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Abstract—Industrial Cyber-Physical Systems (ICPSs) are
an integral component of modern manufacturing and in-
dustries. By digitizing data throughout product life cycles,
Digital Twins (DTs) in ICPSs enable a shift from current
industrial infrastructures to intelligent and adaptive infras-
tructures. Thanks to data process capability, Generative Ar-
tificial Intelligence (GenAI) can drive the construction and
update of DTs to improve predictive accuracy and prepare
for diverse smart manufacturing. However, mechanisms
that leverage Industrial Internet of Things (IIoT) devices to
share sensing data for DT construction are susceptible to
adverse selection problems. In this paper, we first develop
a GenAI-driven DT architecture in ICPSs. To address the ad-
verse selection problem caused by information asymmetry,
we propose a contract theory model and develop a sustain-
able diffusion-based soft actor-critic algorithm to identify
the optimal feasible contract. Specifically, we leverage dy-
namic structured pruning techniques to reduce parameter
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numbers of actor networks, allowing sustainability and ef-
ficient implementation of the proposed algorithm. Numeri-
cal results demonstrate the effectiveness of the proposed
scheme and the algorithm, enabling efficient DT construc-
tion and updates to monitor and manage ICPSs.

Index Terms—Contract theory, digital twins (DTs), gen-
erative AI, industrial cyber-physical systems, sustainable
diffusion models.

I. INTRODUCTION

W ITH the advancement of industrial technologies, such as
the Industrial Internet of Things (IIoT) and information

communication technology, the convergence of physical and
cyber spaces gives rise to a new paradigm called Industrial
Cyber-Physical Systems (ICPSs) [1]. ICPSs are intricate and
intelligent systems that integrate physical and computational
components seamlessly, enabling real-time data exchange and
decision-making [2]. Predictive maintenance plays an increas-
ingly pivotal role in the sustainability of ICPSs. The emergence
of Artificial Intelligence (AI)-based approaches for predictive
maintenance and monitoring has become prominent, such as
transfer learning [3] and Federated Learning (FL) [4]. To design
integrated control and monitoring systems in ICPSs, Digital
Twins (DTs) have received significant attention from academia
and industry [1]. DTs refer to virtual replicas that cover the
life cycle of physical entities. In ICPSs, through simulating the
behavior and performance of industrial infrastructures based on
real-time sensing data, DTs can offer predictive capabilities and
provide insights to eliminate physical mistakes and attacks [1],
thus optimizing manufacturing processes and improving the
performance of ICPSs. Nonetheless, the establishment and im-
plementation of DTs in ICPSs depend on high-fidelity modeling
and strong data interaction, which may meet data issues such as
scarcity, bias, and noise.

Generative AI (GenAI) is a branch of AI technology that
identifies the structures and patterns from existing data to
generate various and original content [5]. The popular class
of GenAI applications has emerged from foundation models,
such as GPT-3 and Stable Diffusion, which are trained on vast
quantities of data by leveraging different learning approaches.
For example, ChatGPT is trained on a large corpus of text from
diverse sources. This process enables it to acquire knowledge
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of linguistic patterns and structures, thus automatically gener-
ating valuable content based on the prompts provided by users.
Relying on its incredible data processing and generation capa-
bilities, GenAI technology has great potential to revolutionize
various domains. For example, GenAI can drive the progression
of modern IoT and enable more adaptive and intelligent IoT
applications [5], such as virtual assistants and smart surveillance.

GenAI also provides a novel tool for DT innovation [6], [7].
With the help of GenAI technology, the construction, mainte-
nance, and optimization of DTs can be facilitated. In addition,
researchers used GenAI technology to enhance DT emulation,
feature abstraction, and decision-making modules [7], driv-
ing innovation across diverse applications, especially ICPSs.
For instance, in smart manufacturing, GenAI is capable of
aiding the creation of adaptive DTs specifically designed for the
manufacturing environment, which enhances efficiency in both
production scheduling and real-time control. Although GenAI
holds the potential to support emerging applications of DTs in
ICPSs, there are challenges ahead:

� Challenge I: Through extensive literature review, there
is no research conducted on the utilization of GenAI to
drive DTs within ICPSs. Hence, it is imperative to actively
explore GenAI-driven DT architectures in ICPSs, thus
improving system performance and sustainability.

� Challenge II: GenAI models can synthesize supplemen-
tary data based on real-world sensing data for DT construc-
tion. However, due to adverse selection problems caused
by information asymmetry, IIoT devices may not be will-
ing to share high-quality sensing data for DT construction
without reliable incentives [8].

� Challenge III: It is a complex and high-dimensional
problem to incentivize IIoT devices for DT construc-
tion [1], [8]. Generative Diffusion Models (GDMs) as
an advanced GenAI model show superior performance in
solving high-dimensional decision-making problems [9],
however, often at the cost of substantial computational
overhead during training [10]. Therefore, it is necessary
to develop sustainable GDM-based algorithms to solve
high-dimensional optimization problems in ICPSs.

