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Abstract—With the improvement of basic designs and the
evolution of key algorithms, artificial intelligence (AI) has
been considered by both industry and academia as the most
promising solution for many electromagnetic space problems,
such as automatic modulation classification (AMC). However,
the fact that AI-based AMC models are vulnerable to adver-
sarial examples mystifies the optimism. Adversarial attacks help
researchers to reexamine AI-based AMC models and promote
safe applications. In this paper, we study the frequency leakage
and glitch problems caused by high frequency components
in the adversarial perturbations of existing attack algorithms.
We propose a Spectrum-focused Frequency Adversarial Attack
(SFAA) algorithm to suppress the high frequency components
to alleviate such problems. Next, we leverage meta-learning to
improve the transferability of the proposed algorithm for black-
box attacks. We also train a Channel-robust Class-universal
Spectrum-focused Frequency Adversarial Attack (CrCu-SFAA)
generative model using the generative adversarial network
framework. Finally, extensive experiments using qualitative and
quantitative indicators demonstrate that the proposed algorithm
achieves an improved attack performance, and our proposed
approach of reducing out-of-band high frequency components
of the adversarial perturbations improves the concealment and
adversarial signal quality.

Index Terms—Automatic modulation classification (AMC),
frequency adversarial attack, spectrum focus, channel-
robustness, class universal.

I. INTRODUCTION

BENEFITING from the rapid development of big data,
high-performance computing equipment and other basics,

the new paradigm of data-intensive scientific discovery,
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spawned by the information technology, have been widely
studied and applied [1]. Due to the openness, easy access
to data, and abstract features, the electromagnetic space
becomes rich in interesting problems for researchers to
explore. Artificial Intelligence (AI) based on deep learning
has been considered the most promising solution to various
problems in the electromagnetic space, especially, Automatic
Modulation Classification (AMC) [2]. AMC is a key tech-
nology in many wireless applications such as cognitive radio,
spectrum sensing, and spectrum management [3]. Various data
preprocessing methods and model architectures have been
proposed to continuously improve the state-of-the-art of the
recognition rates [4], [5], [6], [7], [8]. Research under different
conditions expands the applicability of AMC models in var-
ious practical scenarios [9], [10], [11], [12], [13]. However,
adversarial examples have been shown to fool the AI-based
computer vision recognition models [14]. Adversarial exam-
ples, resulting from adding carefully crafted imperceptible
perturbations to the input data, can cause the AI model to
output wrong results with high confidence. Subsequently, the
same problem was found in various fields, including the
electromagnetic space [15], [16]. The study of electromagnetic
adversarial attacks and defense methods will promote efficient,
safe, and credible AI applications in the electromagnetic space.

There has been increasing interest in adversarial attacks
against AI-based AMC models. The authors in [17] imposed
gradient-based adversarial attack methods, including the Fast
Gradient Sign Method (FGSM) [18], the Projected Gradient
Descent (PGD) [19], the Basic Iterative Method (BIM) [20],
and the Momentum Iterative Method (MIM) [21], on AMC
models and investigated the different degrees of degradation
of the model classification performance by single-step and
iterative attacks. The authors in [22] applied the optimization-
based Carlini-Wagner (CW) [23] attack to AMC and individual
recognition tasks, and proposed a defense mechanism based
on the autoencoder. Taking advantage of the openness of
the electromagnetic space, the authors in [24] proposed a
multi-antenna attack against the AMC model that signifi-
cantly reduces the accuracy of the classifier under different
channel variances and correlations between antennas. The
authors in [25] conducted various attacks and discovered
an inverse relationship between signal confidence and attack
success rate. The authors in [26] leveraged remap and
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regularization functions to enforce undetectability constraints
on perturbations to generate high-secretion universal adver-
sarial perturbations. By considering the channel propagation
effect, the authors in [27] proposed channel-aware adversar-
ial attacks against the AMC model, and further introduced
broadcast adversarial attacks by jointly considering all channel
effects. Considering the impact of adversarial perturbation on
the Bit Error Rate (BER), the authors in [28] proposed the
BER-aware adversarial attack, and achieved a better trade-off
between the classification accuracy of the intruder and the
BER at the cooperative receiver. The authors in [29] proposed
detection tolerant black-box adversarial-attacks, which greatly
reduced the number of queries to the target AMC model and
effectively improved the transferability. Currently, there is no
report on the effectiveness of adversarial examples for the
AMC systems based on traditional feature. The inexplicability
of deep learning models leads to the existence of adversarial
examples.

Efforts to defend against adversarial attacks also continue.
The authors in [30] proposed the use of adversarial training to
improve the robustness of AMC models, and concluded that
robustness is essential for ensuring that AMC models learn
features relevant to the task. The authors in [31] proposed to
use the peak-to-average-power ratio statistical features of the
signal to detect adversarial examples to mitigate the attack on
the AMC model. The authors in [32] designed a binary modu-
lation classification defense network that combines the benefits
of low storage complexity, low computational complexity,
and gradient masking to developed a lightweight defense
method against white-box gradient attacks. The authors in [33]
proposed a two-fold defense mechanism, which consists of
correcting misclassifications on mild attacks and detecting
adversarial examples on stronger attacks. The authors in [34]
proposed a wireless receiver architecture consisting of both
time and frequency domain feature-based AMC models, which
improves the defense against black-box attacks. A comprehen-
sive review of this topic is presented and summarized in [35].

