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A B S T R A C T

The prevalence of poor sitting posture in daily work has become a growing concern among office
workers and students due to the associated health problems. To address this issue, we design
an acoustic sitting posture care system (termed, APC) based on a circular microphone array.
Compared with classic posture recognition technologies such as visual perception and sensors,
acoustic sensing naturally possesses advantages such as privacy protection and contactless
capabilities. Concretely, our system leverages a customized and inaudible sound signal sent from
a speaker to a user’s body, and an echo signal preprocessing method to sense the body posture.
Our system comprises three modules: signal generation and collection, signal preprocessing,
and posture classification. The signal generation and collection module is designed to create
an appropriate signal waveform for transmitting the sound signal. We also develop a unique
alignment method for received signals to implement background interference cancellation. In
the signal preprocessing module, we propose a body profile extraction method based on the
phase difference between received signals. In the posture classification module, we design an
attention mechanism based classification network that can map the output of the previous
module to different sitting posture categories. The experimental results show that our proposed
method achieves an average accuracy of 98.4% for five common sitting postures. Furthermore,
case studies conducted under different practical conditions have validated the robustness of our
system.

1. Introduction

Long-term poor posture can lead to serious cervical and lumbar vertebrae diseases (channal, 2015), which are difficult to be
noticed early and treated. Moreover, bad sitting posture for a long time may also result in constipation and other non-spinal
diseases (Health, 2001). Unfortunately, a long time sitting during work often makes people ignore the posture change, and people
always have maintained harmful sitting postures for a period before they realize the problem of their sitting posture. Therefore, a
contact-free, low-cost, and real-time sitting posture recognition system would be highly appealing, which will be helpful to remind
users to correct their sitting posture, thus avoiding potential disease risks.

Currently, as a controller of household appliances and music players, smart speakers are rapidly becoming popular in families.
Beyond the basic functions of smart speakers, smart speakers have been also developed for several Internet of Things (IoT)
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Fig. 1. System scenario.

applications (e.g., gesture recognition, vital monitoring, facial expression monitoring) based on the microphone array (Cai, Zheng, &
Luo, 2022; Chara, Zhao, Wang, & Mao, 2023; Shan, Liao, Wang, An, & Mao, 2023; Wang & Mao, 2022). For example, RTrack (Mao
et al., 2019) uses a chirp to detect gestures and capture hand locations from a 2D-MUSIC spectrum which is derived by a
chirp echo. To further extract echo features, Sonicface (Gao et al., 2021) uses the Doppler effect to extract frequency shifts
from facial expressions’ tiny differences. Also, UltraGesture (Ling et al., 2020) uses Channel Impulse Response (CIR) to achieve
minor finger motion recognition from micro-channel differences. Moreover, acoustic sensing is used for vital sign monitoring
(e.g., Sonarbeat Wang, Huang, and Mao (2017), Wang, Huang, Yang, and Mao (2021), and RespTracker (Wan, Shi, Cao, Wang, &
Chen, 2021)). In addition to acoustic-based sensing, computer vision and sensors are also used for posture recognition. For example,
Sun, Zhu, Cui, and Wang (2021) collect data through a Kinect and classify images by a Convolutional Neural Network (CNN),
which can obtain a good performance. Maereg, Lou, Secco, and King (2019) use near-infrared and a sensing wristband to collect
hand motion data. Farnan, Dolezalek, and Min (2021) concentrate on sitting postures detection and use a magnetic sensor, which
is implemented on users’ shirts to collect users’ posture data.

Although many existing techniques can achieve a preferable system performance on posture recognition, the methods based on
acoustic sensing focus on small targets at close distances or big targets at far distances. Thus, the potential of the sound signal
remains to be limited. Methods based on computer vision can be seriously affected by weak light conditions, scene variation, and
differences in human wearing, which will result in unstable system performance. Moreover, wearable devices or sensors require
expensive equipment with poor versatility and poor user experience. Therefore, a contactless, low-cost, and high-accuracy posture
recognition system is still needed.

In this paper, we present a contactless healthy sitting posture monitoring system utilizing a microphone array. The development
of our system entails addressing three key challenges. First, commercial microphone arrays often receive signals with uncontrolled
deviations on time, leading to nonuniform signal latency and significant errors. Thus, our first challenge involves devising an
alignment scheme for the signals. Second, extracting body profile features from the echo presents another challenge. While
conventional signal direction finding algorithms prove effective for acoustic hand tracking in narrowband signals, their limitations
arise when dealing with a larger number of signals than the available microphones. Moreover, the performance of such algorithms
deteriorates as the number of signals increases. In our system, the echo signal from the body will be composed of signals from many
different directions and distances, which requires system to analyze multiple distance, altitude, and azimuth information from the
echo to identify posture, and this process will inevitably introduce noise. Therefore, constructing a pose classification network for
preprocessing results is the third challenge.

To address the aforementioned challenges, we have developed the Acoustic sitting Posture Care system (termed, APC), a
contactless, real-time, and highly accurate sitting posture recognition system (see Fig. 1). Our system incorporates several key
innovations. First, we utilize a unique sound signal segment as the reference point for signal alignment. Through cross-correlation
within a limited sensing range, this approach ensures accurate alignment of the transmission and received signals. Second, we
address the second challenge by normalizing the phase of every sample in received signals to zero at a specified time, effectively
mitigating interference from undesired positions. Third, we have designed a more lightweight classification network compared to
classic Transformer named Posture Echoes Transformer (PET) based on Vision Transformers (ViT) specifically tailored for recognizing
common postures. Our comprehensive experimental results demonstrate the better performance of the APC system across various
usage scenarios. The primary contributions of this paper are summarized as follows.

• We develop a prototype for the proposed APC system, which is a contactless, low-cost, and adaptable acoustic sitting posture
recognition system with a microphone array.

• We leverage the slow propagation property of the sound and the cross-correlation to align echo signals with significant
waveform variations, which will not interfere the normal sensing.

