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Abstract
Generative AI (GAI) has emerged as a sig-

nificant advancement in artificial intelligence, 
renowned for its language and image generation 
capabilities. This paper presents “AI-Generated 
Everything” (AIGX), a concept that extends GAI 
beyond mere content creation to real-time adap-
tation and control across diverse technological 
domains. In networking, AIGX collaborates closely 
with physical, data link, network, and application 
layers to enhance real-time network management 
that responds to various system and service set-
tings as well as application and user requirements. 
Networks, in return, serve as crucial components 
in further AIGX capability optimization through 
the AIGX lifecycle, i.e., data collection, distributed 
pre-training, and rapid decision-making, thereby 
establishing a mutually enhancing interplay. More-
over, we offer an in-depth case study focused 
on power allocation to illustrate the interdepen-
dence between AIGX and networking systems. 
Through this exploration, the article analyzes the 
significant role of GAI for networking, clarifies 
the ways networks augment AIGX functionalities, 
and underscores the virtuous interactive cycle 
they form. It is hoped that this article will pave the 
way for subsequent future research aimed at fully 
unlocking the potential of GAI and networks.

Introduction
Within the evolving field of artificial intelligence 
(AI), the shift is evident from merely analyzing 
expansive datasets to actively generating innovative 
content. Milestones like AlphaGo’s 2016 victory 
over a Go world champion laid the foundation, but 
Generative AI (GAI) represents a significant turn 
in AI’s progression [1]. ChatGPT exemplifies this 
trend with its advanced conversational capabilities, 

resulting in more context-aware and detailed user 
interactions [2]. Similarly, DALL-E 3’s ability to pro-
duce images from text descriptions blends linguistic 
comprehension with visual creation. Such GAI 
advancements underscore the expanding role of 
machines in domains once believed to be unique 
to human creativity. This growth in GAI promises to 
reshape our view of AI across academic, industrial, 
and societal spheres [3].

AI-driven networks have conventionally 
employed Discriminative AI (DAI) models, adept 
at tasks like data classification and prediction. 
While DAI excels at detecting existing patterns, 
GAI extends capabilities by creating new data 
samples, for instance, entirely fresh images or 
audio not present in original datasets. This intro-
duces broadened applications in content creation, 
data augmentation, and even crafting network 
optimization strategies [1]. This capability tran-
sition positions GAI as a pivotal tool in network 
functions:
•	 Data Synthesis and Augmentation: Beyond 

AI’s traditional data interpretation capabil-
ities, GAI creates synthetic data vital for 
humans and networks. For example, GAI 
enhances anomaly detection systems by 
producing realistic simulations of infrequent 
network irregularities and cybersecuri-
ty threats, enriching training datasets, and 
improving system robustness [3].

•	 Predictive Analysis and Management: GAI 
extends beyond pattern recognition to fore-
cast network behaviors and preemptively 
generate actions based on network condi-
tions and anticipated future events [4]. This 
forward-looking functionality facilitates opti-
mal allocation of network resources and 
aids in averting potential network bottle-
necks [1].
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•	 Personalized User Interaction: By leverag-
ing GAI, networks can offer highly person-
alized services that adapt to individual user 
preferences [5]. This includes customizing 
content delivery, providing tailored recom-
mendations, and developing specific user 
interfaces, offering a level of personalization 
that traditional DAI cannot match [6].
As we embrace these merits, merging GAI 

into networking and technical areas presents 
unique challenges and opportunities. Within this 
confluence of GAI and networks emerges the 
innovative notion of AI-Generated Everything 
(AIGX).

AIGX, progressing beyond AIGC’s user-cen-
tric content creation, represents a paradigm 
that utilizes GAI models to optimize, refine, and 
devise applications and systems, enabling them 
to interact and adapt to instantaneous envi-
ronmental shifts dynamically. Spanning from 
reshaping transportation and healthcare to inno-
vating in urban planning and optimizing power 
grids, AIGX promises widespread transforma-
tion. Particularly in networking, a field ripe for 
AIGX-driven evolution, GAI’s influence on every 
network component—from content delivery 

to architectural configurations—is pivotal [3]. 
AIGX enables dynamic adaptations to real-time 
conditions [1], deploys predictive insights for 
improved decision-making [4], and introduces 
resource allocation schemes that ensure optimal 
performance [7].

