing computing-intensive ap-
plications and resources-constrained mobile devices has brought
about unprecedented challenges to the development of the In-
ternet of Things (IoT) [11]. Driven by Big Data and artificial
intelligence (AI), multi-access edge computing plays an increas-
ingly important role in enabling low-latency and energy-efficient
computation services [12].

In such a context, one of the key issues is how to effectively
offload tasks to center/edge-cloud servers. To minimize energy
consumption under delay constraint, Deng et al. in [13] for-
mulated a task allocation problem based on the interplay and
cooperation of fog and cloud, aiming to balance the power
consumption and transmission delay to optimize the workload
allocation in the fog and cloud. Considering the characteristics
of computing power resources in the central cloud and the
low transmission delay in MEC, Ning et al. in [14] solved
an offloading delay minimization problem based on the coop-
eration of cloud computing and MEC in the IoT. To reduce
the energy consumption while satisfying the task computa-
tion delay constraint, Guo et al. in [15] provided a distributed
energy-efficient dynamic offloading and resource scheduling
algorithm. Without requiring a priori knowledge of network,
Chen et al. in [16] proposed a dynamic task offloading algorithm
based on a double deep Q-network to maximize the long-term
system revenue. Hou et al. in [17] proposed a framework for
jointly addressing three QoS criteria: end-to-end delay, deliv-
ery ratio, and channel reliability to deal with the traffic with
QoS constraints.

As one of the key technologies of the fifth generation (5G),
ultra-dense network (UDN) can effectively improve the network
throughput and access capacity [4], [18]. To achieve user asso-
ciation in UDN, Liakopoulos et al. in [19] developed a user
association mapping method by invoking data-driven robust
optimization theory to predict future traffic fluctuations. To
jointly solve the problems of time resources allocation, user
association, and beamforming design, Kwon et al. in [20] pro-
posed a two-stage design approach to reduce complexity and
maximize the weighted sum rate. In order to solve large-scale

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

5282 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

load balancing problem of UDN, Xu et al. in [21] proposed
a mobile load balancing algorithm using deep reinforcement
learning along with a two-layer architecture, which supported
the combination of multiple behavior strategies.

The convergence of MEC and UDN has been recognized
as an advanced computation offloading architecture to provide
efficient, reliable, convenient, and flexible services [22]. Guo et
al. in [5] proposed a heuristic greedy computation offloading
algorithm, and verified the superiority and necessity of task
offloading over multiple MEC servers in the UDN system. Based
on this, the authors proposed a two-layer game theory, greedy
task offloading algorithm for MEC-enabled UDN in [23]. To
jointly optimize task offloading, computing power scheduling,
and radio resource allocation in MEC-enabled UDN, Zhang
et al. in [24] formulated a random mixed integer nonlinear
programming problem based on the Lyapunov optimization
theory to minimize the system energy consumption. Considering
the time-varying computation offloading environment, Deng et
al. in [25] designed a dynamic task offloading and resource
allocation method by applying Lyapunov optimization theory
in MEC-enabled UDN.

Moreover, few studies combine game theory and Lyapunov
optimization theory. Thereinto, Asheralieva et al. in [26] pro-
posed a novel framework based on contract theory and Lya-
punov optimization for content sharing in a wireless content
delivery network, and achieving optimal performance and sta-
bility while considering incomplete information and unknown
network state. Similarly, a framework combining cooperative
game theory and Lyapunov optimization was proposed in [27]
for a cloud-based caching system, and aiming to maximize
content providers’ expected payoff and stabilize the queuing
system. Zhu et al. in [28] proposed a network selection scheme
based on game theory and Lyapunov optimization. The problem
is formulated as a repeated stochastic game and a Lyapunov
optimization algorithm is developed from the game manager’s
perspective to maximize total utility and obtain optimal ac-
tions for each user. To address the access network selection
problem in mobile devices equipped with multiple network
interface, Li et al. in [29] formulated the problem as a repeated
stochastic game, and Lyapunov optimization theory is used
to obtain the network access strategy to maximize the total
user utility.

In summary, numerous significant enhancements have been
proposed and achieved in mobility management, computation
offloading, resources allocation, and system stability for MEC
and UDN network. However, there remain several challenges
that have not been fully addressed in the practical MEC-enabled
UDN system, e.g., 1) how to flexibly allocate resource to
achieve the diverse user demands and ensure users’ quality
of experiences; 2) how to achieve the stability of computa-
tion performances in the multi-dimensional uncertain network;
and 3) how to efficient coordination of computing and net-
working in a distributed manner. Different from the afore-
mentioned existing studies, this paper emphasizes the diverse
user demands, decentralized computation offloading and re-
source allocation, and aims to develop a distributed resource

allocation methodology based on computing and network-
ing coordination under various uncertainties environment for
MEC-enabled UDN.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an MEC-enabled UDN system operates in dis-
crete time T = {0, 1, . . .}, and let τ ∈ T denote the duration
of each time slice. As shown in Fig. 1, the system comprises
a macro base station (MBS) and n small base stations (SBSs)
serving a region. Let N = {1, 2, . . ., n} denote the set of SBSs,
and M and S ∈ N denote the MBS and SBS S, respectively. The
m mobile devices (MDs) are indexed by M = {1, 2, . . .,m}
in the region. Each BS is equipped with computing function-
alities, as MEC server that provides computing power to the
MDs within its radio coverage. The MDs can process tasks
locally and/or offload tasks to the MEC servers of BSs, and
each MD can simultaneously connect to the MBS and one of
the nearby SBS with dual connectivity or coordinated multiple
points (CoMP) transmission/reception techniques developed for
5G networks [5].

A. Computation Task and Processing Model

The computation tasks of MDs follow the data-partition
model [30], [31], namely, the task-input bits are bit-wise in-
dependent and can be arbitrarily divided into different groups to
be executed at local or edge-cloud servers. Considering differ-
entiated service quality requirements of applications, the tasks
of MD i can be characterized by a tuple with four parameters
as Λi(t) =

〈
Qi(t), Di(t), τ

d
i , γi

〉
,1 in which Qi(t) and Di(t)

denote the task queue backlog and the size of task that needs to
be processed for device i in time slice t, respectively; τdi denotes
the maximum computation latency constraint of Di(t); and γi
is the computation density (in cycles/bit), which can be obtained
through off-line measurements [32].

Let Ai(t) and A(t) = {A1(t), A2(t), . . ., Am(t)} denote the
arrived tasks at MD i (i ∈ M) and the set of all MDs during time
slice t, respectively. Since the amount of arrived tasks in a time
slice is finite, we have 0 ≤ Ai(t) ≤ Amax

i , t ∈ T , and Amax
i is

the maximum arrived task size. Assume that the task arrival rates
of all MDs are independent and identically distributed (i.i.d.).
The evolution of the queue backlog of MD i is given by

Qi(t+ 1) = Qi(t)−Di(t) +Ai(t), i ∈ M, t ∈ T , (1)

whereDi(t) = Di,L(t) +
∑

k∈{M,S} Di,k(t), in whichDi,L(t),
Di,M (t), and Di,S(t) denote the amounts of tasks processed
locally, at the MBS, and at the SBS, respectively.

At beginning of a time slice, each mobile device shall de-
termine its task processing strategies: the amount of locally
executed tasks (i.e., Di,L(t)) and/or the amount of offloaded
tasks (i.e., Di,k(t), k ∈ {M,S}). As shown in Fig. 2, there are
three stages in the offloading procedure. First, MDs upload com-
putation tasks (Di,k(t)) to BSs through their wireless channels.

1To simplify analysis, we assume that the computation latency constraint and
computation density of a processed task do not change in each time slice.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: DISTRIBUTED COMPUTING AND NETWORKING COORDINATION FOR TASK OFFLOADING UNDER UNCERTAINTIES 5283

Fig. 2. Tasks execution and time slice model.

Let Tup
i,k (t) be the task upload latency in this case. Then, there

will be a waiting time at the servers, referred to as waiting time
Twt
i,k (t). The offloaded tasks will be executed by the servers,

and the processing time is denoted as T pt
i,k(t). Note that no

matter where a task is executed, it must be processed within
the delay constraint τdi ; Otherwise, it will be regarded as an
offloading failure. We next analyze the task execution models
and communication model in the following.

B. Local Execution Model

Limited by size and cost of the hardware, the battery capacity
of mobile devices is finite. To achieve energy savings under
the delay constrain. We consider that the MDs can process
tasks at an appropriate CPU clock frequency determined by the
dynamic voltage frequency scaling (DVFS) technique [33]. The
relationship between the processed tasks and locally computing
resources is given by

Di,L(t) =

∫
Tpt
i,L(t)

fi,L(t)

γi
dt, (2)

where T pt
i,L(t) ≤ τdi is the local execution time, fi,L(t) (fmin

i,L ≤
fi,L(t) ≤ fmax

i,L) is the allocated CPU clock frequency (in cy-
cles/s) in time slice t, and fmin

i,L and fmax
i,L are the minimum and

maximum CPU clock frequencies of MD i, respectively.
For each MD, we assume that the energy consumption is

mainly due to the CPU options. Typically, the energy con-
sumption Eexe

i,L (t) of the CPU is proportional to the CPU clock
frequency, modeled as follows.

