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Adaptive Learning Hybrid Model for Solar
Intensity Forecasting
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Abstract—Energy management is indispensable in the
smart grid, which integrates more renewable energy re-
sources, such as solar and wind. Because of the intermit-
tent power generation from these resources, precise power
forecasting has become crucial to achieve efficient energy
management. In this paper, we propose a novel adaptive
learning hybrid model (ALHM) for precise solar intensity
forecasting based on meteorological data. We first present
a time-varying multiple linear model (TMLM) to capture the
linear and dynamic property of the data. We then construct
simultaneous confidence bands for variable selection. Next,
we apply the genetic algorithm back propagation neural net-
work (GABP) to learn the nonlinear relationships in the data.
We further propose ALHM by integrating TMLM, GABP, and
the adaptive learning online hybrid algorithm. The proposed
ALHM captures the linear, temporal, and nonlinear relation-
ships in the data, and keeps improving the predicting per-
formance adaptively online as more data are collected. Sim-
ulation results show that ALHM outperforms several bench-
marks in both short-term and long-term solar intensity fore-
casting.

Index Terms—Artificial neural network (ANN), genetic al-
gorithm back propagation neural network, local linear es-
timation (LLE), online adaptive learning, solar intensity
forecasting.

NOMENCLATURE

Notation

Symbol Description
Y solar intensity
X meteorological variables
Xp the pth meteorological variables
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�X vector of meteorological variables
βp coefficient of the pth meteorological variable
�β vector of meteorological variable coefficients
εl error of linear model
�X(t) vector of meteorological variables at time t
�β(t) vector of meteorological variable coefficients at

time t
Y (t) the actual value of solar intensity at time t
Ŷ (t) the predicted solar intensity at time t
Ỹ (t) corrected predicted solar intensity at time t
εl(t) the error of linear model at time t

�̂β(t) estimated value of �β(t)
εh(t) the error of hybrid model at time t
E(·) nonlinear part of prediction model
�β′(t) derivative of �β(t)
h bandwidth for LLE
ĥ estimated value of h
K(·) kernel function
n number of total observations
�̂βh(t) estimated value of �β(t) under the bandwidthh

�̂β′
h(t) derivative of �̂βh(t)

Λ(t) covariance function
([ �X], [Y ]) training data set
ω weights of GABP training by [ �Xo ]
θ thresholds of GABP
e mean square error of GABP

I. INTRODUCTION

IN RECENT years, smart grid (SG) has become an irre-
versible tendency in many countries all over the world. The

advanced techniques from many fields, including industrial in-
formatics, power electronics, and automatic control make SG a
sustainable power grid, which integrates more renewable energy
sources, such as solar and wind [1], [2]. Because of the inter-
mittency of renewable power generation, energy management
is thus very important to improve the reliability, efficiency, and
utility of a SG [3]–[5]. It is mentioned in [5] that energy man-
agement efficiency can be greatly improved if the renewable
energy generation can be predicted more accurately [6]–[8].
Thus, predicting renewable energy generation in the SG has at-
tracted great interests [9], [10], mainly focusing on predicting
solar power for their wide range of utilization.

1551-3203 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 18:50:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6281-5297
https://orcid.org/0000-0002-0803-4657
https://orcid.org/0000-0002-7052-0007
https://orcid.org/0000-0002-6454-3210
https://orcid.org/0000-0003-4727-3041


1636 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 4, APRIL 2018

Fig. 1. Structure of a typical three-layer BPNN.

Solar power generation from solar panels are proportional to
solar intensity, power generated per unit area. Therefore, pre-
dicted solar power can be acquired by predicting solar intensity,
which is related to meteorological variables. Many recent works
focus on the meteorological-data-based solar intensity forecast-
ing problem by presenting different methods [2], [11]. Sharma
et al. [2] provides acceptable predicting results using SVM re-
gression, and Silva et al. [11] proposes the Hybrid Fuzzy In-
ference System algorithm as solar intensity forecast mechanism
but it lacks a deep analysis of the solar power generation and
weather data.

Learning techniques are also used to predict solar intensity,
capturing the relationships between solar intensity and the mete-
orological variables. Artificial neural network (ANN) [12]–[14]
is also a commonly used learning algorithm for complex func-
tion approximation, and it has a group of members, including
the radial basis function neural network (RBFNN), back prop-
agation neural network (BPNN), and the self-organizing neural
network (SONN).

A typical three-layer BPNN is shown in Fig. 1, which is com-
posed of one input layer, one hidden layer, and one output layer.
BPNN can capture the relationships quickly, which makes it
a better choice over many other ANNs, such as RBFNN with
slower action. Besides, the computing loads can be reduced
through optimization [15]. This allows it to work with a simpler
structure comparing to other ANNs using deep learning, such as
SONN. So BPNN can theoretically approximate any function
at arbitrary precision [16] under a relatively simple mechanism.
However, it is easy for BPNN to fall into the local minimum
problem during training process. Fortunately, genetic algorithm
(GA) provides a suitable way to solve the problem, which forms
GA back propagation neural network (GABPNN, abbreviated
as GABP). Although GABP is famous for function approxima-
tion, the relationship between solar intensity and meteorological
variables is too complicated to capture all the linear, nonlinear,
even temporal relations. Therefore, if the linear and temporal
factors can be departed from the data, GABP can focus on the
remaining nonlinear relationship, and its performance could be
further improved as well. In this case, a basic three-layer struc-
ture is preferred for faster training and it avoids the complicated
process of searching for a suitable structure of the GABP.

