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Abstract— The integrated satellite-terrestrial network (ISTN)
system has experienced significant growth, offering seamless
communication services in remote areas with limited terres-
trial infrastructure. However, designing a routing scheme for
ISTN is exceedingly difficult, primarily due to the heightened
complexity resulting from the inclusion of additional ground
stations, along with the requirement to satisfy various con-
straints related to satellite service quality. To address these
challenges, we study packet routing with ground stations and
satellites working jointly to transmit packets, while prioritizing
fast communication and meeting energy efficiency and packet
loss requirements. Specifically, we formulate the problem of
packet routing with constraints as a max-min problem using
the Lagrange method. Then we propose a novel constrained
Multi-Agent reinforcement learning (MARL) dynamic routing
algorithm named CMADR, which efficiently balances objective
improvement and constraint satisfaction during the updating of
policy and Lagrange multipliers. Finally, we conduct extensive
experiments and an ablation study using the OneWeb and Telesat
mega-constellations. Results demonstrate that CMADR reduces
the packet delay by a minimum of 21% and 15%, while meeting
stringent energy consumption and packet loss rate constraints,
outperforming several baseline algorithms.

Index Terms— Integrated satellite-terrestrial networks,
dynamic routing algorithm, end-to-end delay, constrained
multi-agent reinforcement learning.

I. INTRODUCTION

THE popularity of LEO satellites is driven by their capabil-
ity to provide wide-area coverage and high-speed internet
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communication services, delivering fast and reliable data trans-
mission and communication capabilities to users, particularly
in remote areas with limited infrastructure. Telesat [1] is a
satellite communication project with a long-term strategy of
deploying 351 satellites operating in the Ka-band at an altitude
of approximately 1015 kilometers. Another typical example,
OneWeb [2] plans to deploy around 720 satellites, enabling
a vast satellite network that offers users worldwide reliable
and low-latency internet connectivity, delivering high-speed
broadband internet services.

Integrated satellite-ground routing is highly significant as
it ensures reliable communication services that meet the
diverse requirements of various application scenarios, such
as remote communication, internet access, and emergency
response. However, designing a reasonable routing scheme for
each satellite and ground station is quite difficult as there are
at least two aspects that need to be taken into account. Firstly,
the inclusion of ground stations adds an additional dimension
to the overall routing strategy space, thereby making the prob-
lem more challenging. Secondly, the inherent contradiction
between optimized objectives and various constraints in real
communication environments makes it difficult to achieve a
balance between optimization and constraint satisfaction.

For the first challenge, most existing algorithms overlook the
equally critical routing of the uplink and downlink segments
involving ground stations [3], [4]. Few are the algorithms [5]
that consider ground-to-space routing, which primarily rely on
the distance of sat-to-ground links and available connection
time for decision-making, yet fail to fully account for traffic
and network environment at the current moment. For the
second challenge, existing algorithms [6], [7] fail to explicitly
incorporate constraints into the optimization problem. Instead,
they just evaluate the current routing policy based on the
extent to which objectives are achieved and constraints are
violated, without providing theoretical guarantees that any
enhancements to the existing strategy can effectively optimize
the objective function while minimizing constraint violations.

In this paper, we study the dynamic routing scheme and
address the technical issues mentioned above. We concen-
trate on satellites and ground stations working jointly in the
ISTN system to provide fast communication services while
also ensuring compliance with constraints related to energy
consumption and packet loss rate. By designing routing tables
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with structures similar to those of satellites, we seamlessly
incorporated ground stations into the ISTN network, enabling
distributed decision-making and effectively resolving the first
challenge. To address the second challenge, we establish
separate critic network structures for different constraints,
allowing for dynamic adjustment of the routing strategy to
optimize packet delay while ensuring compliance with the
specified constraints.

In particular, we formulate the problem of packet routing
with constraints as a max-min problem and design a CMADR
routing algorithm to iteratively update the routing strategy and
Lagrange multiplier of each satellite or ground station based
on constraint violations. Extensive simulations are conducted
and the results show that CMADR can reduce at least 21%
and 15% of the average packet delay while satisfying relevant
constraints. Our main contributions in this paper are the
following:
• We consider an ISTN system that encompasses not

only satellites but also crucial ground stations, jointly
routing packets in a distributed manner to minimize
average packet delay while adhering to energy-efficient
and packet loss rate constraints.

• We formulate it as a max-min problem and design a
constrained MARL algorithm named CMADR to solve
it by updating the distributed routing strategies and
Lagrange multipliers to balance between reducing latency
and adhering to constraints.

• We conduct comprehensive simulations, comparing
CMADR with baseline schemes and conducting an abla-
tion study, which unequivocally demonstrated its superi-
ority in performance.

The remainder of this paper is organized as follows: In
Section II, we introduce the related work. In Section III,
we present the system model for ISTN and formulate the
dynamic routing as an optimization problem. In Section IV,
we transform the optimization into a Dec-POMDP problem
and propose the CMADR algorithm to solve it. In Section V,
we conduct extensive experiments utilizing various settings to
show the efficacy of our proposed algorithm. In Section VI,
we conclude this paper.