However, existing adversarial attack methods all focus on
the signal waveform in the time domain, while ignoring the
impact of adversarial perturbations on the signal spectrum. The
high frequency components in the data are easily captured by
the AI model and can affect the prediction at a lower cost. It is
easy to form an attack capability in the high frequency region
for the unconstrained adversarial attack methods [36]. It has
been shown that the perturbations generated by typical adver-
sarial attack methods contain a large number of high frequency
components. Time and frequency domain comparisons of the
original signal and the adversarial signals of the FGSM,
PGD, and Universal Adversarial Perturbations (UAP) [37] are
presented in Fig. 1. These high frequency components cause
frequency leakage, making the adversarial signal easier to be
detected in the frequency domain. In addition, they also cause
a large number of glitches in the signal, which degrades the
signal quality.

To address these issues, we propose a Spectrum-
focused Frequency Adversarial Attack (SFAA) method, which
mitigates frequency leakage by suppressing out-of-band per-
turbations, to improve concealment and reduce glitches for

Fig. 1. The original and adversarial signals in time and frequency domains.
The original signals and adversarial examples, which have high similarity in
the time domain, exhibit obvious differences in the frequency spectrum. The
adversarial attack leads to a frequency leakage outside of the signal bandwidth.

adversarial signal quality. Meanwhile, we leverage meta-
learning to perform black-box and white-box attacks simulated
in turn to improve the transferability of the algorithm in black-
box attacks (termed Meta-SFAA). Further, considering the
real-world adversarial scenario in the electromagnetic space,
where adversarial perturbations are added at the transmitting
end, and must reach a certain generation rate, we draw on
the design of Generative Adversarial Network (GAN) [38] to
carry out a Channel-robust Class-universal Spectrum-focused
Frequency Adversarial Attack (CrCu-SFAA). This method
allows for the generation of a batch of class universal adver-
sarial perturbation libraries that can be superimposed in real
time during signal transmission. Extensive experiments using
qualitative and quantitative indicators demonstrate that the
proposed algorithms achieve a stronger attack performance,
reduce the out-of-band high frequency components of the
adversarial perturbations, and improve concealment and the
adversarial signal quality.

In summary, our contributions are given as follows:
• The frequency leakage and glitch problems caused by the

high frequency components of adversarial perturbations
generated by typical attack methods are discovered. We
propose the SFAA algorithm to effectively alleviate the
problem and improve attack effectiveness.

• We simulate and alternately perform black-box and
white-box attacks using meta-learning, which enhances
the transferability of the SFAA algorithm to black-box
attacks.
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• Based on the GAN framework, we propose the
CrCu-SFAA algorithm, which allows pre-generation of
adversarial perturbations that are robust to channel
effects.

The remainder of this paper is organized as follows. The
characteristics of electromagnetic space adversarial attacks
and defense are analyzed in Section II. The system model
and evaluation indicators for the proposed algorithms are
introduced in Section III. The detailed procedures of the
proposed SFAA, Meta-SFAA and CrCu-SFAA algorithms are
introduced in Section IV. Extensive experiments with qualita-
tive and quantitative indicators are conducted to evaluate the
proposed algorithms in Section V. A summary of this paper
and potential future work are given in Section VI.

II. ELECTROMAGNETIC ADVERSARIAL CHARACTERISTICS

In the adversarial attack and defense task in the electro-
magnetic space, imperceptible perturbations are introduced
to electromagnetic signals by the adversarial program to
trick AMC models in target devices into producing wrong
predictions with high probability. AMC models may be located
in an adaptive modulation receiver or in an eavesdropper. In
these two different scenarios, it could lead to the disruption
of normal communication or the blocking of eavesdrop-
ping. Here, we will consider these scenarios comprehensively
to illustrate the electromagnetic adversarial attributes. In
Section III, we will provide specific eavesdropping scenar-
ios. Compared with image processing in computer vision
and speech signal processing in natural language processing,
adversarial attack and defense in the electromagnetic field
has its unique domain characteristics, as shown in Fig. 2.
Understanding these unique characteristics can help to develop
effective adversarial attack and defense methods.

A. Channel Dynamics

The signals in the electromagnetic space environment are
undoubtedly dense and diverse, and the transmission channel
is highly dynamic. For the adversarial attack, the adversarial
perturbations superimposed on the signal are usually carefully
designed and calculated. The complex and dynamic channel
environment brings new challenges to the design and assurance
of the effect of adversarial perturbations [26]. On the other
hand, noise and interferences in the channel also provide
concealment for adversarial attacks, in that it is usually diffi-
cult to distinguish between noise interferences and adversarial
perturbations. For the adversarial defender, the dynamics of
the channel can provide a natural means of defense and
protection. Moreover, once the attacker designs a channel-
robust adversarial attack method, the defender will then lose
such protection.

B. Difference Between Channels

In the electromagnetic space, the channel response between
any two pairs of transmitter and receiver show great degrees
of difference. Even the channel effects between the same
pair of transmitter and receiver can vary over time. The
difference in channel effects is also a double-edged sword.

On one hand, this provides attackers with more flexible attack
methods to achieve a certain strategy, such as only attacking
some specific targets [24]. On the other hand, the difference
in channel effects has widened the gap between adversarial
attack simulation and actual deployment. As shown in Fig. 2,
an adversarial signal generated based on the information of
channel 2 will be less effective for channel 1.

