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Abstract
Virtual reality (VR) is an emerging technology 

reshaping interactive experience and can be wide-
ly applied in gaming, operation training, and so 
on. Despite its great potentials, most existing VR 
solutions suffer from low mobility support, high 
latency, quick battery drain, as well as high cost of 
user devices. To overcome these issues, a mobile 
VR system is designed and implemented. The basic 
idea is to take advantage of 5G and fog comput-
ing to realize high bandwidth and low latency VR 
service. Meanwhile, our design features the inte-
gration of an open 5G base station (BS) and an 
intelligent controller. With the help of artificial intel-
ligence (AI) and the interfaces provided by the BS 
and fog VR servers, the controller can wisely adjust 
both the BS-level and application-level parameters 
to enhance system performance. Using our proto-
type system, the impact of various parameters, the 
superiority of fog computing over cloud computing 
in supporting VR, and the effectiveness of AI in 
optimizing system performance are all demonstrat-
ed. In addition, multi-dimensional resource optimi-
zation for VR delivery and strategy design for VR 
service migration are identified as two promising 
future research directions.

Introduction
As a disruptive technology that brings new inter-
active experience, virtual reality (VR) has attracted 
considerable attention from content providers, 
mobile network operators, vertical industry cus-
tomers, and so on. According to Goldman Sachs, 
the VR and augmented reality (AR) ecosystem 
will grow to an $80 billion market by 2025 [1]. 
Current applications of VR include entertainment, 
education, and skill training, and so on.

There are three common product types of 
VR. The first one uses a head mounted display 
(HMD) connected to a personal computer (PC) 
or a game console in a wired manner. The sec-
ond one relies on an HMD with a mobile phone 
attached to it, while the third one adopts an all-in-
one HMD. For all the existing solutions, custom-
ers need to buy high-performance but expensive 
devices to enjoy excellent VR quality; meanwhile, 
the first solution also restricts users to a small 
and fixed area. To achieve light, affordable, and 
mobile VR, the concept of cloud VR has been 
proposed. The core idea is to move computa-

tion-intensive rendering operations to powerful 
cloud servers, and then send rendered frames to 
HMDs by video streaming.

In [2], a cloud VR system is presented to 
optimize rotation latency and interaction laten-
cy. Rotation latency refers to the time elapsed 
from a head movement to the view update in 
the HMD, while interaction latency means the 
time elapsed after moving an object until that 
movement is observed. By mainly rendering the 
front-facing view with high resolution and leaving 
the rendering of small objects to local devices, 
both latency can be effectively reduced. More-
over, performance measurements on a cloud VR 
gaming platform called Air Light VR (ALVR) are 
conducted in [3]. Following the trend of cloud 
VR, some researchers go one step further to con-
sider VR transmission in fog computing enabled 
cellular networks. In [4], a Field of View (FoV) ren-
dering scheme deployed at fog computing infra-
structures is proposed for VR video delivery and 
the test result reveals that the traffic in the core 
and radio access links can be reduced by over 80 
percent. In [5], the authors implement a VR solu-
tion also utilizing rendering with fog computing, 
where a margin around FoV is streamed back as 
well to achieve better adaptation to different net-
work latency conditions. 

Although the existing works [2–5] have built 
their own VR systems and tested their perfor-
mance, the radio transmission is still based on the 
fourth-generation (4G) mobile communication 
system or WiFi. Particularly, the data rate of 4G 
cannot support the satisfactory experience of 
strongly interactive VR whose rate requirement 
can reach over 260 Mb/s per user as indicated in 
[6], while WiFi suffers low communication range 
and potentially severe interference due to the use 
of unlicensed band. In addition, to the best of our 
knowledge, the potential of artificial intelligence 
(AI) in optimizing VR performance on a real-world 
testbed has not been investigated before, which, 
however, is essential when considering efficient 
resource utilization, the dynamic radio environ-
ment, and the co-existence of VR and other 
services. To achieve a superior VR experience, 
this article designs and implements an (possibly 
the first) open 5G and AI empowered mobile VR 
system. Owing to the interfaces offered by the 
open 5G base station (BS) and the fog VR server, 
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both network and application parameters can be 
flexibly adjusted by an intelligent controller. Par-
ticularly, an off-line deep reinforcement learning 
(DRL) based multi-level parameter optimization 
approach is proposed for the intelligent control-
ler. With the prototype system, the impacts of var-
ious parameters on the VR performance and the 
efficacy of the DRL based approach are evaluated 
and verified. 