Eexe
i,L (t) = κi

∫
Tpt
i,L(t)

(fi,L(t))
2dt, (3)

where κi is the effective energy coefficient associated with chip
architecture of the device, which can be obtained through off-line
measurements [34].

C. MEC Server Execution Model

Without loss of generality, we first make several general
assumptions. First, if MDs are within the coverage of MBS and
SBSs, they can communicate with the MBS or/and one of the
nearby SBS simultaneously in each time slice, which means that
each MD can simultaneously offload tasks to the MBS or/and
one nearby SBS. Furthermore, due to the random movements

and the bursty computation requirements of the MDs, the resi-
dence time for an MD to stay in the coverage of an SBS (denoted
byT st

i,S(t), i ∈ M) and waiting delay (i.e.,Twt
i,k (t), k ∈ {M,S})

in different BSs are stochastic and i.i.d. In addition, when MDs
leave the radio coverage of the SBS while uploading tasks to
the SBS (the uploaded tasks are represented by Dtr

i,S(t)), the
remaining amount of tasks (i.e., Di,S(t)−Dtr

i,S(t)) will have to
be uploaded to the MBS first, and then to be forwarded to the
SBS by the MBS through a wired optical fiber network, e.g., via
the X2 interface.2

1) Communication Model: For delay-sensitive applications,
it is necessary that the uploaded latency of tasks is less than the
constraint time, e.g.,Tup

i,k (t) < τdi . Otherwise, the tasks is bound
to execution failed. Since computation results are usually much
smaller than input tasks size of most applications, we neglect
time cost for downloading the computation results back from
the BSs. Once each MD decides offload tasks to the MBS or/and
the nearby SBS, the tasks upload latency, and communication
energy consumption can be calculated as follows, respectively.

Offloading Tasks to the MEC Server at the MBS: For each MD,
the input bits of the tasks shall be delivered to the MBS via the
wireless channel. Note that as the number of users is increased,
the interference environment in the UDN become more and
more complicated, and the offloading decisions should take the
mutual interference among MDs into account. According to
the Shannon-Hartley formula, the uploading data rate ri,M (t)
is given by

ri,M (t) = ωM log2

×
(
1 +

Pi(t)gi,M (t)

σ2(t) +
∑

x∈M\x=i Px(t)gx,M (t) · 1(Dx,M (t))

)
,

(4)

where ωM and gi,M (t) are the bandwidth and channel gain of
the MBS, respectively; σ2(t) is the average background noise
power; and Px(t) is the transmit power of MD x in time slice t.
1(·) is an indicator function, and when Dx,M > 0, 1(Dx,M) =
1, otherwise, 1(Dx,M) = 0.

Accordingly, we compute the task upload latency Tup
i,M (t) and

the communication energy consumption Eup
i,M (t) as

Tup
i,M (t) =

Di,M (t)

ri,M (t)
, i ∈ M (5)

Eup
i,M (t) = Pi(t)

Di,M (t)

ri,M (t)
, i ∈ M. (6)

Offloading Tasks to the MEC Server at an SBS. Similarly, if MD
i decides to offload tasks Di,S(t) to the MEC server at an SBS,
the upload date rate ri,S(t) is given by

ri,S(t) = ωS log2

×
(
1 +

Pi(t)gi,S(t)

σ2(t) +
∑

x∈M\x=i Px(t)gx,S(t) · 1(Dx,S(t))

)
,

(7)

2It is assumed that the switching speed between different BSs is sufficiently
fast and thus the switching time can be ignored.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

5284 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

where ωS and gi,S(t) are the bandwidth and channel gain of the
SBS channel, respectively.

Generally, the coverage of an SBS is smaller than the MBS.
According to the aforementioned assumptions, if the MDs leave
the radio coverage area of the SBS when uploading tasks, the
remaining tasks will be uploaded to the MBS first, and then will
be forwarded to the SBS. The uploading latency is given by

Tup
i,S(t) =

⎧⎨
⎩
T st
i,S(t) + T̂up

i,M + T f
i,M (t), if T st

i,S <
Di,S(t)
ri,S(t)

Di,S(t)
ri,S(t) , if T st

i,S ≥ Di,S(t)
ri,S(t) ,

(8)
where T st

i,S(t) is the residence time of MD i in the cov-

erage of SBS S; T̂up
i,M =

Di,S(t)−T st
i,Sri,S(t)

ri,M (t) and T f
i,M (t) =

Di,S(t)−T st
i,Sri,S(t)

o denote the uploading and forwarding time of
the remaining tasks, respectively; and o is the data rate of the
optical fiber link.

The communication energy consumption Eup
i,S(t) for upload-

ing Di,S(t) to the SBS is given by

Eup
i,S(t) =

⎧⎨
⎩
Pi(t)

(
T st
i,S(t) + T̂up

i,M

)
, if T st

i,S <
Di,S(t)
ri,S(t)

Pi(t)
Di,S(t)
ri,S(t) , if T st

i,S ≥ Di,S(t)
ri,S(t) .

(9)
The total energy consumption of MD i in time slice t is computed
as follows.

Ei,L(t) = Eexe
i,L (t) +

∑
k∈{M,S}

Eup
i,k(t). (10)

To ensure timely processing of the offloaded tasks, it is essen-
tial to ensure that the total computation offloading time T co

i,k(t)
(including the uploading time, waiting delay, and processing
time) does not exceed the delay constraint (i.e., T co

i,k(t) ≤ τdi) in
each time slice. According to (5) and (8), the total computation
offloading time for the MBS or SBS is given by3

T co
i,k(t) = Tup

i,k (t) + Twt
i,k (t) + T pt

i,k(t), k ∈ {M,S} . (11)

2) MEC Server Execution Model: Assume that the MEC
servers are equipped with an Lk-core CPU, and the set of CPU
cores is denoted as Lk = {1, . . . , Lk}, k ∈ {M,S}. According
to [35], the energy consumption to process tasks Di,k(t) at the
MEC server is

Ei,k(t) =
∑
lk∈Lk

κlk(βi,lk(t))
2T pt

i,k(t), k ∈ {M,S} , (12)

where κlk and βi,lk(t) (βmin
lk

≤ βi,lk(t) ≤ βmax
lk

) denote the
effective switched capacitance and CPU clock frequency of the
lkth CPU core at the MEC server, respectively; and βmin

lk
and

βmax
lk

are the minimum and maximum CPU clock frequency of
each CPU core, respectively.

3If there is a non-negligible switching time (e.g., a constant d) from the SBS
to MBS, then the total computation offloading time for SBS can be rewrote as
T co
i,S(t) = Tup

i,S(t) + Twt
i,S(t) + T pt

i,S(t) + d.

D. Utility and Cost Model

The analysis in Section III-C, shows that the computation
offloading latency strongly depends on the task communication
delay, waiting delay, and processing delay. To ensure the of-
floaded tasks be processed within the delay constraint τdi , it is
necessary to take the computing factors (i.e., the computation
waiting time Twt

i,k (t), the computing power fi,L and βi,lk(t))
and the networking factors (i.e., the residence time T st

i,S(t) and
the communication time Tup

i,k (t)) into consideration. Conse-
quently, exploring computation offloading based on computing
and networking coordination will be essential to further improve
users’ experiences. It is worth noting that, the edge computing
service costs is also one of the important factors that affect
users’ offloading strategies [31]. As a result, to evaluate the
task processing performance, we first define the task processing
utility function and the task processing cost functions.

1) Utility Function Model: To evaluate the benefit of pro-
cessing tasks in each time slice, we adopt the logarithmic utility
function for each MD, which has been widely used in the
wireless communications and mobile computing domains [36],
[37], [38]. The utility of MD i, ui[Di(t)], is given by

ui [Di(t)] =
∑

k̂∈{L,M,S}

ρi log
[
1 +Di,k̂(t)

]
, t ∈ T , (13)

where ρi is the weight of MD i.
2) Tasks Processing Cost Function Model: We next define

the task processing cost functions, including the communication
cost, the energy consumption cost, and the edge computing
service cost.

Communication Cost Function: We first obtain the transmit-
ted tasks over the MBS (Dtr

i,M (t)) and an SBS (Dtr
i,S(t)) as

follows.

Dtr
i,M (t) =

⎧⎪⎪⎨
⎪⎪⎩
Di,M (t) +Di,S(t)

−T st
i,Sri,S(t), ifT st

i,S <
Di,S(t)
ri,S(t)

Di,M (t), ifT st
i,S ≥ Di,S(t)

ri,S(t)

Dtr
i,S(t) =

⎧⎨
⎩
T st
i,Sri,S(t), if T st

i,S <
Di,S(t)
ri,S(t)

Di,S(t), if T st
i,S ≥ Di,S(t)

ri,S(t) .

Following [38], we define the communication cost ci[Di(t)] of
MD i as follows.

ci [Di(t)] = θiD
tr
i,M (t) + ηiD

tr
i,S(t), t ∈ T , (14)

where θi and ηi are the communication cost per bit of MD i at
the MBS and SBS, respectively.

