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Abstract—Machine learning (ML) for wireless communications
and networking requires abundant, high-quality radio frequency
(RF) data, yet collecting this data is often challenging and costly.
To address this, we propose RF-ACCLDM (Activity Class Condi-
tional Latent Diffusion Model), a framework designed to generate
synthetic RF data for human activity sensing. Operating in latent
domains, RF-ACCLDM produces RF data conditioned on activity
class labels, supporting various RF technologies and modalities,
including Radio Frequency Identification (RFID), WiFi Channel
State Information (CSI), and Frequency-Modulated Continuous
Wave (FMCW) radar. Training of the framework is universal
and achieves consistent quality. This approach outperforms plain
diffusion on raw RF data in terms of quality, computational
efficiency, and scalability. Using the Frechet Inception Distance
(FID) metric, we measure and demonstrate the fidelity of the
generated data. Through extensive ablation studies, we demon-
strate the effects of varying latent dimensions, noise schedules,
and training configurations, validating the robustness of RF-
ACCLDM. Furthermore, we evaluate the performance of our
model in downstream tasks such as RF-based 3D human pose
tracking and human activity recognition (HAR), where it can
match or even outperform counterparts trained solely on real
data. Our approach offers a scalable and cost-effective solution
for enhancing ML-based schemes in wireless sensing and com-
munications.

Index Terms—AIGC, Conditional diffusion, Data augmenta-
tion, human activity recognition, RF sensing.

I. INTRODUCTION

Machine learning (ML)-based wireless communications and
networking have advanced significantly in the past decade [3].
However, the performance of DL-empowered methods is heav-
ily reliant on the availability of vast, high-quality radio fre-
quency (RF) data. Despite initial success, these models gener-
ally lack scalability and generalizability due to the constraints
during data collection, typically ranging from limited settings
or environments to class imbalance, loss, redundancy, and mis-
labelling [4]. A greater volume and better quality of data are
required, along with additional parameters that need to be con-
figured and learned, since the model architecture has become
more intricate and sophisticated. In contrast to other domains
like natural language processing (NLP) and computer vision
(CV), wireless data measurements are naturally complex and
noisy from commercial devices (e.g., SX1276 LoRa Connect
transceiver or 5300 Wi-Fi network interface card (NIC)).
Collecting high-quality RF data is a notable challenge due
to its vulnerability to spatial, spectral, and temporal variations.
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Changes in the environment or transceiver location can signifi-
cantly alter the data captured, necessitating new data collection
for each unique condition. Additionally, the dependency on
frequency bands and specific transceiver protocols introduces
further complexity, as data features can drastically differ across
the spectrum, exemplified by the contrast between 5GHz WiFi
and 75 GHz millimeter wave channels. The dynamic nature
of wireless channels, which fluctuate over time and activity,
further complicates consistent data collection. Consequently,
the intricate process of collecting diverse, reliable, and quality
RF datasets incurs substantial costs, underscoring the need for
innovative solutions in wireless communications research, and
poses the first obstacle towards successful scenarios of “ML/AI
for wireless”. The challenges related to these obstacles are
further supported by [5]. The paper discusses the significant
effort and expense required to collect cross-domain RF data,
address signal and environmental sensitivity, and ensure ef-
fective calibration. Such challenges underscore the value of
our approach, as synthetic data generation can alleviate these
burdens by reducing the need for extensive, labor-intensive
data collection across diverse domains.

Valiant attempts with deep learning (DL) have been made to
address these challenges in different fields of wireless sensing.
Chao et al. [6] utilizes cycle consistency loss to mitigate the
performance degradation caused by unseen test subjects dur-
ing training for Radio Frequency Identification (RFID)-based
3D pose tracking, while [7] creates a domain-independent
body coordinate velocity profile (BVP) to represent the hand
motion in the body coordinates, which enables cross-domain
gesture recognition. However, they do not tackle the root
issue, which is the lack of high-quality data and the efforts
required to collect new data whenever a new domain arises.
Data augmentation has been used extensively in the field of
wireless sensing to overcome this challenge. Zhang et al. [8]
applied various transformations, including time stretching and
spectrum scaling, to synthesize Channel State Information
(CSI) spectrogram. In [9], three operations are leveraged to
generate millimeter wave (mmWave) point cloud samples at
varying distances, angles, and human motion velocities. The
synthesized data are used as copies of original data with
transformed features to enhance the DL model performance,
instead of serving as new data that can be seamlessly applied
to other downstream tasks. The approaches only work for one
RF sensing modality (e.g., WiFi CSI spectrogram or mmWave
point cloud), and are not tested in cross-modality scenarios.

On the other hand, the rapidly evolving artificial
intelligence-generated content (AIGC) concept has ignited a
new revolution in Computer Vision (CV) and Natural Lan-
guage Processing (NLP) with products such as Sora, ChatGPT,
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and Midjourney, laying the foundation for the emergence of
artificial general intelligence (AGI). These applications are
primarily utilized in the context of text-to-image generation or
text-prompted AI agents, and they typically use transformer
and diffusion models as generative backbones. RF sensing
data for human activity recognition (HAR) typically involves
high-dimensional complex data with time dimensions, similar
to CV data (image, video, or audio). Hence cross-framework
sensing [10], [11] encourages applying well-established frame-
works in the field of CV and NLP to the wireless field. It
naturally leads us to inquire whether it is possible to leverage
AIGC to solve problems in wireless sensing, especially for
generating RF data. To this end, diffusion model, also referred
to as denoising diffusion probabilistic model [12], provides a
promising solution. Diffusion models learn to generate high-
quality, diverse samples that closely mimic the distribution
of real-world data by simulating a process that meticulously
reverses chaos into structured, realistic data by neural networks
such as U-Nets [13].

In this paper, we tackle the lack of high-quality and diverse
data challenges in RF sensing-based HAR with a diffusion
approach. We examine RF sensing data across three data
sources—WiFi CSI, FMCW radar, and RFID—each with
distinct modalities or feature types relevant to our analysis.
Our WiFi CSI data focuses on the phase difference between
neighboring antennas as a modality, while FMCW radar
data examines range profiles, and RFID data captures phase
variation between consecutive phase readings. Each modality
offers unique insights and is further detailed in the following
sections. We first perform diffusion on raw RFID sensing data
with the RFID-ACCDM system [2]. However, the fidelity of
the generated RFID data still falls short of optimal, and the
system does not offer robustness and scalability to other RF
sensing technologies.

To overcome this issue, we take one step further to propose
an Activity Class Conditional Latent Diffusion Model (termed
RF-ACCLDM), a conditional latent diffusion model (CLDM)
capable of generating super-realistic RF sensing data of rich
diversity, based on user input of desired human activity class
labels. Built upon [1], our system can be generalized to
generate WiFi CSI and mmWave radar data of consistent
quality by compressing data modalities of varying RF feature
dimensions into the same size of latent dimensions. In contrast,
RFID-ACCDM is optimized to RFID data of 36 phase vari-
ation measurements (features for diffusion models to learn)
only. However, WiFi CSI phase difference can have up to
90 features for three receiving antennas, and FMCW radar
range profile can have 256 features from a 256-point FFT.
To reduce computational expenses and enhance the generative
capabilities of diffusion models, we initially train a Recurrent
Variational Autoencoder (R-VAE). This approach allows for
the sampling of latent representations that capture the temporal
dependencies of RF sensing data. Subsequently, we employ a
CLDM to refine the training of the diffusion process within
these RF latent dimensions.

Moreover, CLDMs offer distinct advantages for generating
high-quality RF data, making them more suitable than tra-
ditional generative models such as GANs and VAEs. Unlike

GANs, which often struggle with mode collapse—a problem
where the model generates limited variations of data—CLDMs
provide a probabilistic framework that encourages diversity in
generated samples. This characteristic is particularly beneficial
for RF data, where preserving the variability of real-world
signals is crucial for applications like activity recognition
and localization. Additionally, CLDMs model data generation
as a denoising process, which aligns well with the inherent
noisiness of RF signals caused by environmental interference.
By learning to reconstruct data from progressively noisier
versions, CLDMs can effectively capture the stochastic nature
of RF signals and produce robust samples even in high-noise
scenarios. Furthermore, unlike VAEs, which often produce
blurry or over-smoothed outputs due to the constraints of KL
divergence in the latent space, CLDMs operate in a latent
space while leveraging diffusion, allowing them to generate
high-fidelity, fine-grained details essential for accurately rep-
resenting RF signal patterns. This quality is vital in RF data
generation, where small variations in signal strength, phase,
and amplitude can carry important information. Given these
considerations, we adopt CLDM as our approach for gener-
ating diverse, high-quality RF data, surpassing the limitations
of GANs and VAEs in this domain. The generated data holds
significant potential for various downstream wireless tasks,
particularly in RF sensing applications, such as enhancing the
robustness of human activity recognition (HAR) systems in
diverse and challenging environments

The main contributions of this study include:

• To the best of our knowledge, this is the first work that
harnesses the power of CLDM to generate RF data. The
quality of the synthesized data, in terms of accessibility,
quantity, fidelity, and diversity, surpasses that of existing
methods. More important, the proposed AIGC model is
lightweight, only requiring a small amount of real RF
training data to be effective.