On the other hand, because of the highly complicated rela-
tionship between solar intensity and meteorological variables,
it is not possible to capture all the linear and nonlinear relations

based on limited amount of data for any method. Therefore, a
model capable of online adaptive learning would be highly de-
sirable in predicting solar intensity as more data are collected.
Motivated by this, we start from the basic MLR, because it shows
some linearity between solar intensity and meteorological vari-
ables. We then present a hybrid forecasting model integrating
a time-series local linear model and a three-layer GABP, cap-
turing the linearity, temporal, and nonlinear nature of the data,
respectively. Based on this hybrid model, we further propose
an innovative ALHM, which performs variable selections, and
learns adaptively from the new data and, thus, increases the
predicting accuracy to a very high level.

The main contribution of this paper is the proposal of the
ALHM for meteorological-data-based solar intensity forecast-
ing. First, it is based on the integration of the time-varying mul-
tiple linear model and a simple structure GABP, which dig out
useful information inside the meteorological data and filter out
the redundant data. The time-varying multiple linear model cap-
tures the linear relationships and time-varying features, and the
three-layer GABP learns the nonlinear relationships in the data
with faster training and searching. These two methods are good
complement to each other to guarantee satisfactory predictions.
Also, it is capable of online and adaptive learning which im-
proves the predicting performance. This superior quality makes
it possible to provide more accurate predictions as more data col-
lected, even the initial training data size is limited. Furthermore,
our model can also be adaptive to other data-based forecasting
problem, which is not restricted to the place and time scale, such
as predicting wind power, power grid load, traffic volumes, and
stock prices.

The remainder of this paper is organized as follows. We
present statistical formulation and several forecasting models
in Section II. We propose the adaptive learning online hybrid
algorithm in Section III. Performance evaluation is presented in
Section IV. Section V concludes this paper.

II. MODEL CONSTRUCTION

In this section, we first introduce the basic linear regression
model for predictions from the original statistical formulation
and the general time-varying multiple linear model and learning
model are then derived from this, which can improve forecasting
precision from the temporal and nonlinear properties of the data,
respectively. Based on these models, we finally propose the
ALHM. Construction of ALHM is shown in Fig. 2.

A. Statistical Formulation

In the meteorological-data-based solar intensity forecasting
problem, solar intensity is considered to be connected to sev-
eral meteorological variables such as temperature, humidity, and
precipitation. However, the connection appears to be very com-
plicated in most weather conditions. Therefore, the problem is
normally formulated statistically as follows:

Y | �X ∼ P
(
·, f

(
�X

))
(1)
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Fig. 2. Construction of the adaptive learning hybrid model (ALHM).

where P (·, θ) represents a stochastic increasing family of func-
tion with parameter θ as the covariate of �X , and f(·) is an
unknown smooth function. Unfortunately, the analytic expres-
sion of f(·) is too complex to acquire in the solar intensity
forecasting problem, where solar intensity Y and meteorolog-
ical variables �X are linked together through f(·), written as
Y = f( �X). Therefore, an alternative option is to explore suit-
able models which approximate f(·) as much as possible, given
a dataset including meteorological variables and solar intensity.

B. Multiple Linear Model

In traditional statistical analysis, the MLR model is a funda-
mental method to quickly generate a linear function between
variables and response. It is quite effective in representing a lin-
ear relationship, but is not possible to represent any nonlinearity.
Because it shows fairly strong linearity between solar intensity
and some meteorological variables, the overall performance of
MLR in predicting solar intensity is acceptable and even good
for some sunny days. The MLR model is written as follows:

Y = �XT �β + εl (2)

where �X = (1,X1, . . . Xp−1)T and �β = (β0, . . . βp−1)T are
both p × 1 vectors, Y represents the solar intensity,
X1, . . . , Xp−1 are meteorological variables, �β are coefficients,
and εl is error term in the linear model.

C. Time-Varying Multiple Linear Model

MLR is constructed using the spatial linearity between solar
intensity and weather variables, however, the meteorological
data are often recorded in time series and it usually shows a
strong correlation between two adjacent data points in a time
series. For example, the solar radiation at noon is closely related
to that at 11:00 in the same day. This relation grows stronger
as time intervals get shorter. Therefore, processing the weather
data as time series accords with the natural generations. Based
on MLM in (2), we can write the time-varying MLM model in
time series as follows:

Y (t) = �XT (t)�β(t) + εl(t), t ∈ R (3)

where solar intensity Y , meteorological variables �X , coeffi-
cients �β, and the error εl in (2) are transformed to continuous

time series by adding time indicator (t). It contains both spatial
and temporal features. Based on this, we further propose the

local linear model to acquire the estimated coefficients �̂β(t) and
make variable selections in Section III.