C. Indirectness of Interaction

In an ideal adversarial attack task, the attacker can directly
access the AI model of the target device as well as the output
corresponding to the modified input. However, in the actual
adversarial attack process, it will be very difficult for an
attacker to access the target devices. The attacker needs to
repeatedly send test data and observe the behavior of the target
model to analyze the input-output relationship, characteristics,
and performance of the target model [39]. Then it can modify
the test data according to the obtained information, and
repeat this procedure. After acquiring sufficient information
concerning the target AI model, it then establishes a substitute
model locally and carries out development of adversarial attack
algorithms. Notably, the number of such test is often limited.

D. Openness of the Electromagnetic Space

The electromagnetic space is an open space. Any radio
device has the ability to transmit and receive electromagnetic
signals into and from the electromagnetic space. The openness
of the electromagnetic space provides flexible and varied
means for adversarial attack and defense [27]. For example, an
attacker could broadcast adversarial perturbations in an area
to affect targeted receivers.

E. Constraints of Communications Networks

Compared with computer vision which relies on the human
eye for evaluation, radio systems are used as an important
tool for verification and evaluation in the electromagnetic field.
There are clear and standard evaluation indicators available,
including bandwidth, power spectrum, perturbation-to-noise
ratio, and more. In addition, compared with the l0 norm,
which reflects the number of changing pixels, the l2 and l∞
norms, which reflect the changing power and the maximum
changing value, respectively, are more suitable for measuring
the electromagnetic signal against perturbations [40].

III. SYSTEM MODELS AND EVALUATION INDICATORS

In this section, we first introduce the adversarial scenarios.
Further, the system models of the adversarial attacks in
the transmitter and receiver are refined, respectively. Finally,
the corresponding evaluation indicators are proposed around
the system models.

A. Research Scenarios and System Models

Consider a scenario with a transmitter (Alice), a receiver
(Bob), and an eavesdropper (Eve). Alice maintains a coop-
erative communication relationship with Bob. Eve wants to
intercept their signals and classify their modulation type for
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Fig. 2. Overview of Characteristics of adversarial attack and defense in the electromagnetic field.

Fig. 3. Research scenarios and corresponding adversarial attack positions.

further analysis. To protect the communication content, Alice
can add imperceptible adversarial perturbations to the signal
to reduce Eve’s classification accuracy, as shown in Fig. 3.

We first investigate the ideal case, that is, by injecting
Eve with a virus program. This virus program can directly
access the information of the AMC model and add adversarial
perturbations to the input data without going through the
channel. Spectrum leakage and time-domain glitches are both
caused by the high frequency components in the adversarial
perturbations. To address these two issues, we will try to
suppress the out-of-band energy of the perturbations relative
to the original signal as much as possible. Therefore, the

system model for adversarial attacks at the receiving end can
be defined as

min
δ

⎛
⎝eng

(
δobx

)

eng(δx )

⎞
⎠, s. t. f (x + δx ) �= y and x + δx ∼ Dx,

(1)

where x is the original signal data example and y is the class
label; Dx is the distribution of original signal data; δx is the
adversarial perturbation of example x and δobx is the out-of-
band component of δx ; f (·) is the AMC model; and eng(·) is
the energy calculation function, its calculation method is as

eng(x ) =

N∑
i=1

x2i , (2)

where N is the length of the original signal example; The
purpose of this system model is to generate perturbations with
as little out-of-band energy as possible, but without affecting
the data distribution, and to cause the model to produce
erroneous outputs.

Then we study how to overcome the influence of the
dynamics of the channel, to add adversarial perturbations at
the transmitter, and to affect the target model in Eve through
the channel.

min
δ

⎛
⎝eng

(
δoby

)

eng
(
δy
)
⎞
⎠

s. t. f
(
h
(
xy + δy

)) �= y for xy and xy + δy ∼ Dxy , (3)

where xy is the original signal data example of class y; δy is
the class universal adversarial perturbation of class y and δoby is
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the out-of-band component of δy ; h(·) is channel model. The
purpose of this system model is to generate channel-robust and
class-universal adversarial perturbations based on the previous
model.

B. Evaluation Indicators

Qualitative and quantitative indicators are designed for
comprehensive analysis and evaluation. Qualitative indicators,
including perturbation statistical distribution and perturbation
spectrum distribution, help visualize the distribution of adver-
sarial perturbations and the degree of in-band convergence of
the spectrum. Quantitative indicators, including Out-of-band
Energy Ratio (OBER), Fitting Difference (FD) [40], and Bit
Error Rate (BER) provide more precise results.

1) Out-of-Band Energy Ratio: Reducing the out-of-band
energy can effectively reduce spectrum leakage and time-
domain glitches. We define the energy of the adversarial
perturbation out-of-band of the original signal as Out-of-band
Energy (OBE), and the rest as In-band Energy (IBE). So we
design an indicator as (4) to measure the ratio of OBE relative
to the total energy of the adversarial perturbation.

OBER = 10 log10

(∑N
B ·N/fs≤i<N−(B ·N/fs−1) s

2(i)
∑N

i s2(i)

)
, (4)

where B is the set focus bandwidth, which is generally the
original signal’s bandwidth; and fs is the sampling rate.

2) Fitting Difference: The infinity norm can only represent
the maximum difference of a sample point in a segment of the
signal, but not the overall quality. Therefore, we use FD [40]
as an evaluation indicator for the signal quality in the time
domain, given by

FD =

∑N
j=1

(
xj − x ′j

)2
∑N

j=1

(
xj − x̄

)2 , (5)

where xj is the j-th sampling point of the original signal; x ′j
is the j-th sampling point of the adversarial signal; and x̄ is
the average value of the original signal.