• According to the acoustic waveform features, we design a novel body profile extraction method using a circular microphone
2

array, and we propose a new classification network (i.e., PET) including a encoder–decoder feature extraction based on ViT.
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Fig. 2. System overview.

Fig. 3. Microphone array formats.

• We evaluate the performance of the system in different experimental scenarios. The results show the APC system can reach
98.4% for five common sitting postures. Also, case studies under different practical conditions validate the robustness and
versatility of our system.

The rest of this paper is arranged as follows: In Section 2, the system design is described. In Section 3, the performance of the
system is evaluated. Finally, we conclude this paper in Section 4.

2. System design

In this section, we present three modules of our system as illustrated in Fig. 2. We begin by introducing circular microphone array
and the signal generation and collection module, followed by the signal preprocessing module, where we present a human-body
ultrasonic reflection model based on a customized sound waveform and then preprocess the signals using this model. Finally, we
describe the design of our classification network and provide a detailed explanation of the design method used.

2.1. Circular microphone array

Most acoustic applications utilize pure tone signals and chirp signals. The pure tone signal is employed to capture the phase
difference resulting from small movements of the target reflector, making it suitable for motion detection (e.g., fitness movement
detection) and heartbeat detection. However, in the case of a stationary sitting position, the chirp signal is required to detect the
distances associated with body profiling. However, a single microphone cannot complete the detection of the echo arrival angle,
which will cause serious errors in recognition for different postures at the same distance. To find the directions of the whole body,
the reflection signal is used to estimate its arrival angle using a microphone array (e.g., a linear microphone array or a circular
microphone array). We need to consider which microphone array is better in our usage scenario. Fig. 3(b) shows a linear microphone
array. Any reflector on a constant circular trail that is perpendicular to the microphone array could reflect the echo with the same
incident angle to a single microphone in the microphone array. On the other hand, the circular microphone array is shown in
Fig. 3(a). We assume that the source of the echo wave is at infinity, such that the echoes come from a same distance are parallel,
and then the arrival height angle and direction angle can be determined based on the time difference between the echoes arriving
at the microphone array. Therefore, the circular form is better than the linear one for our APC system, where the angle from the
center microphone to any two adjacent edge microphones in our work is 60◦, and the radius of the microphone array is 4.3 cm.
3
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Fig. 4. Maximum microphone interval along the incident direction of echo.

2.2. Signal generation and collection

In this module, our system employs a novel enhancement scheme to the conventional Frequency Modulated Continuous Wave
(FMCW) method for signal preprocessing. This enhances the robustness of the signal preprocessing results by increasing the base
frequency of the Intermediate Frequency (IF) signal. We also introduce the specific frequency band of the IF signal. Next, we describe
the use of a customized sound waveform for the speaker and align every received signal based on this waveform. Finally, we further
discuss the resolution of our system based on the improved FMCW and customized waveform. We provide a detailed explanation
of the design mentioned above in the remain of this section.

High frequency IF signal: Our method differs from the conventional FMCW method in that the frequency of the IF signal plays
a crucial role in the robustness of our APC system. Specifically, we use a higher frequency for the IF signal. We will introduce an
example to illustrate the reason. If the IF signal frequency raises up from 0 Hz and the microphone array receives a reflection signal
from 30 cm away, we can only obtain an IF signal at 338 Hz approximately. In fact, the wavelength of the IF signal will reach up to
1 m approximately, which will make 0.043 as the largest phase difference between received signals. Furthermore, the preprocession
result will become bad. On the other hand, a higher frequency has a smaller wavelength, and this will lead to ambiguity when
the microphones interval along the incident direction is larger than half of the wavelength because when we preprocess signals in
this case, two signals at the same distance but with phase difference as 𝜋 will be considered same. Thus, we consider the half of
wavelength of the IF signal to be larger than the microphones interval of the microphone array. As shown in Fig. 4, the microphone
interval along the incident direction is changing with the change of incident direction, and its variation is also determined by the
layout of microphone array. Then we have the maximum interval from the azimuth, which is shown in Fig. 4. Since we have the
radius of the microphone array as 4.3 cm, then the maximum interval is 3.72 cm approximately. Thus, the minimum wavelength is
7.44 cm, and then the highest frequency of the IF signal will be set as 4600 Hz. This implies that the frequency of the chirp signal,
which is multiplied by the received signal, starts at 11400 Hz.

Signal composition: The transmission signal is combined of two parts, which are positioning segment and chirp segment. To
ensure that the echoes from the same distance have the same FMCW frequency characteristics, the echo signal and the transmission
signal are required to be aligned. However, most of commercial microphone arrays cannot satisfy this requirement, where each
echo signal will appear with a tiny deviation from the transmission signal on the start time. In previous work (Gao et al., 2021), the
alignment scheme commonly is to execute cross-correlation for two signals, which can compensate a offset for the one of the signals.
However, the scheme is not proper for our work. The result of the alignment scheme above are shown in Fig. 5(b), and the static
interference result based on it is shown in Fig. 5(f). As we can see, even if the user is far enough from the microphone to ensure
that theoretically the positioning segments from the transmitted and reflected signals do not overlap, after the static interference
cancellation, there is still a significant signal strength before the positioning segment of the reflected signal. In the previous work,
the sensing process concentrates on a tiny target such as face or hand, however, our work is sensing on a body which is much
larger than face or hands. The difference between different usage scenarios leads to that in our case, the difference between static
interference and sensing signal is significant, and thus the alignment scheme based on cross-correlation method on complete signals
is no longer available. Therefore, we introduce a novel alignment scheme that requires to add a segment (i.e., a positioning segment)
containing two piece of pure tone signal (i.e., a positioning signal) before the chirp signal, and then we will align the received signal
and the transmission signal by shifting the received signal based on the cross-correlation between positioning segments.