Energy Consumption Cost Function: To simplify analysis,
we assume that the unit energy consumption cost is denoted
by λk̂ ≥ 0, k̂ ∈ {L,M,S}. Accordingly, we have the energy
consumption cost ei,k̂[Di(t)] as follows.

ei,k̂ [Di(t)] = λk̂Ei,k̂(t), t ∈ T . (15)

Edge Computing Service Cost Function: Providing computation
offloading services incurs costs to the cloud server providers
(e.g., energy consumption cost, hardware cost, etc.). It is obvious

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: DISTRIBUTED COMPUTING AND NETWORKING COORDINATION FOR TASK OFFLOADING UNDER UNCERTAINTIES 5285

that the computation offloading services are not free of charge.
The edge-cloud servers should also be compensated for sharing
their resources [40], [41]. Let pi,k(t), k ∈ {M,S} (in $/bit)
denote the payment of MD i to BS k. We define the computing
service cost si[Di(t)] of MD i as follows.

si [Di(t)] =
∑

k∈{M,S}
pi,k(t)Di,k(t), i ∈ M. (16)

Accordingly, the utility of BS k is defined as

uk [pk(t)] =
∑
∀i∈M

pi,k(t)Di,k(t), k ∈ {M,S} , (17)

where pk(t)
Δ
= [p1,k(t), p2,k(t), . . ., pm,k(t)] denotes the set of

pricing strategies of the MBS or SBSs.

IV. DISTRIBUTED DYNAMIC PRICING BASED COMPUTATION

OFFLOADING

Generally, a suitable pricing strategy pk(t) can not only pro-
vide an incentive for offloading, but also promote the rationality
useful for edge resources. For instance, if pk(t) is higher, users
will be more willing to process tasks locally. On the contrary, if
pk(t) is low, users will seek more computing resources to reduce
their tasks backlog level, and even beyond their needs since users
are greedy [42], [43]. This can be viewed as a “market,” in which
the mobile devices can be regarded as buyers who buy products
(i.e., computing power) from the market, and the BSs can be
regarded as sellers who provide computing power resources.

In this section, we aim to develop a dynamic pricing method
to address the diverse user demands and time-varying environ-
ment. We first formulate task offloading and computing power
allocation as a deterministic optimization problem, in which the
residence time (T st

i,S(t), S ∈ N) and computation waiting delay
(Twt

i,k (t), k ∈ {M,S}) are assumed perfectly and fully known in
advance. Then the problem with uncertain factors will be further
addressed in Sections V and VI.

A. MDs/Buyers Game With Lyapunov Optimization

We assume that the MDs are always rational and seeking
an optimal offloading decision to maximize their long term
revenue. It is obvious that the optimal decisions of MDs/buyers
should take offloaded task utility, communication cost, en-
ergy consumption cost, and payment into account. According
to (13), (14), (15), and (16), the object function of MD/buyer i
in time slice t is given by

Ubi [Di(t)] = ui [Di(t)]− ci
[
Di(t), T

st
i,S(t)

]
− ei,L

[
Di(t), T

st
i,S(t)

]
− si [Di(t)] . (18)

To guarantee the computation performance in the long-term
evolution, we define problem P1-Buyer for MD/buyer i as
follows.

P1-Buyer

max
fi,L(t),Di(t)

Ūbi = lim
T→+∞

1

T
E

[
T−1∑
t=0

{
U

bi
[Di(t)]

}]
(19)

s.t. T pt
i,L(t) ≤ τdi (20)

fmin
i,L ≤ fi,L(t) ≤ fmax

i,L , t ∈ T (21)

0 ≤ Di(t) ≤ Qi(t), t ∈ T (22)

Q̄i = lim
T→+∞

sup
1

T

T−1∑
t=0

E{Qi(t)} < +∞. (23)

To develop the task offloading decision under the time-varying
environment and decouple the time-dependent information, we
first define the Lyapunov function for the computation task queue
of MD i as follows.

Li (Qi(t)) =
1

2
{Qi(t)}2 ≥ 0. (24)

According to [45], the conditional Lyapunov Drift is given by

Δ(Qi(t)) = E {Li (Qi,t+1)− Li (Qi(t)) |Qi(t)} . (25)

The underlying objective of the online optimal decision is to
minimize the upper bound of the drift-minus-utility function,
which is defined as follows.

Δ(Qi(t))− ViE {Ui [Di(t)]|Qi(t)} , (26)

whereVi ≥ 0 is a non-negative controllable parameter. To obtain
the upper bound of the drift-minus-utility, we have the following
theorem below.

Theorem 1: For any given control parameter Vi ≥ 0 and
Ai(t) ∈ [0, Amax

i] under any possible decision, we have

Δ(Qi(t))− ViE {Ui [Di(t)]|Qi(t)} ≤ Bi +Qi(t)Ai(t)

−E {Qi(t)Di(t)|Qi(t)} − ViE {Ui [Di(t)]|Qi(t)} ,(27)

where Bi =
1
2{(Di(t)

max)2 + (Ai(t)
max)2}.

Proof: Obviously we have Qi(t) ≥ 0, Di,k(t) ≥ 0 and
Ai(t) ≥ 0. It follows that{

[Qi(t)− bi(t)]
+ +Ai(t)

}2 ≤ Qi(t)
2 +Ai(t)

2

+Di,k(t)
2 + 2Qi(t) (Ai(t)−Di,k(t)) . (28)

Following inequality (28), we deduce the follow inequality.

L (Qi,t+1)− L (Qi(t)) =
1

2

(
Qi,t+1

2 −Qi(t)
2
)

=
1

2

{
[Qi(t)−Di,k(t)]

+ +Ai(t)
}2 − 1

2
Qi(t)

2

≤ Ai(t)
2 +Di,k(t)

2

2
+Qi(t) (Ai(t)−Di,k(t)). (29)

Solving the conditional expectation and adding −ViE(Ubi(t)
|Qi(t)) to both sides of (29), we have

Δ(Qi(t))− ViE (Ui [Di(t)]|Qi(t))

≤ E

(
Ai(t)

2 +Di,k(t)
2

2
|Qi(t)

)

+Qi(t)λi−E (Qi(t)Di,k(t)|Qi(t))−ViE (Ui [Di(t)]|Qi(t)).

Letting Bi =
(Di,k(t)

max)2+λ2
i

2 ≥ E(
Ai(t)

2+Di,k(t)
2

2 |Qi(t)), we
then derive the inequality (27).

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

5286 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

It can be seen that minimizing the upper bound of drift-minus-
utility is equivalent to minimize the Right-Hand-Side (RHS) of
inequality (27). As a result, we can transform problemP1-Buyer
to P2-Buyer as follows.

P2-Buyer

max
fi,L(t),Di,k(t)

Ybi(t) = Vi · Ubi [Di(t)]

+
∑

k∈{L,M,S}
Qi(t) ·Di,k(t)−Qi(t) ·Ai(t)

s.t. (20)-(23). (30)

B. BSs/Sellers Game With Dynamic Pricing

For BSs/sellers, according to (15), (16), and (17), the revenue
Ūsk , k ∈ {M,S} of the MBS or an SBS can be defined, respec-
tively. The P1-Seller problems are defined in the following.

P1-Seller (MBS)

max
pi,M (t),βi,lM

(t)
ŪsM = lim

T→+∞

1

T
E

[
T−1∑
t=0

{
uM [pM (t)]

−
∑
∀i

ei,M
[
Di,M (t), Twt

i,M (t)
]}]

(31)

s.t. pi,M (t) ≥ 0, t ∈ T (32)

T co
i,M (t) ≤ τdi , t ∈ T (33)

βmin
lM

≤ βi,lM (t) ≤ βmax
lM

, t ∈ T . (34)

P1-Seller (SBS)

max
pi,S(t),βi,lS

(t)
ŪsS = lim

T→+∞

1

T
E

T−1∑
t=0

{
uS [pS(t)]

−
∑
∀i

ei,S
[
Di,S(t), T

st
i,S(t), T

wt
i,S(t)

]}
(35)

s.t. pi,S(t) ≥ 0, t ∈ T (36)

T co
i,S(t) ≤ τdi , t ∈ T , (37)

βmin
lS

≤ βi,lS (t) ≤ βmax
lS

, t ∈ T . (38)

Noted that both the revenues of the MBS and SBS are de-
pendent on the pricing set pi,k(t), allocated computing power
βi,lk(t), and computation waiting delay Twt

i,k (t) in time slice t.
To ensure the delay constraints of the offloaded tasks, SBS S
shall take the residence time T st

i,S(t) of MD i into consideration.
Furthermore, we can transform problem P1-Seller to P2-Seller
problems based on the maximum value theory as follows.

P2-Seller (MBS)

max
pM (t),βi,lM

(t)
YsM (t) = uM [pM (t)]

−
∑
∀i

ei,M
[
Di,M (t), Twt

i,M (t)
]

(39)

s.t. (32), (33), (34). (40)

P2-Seller (MBS)

max
pS(t),βi,lS

(t)
YsS (t) = uS [pS(t)]

−
∑
∀i

ei,S
[
Di,S(t), T

st
i,S(t), T

wt
i,S(t)

]
(41)

s.t. (36), (37), (38). (42)

According to P2-Seller, each seller periodically announces
the latest round market price pk(t) by means of users’ require-
ments Di,k(t) and current network status (e.g., the computation
waiting delay Twt

i,k (t) and residence time T st
i,S(t)) in each time

slice. As the requirements and network state change over time,
the sellers will also dynamically change their pricing strate-
gies until the market equilibrium is reached. Meanwhile, the
allocated computing power βi,lk(t) will also be adjusted. We
will also analyze the optimal game strategies and prove that the
optimal solutions are Stackelberg Equilibrium (SE) solutions in
Section VII.