D. Hybrid Learning Model

Although the time series has been added to the MLR model,
the nonlinear relationships in the weather data are not reflected
well. To further improve the accuracy, a new function E(·) is
added to (3) to construct a new model as

Y (t) = �XT (t)�β(t) + E
(

�XT (t), �XT (t)�β(t)
)

+ εh(t) (4)

where t ∈ R and E( �XT (t), �XT (t)�β(t)) represents part of the
modeling error εl(t) from (3), which can be revealed by some
learning model, and the remaining error in the model is εh(t),
which is expected to be less than εl(t) in (3). �XT (t)�β(t) here is
the predicted solar intensity from the previous time-varying lin-
ear model. E(·) is a function of �XT (t) and �XT (t)�β(t), which
means the model learns the nonlinear relationship from both
weather variables and the predicted solar intensity. As intro-
duced in Section I, GABP is a good option to get a precise E(·).
We present the utilization of GABP in Section III-C. Although
GABP is able to reveal any function in any dataset, it becomes
more difficult to reach the real function when more data and
relationships are included, because the structure of GABP be-
comes more complicated. By separating the nonlinear part of
the error, it not only reduces the complexity of the data, but
also takes full advantage of the linear relationship, which can be
strong sometimes in the meteorological data (see Section IV).
Therefore, E(·) here is taken as the error caused by nonlinear
relationship.

E. Adaptive Learning Hybrid Model

In the data-based solar intensity forecasting problem, we have
built the model exploring different characteristics of the data,
including linearity, time series, and nonlinearity. It is also very
important for the model to keep learning online as more data
collected, so that the model becomes more and more accurate.
The predicting model should also be adaptive for different places
and different time scales, because different places have different
climates with different related function between weather vari-
ables and solar intensity and in different applications, it requires
predictions on multiple time scales from minutes to day ahead.
For short-time predictions, the data size needs to be controlled
as well to guarantee the computing time shorter than the time
interval. With the ability of adaptive online learning, it is possi-
ble to reduce the forecasting errors gradually in any type of data
for different time scales. To capture the above characteristics,
we thus propose the adaptive learning online hybrid algorithm
in Section III-D to realize online adaptive learning.

III. ADAPTIVE LEARNING ONLINE HYBRID ALGORITHM

In this section, we present the forecasting algorithms solv-
ing the functions in the models stated above. We begin from
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proposing local linear estimation (LLE) followed by simultane-
ous confidence bands (SCB) construction and variable selection.
Then, we present GABP and propose the adaptive learning on-
line hybrid algorithm.

A. Local Linear Estimation

Because MLR is a well-developed model, we begin from
proposing the LLE to solve the time-varying coefficients �β(t)
in the time-varying MLM.

It is noted that in (3), �β(t) is a continuous-time function.
Therefore, for ti close to t, we have �β(ti) = �β(t) + (ti −
t)�β′(t), and thus for any time ti close to t , we can rewrite (3)
to have the local linear model as [17]

Y (ti) = �XT (ti)
(
�β(t) + (ti − t)�β′(t)

)
+ ε(ti), ti ∈ t ± h

(5)

where the bandwidth h is the size of the local neighborhood.
This model divides the time series into periods and creates lin-
ear models using local data. This way, we treat the data as a
continuous-time series, and exploit the strong correlations be-
tween close time periods in weather data. Then, we present the
least squares method for linear regression to identify the time-
varying coefficients �β(t). Because a closer neighbor would have
a stronger effect, while a further neighbor weaker, we need to
add weights on the terms. Usually a kernel function K(·) is
assigned to each point, which is a symmetric density function
defined on [− 1, 1] [17]. Here, we use a popular Epanechnikov
kernel

K(a) =

{
3(1 − a2)/4, if |a| ≤ 1

0, if |a| > 1

which decays fast for remote data point. Then, we have the
following weighted least squares problem to solve:

min :
∑

ti ∈t±h

(
Y (ti) − �XT (ti)

(
�β(t) − (ti − t)�β′(t)

))

K

(
ti − t

h

)
. (6)

At each time t, we solve for coefficients �̂βh (t) and �̂β′
h (t) under

the bandwidth h. Suppose the total number of observations is n,
we can pick ti simply as ti = i/n, 1 ≤ i ≤ n, and denote Y (ti)
as yi and �X(ti) as �xi . From [18], we can solve (6) by calculating
the following matrices Sk (t) and Rk (t):

Sk (t) =
n∑

i=1

�xi�x
T
i

(
ti − t

h

)k

K

(
ti − t

h

)
/(nh) (7)

Rk (t) =
n∑

i=1

�xiyi

(
ti − t

h

)k

K

(
ti − t

h

)
/(nh) (8)

where k = 0, 1, 2, . . .. We, then, have

( �̂βh(t)

h�̂β′
h(t)

)
=

(
S0(t) ST

1 (t)
S1(t) S2(t)

)−1(R0(t)
R1(t)

)
. (9)

To solve problem (6) for the complete model using (7) to (9),
we need to fix bandwidth h and h is the bandwidth which deter-
mines the size of data used to estimate for a local linear model at
time t. If h is too small, many useful points are not included and
the relevant information would miss which may cause a huge er-
ror. While, if it is too large, more remote points are included and
much unnecessary information would follow, which increases
the computation complexity and reduce the smoothness of the
model at the same time. Therefore, it is important to choose a
proper h.