Aligning an echo signal with a transmission signal by cross-correlation is intuitive and effective, but there are still two problems
as follows. First, the echo will overlap with the transmission signal if a long positioning signal is used, while the echo also will
become too weak to implement the cross-correlation if a short positioning signal is used. The above two conditions will cause the
signal to have different shifts. To address the problem, we use two combination of a short pure tone signal and a blank signal, which
will replace the complete transmission signal in cross-correlation, which is shown in Fig. 6(a). More importantly, the blank part will
denoise the positioning signal from echo in cross-correlation procedure, and the two short pure tone signals will also result into a
great cross-correlation effect, which is illustrated in Fig. 5(d). The only limitation of this method is that the detectable range should
ensure that the echo caused by the first positioning signal will not overlap itself or the second positioning signal.
4
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Fig. 5. Performance of two positioning segments in static interference cancellation. (b), (c) and (d) respectively show the signal alignment results with 0, 1 and
2 positioning segments; (f), (g) and (h) respectively show the performance of static interference cancellation according to the signal alignment results of (a), (b)
and (c).

Fig. 6. Static interference cancellation.

To obtain a high-range resolution, we need to make the bandwidth of the chirp signal as wide as possible in our system, but we
also need to avoid the low sound frequency response of most commercial speakers. Also, the transmission signal needs to meet the
requirement that its highest frequency is less than the maximum working frequency of most speakers and its lowest frequency should
not be within the audible range of people, as shown in Fig. 6(a). Thus, we use the chirp bandwidth 𝐵 with 4 kHz, the length of the
chirp signal 𝑆𝑐ℎ𝑖𝑟𝑝 with 1000 samples, and the sampling rate 𝑓𝑠 with 48 kHz. Specifically, our final transmission signal is shown in
Fig. 6(a), where the chirp signal segment is joined by a long blank sample segment with 𝑁𝑡𝑎𝑖𝑙 = 448 as the length. This means the
valid sensing distance is within 𝐷𝑣𝑎𝑙𝑖𝑑 = 𝑐𝑁𝑡𝑎𝑖𝑙

2𝑓 𝑠
= 1.586 m of our system, which is sufficient for most sitting posture recognition tasks.

2.3. Signal preprocessing

After acoustic signals are aligned with the waveform discussed, it is ready to obtain the preprocessed data for classification.
Next, we will perform interference cancellation and generate the feature matrix based on time domain beamforming.

In order to effectively adapt the system to various environments, it becomes imperative to mitigate the impact of static responses
induced by the surroundings. This is particularly crucial as real-life usage scenarios often involve energy reflections originating from
the environment that surpass those originating from the human body. Failing to eliminate these environmental reflections would
significantly impair the system’s accuracy and robustness. To address this problem, we have developed a two-step method for static
interference cancellation, we pre-record the static reflection and multiply the power coefficient 𝐴𝑐 for the signal, where 𝐴𝑐 is the
energy ratio of the sum of the absolute values of the pre-recorded signal’s position segment and the received signal’s position
segment. Then, we subtract the pre-recorded static interference from the received signal and generate IF signals from that as the
result of the first step. In the second step of our approach, we capture the peak of the IF signal spectrum in the inaugural sensing
phase. Subsequently, we define an IF frequency range centered around the peak above with a 250 Hz radius and meticulously track
alterations in this pinnacle within the designated frequency span in every successive sensing cycle. If the peak is within the sensing
range we have set, it is sufficient for the system to sense a height of 40–48 cm above the chest, which is sufficient for most people.
This iterative process ensures the refinement of the peak’s representation over time. As a concluding step, we apply a filtering
mechanism to eliminate signals that fall outside of this frequency span. This strategic approach culminates in the achievement of
5
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Fig. 7. Triangular pyramid model.

Besides, we derive the formula for generating the feature matrix, which will serve as input for the classification module. We
start with a simple model of the reflector as shown in Fig. 3(a). Subsequently, we introduce constraints to the model, leading to the
derivation of the ultimate formula for generating a single value of a feature matrix. When a reflector is fixed at a certain distance,
azimuth, and height angle from the central microphone (the microphone number 0 in Fig. 3(a)), the IF signal received by the central
microphone can be expressed as following,

𝑅𝑖𝑓0 = 𝐴0 cos(2𝜋𝑓𝑖𝑓0(𝑡 − 𝑡0)), (1)

where 𝑅𝑖𝑓𝑛 is the IF signal from received signal on 𝑛𝑡ℎ microphone, 𝐴0 is the attenuation coefficient, 𝑓𝑖𝑓0 is the frequency of 𝑅𝑖𝑓0,
𝑡 is the time, and 𝑡0 is the time delay of signal flight. After that, we need to calculate the propagation distance deviations between
the signal received by the central microphone and signals received by other microphones so that we can further get expressions of
signals received by other microphones.

To determine one of the distance deviations, it is necessary to first calculate the angle between the signal direction and the line
connecting the central microphone to a surrounding microphone. This angle can be obtained using a triangular pyramid model. In
this model, the vertex represents the position of the central microphone, and the three edges correspond to the signal direction,
the projection of the signal directly on the microphone array, and the line connecting the central microphone to the surrounding
microphone, respectively. Additionally, the bottom surface of the pyramid passes through the surrounding microphone and is
perpendicular to the projection of the signal directly on the microphone array. As shown in Fig. 7, we have the relation of 𝛾,
𝛼, 𝛽, and 𝜃 based on (Wang et al., 2023),

cos (𝛾) = 𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽) + 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝜃). (2)

Due to the angle 𝜃 = 𝜋∕2, we have that cos (𝛾) = 𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽). Then, the wave path difference between 𝑅𝑖𝑓0 and 𝑅𝑖𝑓𝑛 can be
represented as,

𝛥𝑑𝑛 = 𝑟𝑐𝑜𝑠(𝛾), (3)

where 𝑟 is the radius of the microphone array, and 𝑛 is the index of 𝑛𝑡ℎ surrounding microphones. For the case that the reflector
is remote, all microphones are considered to receive the same frequency of the IF signal of the reflector, and the IF signal of the
number 𝑛 microphone can be expressed by