V. DISTRIBUTED TWO-STAGE STOCHASTIC PROGRAMMING

UNDER UNCERTAINTY

In the previous sections, both the residence time (T st
i,S(t)) and

waiting delay (Twt
i,k (t), k ∈ {M,S}) are assumed to be perfectly

and fully known. However, due to the stochastic movements and
bursting computation requirements of users, such information is
usually uncertain at beginning of each time slice. It is natural that
we can make decisions by using the average historical values
or predicting values [46], [47], but it is usually challenging
to accurately predict such values in practice. The unavoidable
prediction errors could affect the performance of the offloading
scheme. For example, if the predicted results are larger than
the actual residence time and waiting delay, it will increase the
computation offloading cost and even lead to failure of offload-
ing. To this end, we adopt a two-stage stochastic programming
approach to take posterior recourse actions and compensate for
the previously imprecise predictions.

A. Uncertain Residence Time and Computation Waiting Delay

To handle the uncertain residence time (T st
i,S(t)) and waiting

delay (Twt
i,k (t)), we first take into account a set of scenarios,

which corresponds to a set of uncertain parameters [44]. Let
Ωst

i,S(t) denote the set of possible residence times of MD i when
covered by an SBS, and let Ωwt

i,k(t) denote the set of possible
waiting delays of MD i when served by BS k, k ∈ {M,S}.4

With the Cartesian product, we obtain the composite scenarios
of residence time Ωst

S (t) and waiting delay Ωwt
k (t) of all MDs

as follows.

Ωst
S (t) =

m∏
i=1

Ωst
i,S(t) = Ωst

1,S(t)× · · · × Ωst
m,S(t) (43)

4Assume that both Ωst
i,S(t) and Ωwt

i,k(t) take a finite or countable number of
support.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: DISTRIBUTED COMPUTING AND NETWORKING COORDINATION FOR TASK OFFLOADING UNDER UNCERTAINTIES 5287

Ωwt
k (t) =

m∏
i=1

Ωwt
i,k(t) = Ωwt

1,k(t)× · · · × Ωwt
m,k(t). (44)

According to (18), the revenue of MDs is dependent on the
residence time scenariosΩst

i,S(t). Correspondingly, the revenues
of the MBS and SBSs are related to the composite scenarios of
Ωwt

M (t) and ΩS(t) = Ωst
S (t)×Ωwt

S (t), respectively, in which
ΩS(t) is the composite scenarios of composite time (residence
time and waiting delay when served by SBS S). Next, we
analyze the distributed two-stage stochastic programming model
of the game. For simplicity, we focus on the SBS model in the
following, while the analysis of the MBS model can be derived
similarly.

B. Two-Stage Stochastic Programming Formulation

In the uncertain and time-varying network environment, the
exact values of a stochastic variable is only known after real-
ization. That is, the residence time T st

i,S(t) and waiting delay
Twt
i,S(t) are only known after the game. However, we can still

take posterior recourse actions to compensate the game strategies
after observing the realizations. According to the stochastic pro-
gramming theory, we divide the decision set into the following
two groups:

1) First-stage (game stage) decisions: the strategies of task
offloading Di(t) and announced price pi,S(t) have to be
taken before the knowledge of T st

i,S(t) and Twt
i,S(t) through

the game, and the period is called the first stage or game
stage;

2) Second-stage (recourse stage) decisions: the computing
power allocation βi,lS (t) can be taken after observing
the realization of T st

i,S(t) and Twt
i,S(t). This is called the

second-stage decision, and the corresponding period is
called the second stage or recourse stage.

Let T st
i,S(t) ∈ Ωst

i,S(t) and ωS(t) = (T st
1,S ,..., T st

m,S , Twt
1,S ,...,

Twt
m,S) ∈ ΩS(t) denote the realizations of the residence time

and composite realization in time slice t, respectively. And let
p[T st

i,S(t)] ∈ [0, 1] and p[ωS(t)] ∈ [0, 1] denote the probabilities.
According to the stochastic programming theory, problem P2-
Buyer can be rewritten as a two-stage stochastic programming
problem as follows.

P3-Buyer (two-stage)

max
fi,L(t),Di,k(t)

Ybi(t) = Vi

{
ui [Di(t)]− si [Di(t)]

− EΩst
i,S(t)

{
ci
(
Di,t(t), T

st
i,S(t)|T st

i,S(t) ∈ Ωst
i,S(t)

)}
− EΩst

i,S(t)

{
ei,L
(
Di,t(t), T

st
i,S(t)|T st

i,S(t) ∈ Ωst
i,S(t)

)}}

+
∑

k∈{L,M,S}
Qi(t)Di,k(t)−Qi(t)Ai(t)

s.t. (20)-(23). (45)

Similarly, problem P2-Seller (SBS) can be rewritten as follows.

P3-Seller (two-stage)

max
pS(t),βi,lS

(t)
YsS (t) = uS [pS(t)]

− EΩS(t) [R (βi,lS (t),ΩS(t))]

s.t. (36)-(38). (46)

where

R (βi,lS (t),ΩS(t))

=
∑
∀i

ei,S
[
Di,S(t), T

st
i,S (ωS(t)) , T

wt
i,S (ωS(t))

]
. (47)

Here R(βi,lS (t),ΩS(t)) is called the recourse function.

VI. DISTRIBUTED MULTI-STAGE STOCHASTIC PROGRAMMING

FOR UNCERTAINTY

As shown in Fig. 1, each MD may move randomly pass-
ing two or more SBSs. However, the strategies based on the
two-stage stochastic programming are decided once in each
time slice, which may lead to sub-optimal strategies. To cap-
ture the statistical characteristics of T st

i,S(t) and Twt
i,S(t) more

accurately and make better offloading, pricing, and computing
power allocation strategies, we further develop the strategies
with multi-stage stochastic programming. With this approach,
the computation offloading process is split intoH steps (denoted

as H Δ
= {τ1, τ2, . . ., τH}), and the task offloading Di(τh), τh ∈

H, pricing pi,S(τh), and computing power allocation βi,lk(t)
decisions in a step τh are optimized using multi-stage stochastic
programming. Let ξsti,S(τh) and ξS(τh) denote the set of the
possible residence time and composite time in step τh. Then
the set of all composite scenarios of residence times ξsti,S and
composite times ξS of all the steps are as follows.

ξsti,S =
H∏

h=1

ξsti,S(τh) = ξsti,S(τ1)× · · · × ξsti,S(τH) (48)

ξS =
H∏

h=1

ξS(τh) = ξS(τ1)× · · · × ξS(τH). (49)

A. Multi-Stage Stochastic Programming Formulation

With the H-step approach, a distributed stochastic program-
ming model with 2H stages is formulated as follows.5

1) Multi-Stage Formulation for MDs/Buyers: The task of-
floading problem of MD/buyer i can be rewritten as the opti-
mization problem of P3-Buyer (multi-stage) as in (50)–(53).

P3-Buyer (multi-stage)

max
fi,L(τh),Di,k(τh)

Ybi {Di (τ1) , .., Di (τH) ,

fi,L (τ1) , .., fi,L (τH)}

= Vi

{
ui [Di (τ1)]− ci [Di (τ1)]−ei,L [Di (τ1)]−si [Di (τ1)]

+ Eξst
i,S(τh)|ξst

i,S(τh−1)

H∑
h=2

{ui [Di (τh)]− si [Di (τh)]}

5Following the previous two-stage stochastic programming model, each step
τh here comprises two stages (i.e., the game stage and recourse stage).

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

5288 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

− Eξst
i,S(τh)|ξst

i,S(τh−1)

H∑
h=2

ci
[
Di (τh) , T

st
i,S (τh)

]

− Eξst
i,S(τh)|ξst

i,S(τh−1)

H∑
h=2

ei,L
[
Di (τh) , T

st
i,S (τh)

]}

+Qi (τ1)Di (τ1) + Eξst
i,S(τh)|ξst

i,S(τh−1)

H∑
h=2

Qi (τh)Di (τh)

−Qi (τ1)Ai (τ1)− Eξst
i,S(τh)|ξst

i,S(τh−1)

H∑
h=2

Qi (τh)Ai (τh)

(50)

s.t. fmin
i,L ≤ fi,L (τh) ≤ fmax

i,L , τh ∈ H (51)

H∑
h=1

Di (τh) = Di(t), τh ∈ H (52)

0 ≤
H∑

h=1

Di (τh) ≤ Qi(t), τh ∈ H. (53)

Here Di(τh) and fi,L(τh) are the processed tasks and CPU
frequency of MD i in step τh, respectively.

2) Multi-Stage Formulation for SBSs/Sellers: The price
should be decided according to the market’s environment and
requirements. Obviously, a single-round pricing method may not
be suitable for the stochastic and time-varying market environ-
ment, and a multi-round dynamic pricing method is designed to
address the diverse user demands and time-varying environment.
Similarly, we can rewrite the SBSs/sellers optimization problem
as P3-Seller (multi-stage) as in (54)–(56).