As shown in Fig. 1, while AIGX aims to revolu-
tionize networks, the networks reciprocally play 
a significant role in optimizing AIGX. This sym-
biosis is evident throughout the AIGX lifecycle, 
including data collection, pre-training, fine-tuning, 
and inference. Specifically, the Internet-of-Things 
(IoT) is pivotal for efficiently collecting and prepro-
cessing massive data streams from interconnected 
devices [8]. In the training phase, federated learn-
ing (FL) becomes useful, providing a decentralized 
AIGX model training paradigm that avoids cen-
tralized data hub limitations [9]. This approach 
facilitates localized data processing at the edge 
and enhances training and inference. Meanwhile, 
specialized offloading strategies ensure compu-
tational tasks are intelligently distributed from 
resource-constrained devices to more resourceful 
nodes or cloud infrastructures [5]. As shown in 
Fig. 2, recent advances in AIGX highlight its symbi-
otic evolution with intelligent networks. This paper 

FIGURE 1. Symbiotic interaction between AIGX and data communications and networking. On the left, the diagram delineates the func-
tionality of AIGX across various network layers: physical, data link, network, and application layers. On the right, it illustrates how 
networks contribute at distinct stages of AIGX’s lifecycle, including data collection, pre-training, fine-tuning, and inference.
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elucidates this collaboration and its consequences 
for computing and communication frameworks. 
Our main contributions are:
•	 AIGX Enhancing Networks: We discuss the 

impacts of AIGX across network layers 
and show how AIGX facilitates real-time 
modulation adjustments, elevates data 
security, and tailors adaptive resource 
management in various network settings.

•	 Networks Enabling AIGX: We spotlight the 
role of networks throughout the AIGX 
lifecycle. From enabling efficient data col-
lection and distributed learning during 
pre-training stages to contributing to AIGX 
model optimization and ensuring low 
latency during the inference process, net-
works emerge as pivotal to deploying AIGX 
capabilities.

•	 Virtuous Interactive Cycle: Through a case 
study focused on power allocation, we 
examine the “virtuous interactive cycle” 
between AIGX and networks. This explora-
tion exemplifies the symbiotic relationship 
between AIGX and intelligent networks 
in real-world scenarios and offers tangible 
guidelines for integrating AIGX techniques 
into network design.

Generative AI and AI-Generated Everything
In this section, we delve into GAI’s foundational 
techniques and introduce the AIGX paradigm.

Generative AI: Core Techniques
GAI and DAI hold distinct methodologies and 
proficiencies. While DAI predominantly focuses 
on distinguishing between inputs by outlining 

class boundaries, GAI emphasizes generating con-
tent reminiscent of its training data.

1) Generative Adversarial Networks (GANs): 
GANs are pivotal models within GAI, expertly 
integrating data generation and discrimination 
capabilities. The model consists of two key com-
ponents: a generator for data production and a 
discriminator to distinguish between original and 
generated data. Engaging in iterative training and 
competition, the generator crafts increasingly 
accurate data. In networking, GANs enable the 
simulation of complex network traffic patterns for 
cybersecurity, enriching datasets to train sophisti-
cated intrusion detection systems.

2) Transformers: Initially developed for natural 
language processing, Transformers have broad-
ened their impact, notably influencing the GAI. 
Their core advantage lies in attention mecha-
nisms, which assign varied importance to different 
input sections, enabling effective parallel process-
ing. In networking, Transformers provide real-time 
bottleneck prediction and optimize packet rout-
ing based on historical traffic trends. Models 
like BERT and ChatGPT, which excel in linguistic 
applications, find use in designing encoders and 
decoders for semantic communications (Sem-
Com) [3].

3) Generative Diffusion Models (GDMs): 
GDMs represent a novel facet of GAI, gradually 
converting an initial random sample into a tar-
geted output through multiple iterative denoising 

FIGURE 2. Summary of research topics and key contributions in AIGC for networks and networks for AIGX.

Their core advantage lies in attention mechanisms, which assign varied importance to different input 
sections, enabling effective parallel processing.

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:29:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • November/December 2024504

steps. These models offer a departure from tra-
ditional neural architectures, presenting a new 
approach to content generation. In networking, 
GDMs have been applied in various network opti-
mization tasks such as resource allocation, error 
correction coding, network economics, and Sem-
Com [1].

4) Other GAI Techniques: Autoregressive 
Models (ARMs) leverage sequences of previous 
values to predict upcoming data points and are 
notably effective in generating sequential content 
such as text, audio, or video. ARMs can forecast 
network loads, optimize bandwidth allocation, 
and identify potential failure points using histor-
ical data in networks. Variational Autoencoders 
(VAEs) capture compressed data representations, 
generating new samples from this latent space, 
and are vital in creating synthetic network traf-
fic patterns or enhancing multimedia content to 
boost user Quality of Experience (QoE) in content 
delivery frameworks. Flow-based Models (FBMs), 
on the other hand, facilitate data generation by 
converting basic distributions into complex target 
ones through reversible transformations, ensuring 
content aligns with specified distributions, which 
is crucial for dynamic content stream adjustments 
and network security tasks where accurate traffic 
pattern replication is vital.

AI-Generated Every thing (AIGX): The New Network 
Paradigm

1) Defining AIGX, An Evolution from AIGC: 
AIGC refers to the application of AI techniques 
to facilitate and automate the creation of content 
that is specifically tailored to user preferences and 
requirements. The ‘C‘ in AIGC emphasizes the 
content-centric nature of this application, wherein 
the generated outputs are primarily forms of 
media or information such as text, images, videos, 
3D models, and audio [5].