𝑅𝑖𝑓𝑛 = 𝐴𝑛 cos(2𝜋𝑓𝑖𝑓0(𝑡 − 𝑡0) + 𝑃𝑖𝑓𝑛), (4)

𝑃𝑖𝑓𝑛 =
2𝜋Δd𝑛𝑓𝑖𝑓0

𝑐
, (5)

where 𝑐 is the sound speed, 𝑃𝑖𝑓𝑛 is the phase difference between 𝑅𝑖𝑓0 and 𝑅𝑖𝑓𝑛 caused by 𝛥𝑑𝑛. In the real usage scenario, we change
the reflector mentioned above to a point on a user, and this will result in differences in the frequency of IF signals received by
different microphones. According to FMCW method, the frequency of IF signals can be deduced from known values and 𝛥𝑑𝑛 we
mentioned above. After the frequency correction, 𝑅𝑖𝑓𝑛 and 𝑃𝑖𝑓𝑛 can be further expressed by

𝑅𝑖𝑓𝑛 = 𝐴𝑛 cos(2𝜋(𝑓𝑖𝑓0 +
𝐵Δd𝑛
𝑆𝑐ℎ𝑖𝑟𝑝𝑐

𝑓𝑠)(𝑡 − 𝑡0) + 𝑃𝑖𝑓𝑛), (6)

𝑃𝑖𝑓𝑛 =
2𝜋Δd𝑛

(

𝑓𝑖𝑓0 +
𝐵Δd𝑛
𝑆𝑐ℎ𝑖𝑟𝑝𝑐

𝑓𝑠

)

𝑐
. (7)

We can perform the reflector detection on several fixed distances and different discrete directions. Then, we infer the presence
of a reflector by detecting whether the echo generated at this location has caused an IF signal combination of the corresponding
frequency on the microphone array. After that, we will introduce how we detect a reflector on a certain location. Since the start
frame and the phase of an IF signal which at a specified frequency can be calculated, we add phase for the start frame of every IF
signal, and then the following frames can obtain their imaginary parts according to the start frame. Then, we can transform real
signals into complex signals coarsely. Because in real cases, echoes come from a large part of the user’s body, resulting in many IF
6
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Fig. 8. Time domain beamforming.

Fig. 9. Preprocessed data. The coordinate origin of the scatter plots is located at the center microphone, and the 𝑥 axis, 𝑦 axis and z axis represent the sensing
distance, azimuth, and height angle, respectively, and I/II/III represent different viewing directions, with each column having the same viewing direction. Besides,
the shown points are the preprocessing results which are stronger than 1/10 average of the preprocessing result.

signals at different frequencies in a signal which can be processed by FMCW method. Also, in each signal we generated by FMCW
method, only the IF signal generated by the echo reflected from the desired direction and distance is added with the accurate phase,
and other parts of the real signal are added with biased phase. We can leverage the inaccurate complex IF signal to weaken signals
from undesired positions.

Next, we implement time domain beamforming to obtain a single value of the feature matrix which implies the intensity of the
echo reflected by the desired location, as shown in Fig. 8. Specifically, to attach phase to signals which produced by the FMCW
method, we multiple different weights 𝐻𝑛 with every sample, and 𝐻𝑛 can be expressed by [𝑒0, 𝑒1𝑗𝜔𝑛𝑇𝑠 , 𝑒2𝑗𝜔𝑛𝑇𝑠 ,… , 𝑒𝐿𝑗𝜔𝑛𝑇𝑠 ], where 𝑛
is the index of 𝑛𝑡ℎ microphone, 𝜔𝑛 is the angular frequency of the IF signal generated by the echo reflected by the desired location
and received by 𝑛𝑡ℎ microphone, 𝐿 is the number of samples of the overlapped signal in FMCW procession, 𝑇𝑠 is sample interval
(i.e., 1/48000 s). We will restore each sample to a phase of zero based on the additional phase and frequency mentioned above,
and then we add all the samples up to a single value. Finally, the noise is canceled and the signals from the neighboring area are
also weakened.

The frequency of the center microphone IF signal is the same when the signal comes from the same distance. Thus, we first
generate a series of body profile values from the same distance but a different azimuth and height angle, and then we only need
to implement the calculation for different distances so that we can obtain the result of signal preprocessing. Because the sound
reflection and diffusion pattern are complex on various reflectors (Shtrepi, Astolfi, Puglisi, & Masoero, 2017), the intensity of a
pixel on a preprocessing result may be weaker, as shown in Fig. 9. The preprocessing cannot capture all the reflection points on
the body, and the reflection after twice bounce may wrongly captured. To solve the problem above, we build a machine-learning
model for the classification of the preprocessing results.
7
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Fig. 10. Encoder in classification network.

Fig. 11. Decoder in classification network.

2.4. Posture classification

In the context of posture classification, we leverage data derived from an array of matrices, produced by our preceding signal
processing technique at varying distances. This data exhibits a strict spatial hierarchy, mirroring the nature of human postures
which extend from far to near. Consequently, posture information can be extracted from these diverse spatial distances. Moreover,
as human sitting postures are typically confined within a limited spatial domain, the information within this range also presents
continuous characteristics, a reflection of the human body’s spatial continuity.

Generally, the ViT model can be aptly applied to our data structure for posture classification (Dosovitskiy et al., 2020; Vaswani
et al., 2017). In fact, due to the discrepancy between auditory and visual data, ViT tends to overemphasize noise in the attention
mechanism, impeding the model’s rapid convergence. To address this issue, we introduce a refined attention model (i.e., PET) that
meticulously filters the Query (Q) and Key (K) elements, thereby accelerating the model’s convergence.