The remainder of this article is organized as 
follows. The recent trends in mobile VR are brief-
ly introduced in the next section. Following that, 
our proposed mobile VR system and its imple-
mentation are presented. The impacts of BS-level 
and application-level parameter settings on the 
VR performance are tested and the performance 
improvement brought by rendering with fog com-
puting is numerically demonstrated. After that, 
an offline DRL approach is proposed for system 
performance optimization. We then discuss two 
open issues and conclude this article.

State-of-the-Art of Mobile VR
Separating Rendering from Local Devices

Previously, the implementation of VR common-
ly adopts local computing based solutions that 
rely on PCs, gaming consoles, or smart phones as 
external rendering devices or just uses standalone 
HMDs. These solutions have the following issues:
•	 High cost devices: For highly interactive VR 

services, local computing devices have to 
execute computation-intensive graphic ren-
dering, which requires high-performance 
processors. This unavoidably raises the 
threshold for enjoying VR experience.

•	 Poor user experience: To support high VR 
quality, standalone VR HMDs can be heavy 
and easy to get hot, which make users feel 
uncomfortable. 

•	 High power consumption: Standalone HMDs 
and mobile phones have to be frequently 
recharged due to the significant power con-
sumption incurred by graphics rendering. 

•	 Limited mobility: When HMDs are cable 
connected to PCs or game consoles, user’s 
mobility is greatly constrained.
To support mobile and high performance VR 

applications with substantially lower equipment 
cost, a recent trend is to move heavy comput-
ing tasks such as graphics rendering to cloud or 
edge servers and then send VR contents via video 
streaming to HMDs over wireless networks, while 
the HMDs will focus on the functions such as sen-
sory data uploading, video frame decoding, head 
motion rendering, and image displaying. In this 
way, HMDs can be lighter, much cheaper, and 
with lower energy consumption. More important-
ly, users can fully enjoy portable and mobile VR 
experience, and application developers do not 
have to struggle with heterogeneous HMD opera-
tion systems anymore.

Trends from the Perspective of  
Communication and Computing

With the separation of heavy rendering tasks from 
local devices to cloud or edge servers, communica-
tion and computing both play key roles in ensuring 
the quality of experience (QoE) of VR users. 

The Communication Perspective: Since 
non-local servers need to transmit the rendered 
VR contents to HMDs within a very short time, 
the wireless links should be able to support a high 
peak data rate. For example, according to the test 
results of China Mobile on a cloud VR game, the 
wireless network needs to transmit 0.5–1 Mbits 
of data within several milliseconds [7], hence 
leading to a peak data rate of several hundred 
Mb/s. Facing this challenge, researchers propose 
to use millimeter wave (mmWave) [8] and even 
Terahertz (THz) communications for wireless VR 
transmission. 

The Computing Perspective: First, fog com-
puting infrastructures, such as fog access points 
[9] or dedicated fog servers, can be exploited 
for graphics rendering, which are usually much 
closer to users compared to cloud servers, thus 
shortening the end-to-end transmission latency. 
Second, at fog VR servers, strategic rendering can 
be exploited to reduce the rendering latency. For 
example, graphics can be pre-rendered based on 
the prediction of user’s head rotation and servers 
can also choose to render only the FoV image. 
Third, a prerequisite for offloading rendering tasks 
to a server is that the server has pre-cached the 
necessary application codes and original VR con-
tents. This is termed service caching and various 
caching policies can be adopted by leveraging 
the statistics of VR application requests.

An Intelligent Mobile VR Gaming System  
Based on Open 5G and Fog Computing

Motivated by the trends described earlier, we 
have designed and implemented a mobile VR 
system based on 5G and fog computing, whose 
components will be elaborated in this section.

