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Abstract—Recently, deploying deep neural network (DNN)models via collaborative inference, which splits a pre-trainedmodel into two

parts and executes them onuser equipment (UE) and edge server respectively, becomes attractive. However, the large intermediate feature

of DNN impedes flexible decoupling, and existing approaches either focus on the singleUE scenario or simply define tasks considering the

requiredCPUcycles, but ignore the indivisibility of a single DNN layer. In this article, we study themulti-agent collaborative inference

scenario, where a single edge server coordinates the inference ofmultiple UEs. Our goal is to achieve fast and energy-efficient inference for

all UEs. To achieve this goal, we design a lightweight autoencoder-basedmethod to compress the large intermediate feature at first. Then

we define tasks according to the inference overhead of DNNs and formulate the problemas aMarkov decision process (MDP). Finally, we

propose amulti-agent hybrid proximal policy optimization (MAHPPO) algorithm to solve the optimization problemwith a hybrid action space.

We conduct extensive experimentswith different types of networks, and the results show that our method can reduce up to 56% of inference

latency and save up to 72% of energy consumption.

Index Terms—Deep reinforcement learning, mobile edge computing, multi-user, collaborative inference, hybrid action space

Ç

1 INTRODUCTION

RECENT years have witnessed a rapid development of
intelligent Internet of Things (IoT) for deep learning

(DL)-based applications, e.g., intelligent personal assistant
and healthcare applications. However, the inference of most
DL models has an enormous amount of overhead, and this
often results in an unacceptable latency or energy consump-
tion, especially on resource-limited IoT UEs. For example,
the ResNet50 model [1] requires 103 MB memory and 4
GFLOPs for inference, while a Raspberry Pi-3B device only
has 1 GB RAM and 3.62 GFLOPS [2]. To achieve effective
inference, models are usually deployed in a mobile-edge
computing (MEC) manner [3]. Specifically, a pre-trained
model is decoupled at a proper point, and each pair is
deployed on an UE and an edge server respectively. When
receiving an inference task, the front part of the model is
first executed on the UE. Then the obtained intermediate
feature is offloaded to the edge server, which will complete

the remaining inference task and finally return the result to
the UE. This procedure is called collaborative inference. Com-
paredwith cloud computing approaches, collaborative infer-
ence avoids direct uploading the input data to the cloud,
which is the performance bottleneck of the current DL-based
techniques [4].

In collaborative inference, the size of intermediate fea-
tures should be smaller than the original input. Other-
wise, it’s better to offload the original input data to the
edge server. However, the size of intermediate features of
most DNN models are usually larger than the original
input. Furthermore, in common MEC scenarios, there
usually exists multiple UEs, and their interference on the
offloading channel would incur additional latency. Hence,
achieving effective multi-agent collaborative inference is
challenging.

To address this problem, some existing works propose to
compress the intermediate features of DNNs to reduce the
transmission overhead [5], [6], where DNN together with
quantization or entropy coding are utilized to build the
compressor. However, the architectures of such compres-
sors are usually complex, which lead to a high inference
latency under high uplink rate conditions.

In the real world, it is common for a single edge server to
serve multiple UEs, where the UEs communicate with the
server via a shared channel. The interference between UEs
in the offloading channel could incur significant additional
latency in this scenario, even with compressed features. To
tackle this issue, some existing methods optimize the off-
loading decision and channel resource allocation to improve
edge task offloading. The resulting optimization problem is
NP-hard [7], and hence deep reinforcement learning (DRL)

� Zhiwei Hao, Guanyu Xu, Han Hu, and Jianping An are with the School of
Information and Electronics, Beijing Institute of Technology, Beijing
100081, China. E-mail: {haozhw, xuguanyu, hhu, an}@bit.edu.cn.

� Yong Luo is with the School of Computer Science, Wuhan University,
Wuhan 430072, China. E-mail: luoyong@whu.edu.cn.

� Shiwen Mao is with the Department of Electrical and Computer Engineer-
ing, Auburn University, Auburn, AL 36849 USA. E-mail: smao@ieee.org.

Manuscript received 20 September 2021; revised 26 May 2022; accepted 10 June
2022. Date of publication 15 June 2022; date of current version 31 August 2023.
This work was supported in part by the National Natural Science Foundation of
China (NSFC) under Grant 61971457, and in part by the National Key Research
and Development Program of China under Grant 2021YFC3300200. Shiwen
Mao’s work was support in part by the NSF under Grant CNS-2107190.
(Corresponding author: Han Hu.)
Digital Object Identifier no. 10.1109/TMC.2022.3183098

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 10, OCTOBER 2023 6041

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:39:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6237-7028
https://orcid.org/0000-0002-6237-7028
https://orcid.org/0000-0002-6237-7028
https://orcid.org/0000-0002-6237-7028
https://orcid.org/0000-0002-6237-7028
https://orcid.org/0000-0002-2771-9272
https://orcid.org/0000-0002-2771-9272
https://orcid.org/0000-0002-2771-9272
https://orcid.org/0000-0002-2771-9272
https://orcid.org/0000-0002-2771-9272
https://orcid.org/0000-0002-2296-6370
https://orcid.org/0000-0002-2296-6370
https://orcid.org/0000-0002-2296-6370
https://orcid.org/0000-0002-2296-6370
https://orcid.org/0000-0002-2296-6370
https://orcid.org/0000-0001-7532-0496
https://orcid.org/0000-0001-7532-0496
https://orcid.org/0000-0001-7532-0496
https://orcid.org/0000-0001-7532-0496
https://orcid.org/0000-0001-7532-0496
https://orcid.org/0000-0002-6441-9711
https://orcid.org/0000-0002-6441-9711
https://orcid.org/0000-0002-6441-9711
https://orcid.org/0000-0002-6441-9711
https://orcid.org/0000-0002-6441-9711
https://orcid.org/0000-0002-7052-0007
https://orcid.org/0000-0002-7052-0007
https://orcid.org/0000-0002-7052-0007
https://orcid.org/0000-0002-7052-0007
https://orcid.org/0000-0002-7052-0007
mailto:haozhw@bit.edu.cn
mailto:xuguanyu@bit.edu.cn
mailto:hhu@bit.edu.cn
mailto:an@bit.edu.cn
mailto:luoyong@whu.edu.cn
mailto:smao@ieee.org


has been adopted to find the solution. For example, Li et al.
[8] use deep Q-learning (DQL) to allocate offloading deci-
sion and resources for multiple UEs, and Nath et al. [9]
address this problem by employing deep deterministic pol-
icy gradient (DDPG). However, these approaches simply
define tasks using the size of input data and the required
number of CPU cycles, while the indivisibility of a single
DNN layer is ignored. Furthermore, the multi-agent collab-
orative inference problem contains a hybrid action space,
e.g., the discrete offloading channel and the continuous
transmit power, while the existing methods only focus on
either a discrete or continuous action space.