The PET model, as depicted in Fig. 10 and Fig. 11, comprises three main components. The initial component is a feature extraction
backbone built upon a shallow-layer CNN. This backbone is designed to capture coarse information via a small receptive field. In
this stage, we opt for a shallow variant of ResNets (He, Zhang, Ren, & Sun, 2016) as our network backbone. To obtain global
information, we employ a unique classification token (CLS) that is concatenated onto the backbone.

The second component of the PET model is a filterable self-attention transformer layer. We feed the coarse information
processed from the previous stage into this transformer layer, following which we apply position embedding to the input sequence.
Subsequently, we construct a transformer encoder by stacking a series of alternating multi-head filterable self-attention blocks and
Multilayer Perceptron (MLP) blocks. Each block is accompanied by a residual connection and is succeeded by layer normalization.
Upon completion of processing within this second component, we acquire coarse-to-fine characteristic information. We iterate this
step multiple times to extract progressively precise hidden layer features. Ultimately, this fixed-size vector undergoes a noise-filtering
decoder layer to yield the predicted pose class. We delve into further details of the model (i.e., model input, filterable self-attention
block, multi-head attention, and model output) as the following.

Model input: Our transformer-based model primarily ingests a multi-channel, compact data matrix (36 × 18 × 18, with the
final dimension, 18, representing channels). This data matrix is first fed into shallow ResNets to extract coarse information denoted
as 𝑥𝑖 = 𝑥1,… , 𝑥𝑐 , where 𝑥𝑖 ∈ R𝐻×𝑊 , 𝑖 = 1,… , 256. We then expand the original single-dimensional feature into 256 hidden layer
features. Following this expansion, we flatten the data matrix for the transformer, resulting in an input represented as 𝑥 ∈ R𝐻×𝑊 .
8
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To extract coarse-to-fine characteristic information and incorporate global feature information, we employ a CLS. We generate
layered matrix of equivalent size through a fully connected layer and concatenate it onto the matrix from the previous step. This
peration leaves the channel count of our new matrix unchanged, but increments its dimension by one, resulting in 𝑥𝑖 ∈ R𝐻×𝑊 +1.

CLS subsequently serves as the final classification layer, facilitating precise classification.
Filterable self-attention block: The primary goal of filterable self-attention blocks is to comprehensively account for the

semantic, spatial, and structural relationships among distinct posture patches across all elements in the input data matrix. As a
result, the posture patches calculated in this manner take into account the interrelationships among contexts. We introduce 𝑥𝑖 into
three trainable linear layers to obtain the matrix 𝑥𝑖𝑊 𝑄,𝐾,𝑉 ∈ R𝐻×𝑊 +1, which maintains the input structure. Subsequently, 𝑥𝑖 is
multiplied with the weight matrix 𝑊 𝑄 to procure the Query vector associated with the posture patches. Ultimately, a Query vector,
a Key vector, and a Value vector are generated for each patch in the input matrix.

Besides, we compute the attention score. Considering the computation of self-attention for the first posture patch, we need to
calculate a score for each posture patches across the entire matrix relative to this patch. These scores serve a crucial function
in the context of encoding the initial patch, specifically highlighting the significance of position embedding. These scores are
derived by calculating the dot product of the Query vector of the posture patch and the Key vector of the patch. Each score is
then divided by

√

𝑑𝑖 to stabilize the gradient during backpropagation. Following this, softmax operations are performed on these
scores to normalize them. Each softmax score is then multiplied by its corresponding Value vector to obtain 𝑧 = 𝑧1,… , 𝑧𝑐 , where
𝑧𝑖 ∈ R𝐻×𝑊 +1, 𝑖 = 1,… , 756. For positions with high scores, the resulting multiplied values will be larger, warranting increased
attention; conversely, positions with low scores yield smaller multiplied values, indicating less relevance and thus less attention
required. We then sum the weighted Value vectors obtained in the previous step to yield the output of the self-attention layer at this
position. This completes the self-attention computation. The resulting vector will be input into a feedforward network. In practice,
however, this computation is performed matrix-wise for accelerated processing. Our calculation formula is defined as follows,

𝑧𝑖 =
𝑛
∑

𝑗=1
softmax

((

𝑥𝑖𝑊 𝑄) (𝑥𝑗𝑊 𝐾)𝑇

√

𝑑𝑖

)

(

𝑥𝑗𝑊
𝑉 ) . (8)

Building upon this, we address an important issue, i.e., the fundamental challenge of applying Transformer attention to a compact
data matrix is its exhaustive attention to all possible spatial locations. To solve this, we introduce a filterable attention module. This
module selectively attends to a limited set of key sampling points around a reference point, independent of the spatial size of
the feature maps, as illustrated in Fig. 10. By assigning only a small, fixed number of keys for each query, we can alleviate the
convergence issue.

Given a data matrix 𝑥𝑖 ∈ R𝐻×𝑊 , and let 𝑞 index a query element with a reference point 𝑠𝑡𝑞 . The filterable attention feature is
computed by,

𝐹 𝑖𝑙𝑡𝑒𝑟𝑎𝑏𝑙𝑒(𝑠𝑡𝑞 , 𝑥𝑖) =
𝐾
∑

𝑘=1
𝐴𝑞𝑘 ∙𝑊 𝑥𝑖(st𝑞 + 𝛥𝑠𝑡𝑞𝑘), (9)

where 𝑘 indexes the sampled keys and 𝐾 represents the total number of sampled keys (𝐾 ≪ 𝐻𝑊 ). 𝛥𝑠𝑡𝑞𝑘 and 𝐴𝑞𝑘 denote the sampling
offset and attention weight of the most significant sampling point in 𝐻×𝑊 , respectively. The scalar attention weight 𝐴𝑞𝑘 falls within
the range [0, 1], which is normalized such that ∑𝐾

𝑘=1 𝐴𝑞𝑘 = 1. As 𝑠𝑡𝑞 + 𝛥𝑠𝑡𝑞𝑘 is fractional, a bilinear interpolation is applied.
Multi-head attention: We further enhance the self-attention layer by incorporating multi-head attention. Each attention set

maps the input to various sub-representation spaces, enabling the model to focus on different positions within these subspaces. The
entire computation process can be expressed by