System Overview
Different from the existing systems, the novel-
ty of our design, as shown in Fig. 1, lies in the 
integration of an open 5G BS and an intelligent 
controller. In recent years, mobile network oper-
ators have paid much attention to the openness 
of radio access networks (RANs), which features 
softwarized RAN functions running on commodi-
ty hardware with various open interfaces available 
to external controllers, and it is envisioned that 
open RANs can help reduce the capital expendi-
ture and enable more network flexibility as well 
as intelligence. The open 5G BS in our system 
directly connects a user plane function (UPF) 
close to it, which is responsible for processing 
GTP packets and re-direct VR traffic to a fog VR 
server. The server is capable of realizing elastic 
VR service provisioning, for example, based on 
the docker virtualization technique. Via the inter-
faces to the open 5G BS and the fog server, the 
intelligent controller can collect rich data relat-
ed to radio transmission and VR application, with 

To support mobile and high performance VR applications with substantially lower equipment cost, a 
recent trend is to move heavy computing tasks such as graphics rendering to cloud or edge servers 
and then send VR contents via video streaming to HMDs over wireless networks, while the HMDs will 

focus on the main functions such as sensory data uploading, video frame decoding, head motion  
rendering, and image displaying. 
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which AI models are trained and utilized to intelli-
gently configure the BS-level and application-level 
parameters to enhance system performance. In 
the remainder of this section, the details of each 
component in Fig. 1 will be introduced. 

The Open 5G BS
In the system implementation, the 5G SA proto-
col stack software from Amari is installed on a 
general purpose server equipped with an Intel 
CPU (9900k) together with 16 GB memory and 
a Linux operating system. The software provides 
rich interfaces that allow flexible configuration on 
radio parameters. Moreover, a hardware acceler-
ation card based on a field-programmable gate 
array (FPGA) is integrated to speed up baseband 
processing. The 5G radio signal is transmitted/
received by a four-antenna radio unit supporting 
100 MHz bandwidth that connects to the BS via 
a 40G fiber, and the UPF communicates with the 

BS as well as other control plane functions of the 
core network coming from Open5GS.

The Fog VR Server
To perform dynamic and low latency rendering, 
the fog VR server is constructed with a personal 
computer with a gtx1080 graphics card. Mean-
while, the server consists of Steam VR, the ALVR 
server program, and pre-downloaded VR game 
applications to reduce the service loading time. 
ALVR provides an open-source solution to VR 
streaming, which invokes the OpenVR API to 
register VR HMD’s information in SteamVR, and 
ALVR also extracts rendered VR frames from 
SteamVR. The frames are further encoded by the 
ALVR server program using H.264 or H.265 and 
streamed to VR HMDs based on UDP transmis-
sion. Moreover, various VR performance metrics 
can be fetched from the ALVR program, such 
as VR frame transmission latency, frame rate at 

FIGURE 1. The architecture of the proposed mobile VR gaming system.
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HMDs, and packet loss rate. The performance 
metrics that are unavailable, such as black edge 
angle and the uplink transmission latency of user 
action information, can be acquired by manip-
ulating the ALVR program. In addition, unlike 
the traditional 360° video service, our fog VR 
server is designed for interactive VR gaming that 
requires real-time rendering based on the track-
ing information of user movements, and hence 
it would be difficult to use multi-casting in the 
multi-user case due to individualized viewpoint 
of each user. However, there are still other ways 
of enhancing transmission efficiency, such as 
using an advanced encoding/compression tech-
nique and advanced transport layer protocol like 
QUIC.

The VR HMD
In our system, we use Oculus quest as the VR 
HMD and its screen refresh rate can be up to 
90 Hz. With Qualcomm Snapdragon XR inside, 
the HMD with ALVR client installed is capable of 
decoding VR frames received from the fog VR 
server with a high performance. After decoding, 
the HMD has to further deal with head motion 
rendering to fit the image into current user’s ori-
entation [10]. In addition to establishing the con-
nection with the ALVR server program, the ALVR 
client program also allows users to appoint the 
IP address of a target VR server by some code 
manipulation. Other functions of the ALVR cli-
ent program include HMD/user movement state 
acquisition and uploading VR frame rate as well 
as black edge angle. Furthermore, since the HMD 
is not equipped with a 5G communication chip, 
it accesses the 5G BS with the help of a 5G CPE 
that translates 5G signal to WiFi signal.