For constant bandwidth selection considered in the model, we
adopt the generalized cross-validation (GCV) technique [19].
Similar to the coefficients �β estimated from the observed data

[ �X] and [Y ]. Thus, a square hat matrix H(h) exist for �̂Y =
H(h)�Y [20], depending on the bandwidth. Then, we can choose
the bandwidth h by

ĥ = arg min

⎧
⎪⎨
⎪⎩

∣∣∣ �̂Y − �Y
∣∣∣
2

n(1 − tr{H(h)}/n)2

⎫
⎪⎬
⎪⎭

(10)

where tr(·) is the trace of the matrix.
Therefore, we can get the estimated Ŷ (t) as

Ŷ (ti) = �XT (ti)
(
�̂βĥ(t) + (ti − t)�̂β′

ĥ
(t)

)
, ti ∈ t ± ĥ. (11)

B. SCB and Variable Selection

In linear regression, confidence intervals indicate the possi-
ble coverage of the coefficient β̂ under a typical probability.
Similarly, we can construct the coverage for the time-varying
coefficients β̂(t), which turns to be a band through time, the
SCB. The mathematical details to construct SCB is shown in
the Appendix.

The SCB provides a dynamic and comprehensive view on
�β(t). In a linear regression, the confidence interval provides a
measure of the overall quality of the regression line [20]. In lo-
cal linear model, the SCB illustrates the overall pattern of �β(t)
and the accuracy of the model. Confidence bands with smaller
width imply a better model with smaller variability, while very
wide confidence bands are limited in using. Note that the SCB
is constructed under a complete analysis on the continuous-
time assumption, which is not merely the connections of the
pointwise confidence intervals. More importantly, the SCB in-
dicate whether the coefficients �β(t) are truly time-varying or not.
Specifically, if a horizontal line is covered by the SCB of a βk (t),
we accept the hypothesis that βk (t) is constant and not time-
varying. This provides a good way to select time-varying vari-
ables. Normally, the variables with narrow SCBs, which does not
cover any horizontal line, are preferred and kept in the model.
The selected variables are then used in (5) to make predictions.

C. GA Back Propagation Neural Network

It is discussed in Section II-D that E(·) is required to com-
pensate the error capturing the nonlinear relations between the
previous predicted errors and the meteorological data. Here, we
apply GABP to acquire a satisfactory E(·).
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As stated in Section I, BPNN can theoretically approximate
any nonlinear function at arbitrary precision under a three-layer
structure. The major drawback of BPNN is that it sometimes
ends in local optimum during iterative calculations. The GA is
then used to solve this local minimum problem. GA is a parallel
stochastic searching method, initially proposed to simulate the
natural genetic mechanism in biological evolution theory, can
reach the optimal value quickly and precisely. It is thus a good
complement to BPNN. By optimizing the initial weights and
thresholds of BPNN through GA, it forms the algorithm of
GABP [21].

Considering both the nonlinear representation and the com-
putation speed, we choose three-layer GABP with single hidden
layer as our learning model. Given training data, GABP learns
the function E(·) in (4), and corrects the predicted solar intensity
to be Ỹ (t) by

Ỹ (t) = Ŷ (t) + E
(

�X(t), Ŷ (t)
)

(12)

where Ŷ (t) is predicted solar intensity from time-varying mul-
tiple linear model (TMLM).

D. Adaptive Learning Online Hybrid Algorithm

Based on (12), we update the predicted solar intensity to
Ỹ (t) from Ŷ (t). However, it cannot guarantee the predicting
errors to reduce for new data. Therefore, we further propose the
adaptive learning online hybrid algorithm (ALOHA) to improve
the forecasting accuracy as more data collected.

For a group of new data at time t, the predictions are made
using (11) and (12) for HLM and TMLM, respectively, we can
write the predicting errors from these two models as

εl(t) =
∣∣∣Ŷ (t) − Y (t)

∣∣∣ (13)

εh(t) =
∣∣∣Ỹ (t) − Y (t)

∣∣∣ (14)

where Ŷ (t) and εl(t) are the predicted solar intensity and
predicting error in TMLM, respectively, and Ỹ (t) and εh

are those in HLM, respectively. The effect of GABP can be
demonstrated by comparing εh(t) with εl(t). If εh(t) < εl(t),
it means that the trained GABP successfully reduces the pre-
dicted error, and thus, GABP does not need to learn this
new data further; if εh(t) ≥ εl(t), it means that the current
GABP fails to reveal the nonlinearity in the new data and
even causes larger predicting error and, thus, the data are
added to the previous dataset to train GABP again. This al-
lows GABP to make better predictions next time when simi-
lar data are encountered in future. In this way, the predicting
performance of the model improves gradually as more data
collected.

Besides learning from new data, it is also important to
avoid the new data from lowering the overall predicting
performance.It is thus necessary to filter out the new data
which may cause worse overall predicting performance. The
mean square error (MSE) is a good way to quantify the overall

Algorithm 1: The Adaptive Learning Online Hybrid Algo-
rithm for Solar Intensity Predictions.