Some studies have been conducted to design incentive mech-
anisms for DT construction [8], [11]. However, there are no
studies directly addressing the incentive mechanism design for
DT construction in ICPSs. Moreover, GDMs for solving high-
dimensional optimization problems still face substantial com-
putational overhead because of the need for iterative denoising
in generating new samples, and no work develops sustainable
GDMs for optimal incentive design to mitigate the environmen-
tal impact of model training. To address Challenge I, we first
design a GenAI-driven DT architecture in ICPSs. To address
Challenge II, we propose a contract theory model to motivate
IIoT devices to share sensing data for DT construction, where
contract theory as an economic tool has been widely used to
address incentive design problems with information asymme-
try [12]. To address Challenge III, we develop a sustainable
diffusion model-based algorithm to find the optimal feasible
contract while mitigating the environmental impact for ICPSs.
The contributions of this paper are summarized as follows:

� We propose a GenAI-driven DT architecture in ICPSs.
In particular, we systematically study how GenAI drives
the DT construction pipeline in ICPSs, including the col-
lection of real-time physical data, communications among
DTs and between DTs and physical counterparts, DT mod-
eling and maintenance, and DT decision-making, while
also presenting the practical applications of these four
parts (For Challenge I).

� To effectively alleviate the adverse selection problem
caused by information asymmetry, we propose a contract
theory model to motivate IIoT devices to participate in
sensing data sharing for DT construction. Each IIoT device
selects a suitable contract item that matches its type to
obtain the highest utility, and the optimal feasible contract
is achieved by maximizing the expected utility of the DT
server (For Challenge II).

� To achieve sustainability for DT construction within
ICPSs, we develop a sustainable diffusion-based Soft
Actor-Critic (SAC) algorithm to generate the optimal
contract under information asymmetry, where we apply
dynamic structured pruning techniques to GDM-based
networks for policy exploration in a more computationally
efficient and scalable manner. To the best of our knowledge,
this is the first work that leverages sustainable diffusion
models for incentive design (For Challenge III).

The rest of the paper is organized as follows. Section II reviews
the related work. In Section III, we introduce the GenAI-driven
DT architecture in ICPSs. In Section IV, we propose the con-
tract model to incentivize IIoT devices to share sensing data
for DT construction. In Section V, we develop the sustainable
diffusion-based SAC algorithm to sustainably generate the op-
timal contract. In Section VI, we present numerical results to
demonstrate the effectiveness and sustainability of the proposed
scheme and the algorithm. Section VII concludes the paper.

II. RELATED WORK

In this section, we discuss several related works, including
GenAI-driven DTs, incentive mechanism design for DT con-
struction, and structured pruning techniques.

A. Generative AI-Driven Digital Twins

GenAI possesses formidable capabilities to drive DTs from
various domains [6], [7], [13], [14]. In [6], the authors explored
the potential of GenAI-driven human DTs, including GenAI-
enabled data acquisition, communication, data management,
digital modeling, and data analytics. The authors in [7] pro-
posed a GenAI-driven DT network architecture to realize intel-
ligent external and internal closed-loop network management,
where GenAI models can drive DT status emulation, feature
abstraction, and network decision-making. In [13], the authors
introduced how GenAI facilitates DT modeling and provided ex-
isting implementations of GenAI for DTs in drug discovery and
clinical trials. In [14], the authors explored the applications of
GenAI models such as transformers and GDMs to empower DTs
from several perspectives, including physical-digital modeling,
synchronization, and slicing capability. While the integration of
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Fig. 1. The architecture of GenAI-driven DTs in ICPSs. We study how GenAI drives the DT construction pipeline, i.e., real-time physical data
collection, communications for DTs, DT modeling and maintenance, and DT decision-making.

GenAI and DTs is capable of revolutionizing various sectors,
there is no work systematically studying how GenAI can drive
DTs in ICPSs.

B. Incentive Mechanism Design for Digital Twin
Construction

Since DT construction requires high-quality data and inten-
sive resources, incentive mechanisms play a crucial role in DT
construction by promoting data sharing and resource collabo-
ration. A few works have been conducted to design incentive
mechanisms for DT construction [8], [11]. In [8], the authors
proposed an iterative contract design to motivate IoT devices to
share data for DT construction and used a multi-agent reinforce-
ment learning algorithm to solve the formulated contract prob-
lem. In [11], the authors proposed a DT edge network framework
for flexible and secure DT construction. To efficiently construct
DTs, the authors also proposed an iterative double auction-based
joint cooperative FL and local model update verification scheme.
Incentive mechanism design for ensuring high-quality DT con-
struction is critical, and this topic is still worth investigating,
especially in ICPSs. However, none of the existing studies have
used GenAI models to discover the optimal incentive design for
DT construction.

