
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024 5917

DeViT: Decomposing Vision Transformers for
Collaborative Inference in Edge Devices
Guanyu Xu , Zhiwei Hao , Yong Luo , Member, IEEE, Han Hu , Member, IEEE,

Jianping An , Member, IEEE, and Shiwen Mao , Fellow, IEEE

Abstract—Recent years have witnessed the great success of vi-
sion transformer (ViT), which has achieved state-of-the-art per-
formance on multiple computer vision benchmarks. However, ViT
models suffer from vast amounts of parameters and high computa-
tion cost, leading to difficult deployment on resource-constrained
edge devices. Existing solutions mostly compress ViT models to
a compact model but still cannot achieve real-time inference. To
tackle this issue, we propose to explore the divisibility of trans-
former structure, and decompose the large ViT into multiple small
models for collaborative inference at edge devices. Our objective
is to achieve fast and energy-efficient collaborative inference while
maintaining comparable accuracy compared with large ViTs. To
this end, we first propose a collaborative inference framework
termed DeViT to facilitate edge deployment by decomposing large
ViTs. Subsequently, we design a decomposition-and-ensemble al-
gorithm based on knowledge distillation, termed DEKD, to fuse
multiple small decomposed models while dramatically reducing
communication overheads, and handle heterogeneous models by
developing a feature matching module to promote the imitations of
decomposed models from the large ViT. Extensive experiments for
three representative ViT backbones on four widely-used datasets
demonstrate our method achieves efficient collaborative inference
for ViTs and outperforms existing lightweight ViTs, striking a
good trade-off between efficiency and accuracy. For example, our
DeViTs improves end-to-end latency by 2.89× with only 1.65%
accuracy sacrifice using CIFAR-100 compared to the large ViT,
ViT-L/16, on the GPU server. DeDeiTs surpasses the recent effi-
cient ViT, MobileViT-S, by 3.54% in accuracy on ImageNet-1 K,
while running 1.72× faster and requiring 55.28% lower energy
consumption on the edge device.

Index Terms—Collaborative inference, edge computing, model
decomposition, vision transformer.

Manuscript received 10 October 2022; revised 28 May 2023; accepted 7
September 2023. Date of publication 13 September 2023; date of current version
4 April 2024. This work was supported in part by the National Key Research and
Development Program of China under Grant 2021YFC3300200, and in part by
the National Natural Science Foundation of China under Grants 61971457 and
62276195. Recommended for acceptance by M. Zhang. (Corresponding author:
Han Hu.)

Guanyu Xu, Zhiwei Hao, Han Hu, and Jianping An are with the School of
Information and Electrionics, Beijing Institute of Technology, Beijing 100081,
China (e-mail: xuguanyu@bit.edu.cn; haozhw@bit.edu.cn; hhu@bit.edu.cn;
an@bit.edu.cn).

Yong Luo is with the School of Computer Science, Wuhan University, Wuhan
430072, China (e-mail: yluo180@gmail.com).

Shiwen Mao is with the Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL 36849-5201 USA (e-mail: smao@ieee.org).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMC.2023.3315138, provided by the authors.

Digital Object Identifier 10.1109/TMC.2023.3315138

I. INTRODUCTION

TRANSFORMERS [1] have been widely used in natu-
ral language processing (NLP) [2], achieved exceptional

performance in audio tasks [3], and demonstrated their great
potentials in computer vision [4], [5]. With the rapid develop-
ment of the artificial intelligence of things (AIoT), deploying
transformer-based models on resource-limited edge devices has
becoming an attractive idea. However, the inference cost of
transformer is very high, leading to unacceptable latency or
energy consumption, especially for resource-limited edge de-
vices [6]. For example, the ViT-L/16 model [5], a typical vision
transformer, requires 1.12 GB storage and 190.7 Giga Floating
Point Operations (GFLOPs) for inference, while a Raspberry
Pi-4B device only has 4 GB RAM and 13.5 Giga Floating Point
Operations Per Second (GFLOPS) [7], [8]. In order to achieve
effective inference, a pre-trained model is usually divided into
multiple parts, and each part is deployed on an edge device or a
server. These devices conduct inference collaboratively. This is
often called collaborative inference, which avoids transmitting
large data to the server, and can substantially improve the quality
of experience in the AIoT [9].

In collaborative inference, some methods partition DNNs by
or across layers [9], [10]. The intermediate features should be
transmitted to devices or servers multiple times, resulting in
high latency and energy costs. The data transmission can also
be easily affected by the network dynamics. Furthermore, some
complex surgery strategies are usually required to find a proper
point to decouple the original model [11]. Therefore, achieving
fast and effective collaborative inference on edge devices is
challenging.

Vision transformers (ViTs) cannot be directly deployed on
edge devices because of the large model size and high com-
putation cost. To tackle this problem, some existing works
utilize conventional model compression methods to assist the
deployment of large ViTs and achieve fast inference. These
methods need to elaborately design [12] or search [13] for the
compact structure, and cannot balance between accuracy and
the constrained resource requirements of edge devices. This is
because these methods focus on reducing model parameters and
FLOPs, which yet are not the right criterion for the ultimate
goals of latency and energy. Moreover, almost no on-device
experiments have been conducted so far to measure the actual
inference latency and energy consumption.

To remedy these limitations, we propose a collaborative infer-
ence framework for general ViTs in edge devices, termed DeViT,

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2771-9272
https://orcid.org/0000-0002-6237-7028
https://orcid.org/0000-0002-2296-6370
https://orcid.org/0000-0001-7532-0496
https://orcid.org/0000-0002-6441-9711
https://orcid.org/0000-0002-7052-0007
mailto:xuguanyu@bit.edu.cn
mailto:haozhw@bit.edu.cn
mailto:hhu@bit.edu.cn
mailto:an@bit.edu.cn
mailto:yluo180@gmail.com
mailto:smao@ieee.org
https://doi.org/10.1109/TMC.2023.3315138

5918 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

by decomposing the large ViT into multiple small models. These
decomposed models can be readily deployed on edge devices
for conducting inference simultaneously, which significantly
reduces inference latency and energy consumption with slight
accuracy drop. To the best of our knowledge, this is the first work
to achieve collaborative inference for ViTs in edge devices by
leveraging the divisibility of the transformer structure. Subse-
quently, we propose an efficient decomposition-and-ensemble
algorithm based on knowledge distillation, termed DEKD, to
counterbalance the accuracy loss induced by decomposition
and facilitate communication overheads among edge devices.
Each device equipped with a decomposed model only needs
to execute a singular transfer of target features for aggrega-
tion, resulting in a reduction of transmission costs alongside
a satisfactory ensemble performance. To ensure acceptable per-
formance, we also design a novel feature matching module to
mitigate information in DEKD algorithm, which promotes the
imitations of decomposed models from the large transformer
by matching the dimension of intermediate features between
them.

We conduct comprehensive experiments on both GPU servers
and edge devices to verify the effectiveness of our proposed
framework. In the experiments, we first decompose a large ViT
according to the number of edge devices and their hardware
configuration. Then we utilize DEKD to retain the most impor-
tant parts in the small models by shrinking and finally fuse these
small models by employing our feature aggregation module. The
results show that the proposed DeViT framework can achieve
real-time inference and almost no accuracy drop on edge devices
for large ViTs. Moreover, we conduct massive experiments
using three ViT backbones and four computer vision datasets
to verify the effectiveness of our approach. For instance, on the
GPU server, our DeViTs improves end-to-end latency by 2.89×
with only 1.65% accuracy sacrifice compared to the large ViT,
ViT-L/16 [5], using ImageNet. On the edge device, DeDeiTs
surpasses the recent efficient ViT, MobileViT-S [12], by 3.54%
in accuracy, while running 1.72× faster and requiring 55.28%
lower energy consumption.

Our main contributions in this paper are summarized as fol-
lows:
� We propose a collaborative inference framework for gen-

eral ViTs in edge devices, termed DeViT, by decomposing
the large ViT into multiple small models.

� We develop an efficient decomposition-and-ensemble al-
gorithm based on knowledge distillation, termed DEKD,
to fuse multiple decomposed models and minimize the
accuracy loss caused by decomposition, while dramatically
reducing communication overheads among edge devices.

� We design a novel feature matching module that facilitates
the learning of decomposed models from the large ViT and
minimizes information loss.

� We evaluate our DeViT framework for three representative
ViT backbones on both commodity GPU servers and real
edge devices using four widely-used datasets. The results
demonstrate that our method can reduce inference latency
by 1.90× and reduce energy consumption by 26.11% on
average with only 2 % accuracy sacrifice.

Fig. 1. Structure of a ViT [5]. ViT is composed of a patch embedding layer,
several transformer encoders, and a classification head. The model size mainly
depends on the number of encoders, the embedding dimension, the number of
attention heads, and the MLP dimension.