P3-Seller (multi-stage)

max
pi,S(τh),βi,S(τh)

YSs
{pi,S (τ1) , .., pi,S (τH) ,

βi,S (τ1) , .., βi,S (τH)}

= uS [pS (τ1)]−
m∑
i=1

{
ei,S [Di,S (τ1)] + pfi,S [Di,S (τ1)]

}

+ EξS(τh)|ξS(τh−1)

H∑
h=2

uS [pS (τh)]

− EξS(τh)|ξS(τh−1)

m∑
i=1

H∑
h=2

ei,S [Di,S (τh) ,

T st
i,S (τh) , T

wt
i,S (τh)

]
(54)

s.t. pi,S (τh) ≥ 0, τh ∈ H (55)

EξS

{
H∑

h=1

[
Tup
i,S (τh) + Twt

i,S (τh) +
∑
lk∈Lk

Di (τh) γi
βi,lk

]}
≤ τdi

(56)

βmin
lS

≤ βi,lS (τh) ≤ βmax
lS

, τh ∈ H, (57)

Fig. 3. Residence time scenario tree of MD i.6

Inequality (56) is to ensure that the sum of the computation of-
floading time of all the steps does not exceed the delay constraint
τdi .

B. Deterministic Equivalent Problem (DEP)

To solve problems P3-Buyer (multi-stage) and P3-Seller
(multi-stage), we transform the stochastic programming formu-
lations into their deterministic equivalent problem (DEP) by
invoking the scenario tree [44], which is introduced below.

Let πst
i,S ∈ ξsti,S and πS ∈ ξS be the realizations of ξsti,S and

ξS , respectively. The scenario tree divides into branches ac-
cording to the realizations of ξsti,S(τh) and ξS(τh), τh ∈ H. An
example of scenario tree of the residence time of MD/buyer
i is shown in Fig. 3 that has two realizations to describe the
evolution of ξsti,S(τh), τh ∈ H. In the residence time scenario
tree, a root node is associated with the first decision stage
where observation of residence time is absent. The root node
is connected with child nodes associated with further stages,
and each node is connected with its child nodes associated to
the next stage, until the leaf nodes are reached.7 A child node
has two realizations, which are related to two random residence
times T st

i,S : T st,1
i,S (τh), T

st,2
i,S (τh).

After constructing the scenario tree, we next convert the
buyers and sellers stochastic programming problems P3-Buyer
(multi-stage) and P3-Seller (multi-stage) into DEP in the fol-
lowing.

1) DEP Formulation for MDs/Buyers: LetPTπst
i,S

denote the
path from the root node to a leaf node in the residence time
scenario tree. Once a scenario πst

i,S ∈ ξsti,S is given, PTπst
i,S

will
also be determined. LetDi(τ1) andDi(τh) be the task offloading
decisions at the root node and the node of the 2hth stage
in path PTπst

i,S
, respectively. Then, the multi-stage stochastic

programming for MD/buyer i can be transformed to a DEP as
follows.

max
fi,L(τh),Di,S(τh)

Ybi(t)

= Vi {ui [Di (τ1)]− ci [Di (τ1)]

7The child nodes size of each father node is related to the realization space.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: DISTRIBUTED COMPUTING AND NETWORKING COORDINATION FOR TASK OFFLOADING UNDER UNCERTAINTIES 5289

− ei,L [Di (τ1)]− si [Di (τ1)]

+
∑

πst
i,S∈ξst

i,S

p
(
πst
i,S

) H∑
h=2

{
ui

[
D

πst
i,S

i (τh)
]
− si

[
D

πst
i,S

i (τh)
]}

−
∑

πst
i,S∈ξst

i,S

p
(
πst
i,S

) H∑
h=2

{
ci

[
D

πst
i,S

i (τh) , T
st,πst

i,S

i,S (τh)
]}

−
∑

πst
i,S∈ξst

i,S

p
(
πst
i,S

) H∑
h=2

{
ei,L

[
D

πst
i,S

i (τh) , T
st,πst

i,S

i,S (τh)
]}⎫⎬
⎭

+Qi (τ1)D
πst
i,S

i (τ1)−Qi (τ1)Ai (τ1)

+
∑

πst
i,S∈ξst

i,S

p
(
πst
i,S

) H∑
h=2

{
Qi (τh)D

πst
i,S

i (τh)−Qi (τh)Ai (τh)
}

(58)

s.t. (51)-(53)

D
πst
i,S

i (τh) = D
πst
i,S′

i (τh), ∀πst
i,S , π

st
i,S ∈ ξsti,S ,

πst
i,S 	= πst

i,S′ , PT
(
D

πst
i,S

i (τh)
)
= PT

(
D

πst
i,S′

i (τh)

)
,

(59)

where p(πst
i,S) is the probability of scenario πst

i,S . Con-
straint (59) represents the nonanticipativity constraints, which
ensures that the offloading decisions should be equivalent in
different paths.

2) DEP Formulation for BSs/Sellers: Similarly, let PTπS
be

the path from the root node to leaf node of the composite time
scenario tree. For a given scenario πS ∈ ξS(τh), the DEP for
SBSs/sellers can be formulated as follows.

max
pi,S(τh),βi,S(τh)

YsS (t)

= uS [pS (τ1)]−
m∑
i=1

{
ei,S [Di,S (τ1)]− pfi,S [Di,S (τh)]

}

+
∑

πS∈ξS

p (πS)

H∑
h=2

uS [pπS

S (τh)]

−
m∑
i=1

∑
πS∈ξS

p (πS)

H∑
h=2

ei,S

×
[
DπS

i,S (τh) , T
st,πS

i,S (τh), T
qt,πS

i,S (τh)
]

(60)

s.t. (55)- (57)

DπS
i (τh) = D

πS′
i (τh), ∀πS , πS′ ∈ ξS ,

πS 	= πS′ , PT (DπS
i (τh)) = PT

(
D

πS′
i (τh)

)
, (61)

where p(πS) is the probability of scenario πS , and DπS
i (τh)

is the processed tasks in the hth stage in path PTπS
.

Recall that each step τh comprises two stages. As shown in
Fig. 4, the even numbered stages (e.g., stages 2, 4, . . .) will

Fig. 4. Recourse and compensation illustrated.

take computing power recourse actions (i.e., βi,S(τh)) for the
odd numbered stages (e.g., stages 1, 3, . . .) to compensate the
uncertain residence time and computation waiting delay in a
step. The latter step will take recourse actions for offloaded tasks
(i.e., Di,S(τh)) for the previous step to make the compensation
more accurate and ensure the offloaded tasks be processed within
the delay constrain.

VII. OPTIMAL GAME STRATEGY AND EQUILIBRIUM

EXISTENCE ANALYSIS

For simplicity, we analyze the optimal game strategies in one
stage, which can be easily extended to other stages in the same
manner.

A. Optimal Game Strategy Analysis

1) MDs Optimal Strategy Analysis: Following (30), we de-

rive the first-order derivatives
∂Ybi

(t)

∂Di,L(t) ,
∂Ybi

(t)

∂Di,M (t) , and
∂Ybi

(t)

∂Di,S(t)

as as in (62), (63), and (64), respectively.

∂Ybi(t)

∂Di,L(t)
= Vi

{
ρi

(1 +Di,L(t)) ln 2

}
+Qi(t) (62)

∂Ybi(t)

∂Di,M (t)
=

Vi

{
ρi

(1 +Di,M (t)) ln 2
− θi −

λiPi(t)

ri,M (t)
− pi,M (t)

}
+Qi(t)

(63)

∂Ybi(t)

∂Di,S(t)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Vi

{
ρi

(1+Di,S(t)) ln 2 − θi − λiPi(t)
ri,M (t) − pi,S(t)

}
+Qi(t), if T st

i,S <
Di,S(t)
ri,S(t)

Vi

{
ρi

(1+Di,S(t)) ln 2 − ηi − λiPi(t)
ri,S(t) − pi,S(t)

}
+Qi(t), if T st

i,S ≥ Di,S(t)
ri,S(t) .

(64)

Furthermore, we can easily obtain the second-order derivatives

as
∂2Ybi

(t)

∂(Di,L(t))2
≤ 0,

∂2Ybi
(t)

∂(Di,M (t))2
< 0, and

∂2Ybi
(t)

∂(Di,S(t))2
< 0, re-

spectively. Since inequalities (21), (22), and (23) are affine func-
tions, Ybi(t) is convex in Di(t). Then, the optimization problem
of buyers/MDs can be solved by the Lagrangian Multiplier
method and the Karush-Kuhn-Tucker (KKT) conditions [48],

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

5290 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

and the optimal strategies are given below.

f ∗
i,L(t) =

(
ρi

AL · ln 2 − 1

)
γi
τdi

, t ∈ T (65)

D∗
i,k(t) =

ρi
Ak · ln 2 − 1, k ∈ {M,S} , t ∈ T , (66)

where AL = −Qi(t)
Vi

, AM = pi,M (t) + θi +
λiPi(t)
ri,M (t) −

Qi(t)
Vi

,

and AS=

{
θi +

λiPi(t)
ri,M (t) + pi,S(t)− Qi(t)

Vi
, if T st

i,S <
Di,S(t)
ri,S(t)

ηi +
λiPi(t)
ri,S(t) + pi,S(t)− Qi(t)

Vi
, if T st

i,S ≥ Di,S(t)
ri,S(t) .