C. Structured Pruning Techniques

Structured pruning techniques focus on eliminating parame-
ters and substructures from networks [10], which has been used
to effectively optimize Deep Reinforcement Learning (DRL)

algorithms. For example, the authors in [15] proposed a tiny
multi-agent DRL algorithm to obtain the optimal game solution,
which leverages the structured pruning technique to reduce the
parameter number of the actor-critic network. The authors in [16]
proposed a dynamic structured pruning approach to remove
the unimportant neurons of DRL models during the training
stage. In [10], the authors proposed a dedicated method for
compressing diffusion models by utilizing Taylor expansion.
Diffusion model-based DRL algorithms have been proven to
be an effective method to solve network optimization prob-
lems [9], [17]. This algorithm uses multi-layer perceptions for
iterative denoising from the Gaussian noise [9], which consumes
a lot of energy. However, there is no research on developing
efficient diffusion model-based DRL algorithms for network
optimization. Therefore, we, for the first time, apply structured
pruning techniques to diffusion model-based DRL algorithms
for optimal incentive design, making them more efficient and
sustainable.

III. GENERATIVE AI-DRIVEN DIGITAL TWIN ARCHITECTURE

In this section, we introduce the proposed GenAI-driven DT
architecture in ICPSs, which systematically studies the role of
GenAI on the DT construction pipeline, as shown in Fig. 1.

A. Real-Time Physical Data Collection

Real-time data collection from the physical space is the first
step in constructing DTs in ICPSs [18]. The required data, such
as historical equipment parameters and real-time operation, are
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collected by industrial infrastructures such as IIoT devices and
the industrial data center [1], where real-time sensing data allows
DTs to continuously mirror the current state of the physical
system, and historical data can be used for training predictive
models within DTs. However, due to the heterogeneity of di-
verse sensing sources, some real-world data may be insufficient
and confidential [1], affecting the rendering quality of DTs.
Fortunately, GenAI supports data generation by capturing data
distributions from the actual physical system [5], which can
provide ultra-realistic industrial data based on the collected
data to improve DT training. For instance, the authors in [14]
utilized a Generative Adversarial Network (GAN)-based model
to generate a sufficient dataset, which is used to train DT models.

B. Communications for Digital Twins

The key to DT construction is to send the collected data in
real time to the server where DTs are deployed [18]. Commu-
nications among DTs and between DTs and physical counter-
parts act as a bridge for data transmission between physical
and virtual spaces [6], such as collected data transmission and
DT feedback. However, due to the potentially harsh industrial
environments, the communication channel conditions in ICPSs
may dynamically change [1], causing reliability issues in DT
communications. Predictive DT channels provide an effective
solution that enables DTs to maintain high fidelity in real-
time communications [19]. Fortunately, GenAI can generate
synthetic data representing various channel conditions, and the
generated data and raw data can be used together to train deep
learning models for predicting the DT communication channel
dynamics, thus mitigating potential issues such as communi-
cation disruptions and ensuring efficient and reliable DT com-
munications. For example, a recent study in [19] proposed a
convolutional time-series GAN to generate synthetic data based
on original channel data, which can enhance the accuracy of
ConvLSTM-based predictive DT channels in dynamic channel
conditions.

C. Digital Twin Modeling and Maintenance

Based on collected data, high-fidelity DTs can be constructed
by reproducing the geometry and physical properties of indus-
trial infrastructures [18]. These virtual models are maintained
on edge servers to ensure real-time updates [18]. However, due
to the complicated environments of ICPSs [1], traditional DT
modeling methods, such as structural modeling or behavioral
modeling [18], rely on accurate simulation parameters [6],
making it challenging to continuously guarantee the quality of
DTs. Thanks to the robust data generation capability, GenAI
can provide supplementary data for DT modeling in ICPSs,
including environmental conditions and operational parame-
ters, and even allow DTs to update and refine their knowledge
base over time. For instance, the authors in [20] developed a
Wasserstein GAN-based DT in industrial asset health moni-
toring. Besides, the augmented data can preserve almost all
patterns from the original data [6], thus protecting private data in
ICPSs.

D. Digital Twin Decision-Making

After achieving the virtual-real mapping, DTs can timely
analyze real-world data and provide decision-making results to
ICPSs [18]. GenAI-driven DTs enable intelligent and reliable
applications, such as smart manufacturing [5], intelligent assess-
ment [21], and fault detection and predictive maintenance [22],
[23]. For example, in smart manufacturing [5], GenAI-driven
DTs can forecast product life in a timely manner and evaluate
manufacturing plans based on generated fault diagnosis. Then,
manufacturers can react according to the feedback conveyed
by DTs. In the intelligent assessment of gear surface degrada-
tion [21], by generating synthetic data that represents surface
defects, GenAI-driven DTs can recognize different stages and
types of gear wear with higher precision. Besides, in fault
detection and predictive maintenance [22], by combining GenAI
and domain adversarial graph networks, DTs can better diagnose
bearing faults by learning domain-invariant features.