The remainder of this paper is organized as follows. We
elaborate the challenges for edge deployment of ViTs in
Section II. The proposed collaborative deployment framework
of ViTs on multiple edge devices is presented in Section III. The
proposed DEKD algorithm is described in Section IV, and then
Section V provides our experiments and analysis. Finally, we
discuss the related works in Section VI and conclude our paper
in Section VII.

II. CHALLENGES OF EDGE DEPLOYMENT FOR VITS

In this section, we analyze the number of parameters for ViTs,
and discuss the challenges of edge deployment.

A. Parameter Analysis of ViTs

The ViT model consists of a patch embedding layer, multi-
ple stacked transformer encoders, and a classification head, as
shown in Fig. 1. The number of parameters depends on the
embedding dimension D, the number of transformer encoder L,
MLP hidden dimension d, and the number of heads h. The pa-
rameters of the embedded patch are (P 2C +M + 3)D, where
P ,C andM is the size of patches, the number of channel and the
number of patches, respectively. In a transformer encoder, the
parameters of MSA and MLP are 4D2 + 4D and 2Dd+D + d,
respectively. The number of parameters of the two LN modules
are 4D. Given the classification task, we suppose the number of
classes is Nclass. To sum up, the total number of parameters for
the entire model is

#Params. = (P 2C +M + 3)D

+ L(4D2 + 4D + 2Dd+D + d+ 4D)

+ (D + 1)Nclass,

(1)

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DEVIT: DECOMPOSING VISION TRANSFORMERS FOR COLLABORATIVE INFERENCE IN EDGE DEVICES 5919

TABLE I
COMPARISON BETWEEN RESOURCES ON TYPICAL EDGE DEVICES AND DEPLOYMENT REQUIREMENTS FOR REPRESENTATIVE VITS

whereD = hDh. The model size mainly depends on the number
of network layer L, the embedding dimension D, the number of
attention heads h, and the MLP dimension d. Taking the ViT-
L/16 to perform a 1000-class classification task as an example,
the size of patches, the number of patches, the number of network
layer, the embedding dimension, the number of attention heads
and the MLP dimension are 16, 196, 24, 1024, 16, and 4096,
respectively. Thus, the number of ViT-L/16 parameters is 304 M.
If the parameters of ViT-L/16 are stored as the 32-bit floating
point, it requires a storage space of 1.12 GB.

B. Challenges to Edge Deployment

Although ViTs have achieved the state-of-the-art performance
in most vision tasks, it is difficult to deploy them on resource-
constrained devices. We compare the resources of typical edge
devices with the deployment requirements for representative
ViTs in Table I, where we observe three major challenges:
� Limited memory and storage capacity: Different from GPU

servers, edge devices usually have low memory and storage
capacity. For example, ViT-L/16 needs at least 2.60 GB
memory and 1.12 GB storage space for inference, while
the Raspberry Pi-4B device has only 4 GB memory.

� Huge computation cost: The computation cost of ViTs is
massive due to their complicated stacked computational
structure. For instance, inference with ViT-L/16 requires
190.7 GFLOPs, but the computation capacity of Raspberry
Pi-4B is only 13.5 GFLOPS.

� High inference latency and energy cost: The inference of
ViTs brings about high latency and energy cost. In order
to classify an image with 224 224 resolution, the ViT-L/16
model takes 56.79 milliseconds and 0.58 J on an NVIDIA
Jetson TX2 device.

In consideration of these challenges, we aim to design a
collaborative edge deployment framework for ViTs with the
following design goals:
� Generality: The framework can be applied to different

variants of ViTs.
� Lightweight: The framework can accommodate different

hardware platforms by reducing the storage and computa-
tion cost.

� Rapidity: The framework can meet the latency requirement
of IoT applications with a fast inference speed.

� Reliability: The framework can achieve a performance
comparable to that of powerful giant ViTs.

Fig. 2. Comparison of server-based solution (top) and edge-based solution
(bottom) for ViT deployment. For sever-based solution, data need to be uploaded
to the cloud. The GPU sever executes ViT inference. For edge-based solution, it
consists of multiple edge devices with deployed small ViT models. Nearby edge
devices execute inference after receiving data. Then, the central device collects
the intermediate results from all other devices and aggregates them to produce
the inference output.

III. COLLABORATIVE DEPLOYMENT OF VITS ON MULTIPLE

EDGE DEVICES

In this section, we design a collaborative deployment frame-
work of ViT on multiple edge devices. We first introduce the
traditional deployment solution on the server. Then we present
the workflow of our framework and depict the details of each
module in our framework.

A. System Structure and Workflow

In light of the high inference latency and energy consumption,
ViTs are usually deployed on commodity GPU servers, as shown
in Fig. 2 (top). The workflow of such server-based solution is:
initially a giant ViT model is deployed on a GPU server in a
cloud data center; then the input data (e.g., images, videos) from
remote users are uploaded to the cloud; the GPU server runs
the ViT model for inference and transmits the results back to
the users. This method is convenient to deploy but leads to high
transmission cost and latency from the remote users to the cloud.

To tackle this issue, we propose the idea that data are directly
transmitted to nearby edge devices to reduce the communication

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

5920 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

cost, where these devices are collaboratively deployed for ViTs
to improve inference performance. This is achieved by the de-
signed collaborative deployment framework of ViTs on multiple
edge devices as shown in Fig. 2 (bottom). It contains multiple
edge devices as well as a central node. All the devices collabora-
tively conduct inference and can communicate with each other
via a wireless network such as Wi-Fi, Zigbee, and Bluetooth.
The small ViTs are deployed on edge devices. When receiving
an inference task, the collected data are first transmitted to all
edge devices. These devices conduct inference with the small
ViTs in parallel. Intermediate results of the small ViTs from all
other edge devices are transmitted to the central edge device,
where the result aggregation module aggregates the intermediate
results to produce the inference output.

The aforementioned framework mainly depends on two mod-
ules: small ViT and result aggregation. These modules are
required to achieve the following goals:
� Goal 1: Small ViTs can be deployed on edge devices and

achieve low inference latency.
� Goal 2: The results of small ViTs can be aggregated to

achieve a performance comparable to that of the powerful
giant ViT.

B. Decomposition and Aggregation

We illustrate how to decompose a giant ViT into small models
and then aggregate intermediate results from small models to
minimize accuracy loss.

Model Decomposition: Considering the Goal 1, we propose
to remove the redundant parts in the ViT to get small ViTs. Clark
et al. [16] observed that particular heads correspond to specific
semantic relations. Michel et al. [17] found that performance are
significantly affected by only a small quantity of heads. Khakzar
et al. [18] also pointed out that plenty of neurons are unnecessary
for specific tasks. Hence, we can discard the redundant structures
in the ViT according to the target task and hardware requirement,
and decompose the giant ViT into several smaller models. Every
decomposed small model is under the hardware and latency
constraints. The redundancy of ViT are mainly related to the
embedding dimension, the number of attention heads, the MLP
dimension, and the number of network layers. We focus on these
factors to conduct decomposition.

As shown in Fig. 3, the process of decomposition is as follows:
� Encoder reduction: The number of transformer encoders
L is decreased to Ls.

� Head reduction: Some redundant heads in the MSA mod-
ule are removed and the reduced number of heads is hs.

� Embedding reduction: The embedding dimension is
changed to Ds = 64hs, in order to match the feature di-
mension in the inference.

� Neuron reduction: Some redundant intermediate neurons
in the MLP block are discarded and the dimension of MLP
is changed from d to ds.

The reduction criterion will be discussed in Section IV-C.
In order to avoid the case that some devices have completed
inference but others have not, we only focus on deployment of

Fig. 3. Process of model decomposition. We focus on embedding dimension,
the number of attention heads, the MLP dimension, and the number of network
layer when conducting decomposition. The number of ViT layers is decreased
from L to Ls. Then redundant heads in MSA and redundant neurons in MLP
are removed. In order to match feature dimension, the dimension of embeddings
is also reduced to Ds. The dimension of MLP is changed from d to ds.

homogeneous devices in this work and make structures of all
decomposed models the same.