To remedy these drawbacks, we propose a DRL frame-
work for multi-agent collaborative inference. The framework
contains a lightweight autoencoder-based intermediate fea-
ture compressor and a multi-agent hybrid proximal policy
optimization algorithm, named MAHPPO, to train the DRL
agent. At first, to achieve fast and effective intermediate fea-
ture compression, we design a lightweight autoencoder-
based method, which utilizes autoencoder and quantization
to build the compressor. Then for the multi-agent scenario,
we redefine and formulate the problem by taking layer indi-
visibility into consideration. Finally, we design an MAHPPO
algorithm to solve the problemwith a hybrid action space. In
the experiments, we first train the autoencoder-based com-
pressors at each potential partitioning point of the ResNet18
model [1]. Then we measure the inference overhead of each
module on an edge hardware. Given the collected data, we
train a DRL agent via MAHPPO to provide offloading deci-
sions. The results show that the autoencoder architecture can
achieve a high compression rate with little overhead, and the
MAHPPO algorithm can reduce up to 56% of the inference
latency and save up to 72% of energy consumption compared
with the full local inference strategy. By simply tuning a bal-
ancing hyperparameter, we can achieve a trade-off between
inference latency and energy consumption. Moreover, we
conduct experiments on VGG11 [10] and MobileNetV2 [11]
to further verify the effectiveness of our approach. Our main
contributions are summarized as follows:

� We design a lightweight autoencoder-based interme-
diate feature compression module, which can greatly
reduce the transmission overhead while consuming
little time and energy.

� We measure the latency and energy consumption of
the DNN inference task on an edge hardware, and
use these measurements on real devices to build
model. This is different from the existing works that
define tasks using only the input data size and the
required amount of CPU cycles, which may not be
appropriate for describing real-world applications.

� We redefine and formulate the problem of multi-
agent collaborative inference as an MDP to enable
feasible optimization, where the interference among
multiple UEs is taken into consideration.

� We propose an MAHPPO algorithm to solve the
optimization problem, which can deal with multiple
agents and work with the hybrid action space.

The remainder of this paper is organized as follows. We
present the autoencoder-based intermediate feature compres-
sor in Section 2. The overall system and general formulation is

presented in Section 3, which is then reformulated as anMDP
to facilitate optimization in Section 4. The proposedMAHPPO
algorithm is depicted in Sections 5, and 6 includes some
experiments and analysis. Finally, we discuss the related
works in Section 7 and conclude our paper in Section 8.

2 AUTOENCODER-BASED INTERMEDIATE FEATURE
COMPRESSION

In this section, we propose a lightweight autoencoder-based
intermediate feature compression method. We first present
an overview of the proposed method and then provide the
details of each module. Finally, we present the optimization
strategy for model training.

2.1 Overview

Existing compressors usually require a large overhead and
incur a high latency. To achieve efficient intermediate fea-
ture compression, we propose a lightweight autoencoder-
based compressing method. In particular, we adopt a sin-
gle-layer autoencoder coupled with a quantization module
as the compressor. Autoencoder is an unsupervised learner
composed of an encoder and a decoder, and the two parts
constitute our compressor and decompressor respectively.
The quantization module represents the feature map using
fewer bits to further compress the encoder outputs.

Fig. 1 illustrates the workflow of the collaborative infer-
ence equipped with the feature compression method. The
DNN model is split into two parts, which are deployed on
the UE and the edge server, respectively. When a new infer-
ence task arrives, the UE first executes the front part of the
model and performs compression of the obtained interme-
diate feature, which is then transmitted to the edge server
via a wireless channel. On the edge server, the received
compressed feature is restored and passed into the remain-
ing part of the original DNN model. When the inference is
completed, the edge server returns the results to the UE.

2.2 Channel Reduction and Restoration

Intermediate features of DNN usually contain large infor-
mation redundancy. This motivates us to design a compres-
sor to learn a compact feature representation.

Fig. 1. Architecture of the lightweight autoencoder-based intermediate
feature compression framework. The DNN model is partitioned into two
parts, which are deployed on the UE and the edge server respectively.
During inference, the input data go through the front part of the model,
the compressor, the wireless channel, the decompressor, and the
remaining part of the model successively.
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In order to achieve effective feature compression with
limited overhead, both the encoder and decoder are com-
posed of only a convolution layer with a 1� 1 kernel. Sup-
pose the shape of the intermediate feature is ðbs; ch; w; hÞ,
where each dimension denotes batch size, channel number,
width, and height of the feature respectively. The convolu-
tion layer with kernel size ðch; ch;0 1; 1Þ shrinks the channel
number from ch to ch0, where ch < ch0. The compression
rate of the channel reduction encoder is defined as Rc ¼
ch=ch0, and the corresponding convolution kernel shape in
the decoder is ðch;0 ch; 1; 1Þ.

When the model serves UEs, there may be inputs beyond
the original training dataset, which usually causes a perfor-
mance degradation. Nevertheless, the lightweight autoen-
coder is focused on feature compression at the channel
level, and is insensitive to small input domain shifts. Hence,
the proposed autoencoder is an effective and robust feature
compressor.

2.3 Quantization and Dequantization

Existing works have shown that representing intermediate
features using lower bit-width has little impact on inference
accuracy [12]. This motivates us to further compress the out-
put features of the encoder by adopting the quantization
technique, which maps floating-point values in feature
maps to a smaller set consisting of discrete integers.

On the UE, the quantization procedure can be formulated
as

yi ¼ round
ð2cq � 1Þ½xi �minðxÞ�
maxðxÞ �minðxÞ

� �
; (1)

where x is the intermediate feature to be quantized, xi is the
ith value in x, yi is output integer of xi, and cq is the bit-
width used for quantization. The maximum and minimum
value of xi can be replaced by the result computed on a pre-
collected set of feature maps.

On the edge server, the quantized value yi can be recov-
ered approximately by the dequantization procedure

x0i ¼
yi½maxðxÞ �minðxÞ�

2cq � 1
þ minðxÞ; (2)

where x0i is the recovered value. The rounding operation in
the quantization causes round-off error, so x0i is usually not
precisely equal to xi. Since the original intermediate features
are represented by 32 b-width floating-point number, the
compression rate of the quantization procedure is Rq ¼
32=cq. Hence, the overall compression rate of our method is
given by

R ¼ Rc �Rq ¼ ch� 32

ch0 � cq
: (3)

2.4 Optimization

The feature compression component is optimized using a
two-stage training strategy. For a given pre-trained model
M and a selected partitioning point, we first train the
autoencoder by minimizing the l2 distance between the
original and recovered features. Moreover, a cross-entropy
loss is introduced to minimize the prediction error. For a
sample x in the training set X , we denote the original

feature and the recovered feature of the autoencoder as Tx
i

and Tx
o , respectively. Then the loss function for training the

autoencoder can be formulated as

Lae ¼ jjTx
i � Tx

o jj2 þ �dceðMðxÞ; yÞ; (4)

where � is a balancing hyperparameter, dce is the cross
entropy measurement, and y is the corresponding label of
sample x.

In the training of the autoencoder, we freeze parameters
in the pre-trained model. When this first-stage training is
done, we fine-tune all the parameters in the model on the
training set using a small learning rate.