IV. CONTRACT MODELING

In ICPSs, IIoT devices equipped with a set of sensors can
collect geospatial data from the surrounding environment and
send the collected data to DT servers for DT construction [8].
If the data quality is low, the created DTs may not accurately
reflect the real-time dynamics of industrial infrastructures. Thus,
high-quality sensing data is critical for DT construction. How-
ever, due to the high cost of collecting sensing data in ICPSs [1],
IIoT devices may not actively provide high-quality sensing data
to DT servers, or even maliciously provide harmful data [12],
leading to adverse selection problems caused by information
asymmetry [8]. To this end, we use contract theory to motivate
IIoT devices to provide high-quality sensing data for DT con-
struction, where contract theory as a powerful economy tool
aims at addressing information asymmetry [8], [12]. In this
paper, we consider a DT server and M IIoT devices for DT
construction.

A. Utility of IIoT Devices

We denote Ψ = {ψk|ψk ∈ N+, k ∈ {1, . . . ,K, K ≤M}}
as the set of different sensing and communication levels of
IIoT devices [8], where the level is mainly impacted by equip-
ment and algorithms used by IIoT devices for data sensing
and transmission [24]. While the sensing and communication
levels of IIoT devices are not fully disclosed due to infor-
mation asymmetry [8], the DT server can leverage statistical
distributions of IIoT devices from historical data to group IIoT
devices into discrete types [12]. Thus, we consider sensing and
communication levels as types and sort the types in ascending
order, i.e., 0 < ψ1 ≤ · · · ≤ ψK , whereK is the number of types
of IIoT devices. Especially, IIoT devices with higher sensing and
communication levels are characterized as higher types, which
can provide better sensing data. Based on [8], the utility of an
IIoT device with type ψk to send sensing data with size ŝk to the
DT server is defined as

ũk(ŝk, rk) = ρψkrk − cŝk − c0, (1)
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where ρ is a pre-defined weight parameter about the incentive,
rk is the received reward associated with the provided data ŝk,
c is the unit cost related to the collection, computation, and
transmission of sensing data ŝk [12], and c0 is an additional
cost involving energy consumption [8].

B. Utility of Digital Twin Server

Considering the more high-quality data provided by IIoT
devices, the higher satisfaction of the DT server, we adopt the
β-fairness function g(ŝk) to quantify the satisfaction of the DT
server [8], given by

g(ŝk) =
1

1− β ŝ
1−β
k , (2)

where 0 ≤ β < 1 is a pre-defined constant. Since the DT server
just knows the number of IIoT devices and the distribution of
each type due to information asymmetry, the overall utility of
the DT server is given by

U(ŝ, r) =M

K∑
k=1

qk(ϑg(ŝk)− rk), (3)

where ϑ > 0 is the unit revenue for the satisfaction of the DT
server [12], qk represents the probability that IIoT devices belong
to typeψk, and ŝ = [ŝk]1×K and r = [rk]1×K represent the vec-
tors of high-quality data volume sizes and rewards, respectively.

C. Contract Formulation

To maximize the overall utility, the DT server designs a
contract consisting of a group of contract items. The contract
is denoted as Ω = {(ŝk, rk), k ∈ {1, . . . ,K}}, where the more
ŝk, the higher rk. To ensure that each IIoT device selects the most
suitable contract item to maximize its utility, the feasible contract
should satisfy the Individual Rationality (IR) and Incentive
Compatibility (IC) constraints [8], [12]:

Definition 1 (Individual Rationality): Type-k IIoT devices
gain non-negative utilities by selecting the contract item (ŝk, rk)
that matches their types, i.e.,

ũk(ŝk, rk) = ρψkrk − cŝk − c0 ≥ 0, ∀k ∈ {1, . . . ,K}, (4)

Definition 2 (Incentive Compatibility): Any type of IIoT de-
vice prefers to choose the contract item (ŝk, rk) designed for
it rather than any other contract item (ŝn, rn), n ∈ {1, . . . ,K},
and n �= k, i.e.,

ρψkrk − cŝk ≥ ρψkrn − cŝn, ∀k, n ∈ {1, . . . ,K}, k �= n.
(5)

The IR constraints (4) guarantee that the utility of IIoT devices
is non-negative, and the IC constraints (5) guarantee that each
IIoT device can achieve the highest utility by selecting the
optimal contract item designed for its type. The DT server aims
to maximize its overall utility. Based on the above IC and IR
constraints, the optimization problem is expressed as

max
ŝ,r

U(ŝ, r)

s.t. ũk(ŝk, rk) ≥ 0, ∀k ∈ {1, . . . ,K},

ũk(ŝk, rk) ≥ ũk(ŝn, rn), ∀n, k ∈ {1, . . . ,K}, n �= k,

ŝk ≥ 0, rk ≥ 0, ψk > 0, ∀k ∈ {1, . . . ,K}. (6)