Feature Aggregation: Regarding the Goal 2, we propose to
utilize ensemble methods to aggregate results. Most ensemble
methods [19] only fuse predictions of different sub-models or
select a reliable prediction. However, the final results of these
methods mainly depend on the performance of sub-models. The
ensemble model cannot achieve satisfactory performance due to
the limited performance of sub-models. Hence, we propose to
break the performance restrictions of sub-models by aggregating
the features of these models, and design an efficient feature
aggregation module FA(·) to fuse intermediate features. In this
module, the intermediate features from all edge devices are first
concatenated, as:

X = Concat (X1,X2, . . . ,XN) , (2)

whereXi, i ∈ [1, N] are the intermediate features of small mod-
els. The number of small models is N . The concatenated feature
X ∈ RND is passed to an MLP block consisting of two fully-
connected layers. The linear transformation W1 ∈ RND×Dt of
the first fully-connected layer allows the interaction of different
features. The transformed features can restore the initial di-
mension by utilizing the transformation W2 ∈ RDt×ND of the
second fully-connected layer. The feature aggregation module
FA(·) can be formulated as:

Xfused = FA(X1,X2, . . . ,XN)

= (XW1 + b1)W2 + b2. (3)

We remove the original activation function in the MLP block.
This can help decrease the inference latency dramatically and
incur almost no accuracy loss. The results in Section V-D
show that our aggregation module can guarantee a satisfactory
performance and only increase extremely low inference latency
compared to other typical aggregation approaches.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DEVIT: DECOMPOSING VISION TRANSFORMERS FOR COLLABORATIVE INFERENCE IN EDGE DEVICES 5921

Fig. 4. Overview of the DEKD algorithm. The algorithm requires a dataset and multiple small datasets, utilizes multiple large ViT as teacher models and multiple
small ViT as student models, as well as contains a feature matching module and aggregation module. The procedure includes four steps: (i) The original dataset is
equally partitioned into N small datasets. The large ViT is also decomposed into N small models. (ii) By model shrinking, unimportant parts for specific classes
in the small models can be removed. (iii) During sub-task distillation, the small models, as student, can learn fine-grained knowledge from the large teacher ViT
by feature matching. (iv) The [class] tokens from the small models are fused by the feature aggregation module. We also utilize the large ViT to improve the
collaborative inference performance. The aggregated results are passed into the task-specific head to obtain the final results.

Discussion: The proposed collaborative deployment frame-
work of ViTs on multiple edge devices is specially designed
to achieve efficient deployment of ViTs so that the inference
latency is low and accuracy is comparable to the powerful giant
ViTs. We propose to decompose the single giant transformer
model to multiple small models, and then deploy these small
models on edge devices. In this way, only small amounts of data
need to be transmitted and feature aggregation module is effi-
cient. By decomposing ViT into models as small as possible and
designing an efficient module to aggregate, we can significantly
reduce the inference latency and save plenty of energy with only
a slight accuracy loss.

IV. ALGORITHM DESIGN

In order to decompose the ViT into lightweight models and
aggregate results of small models to obtain a satisfactory per-
formance, we propose decomposition and ensemble based on
knowledge distillation termed DEKD. In this section, we first
provide an overview of our method, and then depict the details
of each part.

A. Overview

An overview of our proposed DEKD algorithm is shown
in Fig. 4. The algorithm requires a dataset and multiple small
datasets, utilizes multiple large ViT as teacher models and mul-
tiple small ViT as student models, as well as contains a feature

matching module and aggregation module. Assume we have
N edge devices, and the DEKD algorithm follows a four-step
procedure as shown in Algorithm 1:

i) Data partitioning: We partition the original dataset into
N small datasets according label classes.

ii) Model shrinking: We also decompose the large ViT into
N small models. Every small model only preserves the
structure which is more important to the specific small
dataset than other small datasets.

iii) Sub-task distillation: We use N small datasets to train
N large ViTs, which are randomly initialized, respec-
tively. These pretrained large ViTs are regarded as teacher
models. Each small model can learn the intermediate
knowledge from the specific teacher model by utilizing
the feature matching module.

iv) Model ensemble: We utilize the feature aggregation mod-
ule to fuse the [class] tokens from the trained small
models. Moreover, intermediate knowledge of the large
ViT trained on the original dataset can also be used as
supervision to improve the aggregation performance.

B. Data Partitioning

We first introduce the proposed data partitioning approach as
shown in Lines 1 to 4 of Algorithm 1. Due to their limited model
capacity, the small models cannot finish complicated inference
tasks with an acceptable accuracy and latency. Thus, we propose

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

5922 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 5. Procedure of Model Shrinking. Firstly, the importance of each head in
MSA and each neuron in the hidden layer of MLP is computed. Then we sort
heads and neurons by importance. The unimportant parts for specific classes
are then removed. Finally, connections of the remaining heads and neurons are
reconstructed.

to decompose the original dataset into multiple small datasets to
simplify the tasks. Here we take an Nclass-class classification
task as an example.

First, the original dataset Ω0 is equally decomposed into N
small datasets according to the class label. The number of class in
the dataset is denoted by Nclass. If the number of class Nclass is
divisible by the number of small datasets N , the number of class
Ni in the small datasets is Nclass/N . Otherwise, the number of
class Ni in the i-th small dataset is given by

Ni =

{�Nclass/N�+ 1, if i = 1, 2, . . . , n
�Nclass/N�, if i = n+1, . . . , N

(4)

where n = Nclass MOD N . Then, we randomly sample Ni

classes of data from dataset Ω0. These sampled data construct
the small datasetΩi. Finally, after repeating sampling and dataset
construction forN times, we obtainN partitioned small datasets.

C. Model Shrinking

When the small datasets are available, we next introduce the
proposed model shrinking method. The ViT is decomposed into
N small models by following the process in Section III-B. In
order to ensure only slight performance loss and simultaneously
reduce the computation cost, we only preserve the most impor-
tant parts in the small models. In the multiheaded self-attention
module, different heads can capture various semantic informa-
tion [20]. Some researchers [18] also found that some neurons
are responsible for specific classes. Thus, we can remove the
unimportant heads in MSA and the unimportant neurons in the
hidden layer of MLP to reduce the size and computation of the
small models. The important parts for specific classes in the
small models shall be reserved. We define the shrinking factor
σ to dynamically adjust the model size according to hardware
requirements. The shrinking factor indicates that the last σ% of
heads and neurons shall be removed.

Fig. 5 illustrates the details of the proposed model shrinking
approach. First, we use testing set of the small datasets parti-
tioned from the original dataset to compute the importance of
heads in the MSA module and of the neurons in the hidden
layer of the MLP block. Then, we rank these heads and neurons
by their importance and remove unimportant parts. Finally, the
connections of the small models are reconstructed.

Algorithm 1: DEKD.

In order to identify the importance of heads and neurons in
encoders for certain classes, we utilize the importance metric as
in [20], [21]. The importance metric I of a head or a neuron can
be computed by using the variation of training loss L if a head or
a neuron is removed. For one head with output Oh, the training
loss L(Oh) can be expressed as

L(Oh) = L(O∗
h) +

∂L
∂Oh

(Oh −O∗
h) +Rh, (5)

by using Taylor expansion, where Rh is the remainder of the
term that is smaller in magnitude than the previous terms if Oh

is sufficiently close to O∗
h. If we remove head h, O∗

h = 0. Then,
the importance of head h is

Ih = |L(Oh)− L(Oh = 0)|

=

∣∣∣∣ ∂L
∂Oh

Oh +Rh

∣∣∣∣ ≈
∣∣∣∣ ∂L
∂Oh

Oh

∣∣∣∣ , (6)

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DEVIT: DECOMPOSING VISION TRANSFORMERS FOR COLLABORATIVE INFERENCE IN EDGE DEVICES 5923

where the remainder Rh can be ignored. Similarly, the weights
of a neuron connected with W1 and W2 in the MLP block are
defined asw = {w1, w2, . . . , w2D}. Thus, the importance of the
neuron is given by

Iw =

∣∣∣∣ ∂L
∂Ow

Ow

∣∣∣∣ =
∣∣∣∣∣
2D∑
i=1

∂L
∂Owi

Owi

∣∣∣∣∣ . (7)

Discussion: We use the small datasets partitioned from the
original dataset to find the important parts for certain classes in
the decomposed small models. We can flexibly control the size
by removing the unimportant parts in the MSA and MLP mod-
ules according to hardware requirements. Our method reduces
the model size and redundant information at the same time to
guarantees the trade-off between inference accuracy and latency.
We summarized the procedure in Lines 5 to 10 of Algorithm 1.

In order to minimize accuracy loss caused by decomposition
and shrinking, we propose the sub-task distillation approach to
transfer knowledge for specific classes from large ViTs to small
decomposed models. The approach requires multiple small
datasets, and contains multiple teachers and students as shown in
the lower left part of Fig. 4. The teachers {M1,M2 . . . ,MN}
are large ViTs trained on small datasets, respectively. The stu-
dents are decomposed small models mi. A small dataset has
correspondence between a pair of teacher and student. The
student can learn knowledge for specific classes with the help of
the teacher trained on the corresponding small dataset. During
distillation, the predictions and intermediate features in teachers
are chosen to transfer. For the sake of intermediate distillation,
we utilize a feature matching module to match the dimensions of
teachers and students. In the following, we introduce the feature
matching module, and then present the objective function for
distilling the knowledge of large ViTs.