Discussion. The proposed autoencoder-based compressor
is specially designed for the MEC scenario, which reduces
the size of intermediate features while consuming little time
during inference. The autoencoder training also takes little
time and energy due to its lightweight nature. In practice,
we can further improve the compression rate by designing
a more complex autoencoder structure or adopting other
approaches such as entropy coding. However, the compres-
sor is designed to reduce the latency caused by data offload-
ing. The extra latency introduced by the compressor should
be less than the reduced offloading latency. By adopting the
proposed compressor, we can significantly reduce the infer-
ence latency and save plenty of energy with little training
and inferring overhead on the autoencoder.

3 MULTI-USER COLLABORATIVE INFERENCE

In practice, one edge server usually needs to provide service
for more than one UE, where the optimal offloading policy
is more difficult to obtain than the single UE scenario,
because of the interference within wireless channels. In this
section, we consider a scenario where multiple UEs conduct
DNN inference with the help of only one edge server. We
will first present the workflow of the multi-agent collabora-
tive inference, and then the system model and problem
formulation.

3.1 Workflow

The overall workflow of the multi-agent collaborative infer-
ence system is provided in Fig. 2a, where the system con-
tains multiple UEs, a wireless base station (BS), and an edge
server. UEs communicate with the BS via a wireless chan-
nel, and the BS is linked with the edge server via an optical
fiber network. Each UE needs to complete several DNN
inference tasks. For each task, the edge server makes a deci-
sion about where the task is to be processed, i.e., on the UE
holding the task or on the edge server. Our goal is to find
the decision that helps complete all tasks quickly while con-
suming as little energy as possible.

Fig. 2b illustrates the detailed workflow by taking “UE 1”
as an example. We consider a fixed-frequency decision
update for the collaborative inference problem and divide
time into nonoverlapping frames. At the beginning of each
time frame, a decision-maker deployed at the edge server
sends decisions about where tasks should be processed dur-
ing the current frame to each UE. The decision is obtained
based on the state of each UE, such as the number of
remaining tasks, the size of data to be offloaded, and so on.
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We provide a detailed definition of the UE state in Sec-
tion 4.3. At the end of the previous frame, each UE sends
their state information to the edge server, and the edge
server collects and stores the states of all UEs. We term
the collection of all UE states the state pool. In a specific
time frame, when the UE starts a new task, it follows the
received decision on whether to offload the task to the edge
or not. If the decision is to perform inference locally, the UE
will execute the complete neural network with its on-chip
CPU/GPU. Otherwise, the UE will partially (or not) run the
neural network locally and then transmit the compressed
intermediate features (or the original input) to the BS via a
wireless channel. The BS will then transmit such data to the
edge server through an optical fiber. At the edge end,
the server will identify the right model according to the
received data at first and then complete the inference task
using its more powerful hardware. Finally, the edge server
returns the result to the UE.

3.2 DNN Inference Model

Collaborative inference requires to decouple DNN into sev-
eral parts. Here we assume that the DNN can be divided by
layers or residual blocks, if it is a deep residual model.

For a system consists of N UEs, we denote the set of UEs
as N , N ¼ f1; . . .; Ng. The model deployed on UE n can be
divided into Bn þ 1 parts, which indicates that there are Bn

potential partitioning points for the model deployed on UE
n. The partitioning decision of this UE can be denoted as
bn 2 B, B ¼ f0; 1; . . .; Bn þ 1g, which indicates that the UE
will offload the intermediate result to the edge after com-
pleting the inference of the first bn parts. If bn ¼ 0, UE n will
direct offload the original input to the edge server for

inference, and if bn ¼ Bn þ 1, the UE will conduct the infer-
ence locally.

3.3 Communication Model

During the offloading procedure, UEs first communicate
with a wireless BS. Then the data will be transmitted to the
edge server via an optical fiber network.

Each user transmits data through a particular offloading
channel with a transmit power. We denote the channel and
the power ofUE n as cn 2 f1; . . .; Cg and pn > 0, respectively.
Combined with the partitioning point bn, the three terms con-
struct the inference action of UE n, denoted as ðbn; cn; pnÞ. The
decision-maker provides inference action of all UEs, based on
a policy p, which is the probability distribution of all possible
inference actions. Hence, the uplink data rate between UE n
and the edge server can be computed as [13]

rnðpÞ ¼ vcn log 2 1þ pngn
scn þ

P
i2Nnfng;bi2BnfBiþ1gpigi

 !
;

(5)

where vcn is the bandwidth of channel cn, gn is the channel
gain between UE n and the wireless BS, and scn is the back-
ground noise power of channel cn.

3.4 Computation Model

We consider the inference latency and the energy consump-
tion of each sample. The overhead for collecting states of
the UEs in each time frame is ignored, as the state informa-
tion is usually negligible compared with the offloading
data. In the worst case, the extra latency at the server is only
a small constant, which does not affect the optimization
results. Here we still take UE n as an example, and suppose
that the size of compressed intermediate feature is fn bits at
partitioning point bn. When n ¼ 0, fn denotes the size of the
original input sample. We assume a powerful edge server,
i.e., all received tasks can be finished with negligible
latency, and omit the latency at the edge end. Similar set-
tings can be found in previous works [14]. Hence, the infer-
ence latency of a single sample is composed of three terms:
the local inference latency tfn, the feature compression
latency tcn, and the data transmission latency ttn. The local
inference latency tfn and the feature compression latency tcn
can be collected on device. Based on the communication
model, the data transmission latency is

ttn ¼
fn

rnðpÞ : (6)

Thus the overall latency can be computed as

tnðpÞ ¼ tfnIfbn2Bnf0gg þ tcnIfbn2Bnf0;Bnþ1gg
þ ttnIfbn2BnfBnþ1gg; (7)

where IfCg is an indicator function which equals to 1 only
when the condition C is true and equals to 0 otherwise.

Similarly, we can derive the energy consumption as

enðpÞ ¼ efnIfbn2Bnf0gg þ ecnIfbn2Bnf0;Bnþ1gg
þ etnIfbn2BnfBnþ1gg; (8)

Fig. 2. Workflow of the multi-agent collaborative inference scenario: (a)
the overall workflow; (b) workflow of a specific UE, where the UE can
perform local inference, offload the original input to the edge for infer-
ence, or split the DNN into two parts for collaborative inference.
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where efn and ecn are the local inference energy consumption
and the feature compression energy consumption, respec-
tively, which can also be measured on device; etn is the data
transmission energy consumption, which is computed as

etn ¼ pnt
t
n: (9)

3.5 Problem Formulation

Based on the above modelings, we formulate the overall
optimization problem. By solving this problem, we can
achieve effective multi-agent collaborative inference.

In our scenario, each UE receives several tasks at the
beginning, and our goal is to find a policy p that can mini-
mize both the latency and energy consumption for complet-
ing all tasks. Supposing that UE n receives Kn tasks, then
our optimization problem can be formulated as

(P1) min
p

"
max

n

XKn

k¼1
tn;kðpÞ þ b

XN
n¼1

XKn

k¼1
en;kðpÞ

#

s.t. (C1) bn 2 f0; 1; . . .; Bn þ 1g; 8n 2 N
(C2) cn 2 f1; . . .; Cg; 8n 2 N
(C3) 0 < pn � pmax; 8n 2 N ; (10)

where pmax is the maximum transmit power of a single UE
and b > 0 is a balancing hyperparameter.