Remark 1: In the optimization problem (6), there are K IR
constraints and K(K − 1) IC constraints, which are all non-
convex. Thus, it is difficult to directly solve the problem (6). The
standard approach is to reduce IR and IC constraints by defining
some lemmas and use heuristic and traditional optimization
algorithms to solve the derived problem [25]. However, these
approaches add difficulty to the problem formulation, which
is time-consuming to adjust and prove the corresponding lem-
mas [8]. Besides, states of IIoT devices and the DT server change
dynamically due to the heterogeneity and dynamics of ICPSs [1],
and traditional approaches need to be re-designed in practice.
Furthermore, these approaches may not be applicable in practical
scenarios when the environment lacks complete and accurate
information. Thus, traditional mathematical techniques may not
effectively solve the problem (6) in practice. DRL algorithms
have been widely used to solve optimization problems because
they can learn complex policies in high-dimensional spaces,
which can find near-optimal solutions to challenging problems
where traditional methods might struggle. In particular, GDMs
possess a robust generative capability and have been used to en-
hance DRL algorithms, thus being able to find an optimal policy
for dynamic and high-dimensional optimization problems [9].
For efficient implementation in ICPSs, we propose a sustainable
GDM-based DRL algorithm to solve (6).

V. SUSTAINABLE DIFFUSION-BASED SOFT ACTOR-CRITIC

ALGORITHMS FOR OPTIMAL CONTRACT DESIGN

In this section, we propose the sustainable diffusion-based
SAC algorithm to efficiently generate the optimal feasible con-
tract under information asymmetry, where we apply dynamic
structured pruning techniques to GDM-based networks to reduce
the training cost and carbon emissions. The architecture of the
proposed algorithm is shown in Fig. 2.

A. Generative Diffusion Models for Optimal Contract
Design

Diffusion models work by corrupting the training data by
continuously adding Gaussian noise and then learning to re-
cover the data by reversing this noise process [10]. Through an
iterative process of denoising the initial distribution, GDMs can
generate the optimal contract Ω0 = (ŝ∗k, r

∗
k), k ∈ {1, . . . ,K}.

During iterations of T , Gaussian noise is gradually added to
the initial contract Ω, emerging a series of contract samples
(Ω1, Ω2, . . . , ΩT ). We define the environment during the opti-
mal contract design as

e � {M,K, c, c0, ϑ, (q1, . . . , qK), (ψ1, . . . , ψK)}. (7)

We denote the contract design policy as πθ(Ω|e) with param-
eters θ, which is constituted by the GDM-based network, as
shown in Fig. 2. Through the reverse process of a conditional
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Fig. 2. The proposed algorithm architecture, where we utilize dynamic
structured pruning techniques to sparsify the actor networks of the
diffusion model. The goal of the algorithm is to design optimal contracts
that motivate IIoT devices to provide sensing industrial data, which is
one of the data sources for DT construction, as shown in Fig. 1.

diffusion model, the policy πθ(Ω|e) can be expressed as [26]

πθ(Ω|e) = pθ(Ω
0:T |e) = N (ΩT ;0, I)

T∏
t=1

pθ(Ω
t−1|Ωt, e),

(8)

where the end sample of the reverse chain is the selected contract
Ω0. pθ(Ωt−1|Ωt, e) as a noise prediction model is modeled
as a Gaussian distributionN (Ωt−1;μθ(Ω

t, e, t),Σθ(Ω
t, e, t))

with the covariance matrix expressed as Σθ(Ω
t, e, t) = δtI

[26], and the mean μθ(Ω
t, e, t) is given by

μθ(Ω
t, e, t) =

1√
αt

(
Ωt − δt√

1− ᾱt

εθ(Ω
t, e, t)

)
, (9)

where δt ∈ (0, 1) is a hyperparameter for model training, αt =
1− δt, and ᾱt =

∏t
j=0 δj [9], [26]. εθ is a deep model that

generates contracts conditioned on the environment e, as deter-
mined by the policy. We first sample ΩT ∼ N (0, I) and then
the selected contract can be sampled via the reverse diffusion
chain parameterized by θ, given by

Ωt−1|Ωt =
Ωt

√
αt
− δt√

αt(1− ᾱt)
εθ(Ω

t, e, t) +
√
δtε. (10)

To improve the policy πθ(Ω|e), we introduce the Q-
function [26], which can guide the reverse diffusion chain to
preferentially sample contracts with high values. We build two
critic networks Qυ1 , Qυ2 , target critic networks Qυ̂1 , Qυ̂2 , and
target policy π̂θ̂ . Then, we define the contract quality network
asQυ(e, Ω) = min{Qυ1(e, Ω), Qυ2(e, Ω)}. Thus, the optimal
contract design policy aims at maximizing the expected cumu-
lative reward, expressed as [9]

π = argmax
πθ

E

[
Z∑

z=0

γz(R(ez, Ωz) + ςH(πθ(ez)))