• We qualitatively demonstrate the performance of RF-
ACCLDM through visual comparisons of its synthesized
data with ground truth. Furthermore, we quantitatively
show that our generated data is of high quality through
metrics of Frechet Inception Distance (FID) [14] and
diversity.

• The data generated by our RF-ACCLDM model can
significantly enhance the efficiency of HAR tasks, elim-
inating the requirement for domain gap mitigation using
additional real RF data. This was validated in our experi-
ments with two representative downstream tasks of HAR
with RF sensing, showing that the DL models trained with
RF-ACCLDM generated data surpass the performance of
those trained with real RF data.

• By utilizing latent representations, a substantial amount
of time and computation resources on diffusion training
and inference is saved. Furthermore, this approach opens
doors for cross-modality sensing, by having one AIGC
model to be capable of generating different modalities of
RF sensing data such as RFID phase variations, WiFi CSI
phase difference, and mmWave radar range profile data.

In summary, we address the following questions with an AIGC



3

for RF sensing approach: how to alleviate the substantial costs
and efforts involved in collecting large-scale RF data, and how
to generate diverse, high-quality synthetic RF data that can
effectively support downstream tasks such as HAR and 3D
human pose tracking.

The remainder of this paper is structured as follows. We
first review related work regarding AIGC and RF sensing in
Section II. Then Section III illustratively depicts the proposed
system design and the training of the latent diffusion models.
Section IV details the challenges for designing a unified frame-
work capable of technology-agnostic AIGC-based RF sensing
data generation. Section V presents our experimental study.
Section VI discuss future work and Section VII summarizes
this paper.

II. RELATED WORKS

1) RF sensing for HAR: HAR focuses on identifying
specific movements or actions of a person, playing a vital
role in daily life by providing advanced insights into human
behavior. By leveraging existing RF devices, this technology
enables the detection of human activities, supporting a wide
range of emerging applications such as healthcare monitor-
ing, autonomous driving, and augmented and virtual reality
(AR/VR). Its capabilities extend from recognizing large-scale
activities, such as daily activity classification and 3D human
pose tracking, to detecting fine-scale motions, including vital
signs monitoring and hand gesture recognition [15]. Our study
centers on the smart implementation of large-scale HAR.

RFID, WiFi, and Frequency-Modulated Continuous Wave
(FMCW) radar have been explored for large-scale HAR [16].
RFID primarily involves inexpensive tags and readers for
contactless interaction. The ability to categorize tags based on
their inherent electrical energy and frequency allows them to
be attached to various parts of the human body, serving as an
effective wearable sensor for accurate and precise monitoring
of activities. Next, FMCW radar works by measuring the
distance and velocity of body movement. Differences in chirp
frequencies, also known as beat frequencies, can be harnessed
to derive distance, velocity, Doppler frequency, and angular
information about the detected human body. Additionally,
activity-sensitive features, such as micro-Doppler signatures,
can be extracted using short-time Fourier transform (STFT) for
sensing tasks. Last but not least, WiFi channel state informa-
tion (CSI) is a metric that describes wireless channel properties
and takes into consideration some important factors affecting
signal propagation, like environmental attenuation, distance
attenuation, and signal scattering. Common and effective ways
of sensing the human body are through data modality of
amplitude and phase measurements. These three technologies
have been extensively utilized for activity recognition [16]–
[18] and 3D pose tracking [19]–[21].

2) Lack of AIGC Adaptations For RF Sensing: Over time,
Generative Adversarial Networks (GANs), an earlier approach
of AIGC technology has been utilized for data augmentation
in the RF sensing scene. In [22], a multimodal GAN was
designed to synthesize CSI data to tackle problems with
environment changes, with the multimodal system being rather

complex, consisting of two generators and one classification
model. Liao et al. [23] utilized a GAN network based on
time-frequency semantics to synthesize various RF signals
regarding gesture recognition to deal with class imbalance
issues. Our team has also investigated GAN-based data syn-
thesis [24], utilizing an autoencoder-based GAN to generate
RFID signals from 3D human pose data. While GAN-based
generation offers advantages such as domain adaptation, rapid
synthesis, and a well-established framework, achieving high
fidelity in the synthesized data remains a challenge. As a
result, GAN-generated data is often limited to being a per-
formance enhancer through augmentation, rather than serving
as standalone artificial intelligence-generated content (AIGC)
data. Furthermore, effective GAN models typically require
complex architectures and multimodal systems, which can
be particularly challenging to implement for wireless data.
The inherent complexity of wireless signals, combined with
the difficulty of training GAN models [25], often leads to
low-fidelity outputs. Therefore, a simple yet powerful data
augmentation strategy is essential for RF sensing applications.

3) Lack of RF Sensing Applications In AIGC: Applications
of AIGC leveraging diffusion technologies have predominantly
been centered around CV. Initially, diffusion methods were
applied to standard CV datasets, achieving groundbreaking ad-
vancements in image synthesis, as demonstrated in [26]. This
pivotal work, by demonstrating the viability and advantages
of diffusion models for creating realistic and diverse images,
inspired researchers in other fields to adapt diffusion models
to solve their own problems. For instance, The foundational
Diffusion Probabilistic Model (DPM) showcased its prowess
in medical image segmentation [27], outperforming leading
methods in segmentation accuracy. Cao et al. demonstrated
the effectiveness of diffusion models in high-frequency spaces,
achieving notable success in fast MRI reconstruction in [28].
Furthermore, conditional diffusion models (CDM) extend the
capabilities of basic diffusion models by incorporating condi-
tional information such as class labels and texts. These models
effectively capture the intricate relationships between the con-
ditions and the generated data, making them highly suitable
for tasks requiring both fidelity and specificity, particularly
when dealing with continuous and complex data. For instance,
conditional Denoising Diffusion Probabilistic Models (DDPM)
and conditional Score-based Diffusion models have been em-
ployed for generating 3D point clouds from partial scans and
for time-series imputation tasks, respectively, showcasing their
superiority over traditional models in [29] and [30].

The pursuit of enhancing content generation has led re-
searchers to explore the simpler, lower-dimensional latent
space, where diffusion models are hypothesized to perform
even better. The introduction of Latent Diffusion Models
(LDMs) marked a significant milestone in achieving state-
of-the-art image and video synthesis with reduced computa-
tional demands [31], [32]. The unprecedented SORA video
generation model [33] reinforces our commitment to the
potential of LDMs. Vision-based 3D human pose estimation
is a direct means of human motion sensing and has achieved
prior success using plain diffusion models [34], but limited
by the huge computational overhead caused by the inher-
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ently messy and complex human movements. Chen et al.
in [35] performed conditional diffusion on the motion latent
space, which achieved novel fidelity and diversity on extensive
human motion generation with greatly reduced cost. Given
their robustness across various domains, diffusion models are
particularly well-suited for RF sensing tasks, which involve
processing multi-dimensional data comprising time frames and
RF features.

III. SYSTEM DESIGN

The proposed system, illustrated in Fig. 1, consists of a two-
stage architecture designed for efficient and high-fidelity RF
data generation.

In the first stage, a Recurrent Variational Autoencoder (R-
VAE) encodes high-dimensional RF data into a compact latent
representation, capturing temporal dependencies critical for
accurate activity representation. The R-VAE achieves this
through its recurrent layers, which effectively model the se-
quential nature of RF data. It performs two key functions:
sampling from the learned latent distribution to generate
diverse data representations, and reconstructing RF data from
the latent space. This compression step significantly reduces
the complexity of RF data, allowing the subsequent CLDM to
operate efficiently while retaining activity-relevant features.