4 MDP REFORMULATION

In this section, we reformulate the problem as an MDP to
facilitate the optimization procedure. Table 1 is a summary
of the used notation.

4.1 Problem Redefinition

Problem (P1) is a mixed-integer nonlinear programming
problem [15], which is NP-hard and difficult to solve for an
optimal solution via traditional approaches [16]. DRL has
emerged as a promising method to solve such problems,
which requires to represent the problem as an MDP. How-
ever, problem (P1) cannot be directly expressed in the MDP
form, since it contains the sum of latency and the energy
consumption of each task. When state transition occurs,

there may be half-completed tasks. This means the latency
and the energy consumption of tasks in the last time interval
may not be unavailable. Thus, we should reformulate the
problem for applying DRL algorithms.

To achieve this goal, we propose to consider the aver-
aged latency and energy consumption of each completed
task in each time frame and ignore the overhead of half-
completed tasks. We enforce the averaged latency of each
completed task in each time frame to be small so that more
tasks can be completed, and thus the overall latency will
also be small. We also require the averaged energy con-
sumption to be small, so that the overall energy consump-
tion can be minimized. Supposing that we require T ðpÞ
time frames to complete all tasks, and the expected number
of completed tasks in one time frame and the energy con-
sumption at time frame t are KðpÞ and EtðpÞ, respectively,
then the problem can be reformulated as

(P2)min
p

XT ðpÞ
t¼1

T0 þ bEtðpÞ
KðpÞ

s.t.(C1), (C2), and (C3); (11)

where T0 denotes the duration of one time frame.

4.2 Theoretical Analysis

In this section, we prove that the objective of problem (P1) is
upper bounded by that of problem (P2), so that we can
enhance multi-agent collaborative inference by optimizing
problem (P2). This is summarized in the following theorem.

Theorem 1. A policy update that minimizes the objective func-
tion of problem (P2) can also minimize the objective function of
problem (P1) for small b.

Proof. We assume that the numbers of UEs and the task
number of each UE in the two problems are equal. For
convenience, we signify the objective function of problem
(P1) and (p2) as f1ðpÞ and f2ðpÞ, respectively. We denote
the first and the second terms in f1ðpÞ as AðpÞ and BðpÞ,
i.e., f1ðpÞ ¼ AðpÞ þ bBðpÞ, and f2ðpÞ can be rewritten as

f2ðpÞ ¼
PT ðpÞ

t¼1 T0 þ bEtðpÞð Þ
KðpÞ

¼ T ðpÞT0 þ b
PT ðpÞ

t¼1 EtðpÞ
KðpÞ

¼ AðpÞ þ bBðpÞ
KðpÞ :

If there are two policies p1 and p2 that satisfy f2ðp1Þ >
f2ðp2Þ, we aim to prove that f1ðp1Þ > f1ðp2Þ. We con-
sider two cases: 1)Kðp1Þ � Kðp2Þ; 2)Kðp1Þ < Kðp2Þ.

For case 1), it is obvious that f1ðp1Þ > f1ðp2Þ.
For case 2), we can obtain that T ðp1Þ > T ðp2Þ, since

KðpÞ is the expected number of completed tasks in one
time frame. Thus we have Aðp1Þ > Aðp2Þ, and for f1ð�Þ,
we have

f1ðp1Þ � f1ðp2Þ ¼ ðAðp1Þ �Aðp2ÞÞ þ bðBðp1Þ �Bðp2ÞÞ;

where Bðp1Þ �Bðp2Þ denotes the extra energy used for
completing all tasks using policy p2. This value is upper

TABLE 1
Notation

Symbol Description

p policy for generating action at
T ðpÞ time horizon
T0 duration of one time frame
KðpÞ expected number of completed tasks in one time frame
KtðpÞ number of completed tasks at time t
EtðpÞ energy consumption at time t
kt numbers of uncompleted tasks at time t
lt left time of local computation at time t
nt size of left data to be offloading at time t
d distance from UEs to the edge server
bt partitioning point of each UE at time t
ct offloading channel of each UE at time t
pt transmit power of each UE at time t
R cumulative reward in one episode
f parameters of the critic network
un parameters of the nth actor network
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bounded since the energy consumption of the local infer-
ence and the feature compression is constant, and the
transmit power is upper bounded. Thus there must exist
a small b that ensures f1ðp1Þ > f1ðp2Þ. According to the
analysis in the above two cases, we conclude that mini-
mizing the objective function of problem (P2) can guar-
antee the decrease of the objective function of problem
(P1) when b is small. tu
Discussion. Problem (P2) converts the sum of tasks into

the sum of time frames, so that the problem is in accordance
with the form of cumulative reward in DRL. In practice, the
improvement of KðpÞ can usually decrease the overall
energy consumption BðpÞ. Thus generally a large b can also
guarantee the validity of Theorem 1.

4.3 MDP Formulation

An MDP depicts the interaction between the DRL agent
and the environment and can be represented by a tuple
ðS;A;P ; rÞ, where S is a set of states, A is a set of
actions, P : S �A� S ! R is a probability distribution
that depicts the system dynamics, and r : S � A� S ! R
is the reward.

We first define state st of the MDP, where t denotes the
tth decision time frame. State st consists of four parts: the
left task number kt, the left local computation time lt,
the left offloading data size nt, and the distance from UEs to
the edge server d. That is, st ¼ fkt; lt;nt;dg, where kt con-
tains the left uncompleted task number of each UE at time t,
which may guide the system to assign more resources to the
UEs that have more uncompleted tasks; lt is the left time of
completing the local inference and the feature compression
of current half-completed tasks; nt is the size of left data to
be offloaded of these tasks; and the distance d is, which
remains unchanged in one episode.

We then define action at at time t, given by at ¼
fbt; ct;ptg, where bt is the partitioning point of each UE, ct
is the offloading channel of each UE, and pt is the transmit
power of each UE. At time t, the transmit power pt becomes
effective immediately, while the other two elements in at
become effective when new tasks are started, i.e., after half-
completed tasks in the previous time frame are completed.

Finally, we define reward rt. The expectation KðpÞ in
problem (P2) is hard to obtain. Thus we use the number of
completed tasks at the tth time frame KtðpÞ as an estimate
of KðpÞ. According to the problem definition in problem
(P2), we define the reward as

rt ¼ � T0

Kt
� b

Et

Kt
; (12)

where we have omitted the dependence on p to simplify the
notation. The cumulative reward is R ¼PT ðpÞ

t¼1 rt, which is
just the negative of the objective function of problem (P2).
Thus we can solve the problem by maximizing the cumula-
tive reward.

5 MAHPPO ALGORITHM

In this section, we propose a MAHPPO algorithm to solve
the multi-agent collaborative inference problem. We first
depict the network design of the algorithm and then present
the optimization procedure.