3) Bit Error Rate: Different identification methods need to
be used for different types of data. For example, image data
needs to be identified by the human eye, and speech needs
to be identified by the human ear. The most direct way to
identify the degree of damage to a signal is to compare the
BER changes before and after the perturbation is added.

IV. ADVERSARIAL ATTACK ALGORITHM

In this section, we will introduce the proposed algorithms
step by step around two system models. We first introduce
the spectrum focused frequency adversarial attack, which is
designed for the spectrum leakage and time-domain glitches
problem, under a white-box scenario at the receiver-end. To
enhance the black-box transferability of the attack method,
we further introduce a version based on meta-learning.
Finally, to extend this method to more realistically significant
transmitter-end attack scenarios, we introduce the channel-
robust class-universal spectrum-focused frequency adversarial
attack.

Fig. 4. Overview of the proposed SFAA algorithm.

A. Spectrum Focused Frequency Adversarial Attack

Spectrum leakage and time-domain glitches are caused by
the high frequency components in the adversarial perturba-
tions. Reducing the out-of-band high frequency components
relative to the original signal is an intuitive way to address
these issues. The first system model is defined in the ideal
adversarial attack scenario, that is, the adversarial attacker
can directly access and modify the input of the target model.
Therefore, this paper proposes to carry out SFAA on the
received data, and its overview is shown in Fig. 4.

Before entering the main algorithm, we analyze the com-
position of the spectrum data. The Fast Fourier Transform
(FFT) formula for transforming from the time domain to the
frequency domain is given by

X [k ] =

N−1∑
n=0

x [n]e−j2πkn/N , (6)

where x [n] is the n-th complex point of the signal example;
and X [k ] is the k-th frequency domain sample. For the
positive frequency part of the signal, the frequency samples
corresponding to the signal bandwidth are first Ns points of
X [k ], which can be calculated by

Ns = B ·N /fs , (7)

and the frequency sampling points corresponding to the neg-
ative frequency part are the last Ns − 1 points of X [k ].

First, we initialize the random spectrum data s0 at the focus
location. Therefore, s0 can be expressed as

s0[i ] =

{
0, Ns ≤ i < N − (Ns − 1)

random, otherwise.
(8)

Next, use the Inverse Fast Fourier Transform (IFFT) to obtain
the corresponding time domain adversarial perturbations of
s0 as

δ[n] =
1

N

N−1∑
n=0

s0[k ]e
j2πkn/N , (9)

where δ is the adversarial perturbation. In order to ensure
that the infinite norm is within a certain range, we truncate
the adversarial perturbations with the Clip(·) operation as
in (10). Note that the Clip(·) function may introduce some
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Algorithm 1: The SFAA Algorithm

Input : The AMC model f (·); The initialized spectrum
data s0; The original data x; The correct label y;
The update step size α; The epoch times M.

Output: The final perturbation spectrum sM ; The final
adversarial example x ′M .

1 Randomly initialize s0;
2 for epoch m = 0 to M− 1 do
3 Take the IFFT for sm and use the truncation function

to get the adversarial perturbation δm ;
4 Superimpose adversarial perturbation δm to get

adversarial example x ′m ;
5 Feed the adversarial example x ′m into the model to

get confidence list q;
6 According to the loss function (12), calculate the loss

value between q and y;
7 Get the gradient of sm by backpropagation;
8 Get the sm+1 by (13) according to α;
9 end for

10 return sM and x ′M ;

high frequency components, but these components are usually
very small.

δ0 = Clip(δ), (10)

where δ0 is the adversarial perturbation corresponding to s0.
The Clip(·) function is defined as

Clip(a) =

{
a, a > 0

0, otherwise.
(11)

Furthermore, the adversarial perturbation is fed into the AMC
model along with the original signal, and the confidence list
q is obtained. A loss function is designed between the correct
label y and q to punish the corresponding confidence as in (12).

Loss(q , y) = − log10
(
1− qy + ε

)
, (12)

where qy is the confidence corresponding to the correct label;
ε = 1e−6 is used to prevent 1− qy from being 0. The update
rule for s are given in (13).

sm+1 = sm + α · sign(∇smLoss(q , y)), (13)

where α is the update step size; ∇smLoss(·, ·) represents the
differential operation of the Loss(·, ·) function with respect to
sm . m is the current number of updates. Using (10) and (13)
to iteratively update s0 for M times, the final perturbation
spectrum and adversarial perturbation can be thus obtained.
The pseudo code is provided in Algorithm 1.

B. Spectrum-Focused Frequency Adversarial Attack Based
on Meta Learning

As with adversarial attack algorithms in the time domain,
adversarial examples generated using the SFAA algorithm in
a white-box attack scenario do not tend to have a strong trans-
ferability to black-box scenarios. It is difficult to obtain the
satisfactory attack effect by directly applying the adversarial

examples used in the white-box attack scenario to a black-box
one because of the differences in model decision boundaries,
model initialization, connection structure, training optimiz-
ers, etc.

To improve the transferability of adversarial examples gen-
erated using the SFAA algorithm to black-box scenarios, we
propose a Meta-SFAA algorithm based on the concept of
meta-gradient adversarial attack [41]. As shown in Fig. 5,
the algorithm consists of multiple tasks including meta-train
and meta-test phases. During each task, the meta-train phase
simulates a white-box attack, while meta-test phase simulates
a black-box attack. The tasks are performed sequentially,
with meta-train and meta-test executed in turn. By adaptively
reducing the gradient difference between the white-box and
black-box scenarios, the Meta-SFAA algorithm enhances the
transferability of adversarial examples to the black-box attack.