Feature Matching: The proposed feature matching module
FM(·) applies transformation in intermediate features to pro-
mote distillation when the feature dimensions of teachers and
students are different. Recent works found that transferring
knowledge base on features [22] can be utilized to help the
training of the student. However, these methods usually have
restrictions on mode layers [23] or significant information loss
when performing dimension matching [24]. This motivates us to
design a novel feature matching module to break the restriction
and reduce the performance loss in distillation.

Details of our feature matching module are shown in Fig. 6.
We suppose the feature map from teachers is Xt ∈ Ra×b×c,
and the feature map from students is Xs ∈ Ra×b×c′(c′ ≤ c).
Firstly, the feature maps are expanded to be of three dimensional.
By matricizing teacher and student according to each of their
three dimensions, we can get six matrices Xt1 ∈ Ra×bc, Xt2 ∈
Rb×ac, Xt3 ∈ Rc×ab, Xs1 ∈ Ra×bc′ , Xs2 ∈ Rb×ac′ , and Xs3 ∈
Rc′×ab. Then, we utilize the function f(X) = XXT to match
the second dimension of Xti and Xsi . But the numbers of the
first dimension between Xt3 and Xs3 are different. Hence,
before applying the function f , Xt3 needs to be randomly
sampled to get c′ rows to construct a new matrix X ′

t3
. In this

way, our feature matching module can break the restriction

Fig. 6. Feature matching module in sub-task distillation. The 3D features
from the teacher and student are matricized to be 2D matrices with different
dimensions. If dimensions of the matrices between the teacher and student are
not the same, the matrix from the teacher is randomly sampled to get the same
number of rows as the matrix of the student. Then these matrices are transferred
to square matrices with the same dimension by f(·). Finally, KL divergence can
be used to calculate their differences.

Algorithm 2: Sub-task Distillation.

of feature dimension difference and reduce computation cost
during feature matching.

D. Sub-Task Distillation

Feature and Prediction Distillation: We use the predictions
and intermediate features of teachers to guide the training of
students. The student can learn knowledge from the teacher by
minimizing the following objective:

Lsub-task = Lpred + βLfeat, (8)

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

5924 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

where β is a balancing hyperparameter.
For distillation based on predictions, we follow [14] to take the

hard decision of the teacher as a true label. The prediction logits
of teacher and student areYt andYs, respectively. Different from
the traditional hard label in knowledge distillation, we utilize the
decision of teacher as the label:

yt = argmax
s

Yt(s), (9)

where s represents all categories in the training set, and yt plays
the same role as true label y, but with a better performance
than y. The hard decision of teacher may change depending
on the specific data augmentation. The student can learn more
knowledge with data augmentation especially for the ViTs which
require extensive data augmentations to guarantee performance.
Hence, using yt is a better choice. The objective of prediction
distillation is

Lpred =
1

2
LCE (φ(Ys), y) +

1

2
LCE (φ(Ys), yt) , (10)

where φ(·) represents the prediction results andLCE is the cross
entropy loss, given by

LCE(p, q) = −
∑
i=1

pilog(qi). (11)

In the distillation based on intermediate features, we utilize the
Q,K, and V vectors in MSA modules to supervise the training
of students. Recently, it is found that attention mechanism can
be utilized to capture rich semantic information [16]. Since the
Q,K, and V vectors are the key parts of MSA module, we
utilize these vectors as the supervision of students to learn the
semantic information of teachers. The dimensions of the three
vectors are h, M and 64, respectively, where h is the number of
heads and M is the number of tokens. The number of heads
and tokens are different between teachers and students due
to the model decomposition and shrinking. Hence, the feature
matching module FM(·) is utilized to match their dimensions.
For notational simplicity, we denote Q,K, and V as P1,P2,
and P3, respectively. The distillation objective is represented as

Lfeat =
1

3l

l∑
j,k=1

3∑
i=1

αiLKL

(
FM(Pj

i,s)||FM(Pk
i,t)

)
,

(12)

LKL(p||q) =
∑
i=1

qilog
qi
pi
, (13)

where αi is a balancing hyperparameter and LKL is the KL-
divergence loss to help learn the distribution of target samples.
Superscripts j and k signify the j-th layer of the student and
the k-th layer of the teacher, respectively. The student model
has j layers, and we use a linear mapping function g(·) to select
the layer of teachers to transfer, i.e., k = g(j). For example, the
j-th layer of the student model can learn knowledge from the
g(j)-th layer of the teacher. By utilizing the mapping function for
layers, we can transfer knowledge from teachers to the students
layer-to-layer.

Algorithm 3: Model Ensemble.

Discussion: The proposed sub-task distillation method can
help to transfer knowledge for specific classes from large ViT
to decomposed small models. The predictions and intermediate
features from teachers can promote the small models to learn
more fine-grained knowledge. This can substantially reduce the
performance drop caused by decomposition and shrinking. The
sub-task distillation procedure is summarized in Algorithm 2.

E. Model Ensemble

After the distillation of small models using corresponding
small datasets, we resort to a distillation-based model ensemble
method to improve the collaborative inference of multiple small
models. In this subsection, we depict the method and then
formulate the objective function for training the multiple small
models.

The architecture of the method is shown in the right part of
Fig. 4. The method is composed of a teacher and a student, and
uses a dataset Ω0. The teacher M0 is the large ViT trained on
the original dataset Ω0. The student is the ensemble of multiple
decomposed small models trained by sub-task distillation. Based
on knowledge distillation, the large ViT can contribute to the en-
semble of multiple small models to achieve a good collaborative
inference performance.

Token and Prediction Distillation: We use the [class] token
and predictions from the teacher for supervision of the student.
The objective function is given by

Lensemble = Lpred + γLtoken, (14)

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DEVIT: DECOMPOSING VISION TRANSFORMERS FOR COLLABORATIVE INFERENCE IN EDGE DEVICES 5925

where γ is a balancing hyperparameter. Lpred and Ltoken are
the objective functions for prediction-based and token-based
distillation, respectively. Different from Section IV-D where
student is the single small model, the student here is composed of
multiple small models which are responsible for specific classes,
respectively. Each small model can extract different features, and
thus it is not appropriate to utilize the same intermediate features
to supervise the student training as these in Section IV-D. In
the ViT model, the [class] token, including target semantic
information, is used to predict the class. Hence, considering the
trade-off between ensemble performance and complexity, we
aggregate the [class] tokens of all small models. The objective
function of token distillation is

Ltoken = LMSE (FA(Zs)G,Zt) , (15)

where Zs = {Zs1 , Zs2 , . . . , ZsN ∈ R1×Ds} is the set of [class]
tokens of all small models, Zt ∈ R1×Dt is the [class] token of
the teacher, and the matrix G ∈ RNDs×Dt is a learnable linear
map, which transforms the aggregated [class] tokens of all small
models into the space of the teacher. The feature aggregation
module FA(·) has the same structure as the aggregation part
in Section III-B. The mean squared loss LMSE is utilized to
represent the differences between the aggregated tokens and
the token from the teacher. The objective function of prediction
distillation is the same as the one adopted in (10).

Discussion: We propose a distillation-based model ensemble
method to fuse multiple small models and improve the collabo-
rative inference performance. By using both token and predic-
tion distillation, we guarantee slight accuracy loss compared to
large ViT. The procedure of Model Ensemble is illustrated in
Algorithm 3.

V. EXPERIMENTS

In this section, we first introduce some implementation details
and experiment settings. Then we evaluate our methods on
GPU servers and edge devices, respectively. Finally, we conduct
extensive ablation experiments to demonstrate the superiority of
our methods.

A. Implementation Details

In this subsection, we first introduce prototype and deploy-
ment details. Then we depict the datasets, backbones, and coun-
terparts, followed by evaluation metrics.

Prototype: We implement DeViT on a real-world collabora-
tive edge computing testbed that consists of 4 NVIDIA Jetson
Nano devices [25] and 1 switch. Fig. 7 shows the implemented
hardware platform for DeViT. The Jetson Nano contains a Quad-
core ARM Cortex-A57 MPCore processor at 1.6 GHz, a 4 GB
RAM Memory, which represents the weak edge device. These
edge devices are connected via a gigabyte switch TP-LINK
TL-SG1008D. For bandwidth control, we use the traffic control
tool tc [26], which is able to limit the bandwidth under the setting
value. The maximum bandwidth between devices are fixed at
2 MB/s.

Deployment: We use PyTorch as the backend engine to
execute ViT models. The employed ViT models are trained

Fig. 7. Our experimental prototype employs four Jetson Nano and one switch.
We utilize the Monsoon High Voltage Power Monitor (HVPM) to measure the
energy and power.

following DEKD algorithm and deployed on all devices in
advance. The communication module is implemented based on
gPRC [27]. All the compared approaches are run with timm [28],
a GitHub repository, for fair comparison.