AIGX builds upon the foundational con-
cepts of AIGC but extends its reach. ‘X‘ in AIGX 
denotes ‘Everything’, representing its influence 
across all technological aspects. Instead of 
just generating content, AIGX leverages GAI 
to adaptively design, fine-tune, and optimize 
applications and systems as they interact with 
real-time environmental changes. For instance, 
in telecommunications, AIGX can dynamically 
provide network resource allocation schemes 
to maximize user QoE [7]. In manufacturing, 
AIGX could redefine automation by enabling 
machines to detect and proactively manage 
production anomalies.

2) Virtuous Interactive Cycle of AIGX and 
Networks: Embedding AIGX into network systems 
symbolizes transitioning from traditional static 
architectures to a dynamic, GAI-driven frame-
work. Specifically, AIGX and networks have the 
following reciprocal benefits:
•	 AIGX for Networks. AIGX facilitates 

enhancements across network layers. In the 
Physical Layer, it enables real-time modula-
tion adjustments, optimizing data rates and 

minimizing errors based on channel con-
ditions [1]. In the Data Link Layer, AIGX 
dynamically augments error correction 
algorithms adapting to interference levels 
and enhances data security [3], [10]. In the 
Network Layer, it improves management in 
specialized systems, such as the Internet 
of Vehicles (IoV), and generates adaptive 
incentive mechanisms [7]. At the Appli-
cation Layer, AIGX benefits the design of 
SemCom and healthcare systems [11]. By 
leveraging generative models and GAI-aided 
data processing, AIGX improves the efficacy 
and user-centricity of applications.

•	 Networks for AIGX. Network infrastructure 
is pivotal across all AIGX lifecycle stages. 
During data collection, networks enable 
the collection of both application-specific 
and network management data, fostering 
a feedback loop that boosts AIGX capabili-
ties and network efficiency. In the pre-train-
ing phase, FL, supported by the network, 
facilitates decentralized model training, 
further optimizing AIGX models [9]. The 
fine-tuning stage leverages networks for 
real-time data collection and dynamic 
adaptability [9]. Lastly, networks employ 
edge offloading and multi-device coopera-
tion during inference, reducing latency and 
optimizing resource allocation to enhance 
system throughput [5].
This interplay between AIGX and networks 

marks a paradigm shift, transforming networks 
into dynamic, evolving ecosystems that continu-
ously adapt to immediate needs. Next, we delve 
into two aspects of the mutually beneficial rela-
tionship between AIGX and networks, followed by 
a case study to illustrate this virtuous interactive 
cycle and gains.

AIGX for NETWORKS
This section studies AIGX methodologies that per-
meate and influence the network architecture’s 
layers.

Physical Layer
1) AIGX-driven Integrated Sensing and Commu-
nications (ISAC): ISAC merges wireless sensing 
and communication to efficiently use constrained 
resources, with applications ranging from 
autonomous driving to gesture identification 
[12]. Integrating GAI with ISAC leads to novel 
applications and enhancements. In ISAC data 
processing, GAI models such as GANs signifi-
cantly enhance system accuracy even with scarce 
real-world data, particularly evident in Received 
Signal Strength Indicator (RSSI) fingerprint local-
ization. GAI adoption enhances dataset diversity, 
improving the precision of human activity detec-
tion. Furthermore, GAI addresses more intricate 
challenges, such as estimating the Direction 
of Arrival (DoA) of signals in ISAC systems in 
near-field or far-field scenarios. For instance, 
a GDM-developed signal spectrum generator 
(SSG) is proposed in [A12] of Fig. 2, as shown in 
Part B of Fig. 3. In a test with four antennas, the 
SSG used 10,000 paired signal spectrums, des-
ignated 80% for training and 20% for validation, 
and introduced noise into expert-generated solu-
tions, followed by a stepwise denoising process. 

Instead of just generating content, AIGX leverages GAI to adaptively design, fine-tune, and optimize 
applications and systems as they interact with real-time environmental changes.
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The evaluation revealed that the SSG output con-
verges with expert solutions during training and 
achieves a test loss of −10, outperforming the 
−80 loss in deep reinforcement learning (DRL)-
based methods.

2) AIGX-driven Antenna Trajectory Opti-
mization: With their repositionable antennas, 
flexible-position MIMO systems improve wireless 
communications by optimizing channel conditions 
and boosting spectral and energy efficiencies. 
The key challenge is trajectory optimization for 
maximizing spectral (SE) or energy efficiency 
(EE). Traditional optimization techniques can 
get stuck in complex scenarios, often settling in 
local optima. AIGX employs GAI-driven optimi-
zation under dynamic network conditions [1]. In 
the case study in [A8] of Fig. 2, a GDM aimed to 
enhance SE is trained to generate antenna trajec-
tories, as shown in Part A of Fig. 3. Compared to 
DRL methods, which quickly peak and then level 
out, AIGX optimization steadily increases rewards, 
raising the sum SE from an average of 11.7 (using 
DRL) to 13.3. Results revealed that the generated 
solution enabled antennas to either adjust posi-
tions to enhance user coverage or move to the 
system’s periphery to mitigate multi-user interfer-
ence to optimize SE, while EE-prioritized scenarios 
prompted antennas to shift towards areas with 
higher user density.