In the second stage, the Conditional Latent Diffusion Model
(CLDM) operates within the latent space generated by the
R-VAE. By conditioning on activity class labels, the CLDM
generates class-specific latent representations. During training,
the CLDM employs a diffusion process in the latent space,
progressively adding and removing noise to learn realistic
variations within each activity class. This training approach
enhances the model’s ability to produce diverse and robust
data representations. Once trained, the CLDM can generate
synthetic latent representations corresponding to different hu-
man activities. These synthetic latents are then decoded by
the R-VAE’s decoder to reconstruct high-fidelity RF signals,
enabling the generation of realistic and diverse RF data tailored
to specific activity classes.

A. R-VAE

RF-ACCLDM aims to generate RF data xL
1:N = {x

L
n }

N
i=1 cor-

responding to human activities, which is 2D time-series data
enriched with multiple features. Here, N indicates the number
of time frames and L specifies the number of RF features.
RF signals, sensitive to nearby movements, exhibit unique
cyclical patterns when captured by RF devices, corresponding
to various human activity classes. To capture the temporal
dependencies inherent in our RF data and accurately sam-
ple time-dependent latent vectors, we integrate Long Short-
Term Memory (LSTM) units within the encoder and decoder
architecture of the Variational Autoencoder (VAE), naming
them the LSTM RF encoder ε and LSTM RF decoder ψ,
respectively. An LSTM cell has a complex structure with a
gating mechanism designed to tackle the vanishing gradient
problem typical in standard RNNs, enabling it to remember
information for long periods [36]. The LSTM encoder ε
compresses the entire sequences of real RF data xn1:N into

a latent vector z = ε(xL
1:N ) ∈ R1×` , where z is a 1D vector of

predefined length ` determined by the model architecture. At
each time step n, the LSTM encoder outputs the hidden state
hn utilizing the input at the current time step n, hidden state
at the previous time step n, and cell state at the previous time
step n. This is the way the LSTM encoder tries to capture and
retain relevant information from the RF data sequence. The
cell state serves as the “memory” of the network, carrying
information through the sequence of inputs. The final hidden
state is fed into two linear transformation modules to estimate
the mean µ and log variance σ2 of the posterior p(z |x). The
latent vector z sampled from p(z |x) is then fed into a linear
transformation module to output the initial hidden state for the
decoder ψ. The initial hidden state and cell state are stacked
across the hidden layer depths for tracking short-term and
long-term dependencies, respectively. After that, the original
RF data can be reconstructed into x̃L

1:N using the layered
states through another linear module. The LSTM encoder
ε and decoder ψ can be modeled by qφ(z |x) and pθ (x |z),
respectively. The former approximates the true posterior and
the latter represents the likelihood of the complex process of
data generation that results in data x̃L

1:N from z. φ and θ are
the variational parameters.

The training objective is to minimize the loss function:

min
φ,θ
LR−V AE (φ, θ)

= − DKL(qφ(z |xL
1:N )| |pθ (z)) + Eqφ (z |xL

1:N )
[log pθ (x̃L

1:N |z)],

where DKL is the Kullback-Leibler (KL) divergence and the
reconstruction probability is the Monte Carlo estimation of the
log-likelihood Eqφ (z |xL

1:N )
[log pθ (x̃L

1:N |z) [37]. The former term
can be transformed to −0.5

∑`
l=1(1+log(σ2

l
)−µ2

l
−exp log(σ2

l
)),

and the latter can be trained with mean squared error (MSE)
(xL

1:N − x̃L
1:N )

2. In each epoch, the total loss is calculated
through

∑M
m=1 xm for M RF data with xm = xL

1:N being the
RF data for the mth individual activity.

A standard normal distribution N(0, I) is utilized as the
prior pθ (z) of the latent space. To enable back propagation
of the latent sampling, a reparameterization trick is executed
to approximate z as z = µ + σ̃ · ε , where σ̃ = e0.5×logσ2

and ε is sampled from a standard normal distribution N(0, I)
with the same shape of the standard deviation σ̃. The encoder
and decoder are each implemented by a 3-layer LSTM with a
hidden size of 1,024. The latent length ` of z is set to 256.

B. RF Data Generation with Conditional Latent Diffusion
Denoising diffusion probabilistic models (DDPMs), as in-

troduced by Ho et al. [12], employ a two-phase process
involving the gradual application of noise to contaminate
data through a “forward diffusion” phase, followed by a
“reverse diffusion” phase that systematically eliminates the
added noise to generate new data instances. In the forward
phase, a fixed-variance scheduler over a T-length Markov chain
transforms the data distribution into an isotropic Gaussian
distribution. Conversely, the reverse phase employs another
T-length Markov chain to undo the Gaussian noise, learning
the transitional kernels parametrically modeled by a neural
network εθ (xt, t) such as the U-Net [13].
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Figure 1. The diagram illustrates the conditional RF data generation process via RF-ACCLDM, starting with data collection and culminating in the production
of generative RF data. It also visualizes the forward and reverse diffusion processes occurring within the RF latent space.

However, raw RF data, characterized by intricate, motion-
specific features and high-frequency outliers, present great
challenges for diffusion models in accurately learning the
underlying distribution of the data. The complexity increases
with a broader variety of activity classes, making it difficult
for a standard DDPM framework with U-Net architecture to
generate realistic RF data corresponding to their class labels
without incurring significant computational costs.

Here, we introduce our diffusion framework RF-ACCLDM
within the condensed and representative RF latent space, i.e.,
z ∈ R1×256, to both decrease the computational costs and
improve the generative quality. This approach involves initially
transforming the latent space into a two-dimensional format
of 1×16×16 to accommodate the input requirements of the
U-Net. we introduce a streamlined approach to navigate both
forward and reverse diffusion processes, utilizing latent vectors
denoted as zRFt for any given timestep t in the noise schedule
of LDM. The forward process is conceptualized as a Markov
chain of T steps, mathematically described by perturbing the
data distribution towards an isotropic Gaussian model:

q(zRFt |z
RF
t−1) = N(z

RF
t ;
√
αt zRFt−1,1 − αtI),

q(zRF1:T |z
RF
0 ) =

T∏
t=1

q(zRFt |z
RF
t−1),

where the dynamically varying parameter αt ∈ (0,1) is crucial
for noise scheduling and latent generation sampling. The value
of αt represents the proportion of the original latent retained
at each time step. Utilizing the Markov chain, zRFt can be
sampled as

√
ᾱt · zRF0 +

√
1 − ᾱt · ε0 with ε0 ∼ N(0, I) and

ᾱt =
∏t
τ=1 ατ . Furthermore, zRF0 = ε(xL

1:N ) is the clean
latent vector before noise scheduling of the forward diffusion
process, and at the same time, the sampled generative latent

vector at the end of the reverse process. Naturally, zRFT
stands for a completely obfuscated latent sample of isotropic
Gaussian distribution.

To accommodate generations given a wide array of human
activities, from simple (e.g., standing still) to complex ones
(e.g., body twisting), we enable conditional latent diffusion
by conditioning on activity class labels, denoted as A. We
devise a custom reverse diffusion process tailored to the latent
space of RF sensing data, mathematically formulated as a
Markov chain with transitional kernels parameterized by a U-
Net, which predicts the noise to be removed at each step.

pθ (zRFt−1 |z
RF
t ,A) = N(zRFt−1;µθ (zRFt , t | A),Σθ (zRFt , t | A)),

pθ (zRF0:T |A) = p(zRFT )
∏T

t=1pθ (zRFt−1 |z
RF
t ,A).

The following specific parameterization of the transitional
kernels for the reverse process pθ (zRFt−1 | z

RF
t ) is considered:

µθ (zRFt , t | A)) =
1
√
αt

(
zRFt −

1 − αt
√

1 − ᾱt

(ε − εθ (zRFt , t | A)
)
,

σθ (zRFt , t | A) =
√
β̃t where β̃t =

{
1−αt−1
1−αt

βt, if t ≥ 1
β1, if t < 1,

where the denoiser U-Net εθ (zRFt , t | A), using activity class
labels as the conditional input, estimates the added noise vector
ε at time step t. µθ represents the mean of the Gaussian
distribution from which the next state (zRF

t−1) is sampled, while
σθ predicts the variance of the distribution. Together, these
parameters guide the reverse diffusion process at each step,
providing direction for the denoising operation to iteratively
refine the current state, bringing it closer to the original data
distribution. Here, βt = 1 − αt is a small positive constant
that controls the amount of noise added at each step of the
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forward diffusion process. Under this parameterization, the
reverse process of our RF-ACCLDM system can be trained
by minimizing the following loss function, as shown in [12]:

min
θ
LRF−ACCLDM (θ) (1)

= Et ,ε ∈N(0,I),zRF
0 ∈q(zRF

0 )

(ε − εθ (zRFt , t | A)
)2

,

where in every epoch, a timestep t is first randomly chosen
for each latent data in the batch followed by backpropagating
the loss between the predicted and actual noise once per batch.
This is done to introduce randomness into the training process,
which can help the model generalize better to potentially
improve the diversity and quality of the generated data. During
the training of εθ , the encoder ε is frozen to compress motion
into zRF0 . During the reverse diffusion phase, εθ (zRFt , t | A)
first predicts z̃RF0 with T iterative denoising steps. Then ψ
reshapes and decodes z̃RF0 back to RF data for specific human
activities, that is x̃L

1:N = ψ(z) = ψ(ε(x
L
1:N )). For devices with

limited computational resources, compressing RF data into
latent vectors across various activity classes before initiating
the diffusion process can mitigate computational burdens.
However, this approach may introduce limitations in terms of
the overall scalability and ease of use of the system.