1 Based on the historical data ([ �X], [Y ])o , choose
proper bandwidth ĥ from (10) and get the coefficients
�̂β(t) from (9) to construct the TMLM by (11);

2 Use ([ �X], [Y ])o to train GABP, obtain HLM by (12) and
record its weights ωo and the thresholds θo . Find the
predicting MSE eo using (15);

3 For a new group of meteorological data �X(t) at time t,
get the predicted solar intensity Ŷ (t) from (11), and
then acquire the corrected Ỹ (t) from (12);

4 Obtain the errors from two models εl(t) and εh(t)
from (13) and (14). If εh(t) > εl(t), go to the next step;
else jump to Step 8;

5 Use ωo and θo as initials to train GABP again on the
data ([ �X], [Y ])n by adding �X(t), Y (t) to ([ �X], [Y ])o ;

6 Obtain the new predicting MSE en . If en < eo , go to
the next step; else jump to Step 8;

7 Update ([ �X], [Y ])o , ωo , θo and eo with ([ �X], [Y ])n , ωn ,
θn and en respectively;

8 Keep ([ �X], [Y ])o , ωo , θo and eo unchanged, and repeat
from Step 3 until all new data are processed.

predicting performance of a model, defined as

e =
1
n

n∑
i=1

(εl(i) − ε̂l(i))
2 (15)

where εl is the actual error of TMLM, ε̂l is the error from
GABP, and n is number of the whole historical training
data.

Denote the initial training data as ([ �X], [Y ])o , and record
the trained GABP’s weights as ωo , thresholds as θo , and the
MSE of the predictions as eo on ([ �X], [Y ])o . For a new data, if
εh(t) ≥ εl(t), it is added to ([ �X], [Y ])o forming a new training
data, denoted as ([ �X], [Y ])n , and the original ωo and thresholds
θo are taken as the initials of the new training. New GABP’s
weights ωn , thresholds θn , and MSE en of the predictions on
([ �X], [Y ])n are obtained after the training. en is then compared
to the old one eo . If en ≥ eo , it means the MSE of predictions in-
creases and the overall predicting performance decreases. Thus,
the new data are filtered out, and the previous ([ �X], [Y ])o re-
mains as the historical training data, and ωo , θo , and eo remain
the same. If en < eo , it means that with new data added, the
MSE of predictions decreases, and the overall predicting per-
formance improves. Therefore, the historical training data are
updated as ([ �X], [Y ])n , and GABP is updated accordingly to
be ωn and θn , and the new MSE is en . For every new data,
follow the above steps to guarantee the overall predicting ac-
curacy increases until the limit of the model, where GABP
digs out all the possible nonlinearity in the meteorological
data.

By establishing the above two restrictions, it selects only ben-
eficial data, so that the GABP evolves to be better and better.
The steps of ALOHA are described in Algorithm 1, and the
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Fig. 3. Flowchart of ALOHA.

flowchart is depicted in Fig. 3. Through the combination of
MLR, LLE, and GABP, ALOHA first generates acceptable pre-
dictions on solar intensity given any historical data in any time
scales. Then, as more data collected, ALOHA is able to make
more precise predictions with the help of the online adaptive
GABP learning, and the more data it learns, the better ALOHA
predicts on the solar intensity. It is thus very desirable for pre-
dicting power generation from solar energy and many other
renewable energy resources.

IV. PERFORMANCE EVALUATION

In this section, we present the trace-driven simulation re-
sults from different models and algorithms proposed in pre-
vious sections, and compare the performances of them for
meteorological-data-based solar intensity forecasting. Then, we
compare performances between the model ALHM and two
benchmarks for different time scales.

A. Data Description

We apply the proposed methods using the real data from the
UMASS Trace Repository [22], which records the solar intensity
in watts/m2, and the data of several meteorological metrics from
January 2015 to February 2017. It recorded the meteorological
data every 5 min. Many meteorological variables were observed
in details. We consider five main variables, including temper-

Fig. 4. Daily solar intensity for 2015 and 2016.

ature, humidity, dew point, wind speed, and precipitation. We
predict daily solar intensity averaged on the day time when the
solar intensity is nonzero, based on the averaged meteorological
variables. It is note that the model we propose can be applied
to any time scale, our major results are based on daily predic-
tions, because daily power generation forecasting is necessary
for power management, especially for some power grids with a
large part of power generation from renewable energy resources.
We also evaluate our model under the shortest time scale of
5 min, compared to two other benchmarks in Section IV-E.

The data are departed into two parts, one of which is used
as the initial training data to build forecasting models, and the
other is used to test the forecasting accuracy. Here, we pick
the data of two years from January, 2015 to December, 2016
as the training data, and the data of January and February in
2017 as the test data. The daily solar intensity from 2015 to
2016 is plotted in Fig. 4, which shows an apparent seasonal
pattern. It is also interesting to see a similar pattern for daily
observations, and similar patterns can also be found for other
meteorological variables. Fig. 4 also shows a strong correlation
between two consecutive days, which offers a basis for applying
LLE in building TMLM.

The proposed models are constructed based on the data, and
the performances of them on predicting daily solar intensity are
compared. Then, we compare the outstanding ALHM on two
benchmarks for both daily and 5-min predictions.

B. Predicting Performance of TMLM

1) TMLM construction: We first write the TMLM model

ŷi = β̂0(i/n) +
5∑

p=1

β̂p(i/n)xp,i , for i = 1, . . . , n (16)

where ŷi is the predicted solar intensity, xp,i , p = 1, . . . , 5 rep-
resent the series of temperature in Fahrenheit, humidity in per-
centage, dew point in Fahrenheit, wind speed in miles per hour,
and precipitation in inches respectively, and n = 731 in the
training data; β̂0(·) is the intercept, and β̂p(·) are the associated
coefficients for xp,i . The meteorological variables are centered
on their averages so that the intercept β̂0(·) can be interpreted
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Fig. 5. SCB of 95% for temperature.