Datasets: We evaluate the proposed methods on four pub-
lic computer vision datasets: CIFAR-100 [29], Oxford 102
Flower [30], Stanford Cars [31], and ImageNet-1K [32]. All
images are resized to be 224 224 in our experiment. The details
of each dataset are given as follows:
� CIFAR-100 consists of 60,000 images that belong to 100

classes uniformly. In each class, there are 500 images for
training and 100 images for testing.

� Oxford 102 Flower is an image classification dataset con-
sisting of 102 flower categories. The flowers are common
in the United Kingdom. Each class consists of 40 to 258
images.

� Stanford Cars dataset consists of 196 classes of cars with
a total of 16,185 images, taken from the rear angle. The
dataset is divided into almost equal train/test subsets with
8,144 training images and 8,041 testing images.

� ImageNet-1 K is a large-scale hand-labeled image recog-
nition dataset consisting of 1,000 categories. There are 1.2
million samples in the training set and 50,000 samples in
the testing set.

Backbones: The configurations of different backbones are
listed in Table II. We show the large models and their
corresponding small models decomposed by our method. In the
table, #1, #3, and #5 represent the large ViTs. #2, #4, and #6
show the decomposed small models using our method. We use
the following models as backbones:
� ViT [5]: The first pure transformer structure for computer

vision tasks.
� DeiT [14]: DeiT adds a distillation token to learn knowl-

edge of the teacher, as compared to ViT.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

5926 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

TABLE II
CONFIGURATION SETTINGS OF DIFFERENT BACKBONES UTILIZED IN OUR

METHOD

� CCT [33]: CCT is a CNN+Transformer hybrid model
that uses CNNs and sequence pooling to replace patch
embeddings and class token.

Counterparts: We first compare the large ViTs for aforemen-
tioned three backbones, including ViT-L/16, DeiT-B and CCT-
14_7 2, to demonstrate the effectiveness of our methods. Then
we compare our methods with four representative lightweight
ViT approaches to show the superiority.
� T2T-ViTt-14 [34] incorporates a layer-wise transformation

to structuralize the image to tokens by recursively aggre-
gating neighboring tokens.

� Twins-PCPVT-S [35] introduces a carefully-designed yet
simple spatial attention mechanism.

� Twins-SVT-S [35] introduces locally-grouped self-attention
and global sub-sampled attention to capture fine-grained
and global information.

� MobileViT-S [12] designs a light-weight ViT combining
CNNs for mobile devices. Note that we employ our en-
semble method to aggregate original MobileViT-S for fair
comparison, denoted as MobileViT-S-Ens.

Evaluation Metrics: We employ the Top-1 classification accu-
racy as the performance metric. The end-to-end latency, energy
consumption and average power are utilized as the efficiency
metrics. As the models are deployed, we use the PyTorch Profiler
tool [36] to profile the end-to-end latency of one inference. The
whole energy and power are measured by Monsoon High Voltage
Power Monitor [37], which can collect the output voltage and
current at a sampling rate of 5,000 samples per second. Before
measurement, we switch the NVIDIA Jetson Nano to the max
power mode, i.e., the max power is 10 Watt, and turn off
the dynamic voltage and frequency scaling to ensure a steady
measurement environment. We perform inference on the test
set of the ImageNet dataset using NVIDIA Jetson Nanos, and
measure the inference overhead of 50,000 testing samples in
1,000 different categories. For each ViT model, we run it for
once as a warm-up and then record the execution time with
100 runs without break for the whole testing set. The aim of
warm-up running is to alleviate the impact of weight loading
and PyTorch initiation since we have omitted these overheads.
We minus the power of the standby system from the measured
power to acquire the power of performing inference. Thus, the
energy consumption of a single inference can be obtained by
taking the product of the averaged latency and the power of
performing inference.

B. Evaluation on the GPU Server

In this set of experiments, we measure the classification accu-
racy results on four widely-used datasets as well as end-to-end
inference latency on the GPU server. We choose ViT-L/16,
DeiT-B, and CCT-14_7 2 as large ViTs to be decomposed. These
models are all decomposed into 4 small models. End-to-end
latency is measured on a GPU server with NVIDIA RTX 3090
GPUs, which is the average value with 100 runs without break for
the whole testing set of corresponding datasets. We present the
results compared with ViTs of different model sizes as follows.

Comparison With Large ViTs: We compare our methods with
the large ViTs for various ViT backbones in the GPU server.
The results of accuracy and end-to-end latency on four datasets
are shown in Table III. We can find that large ViTs achieve
superior performance nevertheless with extremely high latency
overheads and huge computation costs, while our methods can
reduce computation costs and accelerate inference latency by
1.98 × on average with only a 2% accuracy drop. In most
real-world deployments, a 2% accuracy loss is considered neg-
ligible given the considerable latency reduction. Specifically,
DeViTs can run 2.89× faster with only 0.96% accuracy sacrifice
than ViT-L/16. Our methods can also accelerate end-to-end
latency by approximately 1.99×with a 1.55% accuracy drop on
average for different backbones even on the large-scale dataset,
ImageNet-1 K. These results demonstrate that our framework
can reduce the computation cost of large ViTs for different
backbones. Moreover, our models achieve real-time inference
latency with only slight accuracy sacrifice on the GPU server.

Comparison With Lightweight ViTs: We compare our methods
to a variety of representative baseline models with approximate
model parameters. Table IV presents the results of Top-1 clas-
sification accuracy and end-to-end inference latency on four
datasets. We can observe that the DeCCTs significantly outper-
forms all other lightweight ViTs with the lowest latency and ac-
ceptable accuracy. Specifically, DeViTs/DeDeiTs/DeCCTs can
reduce inference latency by 34.47%/31.49%/42.77%, respec-
tively, compared with the state-of-the-art efficient ViT model,
MobileViT-S, on ImageNet-1 K, which shows that our methods
achieve an excellent trade-off between efficiency and perfor-
mance. On the other hand, we can also find that although
the parameters or FLOPs of some models (i.e., Twins-SVT-S,
Twins-PCPCT-S, and MobileViT-S) are less than that of our
models, their end-to-end latency results on the GPU server are
not lower than our models. It suggests that the number of param-
eters or FLOPs is only indicative but cannot fully determine the
inference efficiency, which may not be an appropriate criterion
for inference latency.

C. Evaluation on the Edge Device

In this subsection, we evaluate our methods on the edge
devices and measure the Top-1 classification accuracy, end-to-
end inference latency, average energy consumption, and av-
erage power to compare our methods with large ViTs and
other lightweight ViT models. We deploy these models on the
NVIDIA Jetson Nanos and employ an external high voltage
power monitor [37] for the measurement. We first present the

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DEVIT: DECOMPOSING VISION TRANSFORMERS FOR COLLABORATIVE INFERENCE IN EDGE DEVICES 5927

TABLE III
COMPARISON BETWEEN OUR METHODS AND LARGE VITS IN THE GPU SERVER USING DIFFERENT DATASETS

TABLE IV
COMPARISON BETWEEN OUR METHODS AND LIGHTWEIGHT BASELINE MODELS IN THE GPU SERVER USING DIFFERENT DATASETS

TABLE V
COMPARISON OF ON-DEVICE EVALUATION BETWEEN OUR METHODS AND LARGE VITS USING IMAGENET-1 K DATASETS

results of comparison with large ViTs and then compare our
methods with lightweight ViTs.

Comparison With Large ViTs: We compare our methods with
the large ViTs for different ViT backbones on the edge device.
Table V presents on-device comparison results on ImageNet-
1 K. ViT-L/16 and DeiT-B are infeasible for deployment on
resource-constrained platforms like Jetson Nano due to their
substantial memory requirements and computational costs, de-
noted by ”-” in their latency, energy, and power results. De-
spite the superior performance of larger ViTs, such as ViT-
L/16 and DeiT-B, they remain nonviable for deployment on
lower-performance edge devices. Our methods decompose the
large ViTs for different backbones into multiple small models,
facilitating efficient collaborative inference with accuracy nearly
equivalent to the large ViTs. Specifically, our DeCCTs model
improves inference latency by 2.16× and decreases energy
consumption by 61.83% compared with CCT-14_7×2. These
results demonstrate that our methods can alleviate the deploy-

ment of large ViTs, significantly accelerating inference speed
and reducing energy consumption with acceptable accuracy.