C. U-Net for Denoising

U-Net models are chosen as the trainable denoising function
εθ due to their proficiency in effectively processing and
reconstructing noisy latent representations at a given timestep
t, allowing for accurate noise prediction. This capability is
crucial for the reverse diffusion process to generate new
samples. The training objective in each epoch (εθ − ε)2 can be
modeled by the MSE function between the predicted noise εθ
and the introduced noise ε . To account for the specific timestep
t of the diffusion process, sinusoidal positional encodings
are employed to enhance the ability of the model to recog-
nize the noise level and timestep, thus improving denoising
performance. Additionally, to facilitate diffusion generation
conditioned on activity classes, class labels are transformed
into dense representations via a multilayer perceptron (MLP)
layer. This class embedding is seamlessly incorporated into
the U-Net by combining with the positional encoded timestep
t, effectively creating a modified timestep t̃. This helps the
denoiser learn to adjust its predictions based on the desired
output class and the current stage of the reverse diffusion
process. The implementation of our U-Net model is shown
in Fig. 1.

The U-Net model architecture entails residual blocks and
self-attention mechanism. This mechanism enables the model
to focus on relevant features across the entire input space,
enhancing its ability to capture long-range dependencies and
intricate patterns in the latent data. The encoder compresses
our reshaped latents zRF0 ∈ R16×16 to as small as R4×4.
A holistic guide on the generative process is provided in
Algorithm 1 and Algorithm 2 for the training and sampling
procedures of RF-ACCLDM, respectively.

Algorithm 1 Training Procedure of RF-ACCLDM
1: repeat
2: zRF0 ∼ q(ε(xRF0 )); // Get a batch of latent vectors and

labels from datasets.
3: t ∼ Uniform(1,2, ...,T); // Randomly sample a

timestep t for each data in the batch
4: zRFt =

√
ᾱt z0 +

√
1 − ᾱt ε (ε ∼ N(0, I));// Add noise

to latents at the sampled t
5: t̃ = t

⊕
Ã; // Concatenate the embedded label with t

6: ∇θ =

(ε − εθ (zRFt , t̃)
)2

; // Take gradient descent
step on loss between added noise and predicted
noise

7: until Convergence

Algorithm 2 Sampling Procedure of RF-ACCLDM
Input: A

1: zT ∼ N(0, I); // Sample a random noise latent for data
generation

2: for t = T, ...,1 do (start the reverse process)
3: s ∼ N(0, I) if t > 1, else s = 0; // Sample a new

random noise tensor
4: zRF

t−1 =
1√
αt

(
zRFt −

1−αt√
1−ᾱt

εθ (zRFt , t | A
)
+

σθ (zRFt , t | A)s; // Class-conditionally generate
the next latent vector using µθ and σθ from the
current noise tensor

5: end for
6: Return xRF

0 = ψ(zRF0 ); // Finally generate a latent vector
sampled from the latent distribution and decode
it back to reconstructed RF data

IV. CHALLENGES IN TECHNOLOGY-AGNOSTIC
GENERATION

RF sensing-based HAR involves a variety of data modali-
ties, even within the same RF sensing technology [38]. The
challenges include fitting diverse RF signal features from
various sources into the training of a universal AIGC model,
and handling the variability in signal patterns caused by dif-
ferent human activities. To this end, we develop a technology
and modality-agnostic AIGC framework, using RFID phase
variations, WiFi CSI phase difference, and FMCW radar range
profile as representative examples.

1) RFID Platform. In this study, 12 passive RFID tags are
attached to the specific joints of a participant. During various
poses performed by the participant, three reader antennas
interrogate the tags, gathering phase variation data, which
represents the change between two consecutive phase readings
from the tag responses. This data format effectively captures
the detailed movements of the participant’s joints:

∆φRFID = mod
{

4π(St − St−1)fα
c

,2π
}
, (2)

in which St stands for the tag-to-antenna distance for the tth
sampled data on the same channel α, and c is the speed
of light. In (2), (St − St−1) indicates the shift in the relative
distance from the previous sample, making it appropriate for
monitoring the tag’s movement. RFID phase data is sampled
at a frequency of 110 Hz.

2) FMCW Radar Platform. In this study, an off-the-shelf
FMCW radar (IWR1843BOOST) is used. The frequency of
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the intermediate frequency (IF) signal (between transmitting
and receiving chirps), which reflects the distance between the
radar and an object, is determined by the formula fIF = S2d/c,
where d is the tag-radar distance and S is the slope of the fre-
quency modulation of the transmitted signal. This relationship
allows for the extraction of range profiles, X[k], indicating the
strength of reflected signals at varying distances, by applying
a 1D Fast Fourier Transform (FFT) on the sampled IF signals,
as

X[k] = Ae jφI F PNs

(
2πk
Ns
− ωIF

)
, 0 < k ≤ Ns, (3)

in which ωIF and φIF are the discrete angular frequency and
the phase of the IF signal, and PN (ω) is the Fourier transform
of a square window function of length N . The FMCW radar
operates at a sampling rate of 10 Hz for X[k]. With a 256-
point Range-FFT, the range bin resolution is approximately
0.044 meters. This level of precision is adequate for detecting
movements across various human body joints.

3) WiFi Platform. The CSI (5 GHz), a fine-grained feature
representation of amplitude and phase across the OFDM WiFi
channel, is captured by a commodity WiFi platform. The phase
value differences between neighboring antennas for the nth
subcarrier are utilized in this paper:

∆φCSI = (φk ,n − φ(k+1) mod k ,n) + ε, (4)

where k represents the antenna that collects the phase data,
and ε stands for the random noise. For each time frame of the
activity being captured, 30 subcarrier-level phase information
is collected from each of the three antennas to obtain 90 phase
difference samples.

4) Remarks. Numerous and varying amounts of measurements
are captured simultaneously for different RF techniques, yet
their sensitivity to human activity can vary substantially. In the
case of RFID technology, the scenario diverges markedly. The
sensitivity, as evidenced in the measurements, hinges critically
on the positioning of the RFID tags on body joints, given that
the phase values received are determined by the tag move-
ments, hence all of the 36 measurements from the 3 antennas
are crucial. As for FMCW, signal strength in the approximate
range of 1.8 to 2.5 meters (a total of 64 measurements) is
more responsive to human movements owing to this being
the average distance from the subject to the FMCW radar.
Consequently, measurements at this range ought to have a
greater influence on the correct extraction of motion features.
WiFi CSI, on the other hand, typically requires utilizing all
90 subcarriers-level information for activity sensing, partic-
ularly when subsequent feature extraction methods, such as
spectrogram generation, are employed. The increasing number
of measurements of various values amplifies the difficulty of
training AIGC models with respect to memory and time costs.

We experiment with training plain diffusion models on
RFID data, arranged in a 3D format of time frames, joint
numbers, and antennas, for better learning of RF features
across tags and antennas [2]. Suboptimal fidelity is obtained,
while the computation time and costs on a readily available
GPU GTX 1660 Ti are concerning. With more than 6 classes of
RF activity data, the model fails to converge and the generated

Figure 2. The configuration of the experimental system for RFID, WiFi CSI,
and FMCW radar sensing.

data suffers from conforming to the correct labels. We further
proceed to training WiFi CSI data with the same model.
The inputs and outputs of the model have to be adjusted.
The computational load and memory requirements increase
with larger input dimensions. This is due to the larger spatial
dimensions of feature maps in each layer, requiring more
computations for convolutions and noise scheduling during
forward and backward passes. The inherently messy nature
of CSI measurements also renders the training complicated
and time-consuming. However, by leveraging RF-ACCLDM,
heterogeneous RF sensing data can be used to train a universal
AIGC model that is of lightweight and consistently higher
quality.