Specifically, we first build a model collection containing C
different models. Note that the model collection should not
contain the model for testing black-box attacks. Then, R + 1
models are randomly selected from the model collection to
form a task, and a total of T tasks are generated. In each task,
R models are used for meta-train and the other one is used for
meta-test.

During the meta-train phase, the average logits output of the
R models is computed as the final output. The final confidence
list qt ,h can be obtained further by the softmax(·) function as:

qt ,h = softmax

(∑
r

logits
(
r , x ′t ,h

)
/R

)
, (14)

where x ′t ,h is the input data for the h-th meta-train in the t-th
task; the value ranges of t and h are both in N(natural number);
and logits(r , ·) is the output logits of the r-th model. Then,
one-step update is done by computing the gradient using the
loss function (15).

st ,h+1 = st ,h + α · sign(∇st,hLoss
(
qt ,h , y

))
. (15)

After performing meta-train phase H times, we perform
meta-test phase for one time. This phase is similar to the
original SFAA algorithm, with the exception that the model
used is randomly selected from the collection. Therefore, the
process of meta-test is not repeated. The adversarial example
xt and adversarial perturbation spectrum st generated by
each task are then passed on to the next task until all tasks
are completed. The final xT generated by the Meta-SFAA
algorithm is expected to have strong transferability to black-
box scenarios.

The main idea of meta-learning is to get common knowl-
edge and skills in multiple tasks, and apply these knowledge
and skills to new tasks. During the meta-train process of each
task, the average gradient is used to update the adversarial
perturbation, which makes the adversarial perturbation capable
of attacking multiple networks. However, such adversarial
attack is often weak. Based on this, a single model used in
the meta-test process is used to optimize the adversarial per-
turbation to make it more targeted and enhance the adversarial
attack capability. Repeatedly performing multiple tasks, the
resulting adversarial perturbation learns attack capability that
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Fig. 5. Overview of the proposed Meta-SFAA algorithm.

is transferable across multiple models. This also enhances the
adversarial attack transferability to new models.

C. Channel-Robust Class-Universal Spectrum-Focused
Frequency Adversarial Attack

In real-world electromagnetic adversarial attack scenario,
the attacker does not have the right to directly access and
modify the input data of the target model as defined in
the second system model. However, traditional adversarial
attack perturbations, which are carefully crafted to manipulate
the input data, often fail to achieve an excellent attack
effectiveness when faced with random noise in the wireless
channel. Additionally, the high timeliness requirements of
communication tasks often require the generation rate of
adversarial communication signals should not be limited by
the generation and superposition of adversarial perturbations.
To address these challenges, we propose the CrCu-SFAA
algorithm.

We draw on the design of GAN [38] to build the framework
of the CrCu-SFAA algorithm, as shown in Fig. 6. The input
of the generative (G) model is a batch of Gaussian white
noise {z}B and class labels {y}B. The deconvolutional layers
progressively scale up the input to a tensor with the same
size as the original signal examples. This tensor is seen as
an adversarial perturbation in the time domain and is then
transformed into the frequency domain by the FFT algorithm.
In the frequency domain, the high frequency components of
the adversarial perturbation are zeroed. The final adversarial
perturbation will be obtained after the IFFT algorithm and the
Clip(·) function. The adversarial perturbation is fed into the
generalized channel along with the original signal examples.
The generalized channel refers to all links from the superim-
posed adversarial perturbation in Alice to the sampling in Eve.
The adversarial signal examples {r ′}B sampled by Eve are the
input to the AMC model. The parameters and structure of
the AMC model are fixed, but backpropagation is supported.

The training of the generative model is performed under the
supervision of loss function Loss = (1 − ρ)Lossf + ρLossd
with the tuning factor ρ ∈ [0, 1]. The Lossf is defined as

Lossf = − log10
(
1− qy

)
, (16)

where qy is the confidence corresponding to class label y in
the confidence list. The goal of Lossf is to reduce qy . Lossd
is defined as

Lossd =

(∣∣∣∑L
j xi (j )

∣∣∣+
∣∣∣∑L

j xq (j )
∣∣∣
)

2L
, (17)

where xi and xq are the in-phase and quadrature components
in the adversarial perturbations corresponding to the signal,
respectively. The goal of Lossf is to make the average absolute
value of the generated perturbations as close to 0 as possible
to reduce the impact on the signal energy distribution. The G
model trained under the supervision of the loss function Loss
can generate class universal adversarial perturbations that are
robust to the channel.

V. EXPERIMENTATION AND EVALUATION

In this section, we conduct extensive experiments to qual-
itatively and quantitatively analyze the performance of the
proposed algorithms.

A. Datasets

Two datasets are used in this paper to validate the proposed
algorithms. The first is the publicly available, actual collected
RML2016.10a [42] dataset, which contains 3 analog modula-
tions, AM-DSB, AM-SSB, WBFM and 8 digital modulations,
8PSK, BPSK, CPFSK, GFSK, PAM4, 16QAM, 64QAM,
QPSK. This dataset accounts for channel effects such as
frequency offset and sample rate offset, and is commonly used
in the AMC research. The second is a simulated dataset from
a communication system built using MATLAB. This dataset
includes the 8 digital modulations as in the RML2016.10a
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Fig. 6. Overview of the proposed CrCu-SFAA algorithm.