II. RELATED WORK

Routing algorithms can be categorized into two main types:
static routing algorithms and dynamic routing algorithms.

A. Static Routing Algorithms

The core concept involves employing a network topology
strategy based on predictable satellite orbit patterns to mitigate
the effects of satellite mobility. Offline routing calculations are
then performed using static topological algorithms to generate
routing tables. Common static routing algorithms include
virtual topology-based and virtual node-based approaches.

Virtual node divide the Earth’s surface into zones, assigns
virtual satellites to each zone, and maps actual satellites
to their corresponding virtual counterparts. During satellite
handover, routing information is passed from the previous
satellite to the next, converting the routing problem into finding
optimal routes in a static network [8], [9].

Virtual topology algorithms leverage the periodicity of
satellite operations to divide the system cycle of LEO constel-
lation networks into time slots. Each slot represents a static
and unchanging satellite network topology, transforming the
dynamic topology into a series of repeating static structures.
Routing tables for these static structures are calculated using
algorithms like Dijkstra’s [10] and stored on the satellites [4],
[11], [12]. During routing computations, satellites select the
corresponding virtual topology based on the current time and
utilize pre-calculated routing tables for lookups [5], [13],
and [14].

However, considering the real-time traffic and link sta-
tus changes in satellite networks, static routing strate-
gies are unable to effectively cope with complex network
environments.

B. Dynamic Routing Algorithms

To address the issue of inflexible static routing, recent
dynamic routing algorithms, particularly those leveraging Arti-
ficial Intelligence and Machine Learning (AI/ML) in the
similar domain, dynamically recalculate routes based on the
topology and collected link state information to adapt to
changes in the network [15].

Huang et al. [6] introduced QRLSN, a Q-learning-
based [16] dynamic distributed routing scheme that employs
multi-objective optimization to discover an efficient routing
strategy, minimizing both end-to-end delay and network traffic
overhead load. Jiahao et al. [7] introduced DRL-ER, a deep Q
network (DQN)-based [17] energy-efficient routing protocol.
This protocol aims to balance satellite battery energy and
ensure bounded end-to-end delay while enabling satellites
to learn a well-balanced energy usage routing policy. Xu
et al. [18] presented a fully distributed routing algorithm incor-
porating spatial location information based on Multi-Agent
deep Reinforcement Learning (FDR-MARL) for large-scale
satellite networks, aiming to minimize average delivery time.
However, these schemes do not explicitly address the opti-
mization of routing involving heterogeneous ground stations,
focusing solely on satellites. Zhang et al. [19] integrated the
mean field theory [20] to illustrate the interaction among
agents and their neighbors and subsequently formulated the
conventional DQN for training individual satellites and ground
stations. However, without establishing clear relationships
between the different constraints and routing strategies in
optimizing the targeted metric, there is no assurance of
performance. In this paper, we aim to tackle these issues
by introducing a dynamic routing scheme named CMADR,
distinguishing it from existing static and dynamic schemes.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We start by presenting an overview of the architecture for
the ISTN. Following that, we define the networking model
and elaborate on the various components such as communi-
cation delay, energy consumption, and packet loss rate with
detailed explanations. Finally, we formulate the problem and
summarize notations in Table I.
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Fig. 1. (a) The architecture of ISTN; (b) Workflow of the architecture: ① During each time slot, every satellite distributes its own state information to four
neighboring satellites and reachable ground stations; ② Every satellite or ground station generates a routing scheme based on its respective states information,
as well as information received from external sources; ③ Within each region serviced by a ground station, user messages are packetized and stored in the
station’s buffer; ④ Based on the routing scheme, the ground station with data packets in the buffer uploads them to the satellite; ⑤ In accordance with their
respective routing schemes, every satellite transmits data to the next satellite in line; ⑥ Data is transmitted to the ground station; ⑦ The delivery of data is
directed towards the designated user.

TABLE I
NOTATIONS AND CORRESPONDING DESCRIPTIONS

A. Overall Architecture

In this study, both ground stations and LEO satellites are
considered to be indispensable conduits that provide seamless
connectivity to users, as depicted in Fig. 1(a). Each ground
station receives data from users and transmits it to satellites.
The satellites then relay the data to other satellites before
transmitting it back down to ground stations. Finally, ground
stations forward the data to the designated destination users.

As illustrated in Fig. 1(b), the ISTN operates through a
detailed communication process, which can be broken down
into the following steps: Firstly, each satellite periodically
transmits its own information to four neighboring satel-
lites, as well as any nearby ground stations for information
sharing purposes. Then, both ground stations and satellites
formulate routing schemes to guide routing procedures. Each
ground station receives user messages, packetizes them, and
enqueues the messages into the buffer of the ground station.

Each packet is then transmitted to the next satellite in a first-in-
first-out order, based on the destination and routing scheme. If
a ground station’s service area covers the intended destination
of the packet, it is transmitted directly to the ground station.
Lastly, the ground station forwards the received packet to the
designated recipient.