Data Link Layer
1) AIGX-driven Error Correction: Error correc-
tion is significant for ensuring data integrity across 
interference-prone channels in the data link layer. 
Identifying the codeword most suitable with the 
received signal is traditionally considered an 
NP-hard challenge, implying a potential expo-
nential search for optimal decoding. Fortunately, 
GAI models in the AIGX framework, like Trans-
former-based decoders, have brought efficiency 
to this task, enhancing accuracy and com-
putational speed [10]. However, the invariant 

computational load is a persistent challenge, 
independent of the codeword corruption degree. 
The introduction of the GDM within the AIGX 
framework presents a solution, enabling iterative 
decoding that adjusts according to the varying 
degrees of codeword corruption, significantly 
reducing computational demands [10]. A case 
study in [10] highlights AIGX’s effectiveness. It 
presents data transmission as an iterative forward 
diffusion process that requires inversion at the 
receiving end. The Bit Error Rate (BER) of the 
GDM method is notably lower than traditional 
schemes, with it being only 11% of a specific 
Transformer scheme when the signal-to-noise 
ratio is at 4 dB.

2) AIGX-driven Data Security and Privacy 
Enhancements: The surge in digital commu-
nication has heightened the importance of 
effective security and privacy measures. While 
AIGX introduces novel ways to create con-
tent, it also opens doors to potential risks. We 
discuss the attack scenarios and defense mech-
anisms as:
•	 Attack Scenarios: Foundation models, such 

as OpenAI’s ChatGPT, present emerging 
threats by potentially generating harmful 
content that bypasses safeguards of net-
work service providers, as discussed in [N4] 
of Fig. 2. Additionally, AIGX might exploit 
subtle similarities between encrypted and 
plain images in the embedding space, com-
promising the trustworthiness of prevailing 
encryption methods.

•	 Defense Mechanisms: LLMs can enhance 
the training dataset of a DAI model by cre-
ating adversarial examples. Take a network 
intrusion detection system (NIDS) trained 
to distinguish between ‘normal’ and ‘mali-
cious’ network traffic. If a malicious pat-
tern, like several failed logins followed by 
a successful one, is detectable, the LLM 
might generate an adversarial sample 

FIGURE 3. Typical system models of AIGX technologies in networks. Part A depicts the generation of optimal antenna trajectories using 
AIGX. Part B demonstrates the localization results produced by AIGX, leveraging perceived wireless environments. Part C, the appli-
cation of AIGX technology for designing encoders and decoders in vehicular network semantic communication systems is present-
ed. Part D shows the incentive mechanism generated by AIGX in mixed-reality user information-sharing systems.
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that spreads the login attempts over var-
ious user accounts or IPs. This disrupts 
the recognizable pattern and might go 
unnoticed.
An illustrative example of the synergy 

between AIGX’s advantages and associated 
risks is evident in wireless image transmission. 
In this setting, discriminative AI attempts to dis-
rupt communication by initiating data poisoning 
attacks on an image dataset hosted on a server. 
Counteracting this, AIGX-driven defenses utilize 
a GDM to authenticate each image before trans-
mission. As shown in [N4] of Fig. 2, utilizing this 
AIGX-driven defense led to an 8.7% reduction in 
energy consumption.

Network Layer
1) AIGX-driven Network Management: Net-
work management is crucial for modern systems, 
ensuring efficient communication and perfor-
mance, especially in extensive networks with 
data flow across many devices [13]. AIGX, with 
GAI’s capability to discern and emulate intri-
cate data patterns, enhances troubleshooting, 
predictive maintenance, and data synthesis [1]. 
Consider the IoV, where vehicles continuously 
exchange data. The dynamism of this system 
requires adaptable network management. AIGX, 
given its data representation and generation 
prowess, can predict network congestion, allo-
cate bandwidth adaptively, and even fill in data 
gaps where actual data is lacking. As shown in 
Part C of Fig. 3, a specialized study, i.e., [A11] 
of Fig. 2, addresses V2V resource allocation, for-
mulating a QoE metric grounded in transmission 
rate and received image fidelity. Comparative 
analyses reveal that AIGX-based approaches out-
perform DRL counterparts, recording an 18.5% 
increase in average QoE.