The Intelligent Controller
The controller is responsible for configuring VR 
application parameters and BS parameters to 
optimize a certain objective. Given the system 
complexity, it is endowed with decision-making 
capability by taking advantage of AI. Specifical-
ly, the controller consists of a data collection 
module, an AI model training module, a param-
eter configuration module, and interfaces to 
the open 5G BS and the ALVR server pro-
gram. The interfaces are implemented based 
on Web socket communication and the data 
going through the interfaces is in the JavaScript 
Object Notation (JSON) format. Via these inter-
faces, the data collection module can gather 
current parameter configurations and various 
performance metrics, including the number of 
available resource blocks (RBs), the selection 
of modulation and coding scheme, VR frame 
transmission latency, packet loss rate, and so 
on. By feeding such rich data into the AI model 
training module, different AI models can be 
created, such as models for intelligent system 
parameter configuration and models for the 
prediction of VR user experience.

VR Performance Evaluation
In this section, with the wireless VR prototype sys-
tem, the impacts of several key parameters on the 
VR performance are evaluated and the advantag-
es of rendering by fog computing is also demon-
strated.

Test Scenario, Performance Metrics and  
System Parameters

Given the co-existence of extensive differentiated 
services in future wireless networks, we consider 
the test scenario in Fig. 2, where there is an Ocu-
lus HMD accessing the open 5G BS via a 5G CPE 
and there is also a commercial 5G mobile phone 
(MP) associated with the 5G BS directly. The MP 
is inserted with a dedicated subscriber identifica-
tion module (SIM) card that records information 
for authentication at Access & Mobility Manage-
ment Function (AMF). To simulate a high data 
rate service, we continuously send UDP packets 
to the MP from a PC using an iperf command 
and the sending rate is 1Gb/s. 

In the subsequent tests, the following perfor-
mance metrics are considered. 

Downlink Data Rate: It measures the data 
transmission speed in the downlink. Data rate 
information can be collected from the open 5G 
BS on a per-user basis. 

Packet Loss Rate: It is calculated every second 
and is defined as the number of frame data pack-
ets not correctly received by the HMD divided by 
the total number of frame data packets sent by 
the fog VR server. This metric is automatically cal-
culated by the ALVR server program. A high pack-
et loss rate will lead to strong mosaic effect on the 
HMD screen, which degrades the view clarity. 

The Angle of Black Edge: In interactive VR 
applications, usually users frequently rotates their 
heads. During the rotation, black domains or 
smears can appear at the edge of the FoV, which 
are called black edge. Clearly, the angle of black 
edge directly affects the immersing experience, 
which, however, has been seldom measured in 
prior work. Following the definition given by [10], 
we have modified the code of the ALVR client for 
online calculation of the black edge angle.

Frame Rate: It refers to the actual rate at which 
frames are displayed at the HMD. To achieve a satis-
factory QoE, frame rate should be close to 60 frames 
per second [5]. The value of this metric is periodically 
uploaded by the ALVR client to the ALVR server. 

Peak Signal-to-Noise Ratio (PSNR): PSNR is a 
common metric to measure the similarity between 
two pictures. This metric will be adopted to intui-
tively compare the performance of fog rendering 
with that of cloud rendering. The details related to 
PSNR calculation will be introduced later.

FIGURE 2. The network topology for performance evaluation. Note that AMF and 
SMF from Open5GS as well as the intelligent controller are also connected 
to the switch, which are omitted in the figure.
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The Impacts of Key Parameters
As for parameters to be adjusted, we mainly focus 
on the number of RBs available to the open 5G 
BS, receiving buffer size at the HMD, and the res-
olution of VR frames. Note that these parameters 
can be set by the intelligent controller via imple-
mented interfaces mentioned before. 