Our goal is to design an efficient distributed dynamic
network routing strategy for both satellites and ground stations
to provide high-quality communication services. However,
achieving this goal poses significant challenges due to the
following factors. Firstly, the decision-making process in the
ISTN adds complexity to obtaining a jointly optimal rout-
ing scheme. The coordination between satellites and ground
stations requires careful consideration to ensure efficient rout-
ing decisions. Additionally, the limited energy consumption
capabilities of both ground stations and satellites present a
challenge. The routing scheme must take into account the
energy constraints and optimize the usage to prolong the oper-
ational lifetime of these nodes. Similarly, the restricted buffer
capacity of both ground stations and satellites necessitates
careful management to avoid congestion and ensure smooth
communication.

B. Networking Model

We represent the set of ground stations as G = {Gj |j =
1, . . . , NG} where NG denotes the total number of ground
stations and Gj signifies the j-th station. Similarly, we denote
the set of satellites as S = {Si|i = 1, . . . , NS} where
NS represents the total number of satellites and Si indicates
i-th satellite. The inter-satellite connections adhere to the
ubiquitous +Grid topology [21], [22], wherein each satel-
lite maintains fixed links with its preceding and succeeding
neighbors within the same orbital plane, along with the two
corresponding satellites situated in adjacent orbital planes.
Then inter-satellite links remain constant all the time while
between satellite-terrestrial links change all the time.

For convenience, we divide the service time T into a
total of W time slots, following the principle of virtual

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:53:46 UTC from IEEE Xplore.  Restrictions apply. 



LYU et al.: DYNAMIC ROUTING FOR ISTNs: A CONSTRAINED MARL APPROACH 1207

topology [23], [24]. Within each time slot, links between
satellites and ground stations also remain constant and will
change at the next time slot. To accurately represent the
relationship of the network, we define V t

i as the set of four
neighbor satellites and connectable ground stations of Si at
time slot t. Similarly, we define V t

j as the set of connectable
satellites of Gj at time slot t. Then the set of all V t

i and
V t

j is denoted as V and the ISTN system can be represented
mathematically as an undirected graph G =< G, S, V >.
To depict the routing scheme that involves packet forwarding
by distributed stations and satellites, hop-by-hop, we have
categorized the links in the integrated sat-ground network into
three types: uplinks from ground stations to satellites, inter-
satellite links from one satellite to another, and downlinks
from satellites to ground stations. Packets forwarded from
ground station Gj to satellite Si′ in time slot t are denoted as
P t

j,i′ for uplinks, where Si′ ∈ V t
j . Similarly, for inter-satellite

links, packets forwarded from satellite Si to satellite Si′ are
denoted as P t

i,i′ , where Si′ ∈ V t
i . For downlinks, packets

forwarded from satellite Si to ground station Gj′ are denoted
as P t

i,j′ , where Sj′ ∈ V t
i . We define the set of all packets as

P = {Pm|m = 1, . . . , NP } where NP represents the total
number of packets and Pm denotes the m-th packet.

C. Communication Delay

The quality of service in a communication network system
is mainly measured by the communication delay. The end-
to-end delay Dm for a particular packet Pm can be calculated
using the equation given in [25], which is as follows:

Dm = DQ
m + DC

m + DT
m + DP

m. (1)

Here, DQ
m represents the queuing delay, DC

m denotes the
processing delay, DT

m represents the transmission delay, and
DP

m denotes the propagation delay. It is important to note that
the delay of packets from users to the ground station and vice
versa are not included in the ISTN system, and hence, they
are not taken into account.

1) Queuing Delay: When a packet arrives at the buffer of
either a satellite or a ground station, it is required to wait
until all the preceding packets have been transmitted. The
queuing delay DQ

m of the specific packet Pm is influenced by
the communication demand from users and the routing scheme
of all satellites and ground stations in the network.

2) Processing Delay: Each packet must be unpacked to
obtain its destination address and lookup the routing table to
determine the next transfer location. The processing delay for
each ground station or satellite is assigned to a constant time
denoted as DL [25]. Therefore, the processing delay DC

m for
packet Pm is determined by multiplying a constant processing
time DL for each satellite or ground station with the number
of forwarding hops in the transmission path:

DC
m =

W∑
t=1

(
NG∑
j=1

∑
Si′∈V t

j

∑
Pm∈P t

j,i′

DL+

NS∑
i=1

∑
Si′∈V t

i

∑
Pm∈P t

i,i′

DL +
NS∑
i=1

∑
Gj′∈V t

i

∑
Pm∈P t

i,j′

DL

)
(2)

Here, the processing delay of the uplink is represented
by
∑NG

j=1

∑
Si′∈V t

j

∑
Pm∈P t

j,i′

DL, while that of inter-satellite

links is indicated by
∑NS

i=1

∑
Si′∈V t

i

∑
Pm∈P t

i,i′

DL. Similarly,∑NS

i=1

∑
Gj′∈V t

i

∑
Pm∈P t

i,j′

DL represents the processing delay

of the downlink. The sum of three components, integrated over
all time slots, forms the overall processing delay for Pm.