Comparison With Lightweight ViTs: We compare our meth-
ods with other representative lightweight ViTs on the edge
device. Table VI reports the on-device comparison results on
ImageNet-1 K. We can observe that our methods can achieve
the lowest end-to-end inference latency and energy consumption
with approximate accuracy while maintaining comparable ac-
curacy with lightweight ViTs. For example, DeCCTs improves
inference latency by 60.92%, decreases energy consumption by
66.61%, and improves accuracy by 0.72% compared with the
state-of-the-art lightweight ViT, MobileViT-S. Moreover, akin
to the evaluation analysis on the GPU server, their end-to-end
latency and energy consumption on real edge devices do not
outperform our models despite the fewer number of parameters
and FLOPs. Thus, there is no apparent correlation between the
number of parameters or FLOPs and end-to-end latency and
energy consumption of ViTs. The FLOPs and the number of

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

5928 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

TABLE VI
COMPARISON OF ON-DEVICE EVALUATION BETWEEN OUR METHODS AND LIGHTWEIGHT BASELINE MODELS USING IMAGENET-1 K DATASETS

Fig. 8. Ablation study of dataset partition on CIFAR-100. ”DeViTs w/o
partition” represents utilizing the original dataset.

parameters are not appropriate criteria to estimate the inference
latency and energy consumption.

D. Ablation Study

To fully understand the impact of each part of the proposed
framework, we design ablation studies, where all experiments
are evaluated on CIFAR-100 and utilize ViT as the backbone.
We first evaluate the effectiveness of partitioning datasets to find
the important parts of ViTs and study the impact of different loss
functions in the sub-task distillation stage. Then we analyze the
superiority of our ensemble methods by comparing different
ensemble strategies and study the effect of different device
numbers.

Evaluation of Dataset Partition: We design an ablation experi-
ment on CIFAR-100 to validate the effectiveness of utilizing the
small partitioned datasets to find the important parts. The bar
plot and line plot represent the results of accuracy and latency
in Fig. 8, respectively. ViT-L/16 is the backbone model and de-
composed into four small models. We can find that utilizing the
small datasets as the proxy to find the important parts can reduce
redundant computation to accelerate inference by 3.22× with
only a 1.73 % accuracy drop compared to utilizing the original
dataset. The results significantly validate the effectiveness of
partitioning datasets and utilizing the small dataset as the proxy
to find the important parts in decomposed models.

TABLE VII
ABLATION STUDY OF DIFFERENT LOSS FUNCTIONS IN SUB-TASK DISTILLATION

Evaluation of Sub-Task Distillation: The ablation study re-
sults of sub-task distillation are shown in Table VII. In this part,
we choose the ViT-L/16 trained on different small partitioned
datasets as the teacher for the corresponding small models. The
backbone of each model is ViT. In the table, DeViT represents
the decomposed small models for the backbone of ViT. GT
means that the ground truth of the dataset is used as labels and
distillation is not utilized. The Top-1 accuracy is the average
results in the test set of all small partitioned dataset. From
the results, we find that the small and shallow models can not
learn deep and rich knowledge by themselves. With the help of
large and powerful models, small models as students can learn
the rich information effectively and acquire large performance
improvement by distillation. Even if we only use predictions
of the teacher for supervision, the average Top-1 accuracy can
be enhanced by 1.28%. The results of using Lfeat indicates
that distillation based on intermediate features can promote
small models to learn more fine-grained knowledge and improve
classification performance. These two loss function Lpred and
Lfeat are both helpful, and the best result is achieved when
both terms are adopted. The improvement is 4.23% compared
to training without distillation.

Evaluation of Model Ensemble: In this part, we evaluate
the performance of the model ensemble stage. Ablation study
results under the supervision of powerful teacher models are
shown in Table VIII. ViT-L/16 is a large powerful ViT and
decomposed into four small models. It is also the teacher that
guides the ensemble of all small decomposed models. Without
the help of distillation, the direct ensemble of ViTs can lead to
large accuracy loss. Compared to ViT-L/16, the accuracy of the
proposed method without distillation decreases by 3.01%. The

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DEVIT: DECOMPOSING VISION TRANSFORMERS FOR COLLABORATIVE INFERENCE IN EDGE DEVICES 5929

TABLE VIII
ABLATION STUDY OF DIFFERENT LOSS FUNCTIONS IN MODEL ENSEMBLE

TABLE IX
COMPARISON OF DIFFERENT ENSEMBLE METHODS

results show that distillation can improve the ensemble perfor-
mance of small models and reduce the accuracy loss caused by
decomposition and shrinking. We use two types of loss functions
to help the ensemble learning of small decomposed models. Each
loss function is helpful, and the best result is achieved when both
terms are adopted. The minimal accuracy loss is 0.79% when
both two loss functions are adopted.

The comparison results of different ensemble strategies are
shown in Table IX. Three competitive ensemble strategies are
compared: i) The Attention method takes a simple key-value
form to aggregate features. ii) The SENet [38] computes the
importance of different features and weightedly sum these fea-
tures. iii) The MLP approach uses an MLP block to fuse different
features. From the table, we observe that SENet achieves the
highest accuracy but also the highest inference latency compared
to MLP. We remove the activation function in the MLP block
and find that it can improve latency by 1.06× with only 0.03%
accuracy loss. The slight accuracy loss is negligible compared
with the greatly reduced latency. This demonstrates that our
method can effectively trade off latency and accuracy.

Effect of Device Number: We analyze the influence on ac-
curacy and latency when changing the number of devices. We
employ ViT-L/16 as the decomposed huge ViT and measure
the classification accuracy and inference latency in the GPU
server varying the number of devices from 2 to 6. The results
on CIFAR-100 is shown in Fig. 9. As the number of devices
increases, the accuracy is closer to the huge ViT while the latency
remains essentially consistent. Our method can achieve 2.7×
speed-up with only an approximate 1 % accuracy drop even if
there are 6 devices. The result verifies that our method is robust
to the number of device number and achieve efficient inference.

VI. RELATED WORKS

A. Efficient ViT

ViTs achieve superior performance by substantially increas-
ing the number of parameters in intelligent applications [39]. We
analyze the prior work of ViT training on a multi-GPU server

Fig. 9. Results of accuracy and latency for different number of devices. The
size of decomposed small models is the same.

and efficient ViT inference. Then we compare these methods
with ours.

ViT Training: Training large-scale ViTs is challenging due to
the limitations imposed by GPU memory capacity and substan-
tial computational cost. Most studies for training these trans-
formers within a multi-GPU server aim to reduce GPU memory
requirements in a single GPU and communication consumption,
hence promoting efficient training. These approaches lever-
age parallelism strategies and fall into three broad categories:
i) Data parallelism: Shoeybi et al. [40] proposed to partition
the original dataset into small subsets and distribute them across
multiple GPUs for training. ii) Model parallelism: The huge
transformer model is split across and by neural network layers
into partitions processed on separate GPUs [41], necessitating
communication and transfer of intermediate results for inference
or model training. iii) Pipeline parallelism: GPipe [42] utilizes
pipeline parallelism by dividing consecutive groups of layers
into cells positioned on separate GPUs.

ViT Inference: Given the impressive performance of large-
scale ViTs, there is an urgent need to compress them
for efficient edge inference. Recent studies have proposed
lightweight architectures to enhance performance. For instance,
Mehta et al. [12] incorporated convolution into transformers,
combining the strengths of convolution and attention. Moreover,
a series of methods apply traditional model compression tech-
niques to achieve compact ViTs, such as network pruning [43],
knowledge distillation [44], [45], [46] and low-bit quantiza-
tion [47]. Zhu et al. [43] introduced learnable coefficients to
evaluate the importance of linear matrix, and neurons with small
coefficients are removed. Hao et al. [45] utilized patch-level
information to help compact student models imitate teacher
models. Yao et al. [47] proposed an efficient and affordable post-
training quantization approach to compress large transformers.

In terms of ViT training on a multi-GPU server, the effective-
ness of data parallelism is constrained by network bandwidth
and the size of model. While model parallelism and pipeline
parallelism can reduce the size of the model on a single GPU,
the communication overhead remains substantial due to fre-
quent data transmission between different nodes. Regrading
to efficient ViT inference, these methods omit the divisibility
of ViTs and cannot achieve a satisfactory trade-off between

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

5930 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

performance and efficiency. To mitigate these limitations, we
propose to decompose a large-scale ViT into multiple smaller
models, each tailored based on the significance of their structural
components. These compact models are executed in parallel
and their intermediate results are transferred to the central node
for only a single communication. Moreover, we first develop a
novel feature matching module that facilitates the learning of de-
composed models from the large-scale ViT, thereby minimizing
information loss.

B. Collaborative Inference

Collaborative inference involves partitioning a DNN into two
or more segments and deploying them across various devices for
inference. This partitioning of DNNs can be executed layer-wise
or across layers. We investigate these two types of approaches,
layer-wise splitting and across layer splitting, followed by a
comparison with our methods.