TABLE I
DATASET PARAMETERS

2×128 512×1×3

512×1×3 256×1×3
256×1×3

1×4096

128×1×3

convolution+ReLU+Batch Normalization Max pooling fully connected+ReLU

1×512

1×128 1×8

Input

Fig. 7. Network structure diagram of the DeepModNet model.

dataset, and the channel model is a Rician channel with
Additive White Gaussian Noise (AWGN). The parameters for
this dataset are shown in Table I.

B. Comparison of Classification Performance

In this paper, we build a model to classify modulated signals
and use it as a target model for adversarial attacks. We call it
DeepModNet. The network structure of DeepModNet model
is shown in Fig. 7.

To evaluate the performance of the DeepModNet model, we
compare it to several classical models on the RML2016.10a
dataset, including ResNet-18, ResNet-50, VGG-11, and
GoogLeNet [43], [44], [45], [46]. The classification accuracy
of each model at different SNRs is shown in Fig. 8.

As can be seen from Fig. 8, the DeepModNet model can
achieve an almost comparable classification performance to the
other classical models. The classification accuracy increases
with SNR and gradually stabilizes around 4dB. Therefore, we

Fig. 8. The classification accuracy of the models without attack.

TABLE II
THE CLASSIFICATION ACCURACY UNDER DIFFERENT NUMBERS OF

ITERATION STEPS

will conduct adversarial attacks on the DeepModNet model in
the subsequent experiments.

C. Comparison of White-Box Attacks on the Receiver

The RML2016.10a dataset and DeepModNet model are
used in a receiver-side white-box attack. Since the number
of samples per symbol in the RML2016.10a dataset is 8, we
set Ns to 16 according to (7). Before comparing the attack
performance of the SFAA algorithm with others, we first
experimentally study the effect of the number of iterations on
the performance and determine the optimal hyperparameters.
The perturbation strength is set to 0.1, the iteration step size
is set to 0.02, and the number of iteration steps is set varied.
Under the attack of the SFAA, PGD, and UAP algorithm with
different numbers of iteration steps, the classification accuracy
of the target model on the RML2016.10a dataset is shown in
Table II. To obtain better attack performance and avoid serious
overfitting, we set the number of iteration steps of the SFAA
to 100, PGD and UAP to 10, in the following experiments.
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Fig. 9. The classification accuracy of the DeepModNet model under various
white-box attack algorithms at the receiver-side.

In the experimental setup, the perturbation strength for all
four algorithms is set to 0.1. The iteration step size and the
number of iteration steps for the PGD and UAP algorithms are
0.02 and 10, respectively. The classification accuracies under
no attack and the four attack algorithms on the RML2016.10a
dataset are shown in Fig. 9.

In Fig. 9, the four attack algorithms cause the accuracy to
decrease to varying degrees. The accuracy drop at low SNR
is smaller than that at high SNR, which is because the strong
noise can obscure various types of data, making it difficult
for the attacks to be effective. The UAP algorithm generates
a single adversarial perturbation for the entire dataset, rather
than design one for each example, resulting in a relatively
weak attack effectiveness. The iterative algorithm can update
multiple times to find a more optimal point that reduces
the target confidence, making its attack effectiveness stronger
than the single-step attack FGSM. In contrast, SFAA can
completely fool the target model at low SNR. When the SNR
is higher than 10dB, the attack performance of SFAA is similar
to that of PGD. Analysis of the above attack results shows that
the SFAA algorithm has the strongest attack performance.

D. Comparison of Black-Box Attacks on the Receiver

Compared to the white-box attack, the black-box attack
is more realistic as the attacker has no information about
the structure and parameters of the target AMC model, only
the input-output relationship. Next, we experimentally evaluate
the black-box attack performance of the SFAA algorithm
among the five models using the RML2016.10a dataset. The
data used are the data of all 11 types of signals and 20 SNRs in
the RML2016.10a dataset. The classification accuracy under
the attack of SFAA algorithm across different networks is
shown in Table III.

In Table III, the rows indicate the models for which the
adversarial perturbations are computed, and the columns
indicate the models for which the classification accuracy is
reported. The diagonal lines indicate the accuracy under the
white-box attack, while the other positions are the accuracy
under the black-box attack. Among them, the DeepModNet
model appears to be more difficult to attack, while the
ResNet-18 model has the weakest capability to defeat the

Fig. 10. The classification accuracy of the DeepModNet model under various
black-box attack algorithms at the receiver-side.

adversarial attack. However, the effectiveness of the white-
box attack using the proposed SFAA algorithm is significantly
higher than that of black-box attack on each model.

To address this issue, we propose to leverage meta-learning
to improve attack transferability of the SFAA algorithm. In
the Meta-SFAA algorithm, we use three different optimization
algorithms, including RMSprop, Adam, and Adamax [43],
to train the DeepModNet, ResNet-18, ResNet-50, and VGG-
11 models, to obtain the model collection. The black-box
target model is GoogLeNet. Four models are randomly
selected for each task, three of which are used for meta-
train for 50 times and one is used for meta-test. 15 tasks like
this are created. The classification accuracies of the black-box
target AMC model under these attack algorithms are shown
in Fig. 10.