V. EXPERIMENTAL STUDY

A. Prototype System and Dataset Collections

We construct a prototype utilizing a range of representative
RF technologies, such as RFID, 5GHz WiFi, and FMCW
radar. The RFID setup comprises an off-the-shelf Impinj
R420 reader, passive ALN-9634 (HIGG-3) tags, and three
S9028PCR polarized antennas. For the WiFi CSI platform,
a standard Intel 5300 NIC capable of operating at 5 GHz
frequencies is employed. Additionally, an IWR1843 Boost
single-chip FMCW mmWave sensor, operating in the 76 to 81
GHz range, is utilized for the mmWave platform. A Lenovo
laptop equipped with a GTX 1660 Ti GPU and a workstation
with RTX4000 were used for signal processing, as well as for
training and inference of the DL models. The configuration of
the system is depicted in Fig. 2.

Data is collected by capturing eleven distinct activities
performed by a test subject positioned within the detection
range of various RF sensing platforms and a Kinect 2.0 device.
The activities include: raising the left arm (LA), raising the
left leg (LL), drinking (DK), waving up and down (UD),
boxing (BX), standing still (ST), twisting (TW), walking
(WA), squatting (SQ), kicking (KI), and weight lifting (WL).
The test subject repeats the full range of these activities
continuously to facilitate consistent data sampling.



8

For RFID-based data acquisition, twelve passive RFID tags
are strategically affixed to the test subject at key joint locations,
including the pelvis, neck, left hip, left knee, right hip, right
knee, left shoulder, left elbow, left wrist, right shoulder, right
elbow, and right wrist. This configuration ensures comprehen-
sive coverage by the three polarized antennas, guaranteeing at
least one antenna is always in communication with each tag.
Meanwhile, WiFi data collection leverages a transmitter set
to the injection mode and a receiver in the monitor mode,
operating at the 5.3GHz frequency band. Furthermore, the
FMCW radar with model IWR1843 Boost, is used to create
detailed range profiles of the area where the activities of
the test subject transpire. Complementarily, the Kinect device
concurrently captures visual data, facilitating the pretraining of
our models with synchronized RFID-vision datasets, enabling
RFID-based 3D pose estimation at 7.5Hz.

Only nine RF data files of 64 time frames are used to train
the lightweight RF-ACCLDM system for each RF platform.
Six test subjects are involved in the collection of real ground
truth RFID and Kinect data. We designate two main data
domains within a lab environment of 4m by 2m, illustrated in
Fig. 2. Five of the six test subjects are collected under RF data
domain #1. Within these five subjects, three are collected under
homogeneous settings (i.e., similar body shapes, viewpoints,
and locations). The diffusion and DL models for downstream
tasks’ training data only come from these domains. The rest
two subjects are collected under heterogeneous domains com-
pared to the former (slightly different subjects and locations
between the test subject and the RF sensing device). Compared
to RF domain #1, RF domain #2 includes a shorter test subject,
slightly altered movement variations, a different equipment
and test subject location, and a new obstacle (desk). This is
utilized to test the generalization abilities of our generated
data in out-of-domain scenarios. There are roughly a total of
99 minutes of training data (9 minutes for each activity) after
applying a sliding window of 3 seconds width with a sliding
factor of 1 second. We choose a 1-second sliding factor to
create more diversity within the collected data since activities
can change moderately in this time window. There are 4.7
minutes of testing data for each activity. These data are used
for training and testing the performance of DL models.

The above data collection process empirically shows that
the need for specialized hardware, sensitivity to environmental
factors, labor-intensive setup, high storage and processing
demands, and diverse domain problems all contribute to the
substantial costs and efforts involved. This is further backed up
by some other related works [23], [39], [40], where multiple
RF sensing data sources need to be collected for sensing tasks.

RFID exhibits robust resistance to environmental inter-
ference, making it especially reliable for capturing detailed
features of human motion. The fidelity of human movement
features is more accurately represented through RFID tags
affixed to body joints, outperforming other platforms, par-
ticularly in environments subject to change and variability.
Such resilience allows RFID data to carry a richer array of
motion features, enhancing the precision of human activity
tracking. Therefore, RFID is selected as the representative RF
sensing data to showcase the comprehensive benefits of our

data generation approach. We leverage generated RFID data to
train models for two distinct downstream tasks in RF sensing:
RFID-based 3D pose estimation (a regression task) and Human
Activity Recognition (HAR, a classification task). We evaluate
the performance of identical DL models trained on generated,
mixed (generated data mixed with real data), finetuned (trained
with generated data and finetuned on real data), and real data
across these tasks, providing a comparative analysis of their
efficacy and, more importantly, identifying what the unparallel
quality and diversity of our generative model can unlock the
road of AIGC for Wireless.

B. Diffusion Implementation

The basic setup for training the diffusion models is as fol-
lows: A fixed linear schedule βt is chosen, starting β1 = 10−4

and increasing to βT = 0.02 over T = 1,000 steps for
the diffusion training process. Drawing from the principles
in [41], a classifier-free guidance approach is adopted for more
robust data generation. The model is trained without conditions
for a portion of each epoch, specifically 10%. During the
sampling phase, a gradual shift from unconditional to condi-
tional generation occurs. This technique significantly bolsters
the model’s performance in generating class-consistent RF
data and improves the overall sample quality. We choose the
specific number of training epochs based on the convergence
behavior observed during model training, ensuring the stability
of both the loss function and generated RF data quality. Using
open-sourced visualization tool “Weights and Biases”, we can
visualize the RF data quality in each training step, and when
combined with the knowledge of the training and validation
loss, we eventually decide to use 1,200 training epochs. The
U-Net architecture is selected due to its proven effectiveness in
diffusion models, particularly for image-like data where spatial
dependencies need to be captured effectively. Since RF sensing
data often carries spatio-temporal patterns, U-Net’s encoder-
decoder structure allows for multi-scale feature extraction and
contributes significantly to the high fidelity of generated data.

C. Quality of Generated Data

1) Direct Visualization:
As discussed in Section IV, RFID data captures fine-grained

features that represent joint movement information across
three antennas, effectively simulating a 3D plane. A scaled
color visualization of each feature value provides a clear and
intuitive way to compare differences and similarities between
samples generated by different models. Fig. 4 presents a
comparison of randomly generated RFID samples from RF-
ACCLDM, synthesized samples from RF-RGAN, and real
RFID data across nine distinct activities.

The scaled colormap ‘Parula’ is used, transitioning from
dark blue (negative values) to yellow (positive values), with
green representing mid-range values. For each time frame,
activity features across the three antennas are arranged in
the tag order described in Section V-A, with the bottom half
representing root and leg joints and the top half representing
upper body joints. For instance, in the middle cluster of real
RFID samples, the drinking activity exhibits distinctly more
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prominent features in the top half, while the boxing activity
shows clear feature patterns spanning both the lower and upper
body joints.

Compared to real samples, the RFID samples synthesized by
RFPose-GAN appear less sharp and noticeably blurrier, par-
ticularly exhibiting reduced non-linearity across time frames,
where feature values tend to cluster unnaturally. Though fol-
lowing the overall pattern of real features, significant discrep-
ancies are evident. In particular, the sample of standing still
highlights a key limitation of the GAN model, which struggles
with uncertainty when attempting to synthesize messy RFID
features from mostly constant vision features, resulting in
incomplete outputs that retain substantial portions of vision-
specific features. In contrast, RF-ACCLDM-generated samples
exhibit far fewer missed details and naturally align with the
feature patterns of real data while maintaining diversity. Unlike
the large divergences observed in RFPose-GAN-generated
squatting and kicking samples, RF-ACCLDM-generated out-
puts display consistency and fidelity to real features. Our
approach achieves superior results in terms of sharpness,
contrast, and brightness, effectively addressing the limitations
of GAN-based methods. Importantly, our method effectively
mitigates the difficulty of training plain diffusion models. In
Fig 5, plain diffusion-based RFID-ACCDM can generate data
with an overly yellowish tone, indicating significant deviations
in value scales. Additionally, the joint-related tag features fail
to align well with their real counterparts, reflecting the inherent
difficulty of learning complex and noisy RF features with plain
diffusion models.