Fig. 6. 95% SCB for Wind.

as the expected solar intensity and we quantify the forecasting
accuracy of a model by mean absolute percentage error (MAPE)
and root mean square error (RMSE):

MAPE =
1
n

n∑
i=1

|ŷi − yi |
yi

× 100% (17)

RMSE =

√
1
n

∑n

i=1
(ŷi − yi)2 (18)

where yi is the real solar intensity at i.
2) Variable selection by SCB: According to Algorithm 2

presented in Appendix, we select the bandwidth h = 0.25 and
get the coefficients βp(·). We show the SCB for temperature,
wind, and precipitation in Figs. 5 to 7. Other SCBs are simi-
lar to that for temperature, and thus not depicted here. In each
figure, the middle thick solid curve is the estimated series for
the variable; the upper and lower solid curves are the envelops
for the SCB for each variable. Based on the SCBs, we can test
whether a coefficients is significantly associated with the solar

Fig. 7. 95% SCB for Precipitation.

intensity, which equals to test

H0 : βp(t) = 0 ∀t ∈ [0, 1]; v.s. H1 : βp(t) �= 0,∃t ∈ [0, 1].

If the zero line is included in the SCB, we accept the hypothesis
that the coefficient is not significant and could be omitted from
the model; otherwise, we keep it in the model. We can also test
whether the coefficients are constant, by attempting to include
a constant horizontal line into the SCB. This is equal to testing

H0 : βp(t) = cp ∀t ∈ [0, 1]; v.s. H1 : βp(t) �= cp ,∃t ∈ [0, 1]

where cp is a constant of each p. If the line is covered, we
accept that the coefficient is constant; otherwise, it is not. As
we center all the weather variables on their averages, the SCB
of the βp(t) actually indicates the effect on the solar intensity.
In Fig. 5, the zero line is not covered, while in Figs. 6 and 7,
the zero line is covered by the 95% SCB. Therefore, we can
conclude that for a level of 95%, temperature, humidity, and
dew point have a strong effect on solar intensity, but the effect
from wind and precipitation are weak. Also, we accept β1(t) to
β4(t) as time-varying coefficients, because a constant horizontal
line cannot be covered entirely in those SCBs. Therefore, we
select three meteorological variables of temperature, humidity,
and dew point, in the following models.

3) Performance evaluation of TMLM: The updated TMLM
of three variables are used to predict the daily solar intensity
from January 1 to February 28 in 2017. The predicted solar
intensity data points are shown in Fig. 8, comparing to the actual
observations. The predicting MAPE is 21.16% and RMSE is
28.65 watts/m2. This result of TMLM is better than that of
MLR with 24.72% and RMSE 33.49 watts/m2. For the testing
data of only 59 points, this overall performance is acceptable,
however, some points have relatively large predicting errors, for
example, the data from Day 6 to 8, Day 22 to 24, etc. Obviously,
predictions from TMLM require further corrections.

C. Predicting Performance of HLM

The HLM model can be rewritten as

ỹi = ŷi + E(�xi, ŷi) + β̂0(i/n), for i = 1, . . . , n (19)
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Fig. 8. TMLM-based solar intensity predictions versus observations.

Fig. 9. HLM-based solar intensity predictions versus observations.

where ỹi is the corrected solar intensity predictions by HLM,
E(·) is acquired from the trained GABP. The predicting results
on the testing data are shown in Fig. 9. The MAPE and RMSE are
calculated replacing ŷi by ỹi in (17) and (18), respectively. From
the figure, it can be seen that the predicting curve tracks the ac-
tual solar intensity much better than the previous TMLM model.
The MAPE and RMSE of HLM are 14.18% and 20.93 watts/m2

respectively, which are much smaller than those from TMLM.
However, there are still some inaccurate predictions, i.e., Day 6,
23, 26, 35, 36, and 52. This implies GABP does not learn these
points well and the model HLM needs further enhancement.

D. Predicting Performance of ALHM

According to Algorithm 1, we now apply the ALOHA to
construct ALHM. Fig. 10 shows its predicting results, with the
MAPE 13.68% and the RMSE 20.16 watts/m2. The predicting
MAPE and RMSE for the presented models are summarized
and compared in Table I in the first four rows. Comparing the
results from HLM, solar intensity predictions of four days are
corrected, including Day 23, 26, 36, and 52. The predicting
accuracy has been improved slightly, because the total testing
data contain only 59 days, and 32 of them are already predicted
very well.

Fig. 10. ALHM-based solar intensity predictions versus observations.

TABLE I
PREDICTING PERFORMANCE ON MAPE (%) AND RMSE (WATTS/M2) FOR

DIFFERENT MODELS FROM JANUARY 1 TO FEBRUARY 28, 2017

Further, ALOHA is designed to learn from the inaccurate data
points which are also helpful in reducing the overall MSE. In
this case, there are only three days added to the initial training
data, although 24 days are considered as inaccurate points. This
is because the ALOHA works very strictly in choosing the most
valuable new data. So ALHM is able to improve gradually and
adaptively. However, this does not mean the model improves
very slowly, because the training process of GABP has some
randomness. If the training path fits the new data very well,
the model improves fast and greatly. To further evaluate the
performance of ALOHA, we redistribute the original data to
have fewer training data and more testing data.