2) AIGX-driven Incentive Design: Incen-
tives play a key role in prompting network 
participants to share resources, boosting net-
work efficiency. Without the right rewards, users 
might hold back, considering costs like battery 
usage or bandwidth. Unlike the conventional 
DAI-based method, AIGX leverages the learn-
ing capabilities of GAI models to dynamically 
adapt to evolving network conditions and user 
behaviors. This adaptability achieves more intel-
ligent and responsive network management, 
surpassing the performance of conventional 
DRL methods. As shown in Part D of Fig. 3. a 
noteworthy application involves deploying AIGC 
within Mixed-Reality (MR) technologies [7]. MR 
headset-mounted devices (HMDs) often face 
constraints in computational power, impacting 
user experience. An effective information-sharing 
strategy, leveraging full-duplex device-to-device 
(D2D) SemCom, emerges as a solution [7]. 
Instead of each user doing repetitive compu-
tational tasks like generating AIGC, the system 
facilitates sharing this content with relevant 
semantic information to nearby users. Such a 
framework calls for an effective incentive mecha-
nism to motivate users. A contract theory-based 
incentive model is proposed, utilizing an AIGX-
based approach, notably the diffusion model, 
to refine the design of contracts, which boosts 
user QoE by 11.7% over the traditional DRL 
approach [7].

Application Layer

1) AIGX-driven Semantic Communications: 
Semantic Communications (SemCom) addresses 
the challenge of exponential data volume 
growth in wireless communication networks 
by converting messages into semantic informa-
tion for transmission using a semantic encoder 
and decoder. However, challenges exist in joint 
training and energy-efficient distribution of 
these AI-based encoders and decoders. Fortu-
nately, GAI models, such as advanced language 
and image generation models, can reconstruct 
complex messages from simpler semantic repre-
sentations, alleviating the need for joint training 
[14]. For example, using multi-modal prompts, 
i.e., visual and textual prompts, can lead to 
accurate semantic decodings [11] to solve the 
problem of instability brought by the diverse 
generative capabilities of GAI models, which 
can be used in scenarios that require accu-
rate information transfer such as human face 
images. Another example is integrating SemCom 
and AIGC (ISGC) to enhance user immersion 
as discussed in [A6] of Fig. 2. ISGC balances 
computing and communication resources for 
semantic extraction, AIGC inference, and graphic 
rendering. An effective resource allocation mech-
anism can be achieved with the help of AIGX to 
obtain near-optimal strategies. Numerical results 
show that the GDM-based method can improve 
the QoE by 8.3% compared with the Proximal 
Policy Optimization (PPO) method.

2) AIGX-driven Healthcare: Network technol-
ogies, aided by IoT, are transforming healthcare, 
allowing real-time patient monitoring and effi-
cient data sharing. AIGX further elevates 
network-based healthcare by simulating human 
thought and analyzing large datasets, improving 
diagnostics, predictions, and overall care, as dis-
cussed in [A10] of Fig. 2. It can foresee health 
concerns by reviewing vast data and devising 
personalized treatment plans using a patient’s 
history and present health data. In AIGX-driven 
health applications like virtual physical (VR) ther-
apy, maintaining high-quality VR video streams is 
essential. Although SemCom helps reduce data, 
preserving VR quality is a challenge, especially 
with potential inaccuracies. AIGX can recreate 
these streams closely to the original. Yet, man-
aging the network’s efficiency, VR video quality, 
and genuineness can be challenging. An opti-
mization design is presented in [A10] of Fig. 2 
considering constraints like bandwidth, computa-
tional capacity, and QoE benchmarks, aiming to 
enhance user QoE by focusing on aspects includ-
ing resolution ratio and the diffusion step that is 
crucial for GDMs. Compared to the Soft Actor-
Critic (SAC) algorithm, a conditional GDM-based 
approach has increased the total users’ QoE by 
32.4%.

3) AIGX-driven User-centric Networks: 
User-centric networks harness the power of AIGX 
to revolutionize how network services cater to indi-
vidual user needs. Central to this transformation 
are the foundation models, e.g., LLMs, enabling 
a deeper understanding of user intents, prefer-
ences, and behaviors. These advanced foundation 
models, through interactive AI (IAI) mechanisms, 
facilitate a dynamic, personalized interaction layer 
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between the network and users. This level of 
personalization is achieved by integrating user- 
centric design principles, where feedback loops, 
powered by LLMs, continuously adapt to user 
interactions. For example, for distributed AIGC 
studied in [N11] of Fig. 2, the authors address 
the challenges of enhancing both the subjective 
QoE and energy efficiency in services utilizing 
GDM for image creation. Crucially, the approach 
incorporates a Reinforcement Learning With 
Large Language Models Interaction (RLLI) strat-
egy, leveraging the power of LLMs to employ 
generative agents to mimic user interactions. This 
enables the provision of instantaneous and per-
sonalized QoE feedback, capturing the nuances 
of individual user personalities. Through LLMs, the 
system dynamically adapts to user feedback, con-
tinually refining the content generation process 
to align with user preferences and enhance the 
overall experience.

Lesson Learned
In leveraging AIGX methodologies for network 
systems, several key lessons emerge. The pri-
mary motivation behind leveraging GAI is its 
ability to amplify accuracy, optimize network 
management schemes, and predict intricate data 
patterns, especially in dynamic systems like the 
IoV. Conventional DRL-based methods, prone to 
getting stuck in local optima, can struggle with 
real-time changes. Using tools such as GANs 
and GDMs, GAI provides flexible solutions that 
adapt to evolving conditions. This flexibility is 
crucial when navigating vast, dynamic systems or 
addressing challenges like error correction. Fur-
thermore, while AIGX’s introduction brings forth 
data security opportunities, it demands careful 
implementation. In practical applications, areas 
like healthcare are transformed by AIGX-driven 

networks, facilitating real-time tracking, individ-
ualized treatments, and enhanced diagnostic 
capabilities.