5.1 Actor-Critic Architecture Design

The proposed MAHPPO method has an actor-critic struc-
ture, and Fig. 3 is an illustration of the method. The multi-
agent collaborative inference scenario contains multiple
UEs, so we propose to adopt multiple actor networks to pro-
vide inference decisions for the UEs. The number of actor

Fig. 3. Overall structure of MAHPPO. This algorithm contains multiple actor networks and a global critic network. At the left part, all vectors in the
state are concatenated and sent to the actors and the critic. Each actor outputs the partitioning point, offloading channel, and transmit power deci-
sions for its corresponding UE, and the critic outputs an estimation of the state value. The middle part depicts the loss function, where “surr” is short
for “surrogate objective.” The right part illustrates how a trajectory for policy updating is obtained.
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networks is equal to the number of UEs. A major challenge
is how to deal with the hybrid action space, and we handle
this by adding three output branches in each actor networks
to acquire hybrid actions [17]. The three branches share sev-
eral front layers that encode the state information and out-
put partitioning point, offloading channel, and transmit
power decisions, respectively. We denote parameters of the
critic network and the actor networks as f and un, respec-
tively, where un denotes the parameters of the correspond-
ing actor network of UE n.

The input of the actor-critic network is state st, as
described in Section 4.3. The state consists of four vectors
that depict the number of uncompleted tasks of each
user, left local computing time and offloading data size
of half-completed tasks, and the distance to the edge
server of each UE. In practice, we simply concatenate the
four vectors into one and input them into the actor-critic
network.

The critic network outputs the predicted state value
V p
f ðstÞ, which is the expected cumulative reward of st. The

state value guides the update of all actor networks in the
training stage.

The actor networks output the policy puðatjstÞ, which is a
predicted distribution of action at at state st. The branches
of actors that provide discrete actions output the probabili-
ties fpiðstÞg of selecting different possible actions simulta-
neously, and this is achieved by adding a softmax function
at the end of these branches. Thus the discrete actions is fol-
lowed by a categorical distribution:

pd
un
ðadt;njstÞ ¼

YM
i¼1

piðstÞIfadt;n¼ig;

8n 2 f1; 2; . . .; Ng;
XM
i¼1

piðstÞ ¼ 1; (13)

where the superscript d denotes the discrete part of the
action andM is the number of possible actions.

Meanwhile, the branches of actors that provide continu-
ous actions output the mean mðstÞ and the standard devia-
tion sðstÞ values of the actions. We assume the distribution
of the continuous action is Gaussian, i.e.,

pc
un
ðact;njstÞ 	 N ðmðstÞ; s2ðstÞÞ; (14)

where the superscript c denotes the continuous part of the
action and Nð�Þ is the probability density function of the
Gaussian distribution. In practice, the action can be sampled
from the above distributions.

5.2 Optimization Objectives

We introduce the optimization objectives of the critic and
the actors here. The critic network should fit an unknown
state-value function and the actor networks should provide
policy to maximize the fitted state value. The optimizing
objectives should guide the critic and the actors to achieve
these goals.

We first present the objective of the critic network. Sup-
pose there exists a trajectory of the MDP, and the trajectory
describes the interaction process between the DRL agent
and the environment. Then we can obtain the rewards of

each time frame in the trajectory, and the real cumulative
reward at state st is

V 0pðstÞ ¼
XT ðpÞ
t0¼t

gt
0�trt0 ; (15)

where g 2 ½0; 1� is the discount factor that balances the long-
term return and the short-term return. We use this sampled
value as the expected cumulative reward to train the critic
network. The loss function is given by

LcðfÞ ¼ jjV p
f ðstÞ � V 0pðstÞjj2: (16)

We then present the objective of the actor networks.
According to the monotonic improvement guaranteed pol-
icy gradient algorithm, trust region policy optimization [18],
we maximizes the following objective:

max
u

Et
puðatjstÞ
puoldðatjstÞ

Ât

� �
; (17)

where puðatjstÞ is the current policy and puoldðatjstÞ is the old
policy for collecting a trajectory. Furthermore, Ât is the
advantage function which measures how much a specific
action at is better than the average actions at state st. This
objective is called the “surrogate objective” because it uses
the importance sampling trick to treat samples from the old
policy as the surrogate of new samples to train the actors. In
order to reduce bias of the advantage function, we employ
an exponentially-weighting method to obtain the general-
ized advantage estimation [19]

Ât ¼
XT ðpÞ
t0¼t
ðg�Þt0�t rt þ gV p

f ðstþ1Þ � V 0pðstÞ
� �

; (18)

where � 2 ½0; 1� is a hyperparameter. If tþ 1 > T ðpÞ, we
have V p

f ðstþ1Þ ¼ 0.
The loss clipping strategy has been demonstrated to be

helpful to train the actor [20]. Denoting puðat jstÞ
puold ðat jstÞ

as rtðuÞ, the
clipped loss can be formulated as

LCLIP ðuÞ ¼ Et minðrtðuÞÂt; clipðrtðuÞ; 1� �; 1þ �ÞÂtÞ
h i

;

(19)

where � > 0 is a hyperparameter that controls how rtðuÞ can
move away from 1.

Hence, we can formulate the objective function of the
actor networks as

LaðuÞ ¼
XN
n¼1
LCLIP ðunÞ þ zEt½HðpunðatjstÞÞ�
� 	

; (20)

where HðpunðatjstÞÞ is an entropy bonus that encourages
exploration and z is a balancing hyperparameter. We sum-
marize the proposed MAHPPO procedure in Algorithm 1.
Each expectation term is evaluated by the averaged results
of a batch of samples.
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6 EXPERIMENTS

We first present the results of the designed autoencoder-
based intermediate feature compression method and
measure the overhead of both local inference and feature
compression. We then show the convergence performance
of the proposed MAHPPO algorithm and investigate how
effectively it can reduce the inference overhead of multi-
agent collaborative inference with the ResNet18 model.
Finally, we evaluate our framework on two other popular
DNN models: VGG11 and MobileNetV2. Code is available
at https://github.com/Hao840/MAHPPO

Algorithm 1.MAHPPO

Randomly initialize parameters of the critic and the actors as
f and un; n 2 f1; 2; . . .; Ng;
Initialize learning rate a, batch size B, sample reuse time K,
and initial state s0;
Initialize trajectory bufferMwith size jjMjj;
Current state st  s0;
for step S :¼ 1 to Smax do
// Collecting trajectory

while M is not filled do
Sample action at 	 puðatjstÞ;
Execute at and observe reward rt, the next state stþ1;
Append ðst; at; rt; stþ1Þ intoM;
if stþ1 is the terminate state then
st  reinitialized state s0;

else
st  stþ1;
S  S þ 1;

end
// Updating Network

Compute state value for states inMwith (15);
Compute advantage for states inMwith (18);
for epoch e :¼ 1 to bK � ðjjMjj=BÞc do
Sample B samples fromM;
Compute LcðfÞ and LaðuÞwith these samples;
Update critic: f f� arfLcðfÞ;
for n :¼ 1 toN do
Update actor: un  un � arunLaðuÞ;

end
end
Clear memories inM.

end

6.1 Intermediate Feature Compression Performance

In this set of experiments, we select JALAD [12] as the base-
line. JALAD compresses the intermediate feature by 8-bit
quantization and entropy coding. According to their paper,
8-bit quantization causes almost no accuracy loss.