In Fig. 3, we showcase the generation process of the RF
signal for the kicking activity. On the very left, the synthetic
RF signal is at the initial stage of the denoising process
(Gaussian noise). Here, across time frames, the RFID features
do not have any distinct pattern of kicking (fluctuations of
peak values in the leg regions, i.e., 6 to 18 on the y-axis of the
signal values map) besides random patterns across the y-axis.
The same can be seen from the 3D surface plot. After some
steps, the RF signal still appears chaotic but more fine-grained.
As the reverse diffusion process reaches the later stage, the RF
signal is gradually refined until the distinctive kicking pattern
appears. In the final denoising steps, some of the details are
further refined as seen in the far right example. This shows a
close resemblance to its real counterpart, shown in the middle
clusters of the samples in Fig. 4.

2) Quantitative Evaluation: Our proposed model produces
high-quality RFID data and ensures significant diversity within
the generated data, moving beyond mere replication of the
homogeneous features of the training set. While SSIM [42]
can provide valuable insights into the perceptual similarity
between individual pairs of RF data, its utility is limited in
evaluating the performance of such robust generative models.
To address this issue and provide a more comprehensive
evaluation, we adopt the Frechet Inception Distance (FID),
as outlined in [14], to quantitatively assess the similarity in
distribution between generated and real RFID data collections.
FID evaluates the closeness of feature vectors within a high-
dimensional latent space, where a lower FID score denotes

Figure 3. Synthetic RF signal for the kicking activity, shown across different
stages of the diffusion generation process. The progression from left to right
illustrates the transformation from initial random noise to the final generated
signal. From top to bottom, the visualization shifts from surface plots to signal
value maps, offering complementary perspectives on the generation process.

closer similarity and, thus, higher fidelity of the generated
RFID data to the actual data.

FID = ‖µ − µ′‖22 + Tr(Σ + Σ′ − 2
√
Σ × Σ′), (5)

where Tr(·) is the trace linear algebra operation, µ and µ′ are
the feature-wise means of the extracted feature vectors from
real and generated data, respectively, and Σ and Σ′ denote the
respective covariance matrices.

Furthermore, we utilize the diversity metric, which measures
the variance of the high-dimensional feature vectors of RF data
across all activity classes, to quantitatively measure the overall
diversity of generated data. The diversity metric is defined as:

DIV =
1
Sd

Sd∑
i=1

 fi − f ′i


2 , (6)

in which after choosing two groups of identically sized sam-
ples (with size Sd) at random, we compute the overall variance
of the RF data. The value of Sd in our experiments is 200.

The FID scores for four representative activities and overall
performance are presented in Table I to illustrate the su-
periority of RF-ACCLDM over other baseline models. The
overall FID score of RF-ACCLDM (10.45) is comparable to
that of real data (6.22), indicating high fidelity with minimal
divergences. In contrast, the other generative models show
significantly poorer performance, with FID scores of 25.64 and
50. An FID score of 25.64 reflects moderate divergence from
the baseline, suggesting a noticeable decline in data quality,
while an FID score of 50 indicates pronounced degradation,
with the generated RF data exhibiting substantial differences
in visual fidelity compared to real data. For simple activi-
ties involving isolated limb movements, such as drinking or
waving, RFID-ACCDM performs similarly to RF-ACCLDM.
However, for complex activities requiring full-body motion,
such as walking and boxing, RFID-ACCDM falls short, though
it still significantly outperforms RFPose-GAN.

Using the proposed RF-ACCLDM framework, we demon-
strate that data modalities from different RF technolo-
gies—such as WiFi CSI phase difference and FMCW radar
range profile—can be generated with high fidelity with-
out modifying the model architecture. Unlike RFPose-GAN,
whose diversity is limited by the quantity and diversity of
the real dataset, RF-ACCLDM generates data with a diversity
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Figure 4. Comparison of data samples from nine activity classes generated by our latent diffusion model with classifier-free guidance (FID: 10.45, left), the
training set (FID: 6.22, middle), and the RNN Autoencoder-based RFPose-GAN (FID: 48.89, right). Each cluster represents the following activity classes in
a left-to-right and then top-to-bottom order: drinking, waving up and down, boxing, standing still, twisting, walking, squatting, kicking, and weightlifting.
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Figure 5. Visual comparisons between the outliers in RFID-ACCDM gen-
erated RF data (left) and real data (right) for the activity of waving up and
down in the format of ‘Parula’ Scaled colored images.

Table I
COMPARISON OF SAMPLE QUALITY (MEASURED IN FID) GENERATED BY

OUR RF-ACCLDM AGAINST PLAIN DIFFUSION MODELS,
AUTOENCODER-BASED RFPOSE-GAN MODELS, AND REAL DATA,

EVALUATED ACROSS SELECTED HUMAN ACTIVITIES AND ALL ACTIVITIES

Model Standing Waving Walking Boxing Overall

RFPose-GAN 36.18 33.01 44.97 69.56 48.89
RFID-ACCDM 8.79 8.25 20.68 40.54 25.64
RF-ACCLDM 4.56 7.01 3.64 4.84 10.45

Real 5.17 7.36 4.78 4.49 6.22

comparable to a well-curated real dataset, even when trained
on a lightweight dataset. As shown in Table II, RFID-ACCDM
achieves an unchecked diversity value of 11.10, significantly
higher than other models. However, as illustrated in Fig. 5,
RFID-ACCDM-generated samples can have FID scores ex-
ceeding 100, indicating the presence of outliers that inflate the
diversity score. Notably, diversity values are most meaningful
when they align closely with those obtained from real RF data.

Table II
COMPARISON OF DIVERSITY SCORES

Model Diversity score

RFPose-GAN [24] 9.48±0.25

RFID-ACCDM 11.10±0.21

RF-ACCLDM 9.16±0.31

Real 9.33±0.25

D. Ablation Studies

To better understand the relationships between training
hyperparameters, hardware setup, and generation performance,

in-depth ablation studies are conducted, which examine mul-
tiple configurations, varying latent dimensions (128, 256, and
512), noise steps (500, 1,000, and 2,000), noise schedules
(linear vs. cosine), number of training epochs (400, 800 and
1,200) and GPU hardware (GTX 1660 Ti vs. RTXA4000).
Additionally, we measure training and inference time to under-
stand how each setup impacts training and generation speed.

The ablation study results in Table III demonstrate why
latent diffusion is necessary: in a resource-limited computing
environment (Nvidia GTX 1660 Ti is a laptop-grade GPU,
which only has 6 GB VRAM and older-generation archi-
tecture. RTX 4000 instead has 16 GB VRAM and newer
architecture), plain diffusion on raw RFID consumes 5.51
GB VRAM, nearly the total computing power of GTX 1660
Ti, and it takes 43 hours to train and 26 seconds to infer
one sample. However, latent diffusion takes almost half of
the training time and memory cost. It only takes 3 seconds
to infer a sample, which is much more deployable in real-
time applications. In the meantime, the generation fidelity has
improved greatly. Plain diffusion on raw CSI and FMCW data
fails to start training due to memory overload on GTX 1660
Ti, and still consumes 15.98 and 10.12 GB VRAM on RTX
A4000. The number of noise steps has to be reduced to 500
for the diffusion training on raw CSI data to be finished. The
generated data quality remains suboptimal, with FID scores of
80.53 and 41.04.

Our findings in this study indicate that the setup with 256
latent dimensions, 1,000 linear noise steps, and 800 epochs
achieves the best balance between FID score and GPU memory
usage on the RTXA4000. The results highlight that increasing
noise steps (e.g., to 2,000) or latent dimensions (e.g., to
512) yields diminishing returns in FID while incurring greater
computational costs.