Network for AIGX
Networks play a pivotal role in the AIGX lifecycle, 
from data collection and training to fine-tuning 
and inference.

Data Collection
Data collection is fundamental to the AIGX eco-
system, impacting the efficiency and reliability 
of AIGX applications. Utilizing varied techniques 
enriched by IoT capabilities, integrated devices, 
and sensors are crucial channels for detailed 
environmental data collection. In smart cities, for 
instance, IoT devices acquire data on air quality, 
vehicular movement, and energy consumption, 
and use these data for AIGX applications. Net-
works play two synergistic roles in AIGX data 
collection:
•	 AIGX Service Data: As shown in Part A. 1 

of Fig. 4, networks enable the acquisition 
of application-specific data, such as sen-
sory and visual information from IoT cam-
eras, which form the empirical foundation 
for developing and refining AIGX service 
models.

•	 Network Management Data: Beyond ser-
vice-specific needs, networks collect data 
useful for fine-tuning and optimizing AIGX 
models deployed for network management. 
As shown in Part A. 2 of Fig. 4, expert deci-
sions under various channel conditions 
can be collected for further AIGX model 
training.
This dynamic fosters a virtuous interactive 

cycle: AIGX models optimized for network perfor-
mance enhance data rates and network efficiency, 

FIGURE 4. The role of networks across various stages of the AIGX lifecycle. In the Data Collection phase, networks enable efficient 
data gathering essential for training effective AIGX models that cater to user needs or manage the network. During the Pre-train-
ing stage, networks support AIGX models in flexible training, such as FL supporting distributed training. In the Fine-tuning stage, 
network devices update pre-trained models with new user data for personalized services and adapt decision-making models to 
emerging network conditions. Collaboration among network devices at the Inference stage promotes more adaptable and ener-
gy-efficient inference models.

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:29:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • November/December 2024508

which in turn improve data collection for AIGX 
model refinement, perpetually fine-tuning both 
AIGX capabilities and network efficacy.

Pre-Training
The pre-training phase in the AIGX lifecycle, cru-
cial for developing foundational models across 
various applications, significantly leverages net-
work infrastructure capabilities:
•	 Federated Learning Support: Networks 

employ FL, allowing decentralized model 
training while keeping data at the edge [9] 
as shown in Part B. 1 of Fig. 4 While FL 
enhances data privacy, effective network 
resource management must address com-
putational challenges. Networks manage 
resources, including dynamic bandwidth 
allocation and low-latency communication, 
ensuring efficient localized AIGX model 
training across devices without overload-
ing the network [9]. An example of this 
approach in action is FATE-LLM,1 a feder-
ated learning framework tailored for large 
language models, designed for industrial 
applications.

•	 Adaptable AIGX Model Training: Networks, 
by collecting diverse environmental and net-
work-related data such as latency and band-
width utilization, enrich AIGX model training 
input as shown in Part B. 2 of Fig. 4, focus-
ing on network optimization. For instance, 
if a pre-trained AIGX model incorporates 
high-bandwidth environment data, its perfor-
mance may be suboptimal under bandwidth 
constraints.
This symbiotic relationship ultimately achieves 

improvements in both AIGX functionalities and 
network performance.

Fine-Tuning
In contrast to the generalizations of the 
pre-training stage, fine-tuning zeroes in on swift 
optimization for user preferences and fluctuating 
network conditions. The network bolsters AIGX 
fine-tuning as follows:
•	 Real-Time User-Centric Services: Leverag-

ing the capabilities of edge networks, as 
shown in Part C. 1 of Fig. 4 real-time data 
reflecting user preferences is collected for 
model fine-tuning [9]. This makes AIGX 
models agile in adapting to shifts in user 
behavior or network dynamics.

•	 Dynamic Network Condition Adaptabili-
ty: For network management-focused AIGX 
models, the network continuously monitors 
metrics like fadings and packet loss, feed-
ing this data into the fine-tuning process to 
swiftly adapt to network changes as shown 
in Part C. 2 of Fig. 4
Consequently, the network functions as an 

effective platform, fostering the rapid fine-tuning 
of AIGX models, and making them practical for 
real-world scenarios.