3) Transmission Delay: Satellites and ground stations trans-
mit packets by converting them from electrical signals to
electromagnetic waves or laser signals. In accordance with
current practices and the design of the Starlink constella-
tion [26], [27], communication between satellites and ground
stations is accomplished using radio-frequency (RF) links,
while communication among satellites relies on free-space
optical (FSO) links. Taking into account the characteristics
of both kinds of links, we assume that all links are free from
Doppler effect [28]. Regarding the microwave links connecting
satellites and ground stations, we exemplify with the ground
station Gj and the connectable satellite Si′ , where Si′ ∈ V t

j .
The transmission rate Ct

j,i′ can be calculated as [23]:

Ct
j,i′ = BR × log2

(
1 +

PR × ht
j,i′

2

σ2

)
, (3)

where BR denotes the frequency of links between ground
stations and satellites. PR indicates the antenna transmission
power for RF links and σ2 is the power of the background
noise. ht

j,i′ is the channel gain [29] and can be calculated as
ht

j,i′ = GT +GR−Lt
j,i′ , where GT represents the transmitting

antenna gain, and GR denotes the receiving antenna gain. Lt
j,i′

represents the signal attenuation during transmission, including
free space path loss, atmospheric loss, polarization loss, and
antenna misalignment loss. Atmospheric loss, polarization
loss, and antenna misalignment loss typically cause less than
a 1 dB reduction and can be ignored [30], [31], [32]. The

free space loss is calculated as
(

4πfcDt
j,i′

H

)2

, where Dt
j,i′

indicates the distance from Gj to Si′ , and fc denotes the
central carrier frequency for Ka-Band, and H is the light
speed. Then the transmission delay for a packet from Gj to Si′

is LP

Ct
j,i′

, where LP is the length of each packet. The calculation
for the downlink process from Si to Gj′ remains the same.

For laser links between satellites, we exemplify with the
satellite Si and neighboring satellites Si′ , where Si′ ∈ V t

i .
Then the transmission rate is denoted as:

Ct
i,i′ =

1
2
BO × log2

(
1 + k1 · e−k2·Dt

i,i′
)

, (4)

where k1 = γ2
F

2πeα2 , and k2 = 2β. Here, BO is bandwidth for
FSO links and Dt

i,i′ is the distance from Si to Si′ . γ2
O is the

average optical SNR (ASNR) and could be calculated as γ2
O =

P 2
O

σ2
O

, where PO and σ2
O are the average optical power and noise

variance, respectively [24]. The parameter β can be calculated
as β = βdB

104 log10 e , where βdB = 3.91
L

(
λ

550

)−p
[33], [34]

depends on the wavelength λ and L denotes the visibility [33].
The transmission delay for a packet from Si to Si′ is LP

Ct
i,i′

and
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the transmission delay DT
m is calculated as:

DT
m =

W∑
t=1

(
NG∑
j=1

∑
Si′∈V t

j

∑
Pm∈P t

j,i′

LP

Ct
j,i′

+

NS∑
i=1

∑
Si′∈V t

i

∑
Pm∈P t

i,i′

LP

Ct
i,i′

+
NS∑
i=1

∑
Gj′∈V t

i

∑
Pm∈P t

i,j′

LP

Ct
i,j′

)
(5)

Here, the transmission delay is also composed of delay for
three types of links as the processing delay.

4) Propagation Delay: It is worth noting that irrespective
of whether microwave or laser links are employed between
satellites and ground stations, the propagation delay remains
constant at the speed of light. The propagation delay for
the packet Pm is indicated by DP

m, and can be computed
as the cumulative distance along the routing path divided
by the propagation velocity H [25]:

DP
m =

W∑
t=1

(
NG∑
j=1

∑
Si′∈V t

j

∑
Pm∈P t

j,i′

Dt
j,i′

H
+

NS∑
i=1

∑
Si′∈V t

i

∑
Pm∈P t

i,i′

Dt
i,i′

H
+

NS∑
i=1

∑
Gj′∈V t

i

∑
Pm∈P t

i,j′

Dt
i,j′

H

)
, (6)

which can be divided into three types of links as well as
transmission delay.

D. Energy Consumption

The energy consumption during communication services
by both ground stations and satellites is mainly attributed to
packet transfer, which must be restricted to the predetermined
upper limit. As the information exchange between satellites
and ground stations occurs infrequently, our study does not
consider any resulting energy costs from such periodic flood-
ing. Additionally, as the energy from ground stations to users
is not the focus of this paper, it is also disregarded.

1) Energy Consumption of Ground Stations: The energy
consumption of ground stations is attributed to the uploading
of data to satellites. For Gj , the transmission energy for a
packet from it to the satellite Si′ at time slot t can be denoted
as LP

Ct
j,i′
×PR, where PR is the antenna transmission power for

RF links. The accumulated energy consumption of transmitting
packets from Gj should be less than the energy limit EG for
each ground station.