We now select the data from January 1, 2015 to August 30,
2016 as the training data, and the left data from September 1,
2016 to February 28, 2017 are used to evaluate predicting per-
formance of ALHM. Here, HLM decides the predicting function
based on the training data, while the Updating HLM (UHLM)
updates the training data for every new data, based on which the
predicting function is renewed every day.

The predicting RMSE of HLM, UHLM, and ALHM are com-
pared month to month in Table II, where the sizes of training data
for different models are also listed. It can be seen that HLM has
the largest predicting errors because of the fixed fewest training
data. UHLM has the best predicting accuracy and the largest
training data. ALHM performs very close to UHLM with much
less training data. By comparing ALHM to HLM, it confirms the
gradual improvement of ALHM in solar intensity predictions.
Comparing to UHLM, ALHM successfully holds the most influ-
ential data and control the data size very well with comparable
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TABLE II
MONTHLY AVERAGE RMSE IN WATTS/M2 AND THE SIZE OF TRAINING DATA

FOR HLM, UHLM, AND ALHM FROM SEPTEMBER 2016 TO FEBRUARY
2017

Fig. 11. Overall predicting MSE of ALHM for 173 days.

predicting accuracy. Comparing to ALHM under the previous
training data, the average predicting RMSE from January 1 to
February 28, 2017 reduces from 16.95 to 15.89 watts/m2. The
ALHM under new initial training data performs better, learn-
ing only 14 new data online, comparing to the previous one
of four more months of data offline. This fully confirms the
effectiveness of adaptive online learning ability of ALHM.

To further illustrate the learning process of ALHM, we show
the decreasing of normalized predicting MSE through the testing
data of six months in Fig. 11. In the figure, every step down
of the curve indicates a learning happens. It is observed that
among the total 173 days, only 14 days of data are allowed to
be updated in the new training data, although 67 days of data
are considered inaccurate. This shows again the strict filtering
standard by ALOHA, and the learning ability of GABP.

E. Comparisons of ALHM to Two Benchmarks

We now compare ALHM to popular supervised learning mod-
els used in meteorological-data-based solar intensity forecasting
problem, such as ANN [12], [14], and SVM [2]. Based on the
same initial training data of 2015 and 2016, the predicting re-
sults using ANN and SVM are shown in Figs. 12 and 13, respec-
tively. The MAPE of SVM and ANN are 20.39% and 18.41%,
respectively, comparing to 13.68% for ALHM. Based on the
same training data, ALHM achieves more precise predictions.

Fig. 12. ANN-based solar intensity predictions versus observations.

Fig. 13. SVM-based solar intensity predictions versus observations.

Then, we compare the performance of these models for short-
time predictions. For ANN and SVM, we use the historical
data from January 1 to December 30, 2016 as training data.
For ALHM, we set the historical data from January 1 to June
30, 2016 as initial training data, and the data from July 1 to
December 30, 2016 are used to improve the model. The models
now predict every 5 min for two days of January 1 to January 2,
2017. The predicted daytime solar intensity of ALHM, ANN,
and SVM for the two days are plotted in Figs. 14 and 15, re-
spectively. The solar intensity in January 1 fluctuates more than
January 2. Both figures show that ALHM predictions track the
actual solar intensity data much better than the other two models.
The MAPE for ALHM, ANN, and SVM are 8.66%, 15.24%,
and 16.87%, respectively, for January 1, and 11.74%, 18.84%,
and 21.05% for January 2.

Note that the predictions by SVM are not satisfactory, be-
cause it lacks a deep analysis of the solar power generation and
weather data, by simply trying different SVM kernels. ANN tries
to capture the relationship between solar intensity and meteo-
rological variables directly. Although this is theoretically avail-
able as discussed in Section I, it is very difficult to realize in
applications but in ALHM, TMLM focuses on linearity repre-
sentation, and GABP focuses on learning the nonlinear relation-
ship. They function together to achieve more accurate predic-
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Fig. 14. Five-minute predictions from ALHM, ANN, and SVM versus
observations on January 1, 2017.

Fig. 15. Five-minute predictions from ALHM, ANN, and SVM versus
observations on January 2, 2017.

tions. In conclusion, ALHM outperforms ANN and SVM for
both daily and 5 min predictions.

V. CONCLUSION

In this paper, we developed ALHM for meteorological-
data-based solar intensity predictions. We first presented the
fundamental multiple linear model. Then, we propose the time-
varying multiple linear model and hybrid learning model, which
improve the model from the aspects of time series and intelligent
learning. We then proposed the ALHM to learn the nonlinear
relationship in the data to further improve the predicting ac-
curacy. The proposed models were validated with trace-driven
simulations.