Inference
The inference stage deploys trained AIGX mod-
els for specific needs. Rather than depending 
on traditional centralized servers, which often 
result in bottlenecks and delays, AIGX can 

leverage edge-based offloading to enhance the 
efficiency [5]. The network’s role in AIGX infer-
ence includes:
•	 Low-Latency Processing: Offloading infer-

ence tasks to edge devices significant-
ly minimizes latency. This is achieved by 
reducing the round-trip data travel dis-
tance between the user and the processing 
unit. For instance, Qualcomm reported a 
nine-fold increase in speed compared to 
the baseline Stable Diffusion model when 
executed on a phone equipped with Snap-
dragon 8 Gen 3.2

•	 Multi-Device Cooperation: AIGX inference 
can be partitioned and executed across mul-
tiple cooperating edge devices as shown 
in Part D of Fig. 4. This distributed method 
removes individual device limits, including 
computation and energy resources, and 
boosts the overall system effectiveness 
through collaborative processing.

•	 Optimized Resource Allocation: Distributing 
the inference process across edge devices 
alleviates central server workloads, optimiz-
ing the utilization of network resources and 
averting potential congestion points.
With edge offloading and multi-device coop-

eration, the network sharply reduces latency, 
enhances system throughput, and optimizes 
resource allocation.

Lesson Learned
Networks are integral to the AIGX ecosystem, 
providing the infrastructure and data pathways 
that support AIGX models. By enabling decen-
tralized training, networks ensure data privacy 
while enhancing model adaptability, essential 
in ever-changing real-world scenarios. Networks 
are pivotal in gathering diverse data, which 
strengthens AIGX models, and are indispens-
able for ensuring real-time adaptability to user 
preferences and shifting network conditions. 
Furthermore, with the trend towards edge-
based offloading, networks optimize resource 
allocation and reduce latency, ensuring that 
AIGX models are both efficient and practical in 
real-world applications.

Case Study: The Virtuous Interactive Cycle of 
AIGX and Networks in Power Allocation

Managing efficient communication between a 
base station and a user across multiple channels, 
as depicted in Part B of Fig. 5, is a representative 
challenge in modern wireless systems. While con-
ventional techniques like water filling are precise, 
they are resource-intensive and need constant 
adjustments for each set of channel gains. On the 
other hand, AIGX offers an adaptive, real-time solu-
tion suitable for fluctuating channel conditions. The 
case study,3 with different environmental stages T1, 
T2, and T3 switching between AIGX model training 
and channel data collection, shows AIGX’s adapt-
ability in optimizing power allocation based on 
real-time channel feedback. This adaptability sug-
gests AIGX’s broader applicability, which could be 
the key to enhancing a range of wireless communi-
cation problems where environmental conditions 
and data patterns change rapidly, making this case 

1 https://github.com/Federa-
tedAI/FATE-LLM 
 
2 https://www.qualcomm.
com/news/onq/2023/11/
accelerating-genera-
tive-aiat-the-edge 
 
3 The code is available on 
https://github.com/Hong-
yangDu/VirtuousAIGX.
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study pivotal in demonstrating the impact of AIGX 
on network optimization.

Initial Conditions and AIGX Training (T1)
During T1, the network operates under stable con-
ditions, analogous to good weather conditions. 
With M = 20, channel gains are set between 5 
and 8 for the initial 10 channels and 3 to 6 for 
the subsequent 10 to simulate a range of channel 
conditions. These gains, serving as conditions, are 
collected in training the GDM model to allocate 
power by identifying and adapting to channel-spe-
cific states to maximize the data rate. Specifically, 
the GDM model is trained through a process 
where optimal decision generation is achieved 
by introducing noise to an expert solution and 
denoising it, as demonstrated in Part A. As shown 
in Part C of Fig. 5. by the close of T1 model train-
ing, the AIGX model enhances the network data 
rate by 18.8% compared with the average alloca-
tion scheme.

Environmental Variations and Their Impact (T2)
In phase T2 channel data collection, the network 
grapples with varied environmental changes, for 

instance, a rainstorm, which is particularly chal-
lenging for wireless communications due to the 
scattering and absorption of radio signals at 
high-frequency bands, e.g., mmWave. Specif-
ically, we consider that channel gains fluctuate 
capriciously between 1 and 7 for all 20 channels, 
reflecting real-world scenarios where meteorolog-
ical shifts evoke unpredictable network behavior. 
Even though the AIGX model trained under T1 
conditions manifests the robustness, it becomes 
suboptimal in T2, evidenced by a conspicuous 
decline in the data rate. Such a situation moti-
vates a virtuous interactive cycle to gain additional 
expert solutions to enhance the AIGX model train-
ing under diverse conditions.

The Virtuous Interactive Cycle in Action (T3)
In phase T3, the synergistic virtuous interactive 
cycle between AIGX and the network becomes 
evident. The network, under T2‘s rain-impacted 
conditions, actively acquires new channel 
gains and corresponding expert solutions, serv-
ing to retrain the AIGX model. This adaptation 
of the model’s power allocation strategy to the 
new channel conditions triggers a significant 

FIGURE 5. Case study of the AIGX-network virtuous interactive cycle: Part B shows the system model where a base station and user com-
municate through multiple channels, demanding power allocation to optimize the user’s sum rate. Networks feed training data to 
the AIGX Manager, which generates a powe allocation model. Part A shows the training process of the GDM, generating optimal 
decisions under given channel conditions by adding noise to the expert solution and denoising it. Part C reveals the AIGX-network 
cycle’s adaptation to network changes, illustrating how improved sum rates benefit the network and provide varied data. The AIGX 
model performance is tested by randomly sampling environmental conditions during training
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improvement in the data rate. Specifically, the 
virtuous gain, defined as the enhancement in 
data rate achieved by the retrained AIGX model 
compared to a conventional average method, is 
15.1%. Conversely, a deep reinforcement learn-
ing-based method. i.e., SAC [1], cannot achieve 
performance analogous to AIGX, attaining merely 
an 8.9% virtuous gain even under the virtuous 
interactive cycle.