Comparing Fig. 9 and Fig. 10, it can be seen that the
attack performance of all four algorithms in the black-box
attack case is weakened. Among them, the performance of
the UAP algorithm is reduced the least, because adversarial
perturbations that are universal to dataset are also more
transferable in black-box attacks. The attack performance of
the FGSM and the PGD have a similar weakening degree,
with the latter is still stronger than the former. The SFAA
algorithm has the most degraded performance, as it achieves a
very impressive attack performance in the white-box attack but
tends to overfit, leading to the maximum decay in the black-
box attack. Finally, the attack performance of Meta-SFAA
is greatly improved, surpassing the PGD algorithm. Meta-
learning combines the gradient directions of multiple models
and simulates the process of alternating between white-box
and black-box attacks, enabling SFAA to achieve excellent
transferability in black-box attacks.

E. Comparison of Adversarial Attacks on the Transmitter

Next, we consider the scenario of an adversarial attack on
the transmitter side. The simulation system is used in this
section to allow the signal to pass through the generalized
channel model. We set the same parameters as in Section V-C
for the FGSM, PGD, and UAP algorithms. For the CrCu-
SFAA algorithm, we set the same perturbation strength. The
optimizer used to update the G model is Adam. A dynamic
learning rate scheme is used, with the learning rate starting at
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TABLE III
CLASSIFICATION ACCURACIES UNDER THE SFAA ATTACK ACROSS DIFFERENT MODELS

Fig. 11. The classification accuracy of the DeepModNet model under various
attack algorithms at the transmitter-side.

1e-2 and decaying by half every two epochs. In each batch,
various types of data are randomly selected for training to
prevent the model from skewing certain types of data. The
tuning factor ρ in the loss function is set to 0.5. In the testing
phase, random noise and labels are fed into the G model to
generate a batch of adversarial perturbation libraries, which
can be superimposed on the transmitted signal in real time.
Under various attack methods carried out at the transmitter,
the classification accuracy of the target AMC model is shown
in Fig. 11.

In Fig. 11, at low SNR, the channel effects overwhelm the
adversarial perturbations. When the SNR increases to about
−8dB, the different attack algorithms show various attack per-
formances. Among them, the UAP and CrCu-SFAA algorithms
do not generate perturbations specific to individual examples.
However, the FGSM and PGD algorithms carefully craft
adversarial perturbations for each example. The performance
of the two example-specific adversarial attacks is better than
the two example-universal ones. The attack performance of
the proposed CrCu-SFAA algorithm is higher than that of the
UAP algorithm, demonstrating its effectiveness in conducting
channel-robust class-universal adversarial attacks.

F. Comparison of Computational Complexity

Next, we compare the computational complexity of the
proposed SFAA, Meta-SFAA and CrCu-SFAA with existing
algorithms, FGSM, PGD, and UAP. Whether pre-training is
required, batchability, universality, the number of forward and
backward propagation required in real-time generation are
used as evaluation indicators, as shown in Table IV.

Among the above algorithms, only CrCu-SFAA is based
on the generative model, so pre-training is required. Once

trained, the model can generate class-universal adversarial
perturbations, thus requiring only one forward. FGSM requires
only one update step, thus requiring one forward-and-
backward. The Meta-SFAA varies with the number of tasks T
and the number of meta-training H. They are set to 10 and 15
in this paper. The SFAA, PGD, and UAP vary according to the
setting of the number of iteration steps. As discussed above,
these are set to 100, 10, and 10, respectively. Only the UAP
algorithm cannot generate adversarial perturbations in batches,
but the perturbations he generates are common to the entire
data set.

G. Property Evaluation of Adversarial Perturbation

Next, we evaluate the properties of the adversarial per-
turbations of the proposed algorithm from the following
qualitative and quantitative indicators, and compare it with
several existing algorithms.

1) Perturbation Statistical Distribution: The L∞ norm can
only evaluate the largest magnitude in perturbations. The
perturbation statistical distribution, as a qualitative indicator,
can capture the true distribution position of the perturbation
amplitudes. If the distribution is concentrated in several posi-
tions, it means that there are more glitches in the perturbations,
and vice versa. If the absolute value of the distribution
position is larger, it means that the power consumption of
the disturbance is larger, under the same L∞ constraint.
For comparative analysis, we plot the perturbation statistical
distributions of the four attack algorithms at the transmitter
and receiver in pairs as shown in Fig. 12. The perturbations
corresponding to 100 randomly selected samples are counted
in each algorithm.

Each of these four algorithms has similar statistical dis-
tribution characteristics at the transmitter and receiver. In
Fig. 12(a), the perturbations of all sample points produced by
the FGSM algorithm touches the norm boundary because of
its single-step update. This reflects that the exploration of the
FGSM algorithm in the feasible space is simple and crude.
Such perturbations will introduce a lot of glitches on the signal
waveform. However, the PGD algorithm saves unnecessary
perturbations due to its iterative updates as in Fig. 12(b), and
a large number of perturbations are updated to the interior
of the region. In the UAP algorithm as shown in Fig. 12(c),
the magnitudes of the perturbation are very small or at the
boundary. These perturbations will also introduce a lot of
glitches. In contrast, for the SFAA and CrCu-SFAA algorithms
shown in Fig. 12(d), the frequency band is limited so that
the perturbation does not change drastically. The perturbations
of the SFAA and CrCu-SFAA algorithm are more widely
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TABLE IV
COMPARISON OF COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS.

Fig. 12. The perturbation statistical distribution of attack algorithms.

distributed within the perturbation boundary, which makes
perturbations appear softer and less glitches.

2) Perturbation Spectrum Distribution: The spectrum dis-
tribution of perturbations is an intuitive qualitative method to
observe the degree of aggaregation of the perturbations in the
spectrum. We plot the perturbation spectrum distribution of
these algorithms at the transmitter and receiver in Fig. 13.