Layer-Wise Splitting: A DNN is divided into multiple layer
groups and distributed across different mobile edge nodes. The
front part of the DNN is first executed on the lower-performance
edge device, and the obtained intermediate features are offloaded
to an edge server or the cloud. Most work in this category focuses
on deploying partitioned DNNs into distinct devices based on
their computational performance, aiming for an optimal balance
between performance and efficiency [9], [48], [49], [50]. For
example, Kang et al. [9] demonstrated that judicious selection
of a splitting point can decrease latency and energy consumption
compared to executing DNNs entirely on the cloud or mobile
devices. Tang et al. [50] proposed a deep reinforcement learning
algorithm to obtain the optimal task offloading strategy. Another
line of work employs quantization [51] or encoding methods [48]
to compress intermediate features. Yao et al. [48] utilized an
auto-encoder to compress features and then decode them in the
cloud. Hao et al. [52] integrated quantization and auto-encoder
to alleviate communication overheads. Concurrently, they pro-
posed the MAHPPO algorithm, an innovative solution to the
multi-agent collaborative inference problem.

Across Layer Splitting: The DNN weight is generally split
into a hierarchy of multiple groups that have no connection
among them, allowing parallel execution and model size reduc-
tion. These methods require an additional training procedure
where publicly available pre-trained models cannot be used
after splitting, compared to layer-wise splitting. For instance,
Kim et al. [10] split the DNNs into either a set or a hierarchy
of multiple groups to create a tree-structured model. These
partitioned models can be executed in parallel to accelerate
inference. Some methods utilize progressive slicing mechanisms
to partition neural models into multiple components to fit in
heterogeneous devices. Kim et al. [53] proposed an inference
runtime by splitting DNNs across layers. The partitioned models
are deployed on the heterogeneous processors of an edge device.
Mohammed et al. [11] divided a DNN into multiple partitions
that can be processed locally by end devices or offloaded to one
or multiple powerful nodes.

While layer groups split by layers are easily deployed on edge
devices, layer splits necessitate the transfer of semi-processed
input to the subsequent node and the output to the user, thereby

increasing the overall execution time. Across layer splitting
methods require frequent intercommunication among network
splits, considerably increasing the communication overheads.
Furthermore, these methods primarily focus on CNNs and can-
not be directly applied to the deployment of ViTs. To the best
of our knowledge, we first propose a collaborative inference
framework for general ViTs in edge devices by decomposing
the large ViT into multiple small models.

VII. CONCLUSION

In this paper, we proposed a novel framework to achieve
efficient collaborative inference for ViTs, where we first de-
compose the large ViT into multiple small models and deploy
these models on edge devices. Then we designed the DEKD
ensemble algorithm to fuse multiple decomposed models and
compensate for the accuracy loss caused by decomposition. We
also designed a feature matching module to facilitate intermedi-
ate knowledge distillation given heterogeneous backbones. We
conducted extensive experiments to verify the effectiveness of
the proposed framework. The results showed that our framework
can dramatically accelerate the inference and reduce the energy
consumption on edge devices, which is difficult for existing
works. Considering that we only focus on the homogeneous
devices in this work, we intend to analyze the effect of device
heterogeneity and explore how to achieve efficient collaborative
inference on heterogeneous edge devices in the future.

REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst. 30: Annu. Conf. Neural Inf. Process. Syst., Long Beach, CA,
USA, 2017, pp. 5998–6008.

[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol., 2019, pp. 4171–4186.

[3] Y. Gong, Y. Chung, and J. R. Glass, “AST: Audio spectrogram trans-
former,” in Proc. 22nd Annu. Conf. Int. Speech Commun. Assoc., Brno,
Czechia, 2021, pp. 571–575.

[4] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 10012–10022.

[5] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. 9th Int. Conf. Learn. Representations,
2021, pp. 1–21.

[6] M. Masoudi and C. Cavdar, “Device vs edge computing for mobile
services: Delay-aware decision making to minimize power consumption,”
IEEE Trans. Mobile Comput., vol. 20, no. 12, pp. 3324–3337, Dec. 2021.

[7] J.S. Jo Jeong and P. Kang, “Benchmarking GPU-accelerated edge devices,”
in Proc. IEEE Int. Conf. Big Data Smart Comput., 2020, pp. 117–120.

[8] A. A. Süzen, B. Duman, and B. Şen, “Benchmark analysis of Jetson
tx2, Jetson nano and Raspberry pi using deep-CNN,” in Proc. Int. Congr.
Human-Comput. Interact., 2020, pp. 1–5.

[9] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in Proc. 22nd Int. Conf. Architectural Support
Program. Lang. Operating Syst., 2017, pp. 615–629.

[10] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “SplitNet: Learning to seman-
tically split deep networks for parameter reduction and model paralleliza-
tion,” in Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 1866–1874.

[11] T. Mohammed, C. Joe-Wong, R. Babbar, and M. D. Francesco, “Dis-
tributed inference acceleration with adaptive DNN partitioning and of-
floading,” in Proc. IEEE 39th Conf. Comput. Commun., 2020, pp. 854–863.

[12] S. Mehta and M. Rastegari, “MobileViT: Light-weight, general-purpose,
and mobile-friendly vision transformer,” in Proc. 10th Int. Conf. Learn.
Representations, 2022, pp. 1–26.

[13] M. Chen, H. Peng, J. Fu, and H. Ling, “AutoFormer: Searching transform-
ers for visual recognition,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
Montreal, QC, Canada, Oct. 10–17, 2021, pp. 12250–12260.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DEVIT: DECOMPOSING VISION TRANSFORMERS FOR COLLABORATIVE INFERENCE IN EDGE DEVICES 5931

[14] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H.
Jégou, “Training data-efficient image transformers & distillation through
attention,” in Proc. 38th Int. Conf. Mach. Learn., 2021, pp. 10347–10357.

[15] NVIDIA, “Nvidia Jetson modules,” 2022. [Online]. Available: https:
//www.nvidia.cn/autonomous-machines/embedded-systems/jetson-
xavier-nx/

[16] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning, “What does
BERT look at? an analysis of BERT’s attention,” in Proc. ACL Workshop
BlackboxNLP: Analyzing Interpreting Neural Netw. NLP, Florence, Italy,
2019, pp. 276–286.

[17] P. Michel, O. Levy, and G. Neubig, “Are sixteen heads really better than
one?,” in Proc. Adv. Neural Inf. Process. Syst. 32: Annu. Conf. Neural Inf.
Process. Syst., 2019, pp. 14014–14024.

[18] A. Khakzar, S. Baselizadeh, S. Khanduja, C. Rupprecht, S. T. Kim, and
N. Navab, “Neural response interpretation through the lens of critical
pathways,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2021,
pp. 13528–13538.

[19] Q. Guo et al., “Online knowledge distillation via collaborative learning,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Seattle, WA,
USA, Jun. 13–19, 2020, pp. 11017–11026.

[20] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing
multi-head self-attention: Specialized heads do the heavy lifting, the rest
can be pruned,” in Proc. 57th Conf. Assoc. Comput. Linguistics, 2019,
pp. 5797–5808.

[21] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu, “DynaBERT:
Dynamic BERT with adaptive width and depth,” in Proc. Adv. Neural
Inf. Process. Syst. 33: Annu. Conf. Neural Inf. Process. Syst., 2020,
pp. 9782–9793.

[22] X. Jiao et al., “TinyBERT: Distilling BERT for natural language under-
standing,” in Proc. Findings Assoc. Comput. Linguistics: EMNLP, 2020,
pp. 4163–4174.

[23] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “MobileBERT: A
compact task-agnostic BERT for resource-limited devices,” in Proc. 58th
Annu. Meeting Assoc. Comput. Linguistics, 2020, pp. 2158–2170.

[24] H. Wang, S. Bao, L. Huang Dong, and F. Wei, “MiniLMv2: Multi-head
self-attention relation distillation for compressing pretrained transform-
ers,” in Proc. Findings Assoc. Comput. Linguistics: ACL/IJCNLP, 2021,
pp. 2140–2151.

[25] NVIDIA, “Nvidia jetson nano,” 2022. [Online]. Available: https://www.
nvidia.cn/autonomous-machines/embedded-systems/jetson-nano/

[26] T. L. Foundation, “Tc-show / manipulate traffic control settings,” 2022.
[Online]. Available: https://www.linux.com/tutorials/tc-show-manip-
ulate-traffic-control-settings/

[27] Google, “gprc - a rpc library and framework,” 2022. [Online]. Available:
https://grpc.io/

[28] R. Wightman, “Pytorch image models,” 2022. [Online]. Available: https:
//github.com/rwightman/pytorch-image-models

[29] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Univ. Toronto, Toronto, ON, Canada, 2009.

[30] M. Nilsback and A. Zisserman, “Automated flower classification over a
large number of classes,” in Proc. IEEE 6th Indian Conf. Comput. Vis.,
2008, pp. 722–729.