2) BSs Optimal Strategy Analysis: According to (41), we
obtain the first-order derivative of Ysk(t) with respect to pi,k(t)
as follows.

∂Ysk(t)

∂pi,k(t)
= Di,k(t) + pi,k(t)

∂Di,k(t)

∂pi,k(t)

− 2λkκkDi,k(t)γ
2
i

T pt
i,k

∂Di,k(t)

∂pi,k(t)

− δfi,k
∂Di,k(t)

∂pi,k(t)
· 1
{
T co
i,k(t) ≥ τdi

}
.

Theorem 2: If the transaction price in the market satisfies

pi,k(t) ≥ 0, we have
∂2Ysk

(t)

∂(pi,k(t))
2 < 0, k ∈ {M,S}.

Proof: According to (41), we obtain the second order deriva-
tive of Ysk(t) with respect to pi,k(t) as

∂2Ysk(t)

∂(pi,k(t))
2 =− 2ρi

A2
k ln 2

+pi,k(t)
2ρi

A3
k ln 2

− 2λkκkγ
2
i

T pt
i,k

ρi
2

A4
k(ln 2)

2

− 2λkκlkDi,k(t)γ
2
i

T pt
i,k

2ρi
A3

k ln 2
− δfi,k

2ρi
A3

k ln 2
· 1
{
T co
i,k(t) ≥ τdi

}

= − 2ρi
A3

k ln 2
(Ak − pi,k(t))−

2λkκlkγ
2
i

T pt
i,k

ρi
2

A4
k(ln 2)

2

− 2λkκlkDi,k(t)γ
2
i

T pt
i,k

2ρi
A3

k ln 2
−δfi,k

2ρi
A3

k ln 2
· 1
{
T co
i,k(t) ≥ τdi

}
.

From the above equation, if and only if Ak ≥ pi,k(t) is satisfied,

we can obtain
∂2Ysk

(t)

∂(pi,k(t))
2 < 0.

According to (65), the optimal amount of offloaded tasks
Di,k(t) decreases as the seller’s price pi,k(t) is increased. If
MD i offloads tasks to MEC server k, it must satisfy D∗

i,k ≥ 0,
i.e., 0 ≤ Ak ≤ ρi

ln 2 , for all pi,k(t) ≥ 0. We have
� For the MBS, while pi,M (t) = 0, we have 0 ≤ θi +

λiPi(t)
ri,M (t) −

Qi(t)
Vi

≤ ρi

ln 2 , namely, AM ≥ pi,M (t).
� For the SBS, while pi,S(t) = 0, we have 0 ≤{

θi +
λiPi(t)
ri,M (t) −

Qi(t)
Vi

, T st
i,S <

Di,S(t)
ri,S(t)

ηi +
λiPi(t)
ri,S(t) − Qi(t)

Vi
, T st

i,S ≥ Di,S(t)
ri,S(t)

≤ ρi

ln 2 , namely,

AS ≥ pi,S(t).
To sum up, the price must satisfy pi,k(t) ≤ Ak and

∂2Ysk
(t)

∂(pi,k(t))
2 < 0.

Since inequalities (40) and (42) are affine functions, Ysk(t) is
convex in pi,k(t). Then, the optimization problem of BSs/sellers
can be solved by the Lagrangian Multiplier method and KKT

conditions, and the optimal strategies are derived as follows.

p∗i,k(t)=2λkκlk

D∗
i,k(t)γ

2
i

T pt
i,k

−
D∗

i,k(t)

Θk
, (67)

where Θk =
∂D∗

i,k(t)

∂pi,k(t)
and k ∈ {M,S}.

B. Existence of the Stackelberg Equilibrium

We next prove that the optimal solutions (D∗
i,k(t), p

∗
i,k(t)),

∀k ∈ {M,S}, ∀t ∈ T are Stackelberg Equilibrium (SE) solu-
tions. The SE of the proposed game is defined in Definition 1
below.

Definition 1: If the price pi,k(t) of seller k is determined,
DSE

i,k(t) satisfies

Ybi

(
DSE

i,k(t)
)
= sup

Dmin
i,k ≤Di,k(t)≤Dmax

i,k

{Ybi (Di,k(t))} , ∀t ∈ T .

If the offloaded task Di,k(t) of buyer i is determined, pSEi,k(t)
satisfies

Ysk

(
pSEi,k(t)

)
= sup

pi,k(t)≥0

{Ysk (pi,k(t))} , ∀t ∈ T .

Then DSE
i,k(t) and pSEi,k(t) are the SE solutions.

Now we prove that the optimal solution (D∗
i,k(t), p

∗
i,k(t)) is

(DSE
i,k(t), p

SE
i,k(t)) by the following three lemmas.

Lemma 1: If the price pi,k(t) of BS/seller k is determined,
the revenue function Ybi(Di,k(t)) of the MD/buyer will take the
maximum value at D∗

i,k(t).
Proof: We have proved that the revenue function Ybi is con-

vex with respect to Di,k(t) in Section VII-A. Consequently,
Ybi(Di,k(t)) takes the maximum value at D∗

i,k(t). According to
Definition 1, D∗

i,k(t) is the SE solution DSE
i,k(t).

Lemma 2: For buyers, the optimal amount of offloaded tasks
D∗

i,k(t) decreases as the seller’s price pi,k(t) is increased.
Proof: According to (65), we have

∂D∗
i,k(t)

∂pi,k(t)
= − ρi

Ak
2 ln 2 < 0. (68)

Therefore, we can shown that D∗
i,k(t) is a monotonous de-

creasing function of pi,k(t). This means that if the transaction
price is increased, the amount of offloaded tasks of buyers
will decrease, which leads to little or even no revenue for the
sellers. The sellers should adopt a suitable price to maximum
its revenue. The seller’s optimal price can be derived by solving
∂Ysk

(pi,k(t))

∂pi,k(t)
= 0.

Lemma 3: If the optimal amount of offloaded tasksD∗
i,k(t) of

MD/buyer i is determined, Ysk(pi,k(t)) will take the maximum
value at p∗i,k(t).

Proof: We have shown that the revenue of sellers Ysk is con-
vex with respect to pi,k(t) in Section VII-A. Then Ysk(pi,k(t))
takes the maximum value at p∗i,k(t). According to Definition 1,
p∗i,k(t) is the SE solution pSEi,k(t).

In summary, (D∗
i,k(t), p

∗
i,k(t)), ∀t ∈ T is the optimal of-

floaded tasks and price strategies, and it is also the SE solutions
(DSE

i,k(t), p
SE
i,k(t)), ∀t ∈ T .

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: DISTRIBUTED COMPUTING AND NETWORKING COORDINATION FOR TASK OFFLOADING UNDER UNCERTAINTIES 5291

C. Computational Complexity Discussion

In this part, we analyze the computational complexity of
the proposed algorithm both in the BS side and user side. For
the MBS/SBS, the computational complexity is related to the
number of split stages H , composite scenarios ξk, and users M.
According to the scenario tree, the computational complexity of
the MBS/SBS is O(2Hm̃k · |ξk(t)|), where m̃k (0 ≤ m̃k ≤ m)
and |ξk(t)| are the number of users and the size of composite
scenarios space in the BS k, respectively. Similarly, the compu-
tational complexity of the user i is O(2H · |ξsti,k(t)|)8.

VIII. PERFORMANCE EVALUATION

To evaluate the efficacy and rationality of the proposed al-
gorithm, we design two sets of simulations. First, we evaluate
the performances of the proposed games. Second, we conduct a
comparison study with several benchmark schemes.

A. Simulation Setting

In the following simulations, we consider a stochastic time-
varying MEC-enabled UDN system. As shown in Fig. 1,
the tasks arrival rate at each MD is uniformly distributed in
[0, 20] Mbit/s, and computation density with parameters γi
in [500, 1500] cycles/bit. As suggested in [6] and [37], the
maximum CPU clock frequency of each MD is set to 1 GHz.
The residence time of each MD under SBSs follows an ex-
ponential distribution with parameter μ from 1 s to 10 s. In
addition, we setρi = 2,κi = 1× 10−6 ∼ 2× 10−7,Pi(t) = 23
dBm, σ2 = 1× 10−8, θi = 0.15, ηi = 0.05, τ = 10 s, λi = 1,
and o = 1 Gbps. For the BSs, the bandwidth of MBS and
SBSs are set to 40 MHz and 20 MHz, respectively. The max-
imum CPU clock frequency of MBS and SBSs are set to
quad-core 2.5 GHz and quad-core 2 GHz, respectively. Ac-
cording to [9], let the computation waiting delay of MBS
and SBSs follow an exponential distribution with parameters
ζ{M,S} in [0, 6] s, and the possible waiting delay of each
BSs be 10 (|Ωwt

k | = 10). Moreover, we set κM = 1× 10−7,
κS = 1× 10−7, and λM = λS = 0.5. The price update step is
set to 5× 10−5.

B. Performance of the Proposed Game

In this section, we examine the convergence speed and com-
putation offloading performance in long-term evolution of the
proposed game. For easy observation, we consider one mobile
device (i.e., m = 1) in the region and disable its local execution
option. Moreover, we set τd = 10 s, μ = 5 s, ζM = 3 s, ζS = 1
s, and κi = 1× 10−7.