2) Energy Consumption of Satellites: The energy con-
sumption of satellites is due to the forwarding packets to
neighboring satellites and downloading packets to ground sta-
tions. Typically, a satellite’s power system utilizes solar panels
to generate electricity from solar irradiance, and employs bat-
tery cells to store the energy [3]. Constructing and launching
a satellite is an expensive endeavor, hence we expect each
satellite to operate for as long as possible. To ensure this,
the energy consumption of satellites should be supplemented
by solar energy as much as possible and minimizing the
utilization of the satellite’s battery. For the satellite Si, the
forwarding energy from it to the satellite Si at time slot t can
be denoted as LP

Ct
j,i′
×PO and the downloading energy from it to

the ground station Gj′ is LP

Ct
j,i′
×PR, where PO is the antenna

transmission power for FSO links. Then the accumulated
energy consumption of Si is limited to the maximum energy
supplement received by the solar panels ES .

E. Packet Loss Rate

If the accumulated number of packets exceeds the maximum
buffer capacity for each satellite, newly received packets have
to be dropped. To ensure high-quality service of communica-
tion, our routing scheme must be designed carefully to limit
the total packet loss rate [35], [36], [37]:

1
NP

W∑
t=1

NS∑
i=1

P t
i ≤ PL, (7)

where P t
i is the number of dropped packets at the satellite Si

at time slot t. The accumulated value over all time slots and
satellites denotes the total number of dropped packets, which
must not exceed the predetermined upper limit of packet loss
rate PL to ensure a certain level of communication quality.

F. Problem Formulation

In order to guarantee prompt and effective communication
across the network, it is of utmost importance to minimize
the average packet delay. Additionally, taking into account
the aforementioned energy and buffer limitations, we have
formulated the optimization problem as P1.

(P1) min
P t

j,i′ ,P
t
i,i′ ,P

t
i,j′

1
NP

NP∑
m=1

(
DQ

m + DC
m + DT

m + DP
m

)
(8)

s.t.

W∑
t=1

NP∑
m=1

∑
Si′∈V t

j

∑
Pm∈P t

j,i′

LP

Ct
j,i′

× PR ≤ EG,

j = 1, . . . , NG, (9)
W∑
t=1

NP∑
m=1

( ∑
Si′∈V t

i

∑
Pm∈P t

i,i′

LP

Ct
i,i′

× PO+

∑
Gj′∈V t

i

∑
Pm∈P t

i,j′

LP

Ct
i,j′

× PR

)
≤ ES ,

i = 1, . . . , NS , (10)
(7).

Regarding the objective function in (8), the average end-to-end
delay is determined by the sum of queuing delay, processing
delay, transmission delay and propagation delay of all packets.

For the constraint (9),
∑W

t=1

NP∑
m=1

∑
Si′∈V t

j

∑
Pm∈P t

j,i′

LP

Ct
j,i′

× PR

denotes the total energy consumed by Gj for transmitting
packets to connectable satellites Si′ . This quantity must be
lower than the maximum energy EG of each ground station.

For constraint (10),
∑W

t=1

NP∑
m=1

∑
Si′∈V t

i

∑
Pm∈P t

i,i′

LP

Ct
i,i′

×PO rep-

resents the energy consumed in transmitting packets from Si
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to neighbor satellites, while
∑W

t=1

NP∑
m=1

∑
Gj′∈V t

i

∑
Pm∈P t

i,j′

LP

Ct
i,j′

×
PR denotes the energy consumed in transmitting packets from
Si to connectable ground stations. Both of these contribute to
the total energy consumption of Si, which should be less than
ES of each satellite. For constraint (11), the packet loss rate
cannot exceed the upper limit PL.

Significantly, the difficulty of explicitly describing packet
loss rate in constraint (7) and queuing delay DQ

m in
equation (8) makes it challenging for traditional methods such
as convex optimization algorithms to solve this problem. More
importantly, given the dynamic and ever-changing nature of
network conditions, satellites and ground stations are required
to adapt their routing strategies based on the environment at
each time slot t. Then we formulate this intricate problem
as a constrained decentralized partially observable Markov
decision process (Dec-POMDP), leveraging a constrained
multi-agent reinforcement learning algorithm to solve it.

IV. CONSTRAINED MULTI-AGENT DYNAMIC
ROUTING ALGORITHM

We initiate our algorithm by formulating the problem as
a constrained Dec-POMDP and then proceed to apply the
Lagrangian method, thereby transforming it into a max-min
optimization problem. Following this, we introduce the archi-
tecture of CMADR. Finally, we offer a comprehensive expla-
nation of the training and execution procedures of CMADR,
delving into the intricate details involved.

A. Overview of Dec-POMDP

Dec-POMDP [38] is typically defined by a tuple
⟨S,A,O,P, γ,R, C, c⟩. Here, S is the global state space, and
O is the set of observations that each agent can obtain from
the environment. The policy of selecting the next satellite
for each station is represented by πθj

, while the policy for
each satellite is represented by πθi

. At time slot t, each
satellite or ground station generates an action at

j(i) based on
its respective policy πθj(i)(a

t
j(i) | ot

j(i)). By taking the joint
action a⃗t =

∏NG

j=1 at
j

∏NS

i=1 at
i, all agents interact with the

environment. They receive the reward rt and cost ct based
on this joint action, where R and C represent the sets of
rewards and costs for all time slots. The set of joint actions
is denoted as A, and c represents limitations that need to be
satisfied corresponding to C. Simultaneously, the environment
transitions to a new state st+1 ∼ p (· | st, at), where P is the
set of probabilistic transition functions. The discount factor
γ ∈ [0, 1) is used to discount future rewards. Then we will
specifically define the components of state, observation, action,
reward, and cost.