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡
(

head1,… , headℎ
)

𝑊 𝑂 , (10)

head𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
(

𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖

)

, (11)

where 𝑊 𝑄
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊 𝐾

𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊 𝑉
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 and 𝑊 𝑂

𝑖 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 . In our experiment, we set ℎ = 8 and
𝑑𝑘 = 𝑑𝑣 = 𝑑𝑚𝑜𝑑𝑒𝑙

ℎ = 32.
Following the above self-attention methodology, we can obtain 12 distinct matrices 𝑧∗𝑖 by applying 12 multi-head attention

alculations with differing weight matrices. Ultimately, we concatenate these 12 matrices 𝑧∗𝑖 to form 𝑧𝑖 and multiply it by a weight
atrix 𝑊 𝑂

𝑖 after flattening. This yields the final matrix 𝑧𝑖, which encapsulates all the information from the attention heads. This
atrix is then input into the MLP layer.
Model outputs: After the sequence passes through the Transformer encoder, a set of high-level features, 𝑥𝑒𝑛𝑑 , can be derived.

n the decoder layer, to extract more effective features and eliminate interfering noise, we propose a new strategy to isolate the
op 𝐾 effective features to enhance classification accuracy. As illustrated in Fig. 11, we select the top 𝑀 keys with the highest
cores through a scoring mechanism and then incorporate position encoding and 𝑄 into the decoder attention layer. Finally, we
repend a CLS token at the start of the input sequence as a representation of the entire input sequence. The features that have just
een precisely classified by the decoder layer are fused with the CLS token to generate the final CLS classification head. This CLS
lassification head is then utilized for the ultimate classification of the postures.
9
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Fig. 12. Experimental scenarios.

3. Performance evaluation

In this section, we present a prototype implementation of our system and collect data from various scenarios for performance
evaluation. We begin with the basic evaluation of the system, followed by a detailed analysis of its performance in different
aspects, including the classification network, micro-benchmarks, and experimental conditions. Regarding the evaluation of the
classification network, we report basic performance metrics and compare our network’s accuracy with those of ResNets and ViT. We
next evaluate two adjustments to classic methods that enhance system robustness. To evaluate the robustness of the system across
different experimental conditions, we use the data from volunteer participants who were not included in the initial training data
collection. Specifically, we test the classification accuracy of our system under same environmental conditions but unseen volunteers.
Furthermore, we compare the energy variation of signals under static environment, standard posture, and standard posture with
different dynamic interference. Finally, we evaluate the classification accuracy of the same volunteer at different distances from
experimental device, and different experimental device heights.

3.1. System implementation

Our system prototype uses a UMA-8 circular microphone array to receive the echo at 48 kHz and a JBL PS2200 speaker as a signal
generator. The microphone array and speaker are controlled by a laptop through a USB interface. Also, the code implementation of
data collection and preprocessing are based on Matlab 2021a. As shown in Fig. 12(a), we set the microphone array panel facing to
users and vertically to the desk, and the speaker is behind the microphone array for a tiny interval. The above layout is helpful for
the synchronization of signals. After the echo signals are preprocessed, we train the proposed deep learning model on an NVIDIA
GeForce GTX 3090 GPU with 24 GB of memory.

Considering the microphone array is located between the person and the screen, and the rapid ultrasound energy loss during
transmission, we set the maximum sensing range as 50 cm from the microphone array. In addition, according to the constraint
mentioned in Section 2-1 and relevant studies (Pynt, Higgs, & Mackey, 2001), we also set the minimum sensing range as 20 cm
from the microphone array. Besides, to balance the calculation complexity and the resolution of the body profile, the range of height
angle is set from 𝜋/36 to 𝜋/2 with 𝜋/36 as the step length, and the azimuth range is set from 𝜋/18 to 2𝜋 with 𝜋/18 as the step
length. Therefore, the preprocessing result obtained from a single echo signal will be a 18 channels matrix with 36 × 18 as its size.

We also recruited four volunteers to participate in testing our system. For the proposed network training, we collected data from
only one volunteer. Additionally, all volunteers were instructed to wear shirts during the basic experiments. To ensure relevance to
daily life, we collected raw sound data from three different environments, as shown in Fig. 12, for evaluation purposes. Moreover, we
categorized sitting postures into five main types: standard sitting posture, left-leaning, right-leaning, humpback, and back-leaning,
based on existing research findings (Villanueva et al., 1997) and common usage scenarios. During the data collection process, we
used one volunteer for training data and the remaining three volunteers for test data, in a singular pose within a specific usage
scenario, we gather and curate a dataset of 2000 samples for the purpose of model training, additionally, an extra set of 800
samples is allocated exclusively for model testing. The volunteers were positioned approximately 50 cm from the screen, resulting
in a horizontal distance of about 35±3cm from the microphone array. Volunteers were instructed to sit in random positions within
this distance range. Although the sensing height angle range was set as 𝜋/36 to 𝜋/2, due to the directive nature of ultrasounds, we
asked volunteers to sit within a height angle range from 𝜋/3 to 𝜋/2 of the microphone array panel.

3.2. Basic performance

To show the basic performance of our system, we firstly evaluate the general accuracy of APC which means that our training data
and testing data come from the same volunteer but at different times and in different scenarios. As shown in Fig. 13, we can obtain
a average confusion matrix tested in three experimental scenarios shown in Fig. 12. The results reveal an impressive classification
accuracy of 98.41% for our system.
10
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Fig. 13. Basic performance.

Table 1
Comparisons of different methods.