APPENDIX

A. Construction of SCB

The approach of SCB analysis assumes locally stationary
processes for both �X(t) and ε(t) [23]. The locally stationary
process guarantees the stationary property for local time series,
and is useful for LLE. It actually belongs to a special class of

nonstationary time series as

�xi = �G(ti , Fi), εi = H(ti , Fi), i = 1, 2, . . . , n (20)

where �G(ti , Fi) and H(ti , Fi) are measurable functions well
defined on ti ∈ [0, 1] , Fi = (. . . , ξi−1, ξi) with {ξi}i∈Z are in-
dependent and identically distributed (i.i.d.) random variables,
and E(εi |�xi) = 0. Equation (20) can be interpreted as physical
systems with Fi (and xi and εi) as the inputs (and the outputs
respectively), and G and H representing the underlying physical
mechanism [24].

Based on the above assumptions, the central limit theorem for
�̂β(t) states that: supposing nh → ∞ and nh7 → 0 [24], then for
any fixed t ∈ (0, 1),

(nh)1/2
{

�̂β(t) − �β(t) − h2�β′′(t)μ/2
}
→ N

{
0,Σ2(t)

}
(21)

where

μ =
∫

R
x2K(x) dx (22)

Σ(t) =
(
M−1(t)Λ(t)M−1(t)

)1/2
(23)

M(t) = E
(

�G(t, F0)�G(t, F0)T
)

. (24)

The covariance matrix Λ(t) can be further approximated using
techniques proposed in (28).

Deriving from the central limit property and basic assump-
tions shown above, the 100(1 − α)% asymptotic simultaneous
confidence tube of �βC (t) can be constructed using

β̃C,h̃(t) + q̂1−α Σ̂C (t)Bs (25)

where β̃C,h̃(t) is the bias corrected estimator defined in (26),
Bs = {�z ∈ Rs : |�z| ≤ 1} is the unit ball, and s is the rank of a
matrix Cp×s , which we use for choosing different linear combi-
nations of β(t), and �βC (t) = CT �β(t). We can construct the SCB
for different linear combinations of βk (t) s by setting a different
matrix Cp×s . For example, if we set Cp×1 = [1, 1, 0, . . . 0], we
obtain the SCB of �βC (t) = CT �β(t) = β1(t) + β2(t); if we set
Cp×2 = [1, 0, 0, . . . 0; 0, 1, 0, . . . 0], the SCB of β1(t) and β2(t)
becomes a tube at any time t. This is because when s = 2, the
unit ball B2 becomes a unit circle. Thus, we simply take s = 1
in (25), and the SCB is constructed similarly to the confidence in-
terval of the coefficients of the MLR: β̂ ± tα/2,n−pse(β̂), where

se(β̂) is the standard error of β̂, and tα/2,n−p is the upper α/2
percentage point of the tn−2 distribution [20].

Similarly, the first term is the estimator of the time-varying
coefficients corrected for bias by

β̃C,h̃(t) = CT β̃h̃(t) = CT
(

2�̃βh̃/
√

2(t) − �̂βh̃(t)
)

(26)

β̃ĥ(t) can also be acquired by solving (6) using a corresponding
kernel function K∗(a) = 2

√
2K(

√
2a) − K(a) and an updated

bandwidth h̃ = 2ĥ of the GCV selector ĥ.
The second term in (25) q̂1−α is actually the upper α/2

percentage point of the normal distribution N{0,Σ2(t)} defined
in (21), while the third term Σ̂C (t) is the estimated standard
error. The method of wild bootstrap is applied to obtain q̂1−α .
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Algorithm 2: Construction of SCB for Time-varying Coef-
ficients.

1 Find a proper bandwidth ĥ from GCV selector (10);
2 Let h̃ = 2ĥ and calculate β̃C,h̃(t) using (26) and (6);
3 Obtain the estimated (1 − α)th quantile q̂1−α via the

bootstrap method;
4 Estimate M̂(t) = S0(t∗) and Λ̂(t) by (28), and

calculate Σ̂C (t) according to (27);
5 Construct the 100(1 − α)% SCB of �βC (t) using (25).

First, generate a large number i.i.d. vectors�v1, �v2, . . . , N(0, Is),
where�vi ∈ Rp and Is denotes the s × s identity matrix, and then
calculate q = sup0≤t≤1|

∑n
i=1 �viK

∗((ti − t)/h̃)/(nh̃)|; repeat
the previous step for a large number of times (say, 5000) to
acquire the estimated 100(1 − α)% quantile q̂1−α of q.

The estimate of the standard error Σ̂C (t) is defined as

Σ̂C (t) =
(
CT M̂−1(t)Λ̂(t)M̂−1(t)C

)1/2
. (27)

We shall estimate M̂(t) and Λ̂(t), respectively. From the defi-
nition of M(t) in (24), it can be estimated by M̂(t) = S0(t∗),
where S0(·) is defined in (7), and t∗ = max{h,min(t, 1 − h)}.
To obtain Λ̂(t), we first define two p × 1 vectors �Zi = �xi ε̂i and
�Wi =

∑m
j=−m

�Zi+j , a matrix Ωi = �Wi
�WT

i /(2m + 1), and a
function g(t, i) = K((ti − t)/τ)/

∑n
k=1 K(tk − t), where m

and τ can be simply chosen as m = �n2/7� and τ = n−1/7.
Then, Λ̂(t) can be calculated by

Λ̂(t) =
n∑

i=1

g(t, i)Ωi . (28)

All the above steps are summarized in Algorithm 2.
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