1) State: The global state is formed by concatenating all
the observations from ground stations and satellites.

2) Observation: The specific observation configurations of
the satellites and ground stations can be observed in Fig.2.
In Fig.2 (a), observation of a ground station consists of
two components: its own energy consumption and the envi-
ronmental information received from connectable satellites,
which includes their energy consumption and buffer usage. In

Fig.2 (b), the observation of a satellite encompasses its individ-
ual metrics, including energy consumption, buffer usage, and
distance to ground stations, along with corresponding metrics
for its four neighboring satellites.

3) Action: To handle incoming packets, a ground station’s
task is selecting the next satellite within its service area when
presented with a destination address. The size of the ground
station’s action set is linearly proportional to the number of
possible destinations. Similarly, for each satellite, the action
set entails choosing the next satellite among four neighboring
satellites. The size of the satellite’s action set is also linearly
proportional to the number of possible destinations.

4) Reward: The reward in this integrated communication
system represents the average time delay experienced by all
transmitted packets via satellites and ground stations. As the
goal of reinforcement learning is to optimize the expected
reward, and the objective function in equation (8) aims to
minimize the average time delay of all packets, we ingeniously
define the reward as the average transferring rate of all packets.
In each time slot, the packet’s transmission rate is calculated
as the distance it travels towards its destination ground station
divided by the corresponding duration, with the distance being
measured from the vertical projection of the packet onto the
ground to the destination ground station. By improving the
accumulated reward through training, the average transmission
rate of all packets is increased, resulting in a decrease in the
average time delay.

5) Cost: There are three constraints that contribute to the
overall cost, as outlined in constraints (7), (9), and (10). The
packet loss component in constraint (7) is a result of the joint
routing scheme. We develop a central cost critic to evaluate the
cost of the entire system, with the cost of each step being the
total number of dropped packets during the given time slot. On
the other hand, the energy consumption costs associated with
each ground station and satellite in constraints (9) and (10)
arise from the energy consumed by each entity during that
particular time slot. We design a local cost critic to evaluate
the cost of each individual item and the cost of each step is
the accumulated energy consumption of the respective satellite
or ground station over the given time slot.

The goal is to maximize the expected total reward while
satisfying the expected total cost and each agent’s safety
constraints and (P1) can be rewritten as:

(P2) JR(π) ≜ Es∼p,⃗a∼π

[
W∑
t=1

γtr
(
st, a⃗t

)]
(11)

s.t. JC(π) ≜ Es∼p,⃗a∼π

[
W∑
t=1

γtc
(
st, a⃗t

)]
≤ PL, (12)

Jj(π) ≜ Eoj∼p,aj∼πj

[
W∑
t=1

γtc
(
ot

j , a
t
j

)]
≤ EG,

j = 1, 2, . . . , NG, (13)

Ji(π) ≜ Eoi∼p,ai∼πi

[
W∑
t=1

γtc
(
ot

i, a
t
i

)]
≤ ES ,

i = 1, 2, . . . , NS , (14)
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Fig. 2. (a) Each ground station’s observation includes energy consumption and buffer usage of all connectable satellites, as well as the station’s own energy
consumption; (b)Each LEO satellite’s observation is derived from its individual energy consumption, buffer usage, and distance to ground stations, along with
the corresponding metrics for its four neighboring satellites.

where JR(π) and JC(π) are defined as the accumulated reward
and central cost while Jj(i)(π) is the local cost of each agent.
Regarding (11), we aim to maximize the accumulated average
transferring rate of all packets. As for (12), the accumulated
packet loss rate should be kept below PL. Similarly, for (13)
and (14), the cumulative energy consumption of each ground
station or satellite should remain below respective thresholds
EG and ES .

According to the iterative search method in policy optimiza-
tion [39], [40], we reformulate (P2) as:

(P3) πk+1

= arg max
π

E
s∼dπ

a⃗∼π

[Aπk

R (s, a⃗)] (15)

s.t. JC (πk) +
1

1− γ
E

s∼dπ

a⃗∼π

[Aπk

C (s, a⃗)] ≤ PL, (16)

Jj (πk) +
1

1− γ
E

oj∼dπ

aj∼π

[
Aπk

j (oj , aj)
]
≤ EG,

j = 1, 2, . . . , NG, (17)

Ji (πk) +
1

1− γ
E

oi∼dπ

ai∼π

[Aπk
i (oi, ai)] ≤ ES ,

i = 1, 2, . . . , NS , (18)
E

s∼dπk
[DKL (π∥πk)] ≤ δ, (19)

where dπ(s) = (1 − γ)
∑∞

t=0 γtP (st = s | π) represents
the discounted future state distribution. πk is the old policy
and πk+1 is the updated policy. Aπk

R (s, a⃗) is the advan-
tage function and Aπk

R (s, a⃗) = Qπk

R (s, a⃗) − V πk

R (s, a⃗).
Qπk

R (s, a⃗) is the action-value function and is defined as
Qπk

R (s, a⃗) = Es∼p,⃗a∼π

[∑W
t=1 γtr (st, a⃗t) | st = s, a⃗t = a⃗

]
.