Lesson Learned
The virtuous gain illuminates the importance 
of the AIGX-network virtuous interactive cycle, 
emphasizing the essential role of the network in 
the AIGX-network cycle. This stresses the impor-
tance of ongoing data acquisition and feedback 
mechanisms in maintaining the relevance and 
adaptability of AIGX algorithms under different 
network conditions. Rather than just benefiting 
from AIGX, networks actively contribute to AIGX 
adaptability and fortifying decision-making effi-
cacy. In addressing future challenges, we identify 
two major limitations of our case study: the gen-
eralizability of the AIGX model to new network 
conditions and its dependency on expert-derived 
training solutions. These factors highlight the 
complexity of real-world network environments, 
pointing out the crucial need for AIGX solutions 
that are resilient and adaptable. In this context, RL 
offers a promising way to enhance the flexibility 
and strength of AIGX systems [1].

Future Directions

AIGX Enhancing Networks
AIGX could serve as a foundation for automating 
complex network management tasks, streamlin-
ing data flow, and enhancing security. We discuss 
some representative future research directions:
•	 AIGX-Driven Near-Field Communications: 

The unique challenges in near-field MIMO 
communications, especially complex anten-
na dependencies [15], are mitigated by 
AIGX by leveraging its capability to model 
and adapt to the multifaceted channel 
dynamics. AIGX’s learning algorithms adapt 
to the complex channel states, facilitating 
optimal signal processing and resource 
allocation.

•	 Aigx-Driven Space-Air-Ground Integrat-
ed Network (SAGIN): AIGX addresses the 
need for robust communication across 
different atmospheric layers in SAGIN. By 
crafting adaptive pathways for data flow 
among satellite, aerial, and terrestrial layers, 
AIGX’s adaptability meets the network’s 
diverse demands, resulting in stable data 
transmission.

•	 AIGX-Driven Multimodal Communica-
tions: Networks managing a spectrum of 
data types, from text and images to video, 
benefit from the integration of AIGX agents. 
These agents are the key to synchronizing 
and prioritizing multimodal data flows effi-
ciently. For example, platforms like SORA4 

by OpenAI demonstrate the effectiveness of 
AIGX in orchestrating cross-modal content, 
substantially enhancing user interaction and 
experience.

Networks Supporting AIGX
Networks empower AIGX’s functionalities by pro-
viding robust data transportation, enabling rapid 
model deployment, and facilitating edge comput-
ing capabilities. We identify the following avenues 
for future research:
•	 Swarm Intelligence for Collaborative AIGX 

Service: Networks enabled with swarm 
intelligence can distribute AIGX services 
across nodes more efficiently. For instance, 
swarm algorithms could distribute GAI tasks 
across network nodes and exchange infor-
mation efficiently, thus accelerating model 
training and inference.

•	 Transfer Learning Across Network Hubs: 
Network-supported transfer learning can 
enhance AIGX efficiency by distributing pre-
trained models across multiple hubs. This 
allows each node to leverage shared learn-
ing and insights, reducing the need for AIGX 
services to train new models from scratch.

•	 Energy-Efficient Networking for Sustain-
able AIGX: To address the high energy 
demands of AIGX models like ChatGPT, net-
works can implement energy-aware routing 
algorithms and task distribution strategies. 
Data-intensive AIGX tasks may be routed 
through network nodes utilizing renewable 
energy sources, and low-energy hardware 
accelerators can be engaged for specific 
computations. In this context, the develop-
ment and management of AI Data Centers 
(AIDCs) play a pivotal role. AIDCs, designed 
to support AIGX operations, must prioritize 
energy efficiency through advanced cooling 
systems, optimized server utilization, and 
the adoption of green energy solutions to 
align with sustainable AIGX practices.

Conclusion
In this article, we have explored AIGX’s role in 
intelligent networks. Incorporated across differ-
ent network layers, AIGX promotes adaptive 
responses and enhances network management. 
Networks, in return, are instrumental in the AIGX 
lifecycle, from data collection to reducing infer-
ence latency. A case study on AIGX-driven power 
allocation highlighted the “virtuous interactive 
cycle” between AIGX and networks, emphasizing 
their reciprocal benefits. While our findings illu-
minate the promising relationship between AIGX 
and networks, continued research is essential to 
develop new methodologies and address emerg-
ing challenges, aiming for joint advancement of 
AIGX and intelligent networks.
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