Classes Recall Accuracy F1-score Parameter
(107)

ResNets18 0.8012 0.8455 0.8227 1.170
Transformer 0.8322 0.8834 0.8570 8.524
MLP 0.7253 0.7583 0.7414 0.672
LSTM 0.7601 0.8013 0.7801 4.323
ResNets101 0.8521 0.8697 0.8608 4.460
Our model 0.9840 0.9841 0.9840 6.741

Next, we introduce initial parameters, training strategies, and evaluation method of our neural network before the evaluation.
Our model training strategies are as follows. Firstly, we conduct a warm-up training phase for 10 epochs at a reduced learning rate
of 0.0001. Subsequently, we restore the learning rate to 0.001 and train for additional 500 epochs, and the strategy for learning
rate reduction that we adopt in this session involves a linear decrease in the learning rate by a factor of 0.5 every 50 epochs,
and our training batch size is set at 256. Furthermore, the neural networks are trained to maximize the square root of the F1-score
(Balanced F Score), and the accuracy coefficient is utilized to evaluate our models and optimize the hyperparameters. In this context,
the models are evaluated using accuracy, precision, recall, and F1-score.

As a result, our training dataset comprises 10,000 matrices each of dimension 18 × 36 × 18, and the total number of validation
sets is 4,000. Through the aforementioned model training strategy, we ultimately achieve the highest accuracy at the 310th epoch,
which stands at 0.984, and the F1 score on the validation set is equally high at 0.984. Moreover, the loss value significantly drops
from 1.45 to 0.09. The accuracy, recall, and F1 scores of the validation set have also markedly increased from 0.34, 0.34, and 0.24
to above 0.98, respectively.

Given that our model is an ensemble model, we also conduct both model comparison experiments and ablation experiments.
First, employing the same training strategy on shallow ResNets, the conventional Transformer, and MLP, we achieved the highest
accuracies of 0.84, 0.88, and 0.75, respectively. After separately removing the shallow ResNets and Transformer architectures from
our model, the highest accuracies stand at 0.89 and 0.91. Additionally, we compared our model with deep ResNets (ResNets101)
and LSTM (Tan, Santos, Xiang, & Zhou, 2015). Under the same strategy, the highest accuracies for deep ResNets and LSTM are 0.86
and 0.80, respectively. These results underscore the superior performance of our proposed model Tables 1 and 2.

3.3. Evaluation of system performance with an increased number of classes

Recognizing that a mere five posture classes might not adequately address the requirements of daily usage scenarios, we have
expanded the posture categories to eight. Alongside the original five classes, we have introduced three additional posture classes:
‘‘Leaning on Table’’ (LT), ‘‘Left Leaning on Table’’ (LTl), and ‘‘Right Leaning on Table’’ (LTr). For training purposes within an office
scenario, we have meticulously collected 2000 fresh samples for each posture class. An additional 200 samples have been reserved
for evaluation. The results, reveal an average accuracy of 92.25%. Notably, we observe a decline in the accuracy of classifying the
three ‘‘on table’’ postures, with a reduction of approximately 10% when contrasted with other postures. This accuracy drop can
be attributed to a common characteristic of the three ‘‘on table’’ postures. These postures involve the user’s hair facing the device
11
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Table 2
Evaluation metrics on test set.

Classes Precision Recall F1-score Support

Standard 0.9848 0.9700 0.9773 1000
Left Leaning 0.9700 0.9700 0.9700 1000
Right Leaning 0.9657 0.9850 0.9752 1000
Back Leaning 1.0000 1.0000 1.0000 1000
Humpback 1.0000 0.9950 0.9975 1000
Accuracy 0.9840 5000
Macro Avg 0.9841 0.9840 0.9840 5000
Weighted Avg 0.9841 0.9840 0.9840 5000

Fig. 14. Classification performance of data generated by using the same IF frequency on the detection of single spatial location.

directly. Due to the fluffy texture of hair, it acts as a proficient sound-absorbing material. Nonetheless, our system can still achieve
satisfactory recognition by capitalizing on reflections from other body parts, compensating for the challenges posed by these specific
postures.

3.4. Adjustments on classic methods

Impact of different IF frequencies: In contrast to the conventional microphone array method, we have adopted a novel
approach by assigning different IF frequencies to IF signals on the detection of single spatial location. To evaluate the effectiveness
of this scheme, we compared the accuracy of our system with the conventional signal processing method. As shown in Fig. 14(a),
we achieved 87.72% as the best accuracy. Also, we compared the average of 100 preprocessing results generated using our method
and the unimproved method from the right leaning posture in Fig. 14(b). and the display of the results is the same as in Fig. 9. It
is evident that the data generated by the unimproved method lacks information from minor reflectors such as the head or arms.

Impact of high base frequency IF signal: In this part, we evaluate the high IF frequency scheme in the FMCW method, where
we compare the accuracy between the system with the conventional FMCW method and our system. As shown in Fig. 15(a), the
average accuracy significantly decreases to 74.96%. We also compared the average of 100 preprocessing results generated using
our method and the unimproved method from the right leaning posture in Fig. 15(b), and the display of the results is the same as
in Fig. 9, due to the long wavelength of IF signals. Preprocessing results from different distances exhibit varying amounts of noise
points.

Performance of space domain beamforming: In our approach, we adopt a fundamental concept that involves a fusion of
space domain beamforming and time domain beamforming. This choice is made to enhance the inherent sensitivity of wave
path differentiation, rather than solely relying on space domain beamforming. The results depicted in Fig. 16(a) substantiate
this approach. Comparing the accuracy performance, space domain beamforming exhibits a significantly lower average accuracy
of 54.4% when contrasted with our approach. Furthermore, as indicated in Fig. 16(b), the preprocessing results for a right-
leaning posture underscore a substantial issue of ambiguity, in contrast to our approach, discerning the underlying pattern of the
preprocessing results is notably challenging.

3.5. Experimental conditions

Impact of new users: We collect data from users who did not attend the training process to test the system’s accuracy, where
we invite three new volunteers for the evaluation. As shown in Fig. 17, the accuracy is 67.9% on average for 5 sitting postures
without any extra training. To further evaluate the performance of the network under the condition of training with a small amount
of data from new users, we conducted experiments using different sample sizes. Specifically, we set the sample sizes as 10, 20, 30,
12



Smart Health 32 (2024) 100463K. Ma et al.
Fig. 15. Classification performance of data generated by using the IF frequency starting from 0 Hz.