]
, (11)

where Z denotes the maximum training step, γ denotes the
discount factor for future rewards, R(ez, Ωz) represents the

immediate reward upon executing action Ωz in state ez , ς is the
temperature coefficient controlling the strength of the entropy,
and H(πθ(ez)) = −πθ(ez) log πθ(ez) is the entropy of the
policy πθ(ez) [27]. To update the Q-function, the optimization
of υm form = {1, 2} aims at minimizing the objective function
as [26]

E(ez,Ωz,ez+1,Rz)∼Bz,Φ0
z+1∼π̂θ̂

[ ∑
m=1,2

(R(ez, Ωz)

+ γz(1− dz+1)π̂θ̂(ez+1)Qυ̂(ez+1)−Qυm
(ez, Ωz))

2

]
,

(12)

whereBz is a mini-batch of transitions with a size b sampled from
the experience replay memoryD and dz+1 is a 0-1 variable that
represents the terminated flag [9].

B. Dynamic Structured Pruning

In terms of the network structure, both the policy and critic
networks are multilayer perception networks, which consist of
an input layer, multiple hidden layers, and an output layer.
Considering a L-layer policy network, where parameters in the
l-th fully-connected layer are denoted by θ(l), l ∈ {1, . . . , L},
the output of the l-th layer is expressed as

h(l) = f (l)
(
θ(l)h(l−1) + b(l)

)
, (13)

where f (l) is the activation function of the l-th layer and b(l)

is the deviation at the l-th layer. We focus on pruning the
redundant neurons and connected weights of policy networks
without affecting the performance, which enhances the training
efficiency of the policy network. To this end, we introduce a
binary mask m(l)

i to represent the pruning state of each neuron

o
(l)
i at the l-th layer [16], where m(l)

i = 0 indicates that the

neuron o(l)i should be pruned, and m(l)
i = 1 indicates that the

neuron o(l)i should be reserved. Based on the binarized mask
m(l), the output of the l-th layer is rewritten as

h(l) = f (l)
(
θ(l)h(l−1) 
m(l) + b(l)

)
, (14)

where 
 represents the Hadamard product. We use the policy
gradient algorithm to update the contract design policy [9].
Specifically, the policy gradient with respect to the policy pa-
rameters θ can be computed as the expectation over Bz . Thus,
the gradient is given by

∇θz
J(θ) = Eez∼Bz [−∇θz

πθz
(ez)Qυz

(ez)], (15)

where θz and υz are the policy and critic parameters at the z-th
training step, respectively. Thus, the policy parameters θ are
updated by performing gradient descent based on (15), which is
expressed as [9], [16]

θ
(l)
z+1 ← θ(l)

z − η∇h
(l)
z 
m(l)

z
J(θ)∇

θ
(l)
z
(h(l)

z 
m(l)
z ), (16)

where η ∈ (0, 1] is the learning rate of the actor network. For
the target networks that have the same network structure as the
online networks [9], the parameters of the target policy are also
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performed dynamic structured pruning, and their parameters are
updated by using a soft update mechanism, given by [26]

θ̂z+1 ← εθz + (1− ε)θ̂z,

υ̂m,z+1 ← ευm,z + (1− ε)υ̂m,z, form = {1, 2}, (17)

where ε ∈ (0, 1] is the update rate of the target network.
The pruning threshold plays an important role in the pruning

decisions of network parameters [15], [16]. We adopt a dynamic
pruning threshold Υ , which is given by [15]

Υz =

L∑
l=1

I∑
i=1

φ
(l)
i ωz,

ωz = ω̂ − ω̂
(

1− z

N
)3

, (18)

where φ(l)i andN represent the importance of the i-th neuron of
the l-th layer and the total number of pruning steps, respectively.
 denotes the pruning frequency, and ωz and ω̂ represent the
current sparsity at the z-th training step and the target sparsity,
respectively.

After determining the pruning threshold, neurons ranked be-
low the threshold will be pruned [15], [16], and the binary masks
used for pruning are updated, given by [15]

m
(l)
i =

{
1, if |m(l)

i θ
(l)
i | ≥ Υ,

0, otherwise.
(19)

Finally, we build a compact policy network according to the
redundancy of the sparse policy network. The procedure of the
proposed sustainable diffusion model is shown in Algorithm 1.
The computational complexity of the proposed algorithm con-
sists of three parts. In the initialization part, the computational
complexity is O(|θ|+ |υ|). In the training part, the computa-
tional complexity is O(Z(T ∑L−1

l=1 |θ(l)|+∑L−1
l=1 |h(l)|)) [9],

[15]. In the inference part, the computational complexity is
O(|θ̂|). Thus, the computational complexity of the proposed
algorithm is around O(|θ|+ |υ|+ |θ̂|+ Z(T

∑L−1
l=1 |θ(l)|+∑L−1

l=1 |h(l)|)), where T is the total number of denosing steps. In
the following, we compare the proposed sustainable diffusion-
based SAC algorithm with DRL algorithms that are commonly
used for optimal contract design to evaluate its performance,
i.e., Proximal Policy Optimization (PPO), SAC, diffusion-based
SAC, and diffusion-based Deep Deterministic Policy Gradient
(DDPG). We simply introduce these four algorithms and present
their computational complexities for solving the optimization
problem (6). Specifically,

� PPO: Update the policy by using a clipped surro-
gate objective [28]. Its computational complexity is
O(∑J

j=1 oj−1oj) [29], where oj represents the num-
ber of neural units at the j-th layer in the policy
network.