In Fig. 13, there are a lot of energy outside the frequency
band (1MHz) where the signal is located, for the FGSM,
PGD, and UAP algorithms at the transmitter and receiver.
Moreover, universal adversarial perturbations including the
UAP and CrCu-SFAA algorithms all show dense peaks in
the spectrum. Importantly, the perturbations of the SFAA and
CrCu-SFAA algorithms are obviously more focused, which
concentrates the attack energy in the original signal spectrum,
thus obtaining a significant attack performance and excellent
frequency concealment.

3) Fitting Difference: The FD indicator reflects the degree
of the difference between the adversarial examples and the
original signal examples. We randomly select 100 signals
from the datasets at the transmitter and receiver, and generate
adversarial examples using the four algorithms. The average
FD for each algorithm at the transmitter and receiver is
calculated and shown in Fig. 14.

In Fig. 14, the left column of each group is from the receiver
attack, and the right column is from the transmitter attack.
In the receiver attack, the FD of the FGSM algorithm is
the largest, and that of the PGD and UAP algorithms are

Fig. 14. The Fitting difference of attack algorithms.

Fig. 15. The out-of-band energy ratio of attack algorithms.

smaller. The FD of the SFAA algorithm is the smallest, which
is close to a half of that of the FGSM algorithm. While
in the transmitter attack, the FD of the FGSM algorithm is
also the largest. The FD of PGD, UAP, and CrCu-SFAA
algorithms are very similar and significantly lower than that
of the FGSM algorithm. The perturbations of the SFAA and
CrCu-SFAA algorithms are concentrated in the low frequency
region and are more flexible, so there is minimal extra waste
and difference in the waveforms.

4) Out-of-Band Energy Ratio: In order to quantitatively
analyze the spectrum concentration of the adversarial attack
algorithm in the frequency domain, we calculate the average
IBE, OBE, and OBER for the perturbations of the above 100
examples at receiver and transmitter, as shown in Fig. 15.
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Fig. 13. The perturbation spectrum distributions of the attack algorithms.

In Fig. 15, each energy column consists of IBE and OBE,
and OBER as marked above the energy column. The left
column of each group is from the receiver attack, and the
right column is from the transmitter attack. Comparing Fig. 14
and Fig. 15, it can be seen that the overall trend of FD of
adversarial perturbations for each algorithm is similar to the
total energy. Further observation, in the receiver attack, is that
the perturbations of the FGSM, PGD, and UAP algorithms
all have obvious frequency leakages, and the OBER reaches
over −6.64dB. However, the OBER of the SFAA algorithm
is only −17.62dB. In comparison, there is a similar trend in
transmitter attack. The OBER of the CrCu-SFAA algorithm
is only −10.97dB, and that of others is over −3.57dB. The
minimum frequency leakage is achieved by the proposed the
SFAA and CrCu-SFAA algorithms.

5) Bit Error Rate: The measurement of semantic
information of different types of data requires different
methods. For example, image data needs to be identified by
the human eye, and speech needs to be identified by the
human ear. In our scenario, in order to prevent Eve from
identifying the modulation class and further obtaining the
communication content, Alice adds adversarial perturbations
in the signal to attack the AMC model of Eve. However,
there is a premise that the added adversarial perturbations
cannot affect the original semantic information of the signal in
cooperative communication. The most direct way to identify
the degree of damage to a signal is to compare the BER
changes before and after the perturbation is added.

In Fig. 16, we can see that the impact of the adversarial
perturbations of the four attack algorithms added at the
transmitter on the BER is very similar and very small. Channel
noise plays a major role and masks the impact of perturbations
to some extent. On the contrary, in a receiver attack, the
impact of the adversarial disturbances of the four algorithms
on the BER cannot be ignored. Moreover, the BER under
the FGSM, PGD, and UAP attack algorithms are relatively
similar. The proposed SFAA algorithm has significantly less
impact on the BER than the other algorithms. In a receiver

Fig. 16. The bit error rate under various attack algorithms.

attack, the high frequency component in the disturbance may
be the main factor affecting the BER. The proposed SFAA
algorithm suppresses out-of-band high frequency components
of the adversarial perturbations, thereby significantly reducing
the impact on BER.

VI. CONCLUSION

In this paper, We studied the redundant high frequency
components of existing adversarial attack methods for AI-
based AMC models, and analyzed the resulted frequency
leakage and glitch problems. To address these issues, we
proposed the SFAA algorithm, which concentrates the adver-
sarial perturbation energy in the signal band by suppressing
the OBE. Further, we proposed the Meta-SFAA algorithm to
enhance the transferability to black-box attacks, using meta-
learning to generate adversarial perturbations under multiple
models. Considering the requirement for transmitter attacks
and perturbation generation rate, we proposed the CrCu-SFAA
algorithm, inspired by the GAN framework, which gener-
ates channel-robust class-universal perturbations. Qualitative
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and quantitative indicators were used to demonstrate that
the proposed algorithms can achieve a stronger attack
performance, mitigate the frequency leakage, and improve the
adversarial signal quality. However, the generative model is
trained under the channel model rather than using explicit
channel information, which is a passive training method.
Future work should be conducted on how to train a pertur-
bation generative model based on the channel information
to actively generate the desired adversarial perturbations.
Overall, a new perspective has been provided in this paper for
adversarial attacks in the electromagnetic field, which provided
a critical research value.
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