Fig. 16. Performance of space domain beamforming.

Fig. 17. Accuracy over different numbers of new user samples.

40, and 50 for the training process. Fig. 17 illustrates the accuracy trends observed for distinct convergence patterns as the sample
size of new users’ data increases. Notably, when the sample size exceeds 30, the accuracy reaches its highest level. The average
accuracy achieved in this case is 95.1%. These findings demonstrate that our network can be quickly implemented with acceptable
performance after a simple sampling procedure for new users.

Impact of different sensing distances: Because we collect data for training on microphone at about 35 cm away from users
body, and the recommended optimal sensing distance is 35 cm away from the microphone array. However, our system still exhibits
tolerance for slight deviations from this distance. To demonstrate this, we conducted tests using data sampled at different sensing
distances. A volunteer was instructed to assume various postures while maintaining distances of 30 cm, 32.5 cm, 35 cm, 37.5 cm,
and 40 cm from the microphone array. As depicted in Fig. 18, our system maintains a stable accuracy even with a small deviation
in the sensing distance, approximately 5 cm, and it aligns with the expectation that the accuracy will be better when the sensing
distance is closer to 35 cm.

Impact of dynamic interference: The static interference is subtracted from the received signals, but dynamic interference by
human walking still exists. Therefore, we need to know how dynamic interference impacts the system, and we compare between
13
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Fig. 18. Accuracy over different sensing distances.

Fig. 19. Normalized signal energy under dynamic interference: (a) shows the normalized energy variation of echos from static experimental scenario, standard
posture without dynamic interference, and dynamic interference at different distances. (b) shows the means of normalized energy.

echo energies under different dynamic interference. As shown in Fig. 19, we record echoes and arrange a volunteer walking for 1 m
in 0.8s at different distances. As a result, the contribution to total energy of a walking people is minor. We can make a explanation
from two aspects. First, the user is very close to the microphone array, thus occupying most of its perception angle, making the
reflector behind the person undetectable. Second, because the reflected lobe of the sound is opposite to the normal of the reflector
in the direction of sound incidence, dynamic interference in the low altitude angle direction cannot be detected.

Impact of different environments: Our APC system maintains a stable accuracy in different environments, due to its static
interference cancellation scheme for near interference and the rapid power attenuation of far interference. To assess the system
performance across different environments, we collected data from a single user in various usage scenarios, including an office, a
library, and a cafe, as depicted in Fig. 12. The office environment features static interference caused by a crowd but has minimal
dynamic interference. In the library, dynamic interference arises from people walking around. The cafe environment, on the other
hand, exhibits rare interference due to its clean layout. Fig. 20 presents the accuracy results obtained from these different scenarios.
We can see that there is not a large difference in accuracy among the various scenarios. This validates the robustness of our system
across different environments.

Impact of different clothes textures: The clothing textures may influence the echo energy. Clothing with rough textures are
more likely to absorb more echo energy to varying degrees, but most casual clothes textures do not change the diffusion direction
of the sound. Because of the reasons above, it is obvious that different clothes textures have an impact on our system especially
when the surface of clothing is very coarse. Therefore, we collect the testing data from a single user but wearing different clothes to
evaluate our system. As shown in Fig. 21, thin clothes with neat and smooth surfaces like silk can obtain a good accuracy of 97.5%
on average, but thick clothes with coarse surface only obtain a poor accuracy of 41.25% on average. However, because our usage
scenarios are mainly indoor environments, it would not be a serious problem for our system.

Impact of different vertical height of experimental device: Due to the variable intensity of body reflection and diffusion at
different heights, the feature and echo quality may vary depending on the position of experimental device. In previous experiments
we set the experimental device at a distance of 45 cm from the top of a user to the desktop. To evaluate the impact on the accuracy
14
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Fig. 20. Accuracy over different experimental environments.

Fig. 21. Accuracy over different clothes textures.

Fig. 22. Experiments under different vertical heights of microphone array.

of different height positions of experimental device, we utilize experimental device to collect data from different height positions to
the upper human body. As shown in Fig. 22, the system obtains the best performance at 45 cm height where is the same height of
chest, and the system is stable during the height from 30 cm to 52.5 cm. This observation provides a clear evidence that our system
maintains a stable performance even when there are small changes in the device height.

Impact of different deflection angle of experimental device: In previous experimental setups, the device was positioned
directly in front of the user. However, in real-world scenarios, the device’s placement can significantly impact the user experience.
To assess the system’s resilience to deflection angles deviating from the user’s front direction, without necessitating extra training,
we gathered data from varying deflection angles for evaluation purposes. As illustrated in Fig. 23, we have 98.41% and 94.5% as the
performance on accuracy for 0 and 5 device deflection degree respectively, our system also maintains an acceptable performance
15
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Fig. 23. Experiments under different deflection angle of experimental device.

xperiences a sharp decline to 48%. This decrease in accuracy can be attributed to two main factors. Firstly, data stemming from
arger deflection angles tend to perplex the classification model. Secondly, when the device deviates from its original position, a
ubstantial portion of the reflection direction and diffusion lobe orientation shifts inversely to the device’s deflection.

. Conclusion

In this paper, we proposed APC, an acoustic sitting posture recognition system. Specifically, we formulated the received signals on
circular microphone array and designed a signal preprocessing method based on a modified FMCW method. Then, we preprocessed

ignals to obtain feature matrices based on time domain beamforming. Besides, we constructed a new classification network based on
iT for sitting posture classification. Finally, we evaluated this system in many aspects which include different classification methods,
ifferent modifications of conventional methods, and different experimental conditions. The experimental results demonstrated our
PC system can obtain a great performance with 98.41% classification accuracy.
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