[31] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object representations
for fine-grained categorization,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops, 2013, pp. 554–561.

[32] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[33] A. Hassani, S. Walton, N. Shah, A. Abuduweili, J. Li, and H.
Shi, “Escaping the Big Data paradigm with compact transformers,”
2021, arXiv:2104.05704.

[34] L. Yuan et al., “Tokens-to-token ViT: Training vision transformers from
scratch on ImageNet,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 538–547.

[35] X. Chu et al., “Twins: Revisiting the design of spatial attention in vision
transformers,” in Proc. Adv. Neural Inf. Process. Syst. 34: Annu. Conf.
Neural Inf. Process. Syst., 2021, pp. 9355–9366.

[36] PyTorch, “Pytorch profiler,” 2022. [Online]. Available: https://pytorch.
org/docs/stable/profiler.html

[37] M. S. Inc., “High voltage power monitor,” 2022. [Online]. Available: https:
//www.msoon.com/high-voltage-power-monitor

[38] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp. 2011–2023, Aug. 2020.

[39] D. Narayanan et al., “Efficient large-scale language model training on GPU
clusters using megatron-LM,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2021, Art. no. 58.

[40] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-LM: Training multi-billion parameter language models using
model parallelism,” 2019, arXiv: 1909.08053.

[41] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “FireCaffe:
Near-linear acceleration of deep neural network training on compute
clusters,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 2592–2600.

[42] Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” in Proc. Adv. Neural Inf. Process. Syst. 32: Annu.
Conf. Neural Inf. Process. Syst., 2019, pp. 103–112.

[43] M. Zhu, Y. Tang, and K. Han, “Vision transformer pruning,”
2021, arXiv:2104.08500.

[44] Z. Hao, Y. Luo, Z. Wang, H. Hu, and J. An, “Model compression via
collaborative data-free knowledge distillation for edge intelligence,” in
Proc. IEEE Int. Conf. Multimedia Expo, 2021, pp. 1–6.

[45] Z. Hao et al., “Learning efficient vision transformers via fine-grained
manifold distillation,” in Proc. Adv. Neural Inf. Process. Syst., 2022,
pp. 9164–9175.

[46] Z. Hao, Y. Luo, Z. Wang, H. Hu, and J. An, “CDFKD-MFS: Collaborative
data-free knowledge distillation via multi-level feature sharing,” IEEE
Trans. Multimedia, vol. 24, pp. 4262–4274, 2022.

[47] Z. Yao, R. Y. Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He, “Zeroquant:
Efficient and affordable post-training quantization for large-scale trans-
formers,” in Proc. Adv. Neural Inf. Process. Syst., 2022, pp. 27168–27183.

[48] S. Yao et al., “Deep compressive offloading: Speeding up neural network
inference by trading edge computation for network latency,” in Proc. 18th
ACM Conf. Embedded Netw. Sensor Syst., 2020, pp. 476–488.

[49] M. Tang and V. W. S. Wong, “Deep reinforcement learning for task offload-
ing in mobile edge computing systems,” IEEE Trans. Mobile Comput.,
vol. 21, no. 6, pp. 1985–1997, Jun. 2022.

[50] S. Yang, Z. Zhang, C. Zhao, X. Song, S. Guo, and H. Li, “CNNPC:
End-edge-cloud collaborative CNN inference with joint model partition
and compression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 10,
pp. 4039–4056, Dec. 2022.

[51] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “JALAD: Joint
accuracy-and latency-aware deep structure decoupling for edge-cloud
execution,” in Proc. IEEE 24th Int. Conf. Parallel Distrib. Syst., 2018,
pp. 671–678.

[52] Z. Hao, G. Xu, Y. Luo, H. Hu, J. An, and S. Mao, “Multi-agent collaborative
inference via DNN decoupling: Intermediate feature compression and edge
learning,” IEEE Trans. Mobile Comput., vol. 22, no. 10, pp. 6041–6055,
Oct. 2022.

[53] Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim, “layer: Low latency on-device
inference using cooperative single-layer acceleration and processor-
friendly quantization,” in Proc. 14th EuroSys Conf., 2019, pp. 45:1–45:15.

Guanyu Xu received the BE degree from the Beijing
Institute of Technology, China, in 2021. He is cur-
rently working toward the PhD degree with School
of Information and Electronics, Beijing Institute of
Technology, China. His research interests include
model compression and edge intelligence.

Zhiwei Hao received the BS degree in applied
physics from the Beijing Institute of Technology,
China, in 2019. He is currently working toward the
PhD degree with the School of Information and Elec-
tronics, Beijing Institute of Technology, China. His
research interests include deep learning and edge
computing.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.cn/autonomous-machines/embedded-systems/jetson-nano/
https://www.linux.com/tutorials/tc-show-manip-penalty -@M ulate-traffic-control-settings/
https://www.linux.com/tutorials/tc-show-manip-penalty -@M ulate-traffic-control-settings/
https://grpc.io/
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://pytorch.org/docs/stable/profiler.html
https://pytorch.org/docs/stable/profiler.html
https://www.msoon.com/high-voltage-power-monitor
https://www.msoon.com/high-voltage-power-monitor

5932 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Yong Luo (Member, IEEE) received the BE degree
in computer science from the Northwestern Polytech-
nical University, Xi’an, China, and the DSc degree in
the School of Electronics Engineering and Computer
Science, Peking University, Beijing, China. He is
currently a professor with the School of Computer
Science, Wuhan University, China. His research in-
terests are primarily on machine learning and data
mining with applications to visual information under-
standing and analysis. He has authored or co-authored
more than 50 papers in top journals and prestigious

conferences including IEEE Transactions on Pattern Analysis and Machine
Intelligence, IEEE Transactions on Neural Networks and Learning Systems,
IEEE Transactions on Image Processing, IEEE Transactions on Knowledge and
Data Engineering, IEEE Transactions on Multimedia, WWW, IJCAI, AAAI,
CIKM, ICDM and ICME. He is serving on editorial board for IEEE T-MM. He
received the IEEE Globecom 2016 Best Paper Award, and was nominated as the
IJCAI 2017 Distinguished Best Paper Award. He is also a co-recipient of the
IEEE ICME 2019 and IEEE VCIP 2019 Best Paper Awards.

Han Hu (Member, IEEE) received the BE and PhD
degrees from the University of Science and Technol-
ogy of China, Hefei, China, in 2007 and 2012, respec-
tively. He is currently a professor with the School
of Information and Electronics, Beijing Institute of
Technology, Beijing, China. His research interests in-
clude multimedia networking, edge intelligence, and
space-air-ground integrated network. Dr. Hu received
several academic awards, including the Best Paper
Award of IEEE TMM, in 2023, the Best Paper Award
of IEEE TCSVT in 2019, the Best Paper Award of

IEEE Multimedia Magazine, in 2015, and the Best Paper Award of IEEE
Globecom in 2013. He served as an associate editor of IEEE Transactions on
Multimedia and Ad Hoc Networks, and a TPC Member of Infocom, ACM MM,
AAAI, and IJCAI.

Jianping An (Member, IEEE) received the PhD de-
gree from Beijing Institute of Technology, Beijing,
China, in 1996. He is currently a full professor and the
dean of the School of Cyberspace Science and Tech-
nology, Beijing Institute of Technology. His research
interests are in the field of digital signal processing,
cognitive radio, wireless networks, and high-dynamic
broadband wireless transmission technology.

Shiwen Mao (Fellow, IEEE) received the PhD degree
in electrical engineering from Polytechnic University,
in 2004. He is a professor and Earle C. Williams
Eminent Scholar, and director of the Wireless Engi-
neering Research and Education Center with Auburn
University. He is research interest includes wireless
networks, multimedia communications, and smart
grid. He received the IEEE ComSoc TC-CSR Distin-
guished Technical Achievement Award, in 2019 and
the NSF CAREER Award, in 2010, and several ser-
vice awards from IEEE ComSoc. He is a co-recipient

of the 2021 Best Paper Award of Elsevier/KeAi Digital Communications and
Networks Journal, the 2021 IEEE Internet of Things Journal Best Paper Award,
the 2021 IEEE Communications Society Outstanding Paper Award, the IEEE
Vehicular Technology Society 2020 Jack Neubauer Memorial Award, the 2018
Best Journal Paper Award and the 2017 Best Conference Paper Award from
IEEE ComSoc MMTC, and the 2004 IEEE Communications Society Leonard
G. Abraham Prize in the Field of Communications Systems. He is a co-recipient
of the Best Paper Awards from IEEE ICC 2022 and 2013, IEEE GLOBECOM
2019, 2016, and 2015, and IEEE WCNC 2015, and the Best Demo Awards from
IEEE INFOCOM 2022 and IEEE SECON 2017.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:06:29 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