V πk

R (s, a⃗) is the value function and is defined as
V πk

R (s, a⃗) = Es∼p,⃗a∼π

[∑W
t=1 γtr (st, a⃗t) | st = s

]
. The

inequality E
s∼dπk

[DKL (π∥πk)] ≤ δ limits the update of each
step strategy from πk to πk+1 within a certain range.

Considering the Lagrangian method [41], [42] in solving the
optimization problem with constraints, we change the (P3) to
a max-min optimisation problem:

(P4) max
π

min
λC≥0,λj(i)≥0

L(π, λC , λj(i)), where

L(π, λC , λj(i))

≜ E
s∼dπ

a⃗∼π

[Aπk

R (s, a⃗)]

− λC ×

[
E

s∼dπ

a⃗∼π

[Aπk

C (s, a⃗)] + (1− γ)(JC (πk)− PL)

]

−
NG∑
j=1

λj×

[
E

oj∼dπ

aj∼π

[
Aπk

j (oj , aj)
]
+ (1− γ) (Jj (πk)− EG)

]

−
NS∑
i=1

λi×

[
E

oi∼dπ

ai∼π

[Aπk
i (oi, ai)] + (1− γ) (Ji (πk)− ES)

]
.

(20)

Here, λC , λj and λi are Lagrangian multipliers for the global
cost constraint function and the local cost constraint function
of each ground station or satellite. Referring to the PPO-

Clip [43], the ratio r(θj(i)) =
πθj(i)(at

j(i)|o
t
j(i))

πk
θj(i)

(
at

j(i)|o
t
j(i)

) , where πk
θj(i)

is the old routing policy and πθj(i) is the new policy. The
clip operator is used to limit the magnitude of policy updates,
ensuring that the ratio between the new and old policies
stays within a certain range (1 − ϵ, 1 + ϵ), thus avoiding
instability [44].

B. Algorithm Architecture

To address the (P4) issue, we have developed the CMADR
architecture. This architecture consists of an actor network
and a local cost critic network for each satellite and ground
station, along with a central reward critic network and a central
cost critic network for the entire communication system,
as depicted in Figure 3. The actor network’s role is to generate
specific routing schemes, while the local cost critic network
evaluates the energy consumption cost value function of each
ground station and satellite based on constraints (9) and (10).
Furthermore, since the average time delay in objective func-
tion (8) and packet loss rate in constraint (7) are influenced
by the entire system, the central delay reward critic network
and the central packet loss cost critic network are utilized to
assess these two components. With the combined feedback
from these reward/cost critics, the actors are trained to provide
improved routing schemes.

Specifically, each satellite and ground station generates their
own local observations ot

i and ot
j at time slot t, which are
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then transmitted to the respective local actor network and
local cost critic network. Simultaneously, the global state st

from environment is sent to the central reward critic and
the central cost critic to acquire the joint state reward value
and joint state cost value. Following the interaction between
the satellites/ground stations and the environment, the global
reward rt and global cost ct, along with the subsequent local
observations ot+1

i and ot+1
j at time slot t + 1, are obtained

from the environment. With transitions stored in a buffer,
all critic networks will be trained to learn more accurate
value evaluations. In turn, they collaborate to train the actor
network with the objective of reducing the average delay, while
constraining energy consumption and packet loss rate.

C. Training and Executing

During the training of the communication system, the
centralized training with decentralized execution (CTDE)
paradigm [45], [46], [47] is followed. During the training
process, each actor network of the satellite and ground station
is trained by the state reward value function and state cost
value function from critic networks. However, during the
executing process, the actor network relies solely on its own
limited observation to develop a routing strategy without any
need for other critic networks to participate.

1) Training Process: For each local actor network of ground
stations/satellites:

Input : {ot
j(i)} → Output : {at

j(i)}

Gj and Si utilize their own actor network, characterized by
parameters θj and θi respectively, to generate a routing scheme
at

j and at
i correspondingly.

Similarly, for each local cost critic network of ground
stations/satellites:

Input : {ot
j(i)} → Output : {V t

j(i)}

The energy consumption cost values V t
j and V t

i are generated
by local cost critic networks, utilizing parameters ϕj and ϕi,
respectively, relying on observations ot

j and ot
i.