� SAC: Optimize the stochastic policy in an off-policy
way, which maximizes a trade-off between expected
return and entropy [27]. Its computational complex-
ity is O(∑J

j=1 o
Q
j−1o

Q
j +

∑I
i=1 o

π
i−1o

π
i ) [27], where oQj

Algorithm 1: Sustainable Diffusion Models based on Dy-
namic Structured Pruning.

and oπi represent the number of neuron units at the j-
th layer of Qυ(e, Ω) and the i-th layer of πθ(Ω|e),
respectively.

� Diffusion-based SAC: Use diffusion models to enhance
SAC algorithms [9]. Its computational complexity is
O(Z[CV + TC|θ|+ (B + 1)(|θ|+ |υ|)]) [9], where C
represents the maximum number of collected transitions
at each training step, V represents the complexity of
interacting with the environment e, and B represents the
batch size.

� Diffusion-based DDPG: Use diffusion models to enhance
DDPG algorithms that learn the policy through the Q-
learning function [30]. Its computational complexity is
O(Z[T |θ|+ |υ|]) [30].

Authorized licensed use limited to: Auburn University. Downloaded on January 24,2025 at 02:59:10 UTC from IEEE Xplore.  Restrictions apply. 



146 IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, VOL. 3, 2025

Fig. 3. Test reward comparison of the proposed scheme with the
random scheme under asymmetric information and the contract theory
scheme under complete information.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
scheme and algorithm. We consider M = 10 IIoT devices and
divide them into K = 2 types [17], [30].

For the settings of experimental parameters, ψ1 and ψ2 are
randomly sampled within [50, 100] and [200, 250], respectively.
q1 and q2 are randomly generated following the Dirichlet dis-
tribution [5]. Considering the dynamic environment of ICPSs,
the unit cost c is randomly sampled within [25,35], and the unit
revenue ϑ is randomly sampled within [10,15]. In addition, the
pre-defined weight parameter ρ is set to 0.6, the additional cost
c0 is set to 0.01, and the pre-defined constant β is set to 0.5. Note
that our experiments are conducted using PyTorch with CUDA
12.0 on NVIDIA GeForce RTX 3080 Laptop GPU.

Fig. 3 presents the test reward comparison of the proposed
scheme under different schemes and different scenarios. Specif-
ically, we compare the performance of the proposed scheme
under asymmetric information and complete information. The
contract theory under complete information does not consider
IC constraints [12]. Although the performance of this scheme
is better than that of the proposed scheme, it is not practical
since the environment of complete information is not feasible.
Then, we compare the performance of the proposed scheme with
the random scheme in which the DT server randomly designs
contracts. We can observe that the test reward of the proposed
scheme is higher than that of the random scheme. The reason
is that the proposed scheme can motivate IIoT devices to select
suitable contract items according to their types so that the agent
(i.e., the DT server) can obtain more rewards R(ez, Ωz), which
indicates that the proposed scheme can effectively mitigate the
effect of information asymmetry by utilizing contract theory.
Overall, the proposed scheme is effective and reliable.

Fig. 4 shows the performance of the proposed algorithm
and other DRL algorithms in optimal contract design. We can

Fig. 4. Performance comparison of the proposed algorithm with sev-
eral DRL algorithms in optimal contract design. For the parameter set-
tings of the proposed algorithm, we set the pruning rate to 10%, the
diffusion step to 6, the learning rate of actor networks to 2× 10−7, and
the learning rate of critic networks to 2× 10−6.

observe that although the proposed algorithm does not converge
quickly due to the influence of denoising, it can stabilize the
highest final reward compared with other DRL algorithms. The
reason is that our algorithm optimizes a stochastic policy in an
entropy-augmented reward framework, encouraging exploration
and robustness [27]. Moreover, by leveraging diffusion models,
our algorithm can generate samples with higher quality by
multiple fine-tuning [9], enhancing the sampling accuracy and
reducing the effect of uncertainty and noise from the environ-
ment. Besides, by pruning unimportant neurons and connected
weights of actor networks, the performance of the diffusion-
based SAC algorithm can be improved. The reason is that the
pruning technique can reduce the complexity of GDM networks
and improve model generalization to unseen states.