1) Convergence Speed of the Proposed Game: In this simu-
lation, we illustrate the pricing and task offloading processes in

8For the larger H , we can use the methods provided by the references [49]
and [50] to work out the solution of the proposed multi-stage stochastic program-
ming problem. For example, Stochastic Dual Dynamic Programming (SDDP)
in [50] can cut selection procedure, and use a lower bound improvement scheme
to reduce the computational complexity.

Fig. 5. Price versus offloaded tasks (Vi = 500, γi = 800 cycles/bit, and
Ai(t) = 5 Mbit/s).

Fig. 6. Computation offloading performance (γi = 800 cycles/bit and
Ai(t) = 5 Mbit/s).

the proposed game solved by the multi-stage stochastic program-
ming (e.g., four stages (H = 2), including two game periods).

Fig. 5 shows the offloaded task and price iterations of the
four-stage stochastic programming, which includes two game
periods. We can see from Fig. 5(a) that the iterations of price
updates are non-decreasing. It takes about 40 iterations to con-
verge to the optimal strategies (i.e., p∗

i,k(t)). Correspondingly,
the offloading strategies also reach to a steady state when the
price no longer increases, which means that the buyer and sellers
have reached equilibrium, as can be seen from Fig. 5(b), and the
amount of offloaded tasks decreases gradually when the price
is increased. Moreover, the equilibrium prices of the MBS are
higher than that of the SBS in the two periods. This is because
the computation waiting delay of the MBS is larger than that
of the SBS, and processing the same amount of offloaded tasks
requires more computing power and higher computation cost
at the MBS. We can also obtain the sum of offloaded tasks of
the two periods, which is less than the total amount of tasks,
meaning that some tasks are backlogged in the tasks queue and
are waiting to be processed.

2) Offloading Performance of the Proposed Game: Fig. 6
presents the experimental results of the computation offloading
performance over time and varying V . Fig. 6(a) shows the
transaction price between buyers and sellers, offloaded tasks,
tasks backlog levels, and revenue of buyers. The transaction

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

5292 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

price pk(t) in the market gradually increases along with the
task queue backlog of buyers, as indicated in (66) and (67). The
revenue of buyers gradually decreases with increased offloading
cost. Furthermore, we can see from Fig. 6(b) that there is an
[O(1/V), O(V)] tradeoff between the average queue backlog
and revenue, as proven in [39].

C. Comparison With Benchmark Schemes

In this simulation, we conduct experiments to evaluate the
proposed scheme, which is termed DCOM for distributed com-
puting and networking coordination for tak offloading under
multiple uncertainties, For DCOM, we evaluate the two-stage
(DCOM-2) and multi-stage (DCOM-m) versions (e.g., four-
stage, m = 4) with four MDs. We also compare the proposed
schemes with the following two benchmark schemes in terms
of average system revenue, offloading successful probability,
average offloading cost, and average tasks queue backlog. The
average system revenue is the sum of the revenue of buyers
and sellers in the market, and corresponding to the weighted
sum of (56) and (58). The offloading successful probability is
defined as the processed completed tasks size in MEC divided
by MDs’ total offloaded tasks. Average offloading cost include
the communication cost and computation cost of MDs. Average
tasks queue backlog is the unprocessed tasks size of MDs
� The greedy computation offloading based on game-theory

(GCOG) scheme proposed in [23]. With the GCOG
scheme, a single-round pricing game is adopted, and task
offloading only depends on the available computing power
in the network; it does not take into account the random
mobility of users and the variability of computational wait-
ing delay. Compared with this scheme, we can show the
performances of multi-round dynamic pricing method and
the impact of considering both “computing + networking”
in stochastic time-varying environments.

� The dynamic computation offloading and resources allo-
cation (DCOR) scheme, which is a dynamic task offload-
ing and resource allocation method. DCOR calculates the
communication cost and energy cost based on the average
observed residence time and waiting delay in history [25].
Compared with this scheme, we can demonstrate the bene-
fit of the multi-stage stochastic programming with recourse
and compensation.

1) Performance Versus Time: Fig. 7 compares the perfor-
mance of system revenue, offloading success probability, of-
floading cost, and task backlog level over long-term evolution.
As we can see from Fig. 7(a) and (b), the system revenue and
offloading success probability gradually decrease initially. This
is because that more tasks are backlogged into the tasks cache
over time, as can be seen from Fig. 7(d), and there are more
tasks to be processed at the expense of revenue to ensure the
stability of the task queue. Similarly, the offloading success
probability gradually decreases until convergence. Because the
DCOM schemes take both computing and networking factors
into consideration, they can better optimize the task offloading
decisions (such as the processed task strategies for local, MBS,
or SBSs) and achieve a lower tasks backlog level. Furthermore,

Fig. 7. Performance comparison over time (Ai(t) = 5 Mbit/s, μi = 5 s,
ζM = 3 s, and ζS = 1 s).

Fig. 8. Performance comparison under increased tasks arrival rate (μi = 5 s,
ζM = 3 s, and ζS = 1 s).

the performances of the DCOM-m scheme is better than that
of DCOM-2 since the former can capture the network statisti-
cal characteristics more accurately and find better computation
offloading strategies.

2) Varying Task Arrival Rate: Fig. 8 presents a performance
comparison of the four schemes under different task arrival
rates, by considering the average system revenue, offloading
success probability, average offloading cost, and average tasks
backlog level. As we can see from Fig. 8(a), the average system
revenue increases first, gradually decreases, and finally stabilizes
when the task arrival rate is further increased. The maximum
revenue is achieved when the task arrival rate is about 3 Mbit/s.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: DISTRIBUTED COMPUTING AND NETWORKING COORDINATION FOR TASK OFFLOADING UNDER UNCERTAINTIES 5293

Fig. 9. Performance comparison under increased average residence time
(Ai(t) = 5 Mbit/s and ζk = 0 s).

Moreover, a smaller task arrival rate (e.g.,Ai(t) ≤ 2Mbit/s) has
almost no effect on the offloading success probability, as can be
seen from Fig. 8(b). The offloading success probability then
gradually decreases until it stabilizes. This is because that the
offloaded tasks gradually increase as the arrival rate is increased;
it approaches the maximum value when the tasks arrival task rate
is greater than 15 Mbit/s. Correspondingly, as we can see from
Fig. 8(c) and (d), the average offloading cost gradually increases
until it stabilizes, and the tasks queue backlog also gradually
increases when the task arrival rate is increased.

3) Varying Residence Time: Fig. 9 compares the perfor-
mance of average system revenue, offloading success probabil-
ity, offloading cost, and tasks queue backlog of the four schemes.
We can see from Fig. 9(a) and (b) that the system revenue and
offloading success probability gradually increase as the average
residence time is increased. Fig. 9(c) shows that the offloading
cost gradually decreases. This is because that communication
cost gradually decreases when the average residence time is
increased. Furthermore, we can see from Fig. 9(d) that the task
queue backlog also gradually decreases. It should be noted that
although the task backlog level of the GCOG scheme is the
lowest, its offloading failure probability is the highest, which is
unsatisfactory.

IX. CONCLUSION

In this paper, we developed a distributed joint tasks offload-
ing and computing resource allocation methodology for MEC-
enabled UDNs. The goal was to improve the computation rev-
enue and offloading success probability based on computing and
networking coordination under uncertainties in the wireless net-
work environment. In order to achieve distributed task offloading
and adaptive computing power management in the time-varying
environment, a multi-round pricing method was designed by

applying an extended game-theoretic approach based on Lya-
punov optimization, which determines the computing power
price dynamically by balancing the offloading revenue and
queue backlog. Moreover, considering the stochastic residence
time and computation waiting delay, a distributed two-stage
algorithm and a multi-stage stochastic programming algorithm
were proposed, and the multi-stage stochastic programming
problem was transformed into a deterministic equivalent prob-
lem using a scenario tree to decide the optimal computation
offloading strategies. The superior performance of the proposed
algorithms were validated with simulations and comparison with
two benchmark schemes.

REFERENCES

[1] W. Shu and Y. Li, “Joint offloading strategy based on quantum particle
swarm optimization for MEC-enabled vehicular networks,” Digit. Com-
mun. Netw., vol. 9, no. 1, pp. 56–66, 2023.

[2] G. Perin, F. Meneghello, R. Carli, L. Schenato, and M. Rossi, “EASE:
Energy-aware job scheduling for vehicular edge networks with renewable
energy resources,” IEEE Trans. Green Commun. Netw., vol. 7, no. 1,
pp. 339–353, Mar. 2023.

[3] Y. Zhang, L. Jia, N. Qi, Y. Xu, and M. Wang, “Anti-jamming channel
access in 5G ultra-dense networks: A game-theoretic learning approach,”
Digit. Commun. Netw., vol. 9, no. 2, pp. 523–533, 2023.

[4] M. Elbayoumi, M. Kamel, W. Hamouda, and A. Youssef, “NOMA-assisted
machine-type communications in UDN: State-of-the-art and challenges,”
IEEE Commun. Surveys Tut., vol. 22, no. 2, pp. 1276–1304, Second Quarter
2020.

[5] H. Guo, J. Liu, and J. Zhang, “Computation offloading for multi-access
mobile edge computing in ultra-dense networks,” IEEE Commun. Mag.,
vol. 56, no. 8, pp. 14–19, Aug. 2018.