First, the impacts of the number of RBs are 
evaluated under a fixed buffer size and VR frame 
resolution, which are set to 200KB and 1536  
768, respectively, while adaptive coding rate for 
VR streaming is adopted. From Line 5 to Line 11 
of Table 1, it can be seen that the downlink date 
rate of the MP increases significantly with increased 
number of RBs. As for the VR HMD, the number of 
RBs mainly affects its packet loss rate that is reduced 
from 47 percent to nearly 0 percent, and mean-
while a larger number of RBs also contributes to the 
improvement of black edge angle. From Line 13 to 
18, we keep the number of RBs at 150 and show 
the impacts of buffer size on the user performance 
under the resolution of 1536  768. It is observed 
that the data rate of both VR HMD and MP only 
slightly fluctuate under various buffer sizes. How-
ever, the buffer size has a considerable influence 
on the packet loss rate of VR service. At last, the 
impacts of VR frame resolution are demonstrated 
from Line 20 to 23. It is intuitive that a larger frame 
resolution leads to a much higher data rate of VR 
service. However, due to the limited radio resource, 
a higher resolution setting also results in a lower VR 
experience, namely a lower frame rate, a higher 
packet loss rate, and a higher black edge angle. 

Performance Comparison between  
Fog Rendering and Cloud Rendering

We adopt PSNR to illustrate the performance 
improvement brought by moving graphics ren-
dering to the fog VR server. By using PSNR, the 

similarity between the frame viewed by the user 
and the original frame at the VR server is mea-
sured quantitatively. To simulate the transmis-
sion condition for cloud rendering, we manually 
increase the round trip time and packet loss rate 
between the UPF and the fog VR server by 40ms 
and 3 percent, respectively. In Fig. 3, the blue and 
orange curves correspond to the PSNR values for 
different frame indexes in the fog VR case and 
cloud VR case, respectively, while the green and 
purple curves correspond to the average PSNR 
values achieved in the fog VR case and cloud 
VR case, respectively. First, with the increment 
of frame index, the VR user’s head always rotates 
at an angular speed of around 60°/s, and hence 
both curves fluctuate due to the fast and frequent 
change of user viewpoint. Second, owing to the 
lower latency and packet loss rate in the fog VR 
case, the blue curve is above the orange curve for 
most of the frames and hence the average PSNR 
is significantly improved by fog VR as indicated 
by the gap between the green and purple curves. 
Meanwhile, it can be seen from Fig. 3 that the 
view quality when PSNR is relatively lower has 
been significantly enhanced as well. 

System Performance Optimization Based on 
Reinforcement Learning

Joint Optimization of Multi-Level Parameters
Considering the scarcity of radio resource and the 
diverse performance requirements of the VR HMD 
and MPs, we propose a batch constrained offline 
DRL based approach to system performance 
optimization. The aim is to balance the RB usage 
and VR performance while guaranteeing the tar-
get data rate of MPs. Our approach is developed 
by extending an open-source offline RL algorithm 
called batch constrained offline deep RL. The 

TABLE 1. Test results.

Data rate (Mb/s) Featured performance metrics for VR

Total rate The rate of the MP The rate of VR HMD Packet loss rate Black edge angle Frame rate

VR frame resolution: 1536  768, receiving buffer size: 200KB  

Number of 
RBs

50
75
100
125
150
175
200

159.47
238.35
332.69
439.97
626.88
676.91
744.10

121.81
200.23
293.13
398.75
583.20
629.02
692.20

37.66
38.12
39.56
41.22
43.68
47.89
51.90

47.00 %
24.10 %
23.20 %
24.60 %
25.10 %
9.33 %
0.72 %

12.65°
10.47°
9.31°
7.25°
7.01°
5.31°
3.96°

43.00
42.00
43.00
45.00
46.00
44.00
44.00

VR frame resolution: 1536  768; number of RBs: 150

Receiving 
buffer  size 

(KB)

200.00
400.00
800.00
1200.00
1600.00
2000.00

627.48
602.56
638.09
612.93
624.14
613.41

584.55
557.95
593.06
568.12
581.48
572.83

42.93
44.61
45.03
44.81
42.66
40.58

24.41 %
14.25 %
8.20 %
1.14 %

0.00 %
0.00 %

7.22°
6.13°
8.22°
4.10°
9.04°
10.81°

46.00
45.00
43.00
40.00
41.00
40.00

The number of RBs: 150; receiving buffer size: 200KB

VR frame 
resolution

1024  512
1536  768

2048  1024
2560  1280

611.05
606.22
612.32
602.71

581.13
560.42
548.91
528.79

29.92
45.80
63.41
73.92

7.88 %
25.19 %
26.80 %
25.74 %

4.05°
7.19
9.28
9.59

47.00
43.00
41.00
37.00
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state space, action space, and reward function are 
re-defined to adapt it to our problem. Interested 
readers are referred to [11] for more details. Here, 
we mainly introduce the definition of state, action, 
and reward as well as 	the underlying environment 
where learned policies will be deployed.