Fig. 5 illustrates the utility of the DT server and the average
utility of IIoT devices under our algorithm and other DRL al-
gorithms, where the average utility of IIoT devices is calculated
based on a weighted average of device types. Due to the dynamic
environment of ICPSs, we consider that the unit revenue of
the DT server satisfaction is dynamically changing, and it is
reasonable that the proposed algorithm achieves a higher utility
of the DT server rather than the highest. However, the proposed
algorithm can achieve the highest average utility of IIoT de-
vices, indicating that the proposed algorithm can generate more
reasonable contract items that better incentivize IIoT devices to
contribute data for DT construction. In summary, based on the
analyses of Figs. 4 and 5, the proposed algorithm can design
feasible contracts to achieve the highest utility of IIoT devices
under asymmetric information.

Fig. 6 evaluates the environmental impact of the proposed
algorithm. We use a Python package named CodeCarbon1 to

1[Online]. Available: https://github.com/mlco2/codecarbon
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Fig. 5. The utility of the DT server and the average utility of IIoT
devices under different algorithms.

Fig. 6. Comparison of the environmental impacts of the proposed
algorithm with the diffusion-based SAC algorithm.

estimate the carbon emissions and electricity consumption of
these algorithms in achieving optimal contract design. We set
the pruning rate to 10%, which indicates that 10% of channels
are pruned in the whole network. Compared with the diffusion-
based SAC algorithm, which also performs well in optimal
contract design, we can observe that the proposed algorithm
not only has better performance, i.e., a higher final test reward,
but also produces lower carbon emissions of about 0.38 g during
model training for optimal contract design. The reason is that
pruning techniques can remove excess neurons that are useless
to the performance of actor networks [16], which is beneficial
for decreasing model sizes and the need for multiple iterations,
thus reducing carbon emissions.

Fig. 7 presents the performance analyses of the proposed
sustainable diffusion-based SAC algorithm. First, we evaluate
the impact of different noise schedule strategies on the perfor-
mance of the proposed algorithm, including Variance Propor-
tional (VP), linear, and cosine noise schedule strategies, where

Fig. 7. Performance analyses of the proposed algorithm, where we
evaluate the impacts of different noise schedule strategies and pruning
rates on the performance of the algorithm.

the pruning rate is set to 10%. In diffusion models, the noise
schedule strategy determines the amount of noise added to input
data at each timestep during the forward diffusion process [31],
which affects the quality of generated samples in the reverse
diffusion process. As illustrated in Fig. 7(a), we can observe
that among the three noise schedule strategies, the proposed
algorithm under the VP noise schedule strategy can obtain the
highest test reward and produce the lowest carbon emissions,
which highlights the superior performance of the VP noise
schedule strategy in applying the sustainable diffusion-based
SAC algorithm for optimal contract design. Then, we evaluate
the impact of different pruning rates on the performance of the
proposed algorithm under the VP noise schedule strategy, i.e.,
10%, 30%, and 50%. As shown in Fig. 7(b), we can observe
that higher pruning rates result in slower convergence of the
proposed algorithm but higher final test rewards. The reason is
that higher pruning rates may eliminate critical connections that
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contribute to the learning ability of actor networks, resulting in
slow convergence. Despite the slower convergence, the pruned
actor networks often exhibit better generalization by learning
more essential features instead of relying on redundant parame-
ters. In addition, when the pruning rate is set to 50%, the carbon
emissions generated by model training are the highest, reaching
36.03 g, which indicates that there is an optimal pruning rate to
balance the performance and the sustainability of the proposed
algorithm. In summary, the above numerical results demonstrate
that the proposed algorithm is sustainable and effective.

VII. CONCLUSION

In this paper, we have studied how GenAI empowers DTs
in ICPSs. Specifically, we have designed a GenAI-driven DT
architecture in ICPSs, which systematically studies how GenAI
drives the DT construction pipeline, including real-time phys-
ical data collection, communications for DTs, DT modeling
and maintenance, and DT decision-making. To motivate IIoT
devices to contribute sensing data for GenAI-empowered DT
construction, we have proposed a contract theory model un-
der information asymmetry. Furthermore, we have developed
a sustainable diffusion-based SAC algorithm to generate the
optimal feasible contract, which utilizes dynamic structured
pruning techniques to sparsify actor networks of GDMs, allow-
ing efficient implementation of the proposed algorithm in ICPSs.
Finally, the numerical results demonstrate that the proposed
algorithm outperforms DRL algorithms that are commonly used
for optimal contract design. In particular, when the pruning rate
is set to 10%, compared with the diffusion-based SAC algorithm,
the proposed algorithm can reduce carbon emissions by 99%
during model training while ensuring high test rewards. For
future work, we will propose a more general and comprehensive
architecture of GenAI-empowered DT in ICPSs. In addition, we
will focus on the incentive mechanism design among multiple
IIoT devices and DT servers and explore combining state-of-the-
art techniques with DRL algorithms for optimal contract design.
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