The experiments are conducted on the Caltech-101 data-
set [21], which is a computer vision dataset containing 101
classes of samples each with size 300 � 200. The number of
samples in each class ranges from 80 to 300. We randomly
select 80% of the samples in each class as training set and use
the remaining samples as test set. During training, each sam-
ple is first resized to 256� 256 and then randomly cropped to
224 � 224 for data augmentation. We train a ResNet18 net-
work as the base model and select 4 partitioning points. Spe-
cifically, a ResNet18 model processes a sample in four stages.

We adopt the output ends of the second layer in each stage,
i.e., the batch normalization layer, as a partitioning point.
Hence, there are 4 selected points in total. We train several
autoencoders with different compression rates at each parti-
tioning point and use 8-bit quantization to further compress
the encoded feature. Although a more significant compres-
sion rate always achieves less latency and energy consump-
tion, we cannot increase the rate unboundedly, since the
compression rate also affects the accuracy. Hence, we select
the autoencoder to achieve the maximum compression rate
under a 2% accuracy loss bound after fine-tuning, since 2%
accuracy loss is negligible for most real-world deployments,
comparedwith the reduced latency and energy consumption.
In cases where performance degradation is unacceptable, we
can replace the autoencoder with lossless compression mod-
ules, e.g., the entropy coding. We train each autoencoder for
30 epochs with a 128 batch size. The optimizer is Adam [22]
and the learning rate is 0.1. The hyperparameter � is set to 0.1.
For fine-tuning, we train the base model and the autoencoder
together for 10 epochswith a small learning rate of 0.0001.

Fig. 4 illustrates the evaluation result of the lightweight
autoencoder-based intermediate feature compression mod-
ule. Compared with JALAD, it can be seen that our method
can compress the intermediate feature much more effec-
tively. When the partitioning point moves towards the tail of
the pre-trained model, the compression rate of our method
decreases and that of JALAD increases. This may because
the features in the pre-trained model become sparser in
deeper layers, and the simple autoencoder is not adequate to
compress such data, while entropy coding is more effective
for sparse data compressing. In practice, the higher compres-
sion rate performance of our method will energize the multi-
agent collaborative inference remarkably.

We further conduct experiments to compare different �
settings at different partitioning points. Fig. 5 illustrate the
comparison result. The result shows that the � ¼ 0:1 setting
performs the best, except at the partitioning point 1, where
the performance is only slightly worse than the � ¼ 0:01 set-
ting. For convenience, we set � to 0.1 in all the cases.

6.2 Local Overhead Measurement

We thenmeasure latency and energy consumption of the local
inference and feature compression, as described in Section 3.3.
We use an NVIDIA Jetson Nano as the UE and an external
high voltage powermonitor for themeasurement.

Fig. 4. Compression rate comparison of the proposed lightweight
autoencoder-based intermediate feature compression module and
JALAD on ResNet18.
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The NVIDIA Jetson Nano contains a Quad-core ARM
Cortex-A57 MPCore processor at 1.6 GHz, a 4 GB RAM
Memory, and an NVIDIA Maxwell architecture GPU with
128 NVIDIA CUDA cores. Jetson nano is driven by the
power monitor, which can collect the output voltage and
current at a sampling rate of 5,000 samples per second. The
two devices are connected as in Fig. 6. Before the measure-
ment, we switch the Jetson Nano to the low power mode,
i.e., the max power is 5 Watt, and turn off the dynamic volt-
age and frequency scaling (DVFS). We perform the infer-
ence on the test set of Caltech-101 dataset using Jetson nano.
The model is the trained ResNet18 with feature compres-
sion autoencoders. We measure the inference overhead
with 1000 samples in the test set. We ignore the data of the
first 100 samples and take the average of the latency and
power of the last 900 samples as the data of the steady sys-
tem. We minus the power of the standby system from the
averaged power to acquire the power of performing infer-
ence. Thus the energy consumption of a single inference can
be obtained by taking the product of the averaged latency
and the power of performing inference.

The measurement results are shown in Fig. 7. The top
figure illustrates the latency of local inference and feature
compression at each partitioning point, and the bottom one
illustrates the energy consumption. The gray dashed line

denotes the overhead when executing the full model locally.
We can see that the proposed method brings nearly no addi-
tional latency and energy consumption. Moreover, the over-
head of our method is less than that of full local inference at
each partitioning point, except for the energy consumption
at the last partitioning point. The results also show that the
energy cost of only running the model before the partition-
ing point 4 is larger than that of running the whole model.
We conjecture that this part of the model has a higher
degree of parallelism for processing, as it is only consists of
convolution layers. This results in a higher average power
and a less latency, while the energy, the product of the two
values, becomes larger. If we carefully assign each UE a par-
titioning point, an offloading channel, and a transmit power
in the multi-agent collaborative inference scenario, the over-
all overhead can still be less than that of full local inference.
In contrast, as shown in the results, JALAD incurs more
overhead than full local inference in most cases, which is
because the large intermediate features need plenty of time
to perform entropy coding.

6.3 MAHPPO Convergence Performance

After obtaining the local inference and feature compression
overhead, we solve problem (P2) with the proposed
MAHPPO algorithm. We first present the experiment setups
and then provide the convergence performance ofMAHPPO.
Finally, we compare different parameter settings.

6.3.1 Setup

Environment. In our experiment, there are N ¼ 5 UEs and
C ¼ 2 channels. The distance between UE n and the edge
server follows the uniform distribution dn 	 U½1; 100� in
meters. UE n will receive Kn 	 Poisð�pÞ tasks at the begin-
ning, where Poisð�pÞ denotes the Poisson distribution, and
�p is its parameter set to 200. When all tasks are completed,
the current episode terminates and a new episode starts.

Fig. 5. Comparison of different � settings on ResNet18.

Fig. 6. Inference overhead measurement hardware.

Fig. 7. Latency and energy consumption of executing the front part of
ResNet18 and compressing the intermediate feature on UE. The over-
head of executing the full model on the UE is marked out by the gray
dashed line.
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Distance dn and the number of tasks Kn are re-initialized at
the beginning of each episode. The multi-agent collabora-
tive inference system is assumed to locate in the urban cellu-
lar radio environment [13], where the channel gain is
gn ¼ d�ln , where l is the path loss exponent set to 3. We adopt
a static channel setting, where the bandwidth of each chan-
nel is set to vcn ¼ 1MHz and the background noise power is
set to scn ¼ 10�9W [14]. The discount factor g is set to 0.95.
Furthermore, from the expression of the reward function,
the expectation of completed tasks in one time frame is esti-
mated by completed tasks in each time frame. To ensure the
accuracy of the estimation, the duration of each time frame
T0 should not be set to a too-small value. Conversely, a large
time frame setup helps to achieve accurate estimations, but
the long offloading policy update interval also harms the
performance due to the lack of flexibility. In order to balance
precision and flexibility, we set T0 to 0.5 s, which is about 10
times larger than the latency of executing a full model infer-
ence on UE. We roughly set b to the ratio of local inference
latency to energy consumption, i.e., 0.47. In Section 6.4.2, we
will study the impact of different b settings. When evaluat-
ing the performance of a trained agent, we always set dn ¼
50 andKn ¼ 200 for a fair comparison.