E. Downstream Task I: DL-powered HAR

We train a simple customized 4-layer convolutional neural
networks (CNN) model for HAR. The design is identical to
that in [1], which consists of four 2D convolutional layers. The
last three convolution layers are each followed by a maxpool-
ing2D layer. The convolution output is flattened and fed into
a fully connected layer for classification. HAR accuracy indi-
cates the synthetic RF data generated by RF-ACCLDM retains
the critical correlations between RF features and activity labels
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Table III
ABLATION STUDY RESULTS FOR LATENT DIFFUSION CONFIGURATIONS

Setup Dimensions No. Steps Noise
Schedule Epochs GPU Model FID Training Time and

Average Memory Cost
Inference

Time

Raw WiFi CSI 64 × 90 500 Linear 1200 RTXA4000 80.53 32 h and 15.98 GB 27 s

WiFi CSI Latents 256 1000 Linear 1200 RTXA4000 16.97 22 h and 4.21 GB 1.7 s

Raw FMCW 64 × 64 1000 Linear 1200 RTXA4000 41.04 26 h and 10.12 GB 13 s

FMCW Latents 256 1000 Linear 1200 RTXA4000 13.67 19 h and 3.53 GB 1.5 s

Raw RFID 64 × 36 1000 Linear 1200 GTX 1660 Ti 25.64 43 h and 5.51 GB 26 s

RFID Latents 256 1000 Linear 1200 GTX 1660 Ti 10.45 29 h and 3.12 GB 3 s

RFID 128 Latents 128 1000 Linear 1200 RTXA4000 13.52 9 h and 1.04 GB 1.1 s

RFID 512 Latents 512 1000 Linear 1200 RTXA4000 11.81 23 h and 6.6 GB 2 s

RFID 500 steps 256 500 Linear 1200 RTXA4000 11 13 h and 1.28 GB 0.8 s

RFID 2000 steps 256 2000 Linear 1200 GTX 1660 Ti 11.26 54 h and 2.14 GB 4.1 s

RFID Cosine Schedule 256 1000 Cosine 1200 RTXA4000 10.89 18 h and 1.39 GB 1.2 s

RFID 400 Epochs 256 500 Linear 400 RTXA4000 14.65 5 h and 1.41 GB 1.4 s

RFID 800 Epochs 256 1000 Linear 800 RTXA4000 10.68 11 h and 1.47 GB 1.4 s

Table IV
COMPARISON OF RECOGNITION ACCURACY FOR 6-CLASS HAR UNDER

DIFFERENT TRAINING SCHEMES

Recognition Accuracy (%)

Method Real Synthetic Mixed

5-shot real (2 minutes) 52.08 - -
Limited real (10.5 minutes) 67.82 - -
Modest real (32 minutes) 83.47 - -

Sufficient real (64 minutes) 92.63 - -

RFPose-GAN (64 minutes) - 64.52 88.04
RFID-ACCDM (64 minutes) - 88.52 90.69

Our RF-ACCLDM (64 minutes) - 91.80 93.13

necessary for practical applications. A high HAR accuracy
ensures that the RF data conveys meaningful and consistent
representations of human activities. Additionally, it indirectly
indicates the quality of the underlying CNN model, as robust
classification performance requires both high-quality training
data and a well-trained model capable of learning intricate
patterns within the RF data.

1) Application 1: Synthetic Models Rival Real Models:
When the DL model is only trained on generated data but
tested on real data, the performance suffers from domain gap.
This is particularly apparent with GAN models. However,
diffusion models bring unprecedented quality and have made
this scenario applicable.

A six-class HAR has been implemented using real, RFPose-
GAN, RFID-ACCDM, and RF-ACCLDM models, as summa-
rized in Table IV. The terms real, synthetic, and mixed refer to
activity classifier models trained on real data, generated data,
or a mixture of a limited amount of real data and synthetic
data, respectively. Training with limited real data significantly
hampers the performance of CNN classifiers, reducing accu-
racy to below 70%, while training with a sufficient amount of
real data yields the best performance consistently. However,
collecting a diverse set of real data remains challenging in the
RF data domain. While GAN-based structures can generate
data more quickly, their quality is inferior to that of diffusion-

based models. For instance, training solely on RFPose-GAN-
synthesized data leads to unsatisfactory accuracy at 64.52%.
However, mixing a small amount of real data with GAN-
generated data can significantly improve the performance
of the model to 88.04%. RFPose-GAN-synthesized data do
not provide comprehensive coverage as they are prone to
overfitting specific modes of the data distribution. Mixing
in real data helps fill in the gaps in distribution coverage,
enhancing the robustness and generalization of the model.
Diffusion and latent diffusion methods demonstrate superior
performance when trained on synthetic data alone, achieving
accuracies of 88.52% and 91.80%, respectively. The high
fidelity of diffusion-generated data results in smaller marginal
gains when mixed with limited real data. This is because
the generated data already covers a broad range of scenarios
and variations present in real datasets, minimizing gaps that
real data would otherwise address. For example, mixing RF-
ACCLDM-generated data with five shots of real data yields
only minor performance gains. Given the difficulty of collect-
ing large-scale datasets, this finding highlights the importance
of designing practical applications that effectively leverage
the accessibility of real data to optimize synthetic model
performance.

To further test model scalability, we extend the evaluation
to a nine-class HAR task. Leveraging the increased number of
generative classes enabled by latent diffusion, we successfully
conduct nine-class HAR even on a resource-constrained GTX
1660 Ti. In contrast, most existing DL works on wireless
sensing-based HAR are limited to seven or fewer activity
classes, primarily due to the challenges associated with collect-
ing large-scale RF data. We add more complexity to the task by
purposefully selecting similar activities, such as weight lifting
and waving up and down, or boxing and body twisting. Weight
lifting involves coordinated upward and downward motions of
both arms, which closely resemble waving. Similarly, boxing
includes torso twisting motions, which overlap with body
twisting movements involving circulatory shifts of arms and
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legs.
The training data for each model consists of the same

amount of generated data (10.67 minutes per activity class).
The nine-class case is more challenging, given the increased
number of classes and overlapping features among certain
activities. The RF-ACCLDM model achievs an accuracy of
85.82%, falling short of the 90.03% accuracy obtained by
the model trained on sufficient real data. Both models face
difficulties in distinguishing similar activities; however, RF-
ACCLDM struggles more notably in cases such as boxing
versus twisting and weightlifting versus waving up and down.
This indicates that the domain gap remains a critical issue
for RF-ACCLDM-generated data, particularly when applied
to tasks with fine-grained activity distinctions. The detailed
confusion matrices are presented in Fig. 6.

2) Application 2: Generated Data-based Few-shot Learning
Outperforms and Adapts Better Than Real Models: We then
proceed to conduct thorough trials using more sophisticated
training methods for in-domain and out-of-domain scenarios.
The term in-domain denotes the case where the model is
trained with data from RF domain #1, and then tested on data
from RF domain #1, whereas out-of-domain represents the
case where the model is trained with data from RF domain
#1, but tested on RF domain #2.

Few-shot Learning is a data-efficient learning strategy that
only utilizes a small amount of samples of each category for
training. The capabilities of large quantity, high quality, and
rich diversity render RF-ACCLDM generated data possible for
pretraining a model with comprehensive synthetic knowledge
before fine-tuning it with a few shots of real data when
deployed in dynamic scenarios. Few-shot learning contributes
to wireless-based HAR in practice since it only requires a
small number of new samples, but most existing works have
only been able to utilize the laboriously collected real data for
pretraining their models [43].

Via thorough experiments, we find that this method is far
more practical for its stable performance and rapid deploy-
ment. We first pretrain the synthetic CNN classifier with 42.7
minutes of RF-ACCLDM generated data per class and then
proceed to finetune the model with 3 and 10 shots of real
data. As Table V shows, the pretrained synthetic models can
be fine-tuned on real data to provide a performance boost for
the in-domain case. When fine-tuned on only 3 shots of real
data, the recognition accuracy of 88.06% is better than training
with solely RF-ACCLDM generated data. When fine-tuned on
10 shots of real data, the accuracy gets a significant boost to a
new height of around 95% in just 500 epochs, surpassing the
model trained with sufficient real data, which could take 2,000
epochs to reach optimal performance. The plots of training
history are shown in Fig. 7, and the comparison highlights
that synthetic pretraining combined with limited real data fine-
tuning (as in (a)) provides a more balanced learning approach,
resulting in a model that generalizes better and experiences
less overfitting compared to the model trained on a large real
dataset alone. The difference between validation and training
loss is as large as 0.5, considerably larger than that of the
finetuned model. The detailed performance boost for using
the pretraining and finetuning mechanism is shown in the

Table V
COMPARISON OF RECOGNITION ACCURACY FOR 9-CLASS HAR USING

DIFFERENT TRAINING SCHEMES INCLUDING FINE-TUNING WITH
FEW-SHOT REAL DATA ON PRETRAINED MODELS, TRAINING WITH
FEW-SHOT REAL DATA, AND TRAINING WITH REAL DATA GUIDED
LATENT DIFFUSION GENERATED DATA IN BOTH IN-DOMAIN AND

OUT-OF-DOMAIN CASES

Recognition Accuracy (%)

Method In-domain out-of-domain

3-shot real 45.17 34.76

10-shot real 60.33 50.89

Sufficient real 90.43 53.65

Trained on RF-ACCLDM
generated data from scratch 85.82 69.76

Pretrained and finetuned
on 3-shot real 88.06 80.91

Pretrained and finetuned
on 10-shot real 95.42 86.81

Latent diffusion using real
guidance from test data 82.46 71.32

Latent diffusion using real
guidance from training data 88.02 77.51

middle and right confusion matrices in Fig. 6, compared to
the confusion matrix on the left when the synthetic model is
trained with only generative data. For the out-of-domain case,
considerable performance enhancements are achieved with a
small number of real data from RF domain #2. In contrast, the
model would be unfit for practical applications when trained
with 3 shots or even 10 shots of real data, as shown in Table V.
This proves that the knowledge learned while training on a
large set of diverse synthetic data paves the way for model
fine-tuning with only a few real samples per class.