[6] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017.

[7] I. Labriji et al., “Mobility aware and dynamic migration of MEC services
for the Internet of Vehicles,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 1, pp. 570–584, Mar. 2021.

[8] S. Xia, Z. Yao, Y. Li, and S. Mao, “Online distributed offloading and
computing resource management with energy harvesting for heteroge-
neous MEC-enabled IoT,” IEEE Trans. Wireless Commun., vol. 20, no. 10,
pp. 6743–6757, Oct. 2021.

[9] J. Cao, W. Feng, N. Ge, and J. Lu, “Delay characterization of mobile-edge
computing for 6G time-sensitive services,” IEEE Internet Things J., vol. 8,
no. 5, pp. 3758–3773, Mar. 2021.

[10] Y. Deng, Z. Chen, and X. Chen, “Resource allocation for multi-user
mobile-edge computing systems with delay constraints,” in Proc. IEEE
Glob. Commun. Conf., Taipei, Taiwan, China, 2020, pp. 1–6.

[11] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Sur-
vey on multi-access edge computing for Internet of Things realization,”
IEEE Commun. Surveys Tut., vol. 20, no. 4, pp. 2961–2991, Fourth Quarter
2018.

[12] P. Ranaweera, A. D. Jurcut, and M. Liyanage, “Survey on multi-access
edge computing security and privacy,” IEEE Commun. Surveys Tut.,
vol. 23, no. 2, pp. 1078–1124, Second Quarter 2021.

[13] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE Internet Things J., vol. 3, no. 6, pp. 1171–1181,
Dec. 2016.

[14] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial computation
offloading scheme for mobile edge computing enabled Internet Things,”
IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814, Jun. 2019.

[15] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319–333,
Feb. 2019.

[16] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4005–4018, Jun. 2019.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

5294 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

[17] I. H. Hou, V. Borkar, and P. R. Kumar, “A theory of QoS for wireless,” in
Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, 2009, pp. 486–494.

[18] Y. Teng, M. Liu, F. R. Yu, V. C. M. Leung, M. Song, and Y. Zhang,
“Resource allocation for ultra-dense networks: A survey, some research
Issues and challenges,” IEEE Commun. Surveys Tut., vol. 21, no. 3,
pp. 2134–2168, Third Quarter 2019.

[19] N. Liakopoulos, G. S. Paschos, and T. Spyropoulos, “Robust optimiza-
tion framework for proactive user association in UDNs: A data-driven
approach,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1683–1695,
Aug. 2019.

[20] G. Kwon and H. Park, “Joint user association and beamforming design
for millimeter wave UDN with wireless Backhaul,” IEEE J. Sel. Areas
Commun., vol. 37, no. 12, pp. 2653–2668, Dec. 2019.

[21] Y. Xu, W. Xu, Z. Wang, J. Lin, and S. Cui, “Load balancing for ultradense
networks: A deep reinforcement learning-based approach,” IEEE Internet
Things J., vol. 6, no. 6, pp. 9399–9412, Dec. 2019.

[22] S. Yu, X. Chen, Z. Zhou, X. Gong, and D. Wu, “When deep reinforcement
learning meets federated learning: Intelligent multitimescale resource
management for multiaccess edge computing in 5G ultradense network,”
IEEE Internet Things J., vol. 8, no. 4, pp. 2238–2251, Feb. 2021.

[23] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge computation
offloading for ultradense IoT networks,” IEEE Internet Things J., vol. 5,
no. 6, pp. 4977–4988, Dec. 2018.

[24] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic task
offloading and resource allocation for mobile-edge computing in dense
cloud RAN,” IEEE Internet Things J., vol. 7, no. 4, pp. 3282–3299,
Apr. 2020.

[25] X. Deng, J. Li, L. Shi, Z. Wei, X. Zhou, and J. Yuan, “Wireless
powered mobile edge computing: Dynamic resource allocation and
throughput maximization,” IEEE Trans. Mobile Comput., vol. 21, no. 6,
pp. 2271–2288, Jun. 2022.

[26] A. Asheralieva and D. Niyato, “Combining contract theory and Lyapunov
optimization for content sharing with edge caching and device-to-device
communications,” IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1213–1226,
Jun. 2020.

[27] A. Asheralieva and D. Niyato, “Game theory and Lyapunov optimiza-
tion for cloud-based content delivery networks with device-to-device
and UAV-enabled caching,” IEEE Trans. Veh. Technol, vol. 68, no. 10,
pp. 10094–10110, Oct. 2019.

[28] Y. Zhu, J. Li, Q. Huang, and D. Wu, “Game theoretic approach for network
access control in heterogeneous networks,” IEEE Trans. Veh. Technol,
vol. 67, no. 10, pp. 9856–9866, Oct. 2018.

[29] X. Li, Q. Huang, and D. Wu, “A repeated stochastic game approach
for strategic network selection in heterogeneous networks,” in Proc.
IEEE Conf. Comput. Commun. Workshops, Honolulu, HI, USA, 2018,
pp. 88–93.

[30] H. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: Architecture, applications, and approaches,” Wirel. Commun.
Mobile Comput., vol. 13, no. 18, pp. 1587–1611, 2013.

[31] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE Commun.
Surveys Tut., vol. 19, no. 4, pp. 2322–2358, Fourth Quarter 2017.

[32] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. USENIX Conf. Hot Top. Cloud Comput.,
Boston, MA, USA, 2010, pp. 1–7.

[33] J. M. Rabaey, A. Chandrakasan, and B. Nikoli, Digital Integrated Circuits:
A Design Perspective, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall,
2003.

[34] K. Son and B. Krishnamachari, “SpeedBalance: Speed-scaling-aware opti-
mal load balancing for green cellular networks,” in Proc. IEEE INFOCOM,
Orlando, FL, USA, 2012, pp. 2816–2820.

[35] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user mobile-edge
computing systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, Sep. 2017.

[36] Q. D. La, M. V. Ngo, T. Q. Dinh, T. Q. Quek, and H. Shin, “Enabling
intelligence in fog computing to achieve energy and latency reduction,”
Digit. Commun. Netw., vol. 5, no. 1, pp. 3–9, 2019.

[37] D. Niyato, E. Hossain, and P. Wang, “Optimal channel access management
with QoS support for cognitive vehicular networks,” IEEE Trans. Mobile
Comput., vol. 10, no. 4, pp. 573–591, Apr. 2011.

[38] T. Truong-Huu, C. K. Tham, and D. Niyato, “A stochastic workload
distribution approach for an ad-hoc mobile cloud,” in Proc. IEEE 6th Int.
Conf. Cloud Comput. Technol. Sci., Singapore, 2014, pp. 174–181.

[39] Y. Li, S. Xia, M. Zheng, B. Cao, and Q. Liu, “Lyapunov optimization based
trade-off policy for mobile cloud offloading in heterogeneous wireless
networks,” IEEE Trans. Cloud Comput., vol. 10, no. 1, pp. 491–505, First
Quarter 2022.

[40] L. Chen, C. Shen, P. Zhou, and J. Xu, “Collaborative service placement
for edge computing in dense small cell networks,” IEEE Trans. Mobile
Comput., vol. 20, no. 2, pp. 377–390, Feb. 2021.

[41] Y. Ma, W. Liang, M. Huang, W. Xu, and S. Guo, “Virtual network function
service provisioning in MEC via trading off the usages between computing
and communication resources,” IEEE Trans. Cloud Comput., vol. 10, no. 4,
pp. 2949–2963, Fourth Quarter 2022.

[42] C.-K. Tham and B. Cao, “Stochastic programming methods for workload
assignment in an ad hoc mobile cloud,” IEEE Trans. Mobile Comput.,
vol. 17, no. 7, pp. 1709–1722, Jul. 2018.

[43] B. Cao, S. Xia, J. Han, and Y. Li, “A distributed game methodology
for crowdsensing in uncertain wireless scenario,” IEEE Trans. Mobile
Comput., vol. 19, no. 1, pp. 15–28, Jan. 2020.

[44] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming,
New York, NY, USA: Springer Press, 2011, pp. 128–136.

[45] Neely and J. Michael, “Stochastic network optimization with application to
communication and queueing systems,” Synth. Lectures Commun. Netw.,
vol. 3, no. 1, pp. 1–211, 2010.

[46] L. Sun, L. Wan, and X. Wang, “Learning-based resource allocation strat-
egy for industrial IoT in UAV-enabled MEC systems,” IEEE Trans. Ind.
Informat., vol. 17, no. 7, pp. 5031–5040, Jul. 2021.

[47] Y. Cao, X. Zhang, B. Zhou, X. Duan, D. Tian, and X. Dai, “MEC intel-
ligence driven electro-mobility management for battery switch service,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 4016–4029, Jul. 2021.

[48] M. S. Barzaraa, Nonlinear Programming: Theory and Algorithms, 2nd ed.
Hoboken, NJ, USA: Wiley, 1993.

[49] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming,
New York, NY, USA: Springer Press, 2011, pp. 128–136.

[50] A. Bhattacharya, J. P. Kharoufeh, and B. Zeng, “Managing energy storage
in microgrids: A multistage stochastic programming approach,” IEEE
Trans. Smart Grid, vol. 9, no. 1, pp. 483–496, Jan. 2018.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:09:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