Agent. Each actor network is composed of fully con-
nected layers, where the first 2 layers are the shared layers
containing 256 and 128 neurons, respectively. Each output
branch also has 2 layers, where the first layer contains 64
neurons and the structure of the last layer is determined by
the type and dimension of its corresponding action, as
described in Section 5.1. The critic network is composed of 4
fully connected layers with 256, 128, 64, and 1 neurons,
respectively. We train the actors and the critic for 50 K steps
with the same learning rate 0.0001. The size of memory
buffer jjMjj is 1024, the batch size B is 256, and the sample
reuse time K is 10. The setting of hyperparameters �, �, and
z follows the common setting in PPO implementation,
which are 0.95, 0.2, and 0.001, respectively.

Baselines.We use the following baselines:

� Local: UEs always execute all tasks locally without
the help of the edge.

� JALAD: JALAD is adopted as the feature compres-
sion method. The partitioning point, the offloading
channel, and the transmit power are still obtained by
the MAHPPO algorithm. The time frame is relaxed
to 3 s to help convergence.

6.3.2 Convergence Performance

We present the training results of the proposed MAHPPO
algorithm and the two baselines. Each experiment setup is
performed 5 times.

Fig. 8 illustrates the convergence performance of the
MAHPPO algorithm and the two baselines. The curves are
smoothed by taking the average of the 5 nearest values at
each point. From the result, we can see that each method
converges, and the MAHPPO algorithm performs the best.
The convergence curve of JALAD has a large fluctuating
range. The full local inference method executes all tasks on
the UEs, and does not take advantage of the powerful edge
computation resources, so it also performs worse than
MAHPPO. Note that the time frame of JALAD is 6 times

larger than that of MAHPPO, so our total number of used
time frames is much less. Meanwhile, the reward value at
each time frame is only determined by the expected over-
head of a single inference, so we can roughly regard that the
cumulative reward of JALAD is shrunk by 6 times. Given
this consideration, we find that JALAD performs the worst,
as the complex intermediate feature compressor of JALAD
makes it inefficient to decouple DNN at intermediate layers.
Also, the large compressed features cause severe interfer-
ence in the wireless channel. In this case, executing all tasks
locally is the best policy. Still, it will be hard for the DRL
agent to learn, as the significant interference makes the envi-
ronment extremely complex. By taking the 6 times shrink-
age into consideration, JALAD even performs worse than
local inference.

6.3.3 Hyperparameter Analysis

We study how different main hyperparameter settings
influence the convergence performance. Different learning
rates, sample reuse time, and memory size settings are com-
pared. The results are illustrated in Fig. 9.

In Fig. 9a, the results indicate that training the agentwith a
small learning rate converges slow, while a large learning
rate incurs unstable cumulative reward and hinders the
agent to explore the best policy. So we choose 0.0001 as the
learning rate of the actors and the critic. The sample reuse
time indicates how many times a sample is used to train the
agent. In Fig. 9b, we can see that a small sample reuse time
setting incurs a slow and poor convergence. Given increased
reuse time, the convergence becomes faster and the policy
becomes better. However, a too large reuse time setup, e.g.,
80, also results in a poor convergence. So the sample reuse
time is set to 20 to balance the accuracy and the computation
complexity. Figs. 9c and 9d illustrate the cumulative reward
and the value loss of different memory size settings, respec-
tively. The value loss is defined in Eq. (16). In common PPO
implementations, the batch size is set to a quarter of the
memory size. We follow this setting in the comparison. From
the result, we observe that training with a small memory size
usually converges faster, since it leads to a high network
update frequency. However, the fast convergence leads to a
poor policy since it over-uses the initial experiences. Further-
more, a small memory size, which means that the batch size

Fig. 8. Convergence performance of the proposed MAHPPO algorithm
and the two baselines with ResNet18.
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is also small, lead to unstable value loss decrease. When the
scenario becomes complicated, this may harm the conver-
gence of the actor networks. On the contrary, a largememory
size setup also leads to poor performance, because it result in
a long network update interval. Hence, the memory size is
set to 1024. In the following experiments, we use the same
hyperparameter settings.

6.3.4 UE Number Comparison

We further compare the convergence performance of differ-
ent numbers of UEs to study how the UE number influence
the convergence when the number of channels is fixed. The
UE number N ranges from 3 to 10. Other details are the
same as previous experiments.

Fig. 10 illustrates the comparison result. We observe that
experiments using any UE number settings converge, and a
larger UE number setting leads to a slower convergence.
This is because more UEs bring a more severe interference
within wireless channels, and thus it is hard to find an opti-
mal policy. Furthermore, the convergent value of larger UE
number setting tends to be smaller, since the overall wire-
less channel resources are fixed.

6.4 Inference Latency and Energy Consumption

We evaluate the performance of the MAHPPO algorithm by
comparing the overhead of multi-agent collaborative infer-
ence. We also compare the impact of different hyperpara-
meter b settings. Evaluation is performed under the settings
provided in Section 6.3.1.

6.4.1 Overhead Saving Performance

We first evaluate the averaged inference latency and energy
consumption of multi-agent collaborative inference when
adopting the MAHPPO algorithm and the two baselines.
The results are provided in Fig. 11.

We can see from the results that with increased number
of UEs, the averaged inference latency and energy con-
sumption of adopting the MAHPPO algorithm continue
increase, as the available channel resources are fixed. Also,
the averaged inference latency and energy consumption of
JALAD exhibit an increasing trend because the larger inter-
ference impedes the convergence more. The averaged infer-
ence overhead of adopting the full local inference strategy
remains constant because UEs do not need to compete for
limited channel resources. Compared with the full local
inference strategy, the proposed method always achieves a
lower inference overhead. However, JALAD always per-
forms worse than inference locally, which is in line with the
analysis in Section 6.3.2. When the UE number is 3, our
method can reduce 56% of the inference latency and save
72% of the energy consumption. We can tune the hyper-
parameter b to achieve a balance between latency and
energy consumption. Since the wireless channel resources
are limited, the overhead curves of MAHPPO become close
to that of local inference when the user number is increased.

6.4.2 Impact of Hyperparameter b

We study how the hyperparameter b affects the inference
overhead. We set b ¼ 0:01, 0.1, 1, 10, 100, and 1,000. The
number of UE is set to 5.

Fig. 9. Comparison of different parameter settings: (a) learning rate; (b)
sample reuse time; (c, d) memory size.

Fig. 10. Convergence performance comparison of different UE number
settings with ResNet18.

Fig. 11. Averaged inference overhead of ResNet18 under different UE
number settings.
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Fig. 12 presents the comparison results. We run experi-
ments for each b setup 5 times, and the belts of shadows
denote the standard deviation. We can see that when the
value of b is increased, the inference latency increases and
the energy consumption decreases. When b < 0:1, the
change of its value has little impact on the inference over-
head. This is because the inference latency has a lower bound,
the agent cannot further decrease the already small inference
latencywith little sacrifice of energy consumption.When b >
0:1, the inference latency and the energy consumption change
significantly with b. By adjusting the value of b, we can sat-
isfy different overhead constraint requirements.

6.5 Result With More Network Architectures

To further verify the effectiveness of the proposed
MAHPPO algorithm, we test it on two other network archi-
tectures: VGG11 [10] and MobileNetV2 [11]. We evaluate
their convergence performance and overhead saving perfor-
mance under different UE number settings.