3) Application 3: Synthetic Models Using Real Guidance:
We use the few-shot real samples from training and test
datasets as guidance to generate synthetic data in which the
few-shot real samples (with artificially added Gaussian noise)
replace the random noise at the beginning of the latent diffu-
sion generation to guide the diffusion process. The results can
be seen in the last two rows of Table V. This is a convenient
way to reduce the dependency on direct access to real data.
When leveraging the guidance from real training data, the
synthetic model presents improvements (88.02%, compared
to 85.82% when trained with data generated from random
noise) for in-domain cases and robustness in out-of-domain
cases (77%, compared to 69.76% when trained with sufficient
real data from RF domain #1). This proves that by using real
data as guidance, the diversity of RF-ACCLDM-generated data
can be controlled for higher recognition accuracy. However,
synthetic data generated using guidance from test data exhibits
worse performance in both data domain cases. This is because
test data is unseen during the training of the diffusion models,
which leads to a higher difficulty for the noise distribution
to reverse. This experiment shows that applying real data as
guidance to the diffusion process helps reduce the domain
gap and can be much more effective at achieving functional
performance in out-of-domain cases when there is a lack of
real data from this domain.
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Figure 6. Confusion matrices comparing CNN-based classifier models for the 9-class HAR task: (left) trained on 96 minutes of RF-ACCLDM-generated
RFID data, (middle) fine-tuned with 1.8 minutes of real data (3 shots per class) after pretraining on 42.7 minutes per class of RF-ACCLDM-generated data,
and (right) fine-tuned with 6 minutes of real data (10 shots per class) using the same synthetic pretraining.

Figure 7. Traces of the 9-class HAR classifier training and validation across
epochs.

Figure 8. Estimated 3D human pose from RF-ACCLDM generated RFID
data with a 0.8-second difference between the three animation video frames
presented.

F. Downstream Task II: RFID-based Human Pose Estimation

RFID-based 3D human pose tracking involves using RFID
to estimate the three-dimensional position and movements of
human subjects. Achieving high accuracy in pose tracking
accuracy indicates several key aspects of the RFID signal,
including signal strength, consistency, and temporal stability,
and serves as a direct and useful indicator of the quality of
our generated RFID data.

We train the same deep kinematic neural network used
in [16] with real, RFPose-GAN synthesized, and RF-
ACCLDM generated data. The one trained on real data will
be used as the baseline. When leveraging the model trained
on real data, our RF-ACCLDM generated RFID data achieves
good 3D human pose estimation as illustrated in Fig. 8. This
directly demonstrates that the generated RFID data learns
fine-grained movement information, which is then seamlessly
mapped to 3D human pose animation. In addition to display-
ing postures that are realistically human-like, the 3D human
poses demonstrate a natural temporal smoothness that closely
resembles the real poses captured by Kinect cameras.

However, this application is more tailored to generating new

pose data instead of critically alleviating the challenges in RF-
based pose estimation. The RFID-Pose network requires su-
pervised training with a one-to-one ratio for RFID and vision-
based Kinect Camera data. This incurs an extensive amount of
data collection work, including time synchronization between
the two data types. The data scarcity also leads to the limitation
of poses that can be inferred, while the age of AIGC craves
variety in every field. To this end, we creatively find a way to
utilize the diverse set of generated RFID data for 3D human
pose tracking. We first use a pre-trained RFID-Pose model
to estimate synthetic pose data from generated data, and then
employ pairs of generated RFID data and estimated pose data
for the supervised training of a synthetic RFID-Pose model.
When it comes to the RFPose-GAN synthesized RFID data,
we pair it with its source data, the simulated pose data, to train
another synthetic model. We test and compare the synthetic
models with the real model on real data. This validates the
quality and practicality of generated data and how well it can
be generalized to real data.

For every time frame t, The mean per joint position error
(MPJPE) for all 12 joints is computed as follows to evaluate
the performance of the RFID-Pose network at estimating 3D
human pose from RFID data.

MPJPE =
1
N

N∑
n=1

P̂t
n − Pt

n

 , (7)

in which Pt
n denotes the ground truth position sampled by the

Kinect device, and P̂t
n for the estimated position for joint n

at time t; and ‖P̂t
n − Pt

n‖ stands for the Euclidean distance
between the two positions in the 3D space. Presented as
the cumulative distribution function (PDF) of MPJPE, the
overall performance of the human pose estimation is shown
in Fig. 9. Estimating poses for complex activities indicates
the boundaries of a practical RFID-Pose system and is typi-
cally the weakest aspect compared to simple activities. The
synthetic model through RF-ACCLDM achieves a median
error of 3.92cm, comparable with the real model, which has
a median error of 3.71cm. On the other hand, the synthetic
model through RFPose-GAN is inferior with a median error
of 4.58cm. It is important to note that, for better visualization,
outlier estimations are excluded. Outlier estimations in certain
joint positions can be more dominant in synthetic models.
The unfiltered median errors for the two synthetic models are
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Figure 9. Overall pose estimation performance regarding complex activities
in the form of CDF of estimation errors.

4.23cm and 6.1cm, which are gains at levels of 7.9% and
33.2%, respectively. The median errors help explain why the
latter synthetic model would achieve inconsistent and foul joint
positions at times, while the former one through RF-ACCLDM
can estimate consistent and smooth trajectory but slightly devi-
ated joint positions. To achieve this moderate joint estimation
performance, the real model requires around 2.5 minutes of
data per class, while the two synthetic models require around
10.67 minutes per class. We also note that subject skeletons are
key factors of 3D human pose estimations, but we only use one
fixed skeleton for the synthetic estimation of 3D human pose
from RF-ACCLDM generated data, which limits the abilities
of RF-ACCLDM.

VI. LIMITATIONS AND FUTURE WORK

While the RF-ACCLDM framework demonstrates strong
performance on small-to-medium-scale RF datasets, its com-
putational cost could escalate with larger datasets or higher-
resolution data (e.g., dense WiFi CSI across many anten-
nas or high-resolution radar data). Although latent diffusion
mitigates some computational burdens, higher-dimensional or
more complex RF data increases the challenges for the VAE,
particularly in preserving fine-grained details and variability.
RF signals are inherently high-dimensional and sensitive to
small variations, which can make accurate compression and
reconstruction difficult, potentially leading to mode collapse
or reduced diversity in the generated data.

Future work includes improving the fidelity of generated RF
data, particularly in complex environments, by enhancing the
decoder to handle out-of-distribution latents more effectively.
Addressing challenges associated with more complicated ac-
tivities and interference-prone settings would significantly
benefit RF-based human activity recognition, which suffers
from a lack of diverse and high-quality data. Incorporating
vision data, such as video sequences without privacy and
security breaches, alongside RF signals could further enhance
the capabilities by enabling multi-modal learning. Finally,
optimizing training and inference time will be critical for
improving the real-world deployability of the model, and

adapting the diffusion framework to new domains remains a
promising direction for future exploration.

VII. CONCLUSIONS

In this paper, we address the persistent challenge of data
scarcity in the wireless sensing field through an AIGC-
powered approach utilizing conditional latent diffusion mod-
els. The proposed RF-ACCLDM system demonstrates the
capability to generate RF sensing data of exceptional quality.
This AIGC framework is both efficient and versatile, enabling
effective training and application across diverse RF sensing
technologies and data modalities. To evaluate the quality of the
generated data, we developed a comprehensive metrics system
incorporating FID and diversity scores. Beyond data quality
assessment, we investigated the utility of the generated data in
two representative downstream tasks: HAR and RF-based 3D
human pose estimation. These tasks exemplify the practical
applications and broader potential of our approach. An in-
depth ablation study regarding the quality and efficiency of
our data generation was conducted to understand the effects of
various data and training configurations. The proposed AIGC
for wireless framework highlights the effectiveness of diffusion
models in wireless sensing, offering a promising solution to
critical challenges such as the high cost of RF data collection
and the generation of high-fidelity RF data.
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