Environment: Instead of using a simulat-
ed environment, the prototype system used for 
performance evaluation above is taken as the 
underlying environment with one more MP, from 
which we collect enough transition data for offline 
DRL model training. After training is finished, the 
trained model is applied to the environment to 
optimize system parameter configuration in an 
online fashion. 

State: In DRL, the learning agent selects an 
action based on currently observed state. In our 
experiment, state is composed of the state associ-
ated with the two MPs expressed as 

{dl1mcs, ul1mcs, snr1, dl2mcs, ul2mcs, snr2}

as well as the state related to the VR HMD

{dl3mcs, ul3mcs, snr3, FrameLatency, ActionLatency},

where dlmcs and ulmcs represent the modulation 
and coding schemes (MCS) adopted in the down-
link and uplink, respectively, and snr is the signal-
to-noise ratio (SNR) measured in the uplink by the 
open 5G BS. In addition to MCS and SNR informa-
tion, the state of VR HMD also incorporates Fra-
meLatency and ActionLatency. The former refers to 
the latency of delivering a VR frame from the fog 
VR server to the VR HMD, while the latter mea-
sures the latency induced by uploading the move-
ment information of the HMD to the VR server.

Action: Earlier, the impacts of several system 
parameters were evaluated, including the number 
of RBs at the open BS, receiving buffer size at the 
HMD, and the VR frame resolution. Since these 
parameters all affect user performance, our DRL 
model intends to optimize them jointly. Then, 
each action of the learning agent represents a 
possible tuple of these parameters denoted by 
{RBNum, FrameResolution, BufferSize}. Specifical-
ly, RBNum  {25, 50, …, 250}, FrameResolution 
 {1024  512, 1536  768, 2048  1024}, and 
BufferSize  {0.1MB, 1MB, 2MB}. Therefore, there 
are 90 different actions in total. 

Reward: Reward is a signal fed back by the 
underlying environment, which guides RL agents 
to adjust their action selection policies. In this arti-
cle, our goal is to improve the QoE level of the 
VR user while reducing the resource consump-
tion at the open BS and satisfying the data rate 
requirement of the other two users. Therefore, 	
the reward function is expressed as follows. 

𝑟𝑟 = 1 − [𝛼𝛼1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

        + 𝛼𝛼2 ( 𝜃𝜃
360° + 𝑃𝑃𝑃𝑃𝑃𝑃 + |𝑓𝑓 − 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 |

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
)                               

            + 𝛼𝛼3 ∑
|𝑅𝑅𝑖𝑖– 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖 |
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖

3

𝑖𝑖=1
],

		  (1)
where RBNummax is the maximal number of avail-
able RBs at the open 5G BS, which is 273 under 

100MHz bandwidth, q  is the black edge angle 
perceived by the VR HMD, PLR is the packet loss 
rate for end-to-end VR transmission, f and ftarget 
represent the actual frame rate at the HMD and 
target frame rate, respectively, Ri and Ri

target repre-
sent the actual downlink rate and target downlink 
rate of MP i, while a1, a2 and a3 are weight fac-
tors, indicating the importance of resource usage 
at the open BS, the importance of VR perfor-
mance, and the importance of the QoS of users 
requesting high speed UDP service, respectively. 
According to the test results in Table 1, a lower 
VR frame resolution will lead to higher MP data 
rate under fixed number of RBs. Hence, with the 
above reward design, our DRL agent is encour-
aged to choose a relatively high VR resolution to 
improve user experience, since a too low resolu-
tion will lead to a potentially large 

α! ∑
"#!–#"#$%&"! "
#"#$%&"!

!
%&' ,	

and then the total reward will be degraded. Finally, 
it is worth noting that other reward setting or VR 

FIGURE 3. Time-varying PSNR values under fog rendering and cloud rendering: 
VR frame resolution: 2560  1280; the number of RBs: 250; receiving buf-
fer size: 2MB; the angular velocity of user head rotation: 60°/s.
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QoE models can be easily incorporated 	owing to 
the model-free nature of our proposed approach.