For VGG11, we select 4 partitioning points after MaxPool
layers. ForMobileNetV2, we select 4 partitioning points after
the last batch normalization layer of residual blocks contain-
ing a downsampling layer. Other settings are the same as
previous experiment setups. Fig. 13 reports the results. The
convergence performance of both networks is similar to that
of ResNet18, and the overhead saving performance of the
MAHPPO algorithm is also similar. However, JALAD is bet-
ter than local inference on VGG11, especially for energy con-
sumption. This is because the inference overhead of VGG11
is high, which makes the overhead of entropy coding ignor-
able. In this case, JALAD is an efficient intermediate feature
compression approach, and thus achieves better perfor-
mance than local inference. The results of either network
demonstrate the effectiveness of theMAHPPO algorithm.

7 RELATED WORKS

7.1 Computation Offloading

Edge devices suffer from low computation resources and
limited energy storage, which constrains the deployment of
powerful applications. To remedy this drawback, offloading
a part of tasks to an external processor, termed computation
offloading, has become popular. Some early works offloaded
tasks to the cloud. For example, Zhang et al. [23] investigated
amobile cloud systemwith a stochastic wireless channel and

minimized the energy consumption of the mobile through
offloading. However, offloading to the cloud usually incurs
significant latency in communication and lacks flexibility. To
address these issues, MEC places edge servers on the BS to
serve users, providing a promising edge computing para-
digm for quick and flexible applications and services. Chen
et al. [7] achieved efficient computation offloading in amulti-
user multi-channel MEC scenario via game theory. Guo et al.
[24] integrated MEC into small cell networks (SCN). They
used genetic algorithm (GA) and particle swarm optimiza-
tion (PSO) to find the optimal offloading decision. Optimiza-
tion problems in MEC are usually NP-hard, since both
offloading channel selection and computation resources allo-
cation require solving integer linear programming (ILP)
problems. Traditional approaches for solving such problems
suffer fromhigh computational complexity and slow conver-
gence [16], which limits their application in the real world.

To this end, DRL provides a promising solution, and
some DRL-based algorithms have been proposed for MEC
systems. Huang et al. [25] studied the scenario where multi-
ple UEs have multiple tasks to be offloaded to the edge
server. They adopted DQL to make task offloading and
resource allocation decisions to minimize the overall over-
head. Similarly, some other previous works also adopted
DQL to assist offloading [8], [26], [27]. Chen et al. [28] used
Double-DQL to obtain an optimal computation offloading
policy. Recently, some researchers used the DDPG algo-
rithm to help MEC. Chen et al. [14] adopted DDPG to mini-
mize the long-term average energy consumption and
latency at each user in the scenario with stochastic wireless
channels and task arrival. Their work ignored the latency at
MEC servers. Nath et al. [9] discretized the resource of the
MEC server and trained a DRL agent via DDPG for offload-
ing channel selection and MEC server resource allocation.
Xie et al. [29] formulated the optimization task as a partially
observable MDP to model the fast time-varying wireless
channel and proposed a deep recurrent Q-network to find
the optimal offloading solution.

7.2 Collaborative Inference

Collaborative inference splits a DNN into two or more
parts and executes each part on different devices. Collabo-
rative inference emphasizes the deployment of DNNs,
while MEC focuses on the offloading process. The split of
DNNs can be conducted either horizontally or vertically.
We investigate the vertical split here, i.e., the split direc-
tion and the forward propagate direction are vertical. Pre-
vious works [30], [31] extracting features at local to assist
the classification in the cloud establish prototypes of col-
laborative inference. Kang et al. [4] proposed the collabora-
tive inference paradigm, where the split can be conducted
at any layer in a DNN, not only the last one. They evalu-
ated the overhead of DNN inference on the edge and
cloud, and found that a favorable split decision reduces
inference latency and saves energy significantly. He et al.
[32] proposed to offload DNN inference tasks to multiple
edge servers. They formulated an MINLP problem and
decomposed it to obtain partitioning deployment and
resource allocation decisions. To further speed up the
inference, Li et al. [33] quantized weights of the front DNN
part deployed on the UE, and the full-precision inference

Fig. 12. Impact of different hyperparameter b settings. The belts of shad-
ows present the standard deviation.
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is adopted on the cloud. Some DNN architectures are not
linear, i.e., there exist cross-layer connections, such as Den-
seNet [34], where a single point cannot achieve the parti-
tion. To bridge this gap, Hu et al. [35] depicted DNNs by
direct acyclic graphs and adopted graphic algorithms to
find the partitioning strategy. Yousefpour et al. [36] stud-
ied the failure of physical nodes when distributing DNN

over multiple devices. They introduced hyper connections
between multiple devices to achieve robust collaborative
inference. There are very few works combining MEC with
collaborative inference to our best knowledge. Yang et al.
[37] studied a multi-agent MEC scenario with collabora-
tive inference tasks. However, they assumed a fixed uplink
rate, ignoring the interference in the wireless channel.

Fig. 13. Results with more network architectures: intermediate feature compression rate on (a) VGG11 and (b) MobileNetV2; convergence perfor-
mance of different UE number settings on (c) VGG11 and (d) MobileNetV2; averaged inference overhead of different UE number settings on (e)
VGG11 and (f) MobileNetV2.

HAO ETAL.: MULTI-AGENTCOLLABORATIVE INFERENCE VIA DNN DECOUPLING: INTERMEDIATE FEATURE COMPRESSION... 6053

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 17:39:25 UTC from IEEE Xplore.  Restrictions apply. 



There are also works compressing intermediate features at
partitioning points to reduce the offloading latency. For exam-
ple, Shi et al. [38] pruned channels of a DNN, so the size of fea-
ture maps at partitioning points is reduced. Li et al. [12]
adopted quantization and Huffman coding to achieve feature
compression. Some works also designed convolution autoen-
coders to compress intermediate features. Eshratifar et al. [5]
was the first to propose to use autoencoders to compress fea-
tures. They compressed the features with depthwise separa-
ble convolution [39] and then the output with the JPEG
algorithm. Jankowski et al. [40] adopted a pure DNN architec-
ture, where both the encoder and the decoder consist of a con-
volution layer, a batch normalization layer, and an activation
function. However, these autoencoder compressors are com-
plex, bringing significant additional overhead in inference.
There are works adopting other autoencoders [6], [41], but
theseworks also suffer from the complex architecture.

To tackle the above problem, we combine MEC with col-
laborative inference and assume a real-world communication
environment. Also, we design a lightweight autoencoder to
reduce the size of offloaded data with little extra latency and
energy consumption.

8 CONCLUSION

In this paper, we proposed a novel framework to achieve effi-
cient multi-agent collaborative inference, where we first pro-
posed an autoencoder-based intermediate feature compression
method to enable flexible partitioning point selection. Then we
formulated the problem, which was then redefined to facilitate
optimization. Finally, we proposed an MAHPPO algorithm,
which was composed of multiple actor networks and one
global critic network, to solve the optimization problem. We
conducted extensive experiments to verify the effectiveness of
the proposed framework. The results showed that our frame-
work can remarkably reduce the inference latency and energy
consumption inmulti-agent collaborative inference scenario.
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