Evaluation Results
To show the effectiveness of the proposed system, 
90,000 pieces of transition data are collected from 
the environment described above and used for 
the offline training of our DRL model, whose basic 
settings such as model structure and learning rate 
follow that in [11]. As for the parameters in the 
reward definition, since we care more about the 
QoE of the VR user than the RB usage and the 
QoS of the other two users, a1, a2, and a3 are set 
to 0.3, 0.4, and 0.3, respectively. In addition, ftar-
get is set to 60 FPS, while Ri

target is set to 320Mb/s 
for both MPs. At the open BS, proportional fair 
user scheduling policy is adopted. After training the 
model, the DRL model is deployed in the parame-
ter configuration module of the intelligent control-
ler for online system performance optimization. 

In Fig. 4, the online optimization performance 
of our proposal, traditional DRL based parameter 

optimization, and random parameter selection are 
compared. Particularly, the traditional DRL refers 
to the deep RL algorithm proposed in [12], which 
shares the same state space, action space, and 
reward function as our proposal. Since our pro-
posal is based on a modified version of the tradi-
tional DRL that better fits into offline training, the 
achieved reward is improved by 19 percent rela-
tive to that of the traditional DRL. Furthermore, the 
scenes seen by the VR user under different opti-
mization schemes are also shown in the figure. It 
can be seen that our proposal leads to the best 
VR quality. Moreover, the data rate achieved by 
each MP is also the highest with our proposal. To 
intuitively demonstrate the necessity of conducting 
joint optimization of multi-level parameters, the 
results of optimizing only single-level parameters 
with our proposal are also presented in Fig. 5, from 
which it can be observed that joint optimization 
outperforms single-level optimization. 

Open Issues

Resource Optimization for VR Services
To fully utilize the edge caching resources to 
reduce the VR latency, the authors in [13] pro-
pose a view synthesis-based VR caching scheme, 
which can synthesize an uncached but request-
ed view using its adjacent views. In [14], both 
mmWave and sub-6 GHz links are used for 
VR transmission to enjoy the high bandwidth 
of mmWave communications while guarantee-
ing disruption-free transmission with sub-6GHz. 
Although the above works achieve good per-
formance, the joint optimization of cache, com-
putation, and radio resource has not been fully 
addressed, which is the key to further improve the 
VR performance. However, since cache resource 
is often adjusted on a larger timescale than com-
putation and radio resource, the corresponding 
problem features mixed-timescales, hence being 
challenging to solve.

VR Service Migration Strategies
In mobile VR scenarios, users can traverse areas 
covered by different BSs, which incurs BS hando-
ver. When a handover event occurs for a user, 
the virtual machine (VM) running its requested VR 
application may also need to be migrated from 
the fog computing platform of its current BS to 
the platform of another BS, which is critical to 
ensure a stable service performance [15]. Con-
sidering the dense deployment of BSs in future 
networks, studying the way of identifying the 
appropriate target BS for handover is essential, 
which should not only take the wireless channel 
quality into account but also consider the com-
puting resource utilization of the target BS as well 
as VM migration latency.

Conclusions
This article presented a wireless virtual reality 
(VR) service system that incorporates an intelli-
gent controller, an open 5G base station (BS), and 
a fog VR server implemented with Air Light VR 
(ALVR). On one hand, by offloading graphics ren-
dering from user HMDs to a fog computing plat-
form, better user experience has been achieved 
compared to traditional cloud based VR. On the 
other hand, via interfaces to the open BS and 

FIGURE 4. Reward and performance comparison between our proposal and the 
baseline schemes. (Played VR game: The Lab).
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ALVR server program, the controller can make 
wise decisions on radio and application param-
eter configuration by utilizing reinforcement 
learning. Finally, towards a practical multi-VR-user 
scenario, due to more diversified content requests 
and the higher transmission rate demands, it is 
essential to study VR quality level selection under 
both storage and communication constraints to 
enhance the user quality-of-experience, which will 
be investigated in our future work. 
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FIGURE 5. The benefit of multi-level parameter optimization.
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