For the central reward/cost critic network:

Input : {st} → Output : {V t
R, V t

C}

The central reward/cost critic network with parameters ϕR and
ϕC generates the reward value V t

R and the cost value V t
C based

on the global state s.
The gradient of updating each actor network can be repre-

sented as follows:

∆θj(i) = ∇θj(i)(LR − λC × LC − λj(i) × Lj(i)), where

LR = E
s∼dπ

a⃗∼π

[
min

{
r(θj(i))A

πk

R (s, a⃗), clip(r(θj(i)), 1± ϵ)

Aπk

R (s, a⃗)
}]

,

LC = E
s∼dπ

a⃗∼π

[
min

{
r(θj(i))A

πk

C (s, a⃗),

clip(r(θj(i)), 1± ϵ)Aπk

C (s, a⃗)
}

+ (1− γ)(JC (πk)− PL)
]
,

Lj(i) = E
oj(i)∼dπ

aj(i)∼π

[
min

{
r(θj(i))A

πk

j(i)(oj(i), aj(i)),

clip(r(θj(i)), 1± ϵ)Aπk

j(i)(oj(i), aj(i))
}

+ (1− γ)(JC (πk)− PL)
]
. (21)

We update parameters of each actor network as follows:

θk+1
j(i) = θk

j(i) + αθ ×∆θj(i) , (22)

where αθ is the learning rate of actor networks. We calculate
the update rate of λC as:

∆λC
=

[
E

s∼dπ

a⃗∼π

[Aπk

C (s, a⃗)] + (1− γ)(JC (πk)− PL)

]
, (23)

and calculate the update rate of λj and λi as:

∆λj =

[
E

oj∼dπ

aj∼π

[
Aπk

j (oj , aj)
]
+ (1− γ) (Jj (πk)− EG)

]
, and

(24)

∆λi =

[
E

oi∼dπ

ai∼π

[Aπk
i (oi, ai)] + (1− γ) (Ji (πk)− ES)

]
.

(25)

With ∆λC
, ∆λj and ∆λi , we update Lagrangian multipliers

as follows [42]:

λk+1
C = ReLU(λk

C + αλ ×∆λC
), and (26)

λk+1
j(i) = ReLU(λk

j(i) + αλ ×∆λj(i)), (27)

where αλ is the step size of multipliers and the rectified
linear unit (ReLU) function [42] guarantees that the multipliers
remain positive. Finally, we calculate the gradient of central
reward/cost critic network by commonly employed mean
squared error (MSE) [40] as:

∆ϕR
= ∇θR

W∑
t=1

(V t
R −Rt)2, and

∆ϕC
= ∇θC

W∑
t=1

(V t
C − Ct)2, (28)

where Rt and Ct are calculated following the reward-
to-go [45] that Rt =

∑L
l=0 γl×rt+l and Ct =

∑L
l=0 γl×ct+l.

Similarly, the gradient of local cost critic networks is:

∆ϕj(i) = ∇θj(i)

W∑
t=1

(V t
j(i) − Ct

j(i))
2
, (29)

where Ct
j(i)) =

∑L
l=0 γl × ct+l

j(i). With ∆ϕR
, ∆ϕC

and ∆ϕj(i) ,
we update parameters of all critic networks as follows:

ϕk+1
R = ϕk

R + αϕ ×∆ϕR
, ϕk+1

C = ϕk
C + αϕ ×∆ϕC

, (30)

ϕk+1
j(i) = ϕk

j(i) + αϕ ×∆ϕj(i) , (31)

where αϕ is the learning rate of critic networks.

Authorized licensed use limited to: Auburn University. Downloaded on January 13,2025 at 20:53:46 UTC from IEEE Xplore.  Restrictions apply. 



1212 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 5, MAY 2024

Fig. 3. Architecture of CMADR. At time slot t, each satellite and ground station form their own observations ot
i and ot

j that are transmitted to the local actor
and local cost critic. The global state s is sent to the central reward critic and central cost critic to obtain the joint state reward value and joint state cost value
for actor network training. Following the interaction, environment provides the global reward rt and global cost ct, as well as the next local observations
ot+1

i and ot+1
j at time slot t + 1. By utilizing the stored transitions, the critic networks will learn more accurate value evaluations and collaborate to train

the actor network with the aim of reducing average delay while simultaneously constraining energy consumption and packet loss rate.

2) Executing Process (Only Actor): In a real integrated
satellite-ground service scenario, the interaction between the
environment and all satellites and ground stations is highly
complex. Due to the frequent information exchange between
space and the ground, collecting data and performing gradient
calculations are expensive.

To address this problem, a more suitable approach is to
simulate this communication system and gather data before
launching the satellites, training the hardware that carries the
neural network. Taking into account the limited capacity of the
satellite, once the training is completed, the lightweight neural
network can be deployed on a GPU. This enables it to solely
perform forward inference in real satellite communication
scenarios, eliminating the need for backward training and
resulting in significant cost savings. During the execution
phase, each satellite and ground station only require their
respective actor network without any additional critic net-
works, which makes the overall consumption acceptable.

We summarize details of CMADR in Algorithm 1.

V. SIMULATION

In this section, we evaluate the effectiveness of CMADR in
ISTN by comparing it with other baseline approaches, focusing
on two constellations, Telesat and OneWeb. Additionally,
we perform an ablation study to showcase the contributions
of the global critic network and local critic networks in
addressing the packet loss constraint and energy consumption
constraints. Furthermore, we conduct experiments to adjust
various constraint thresholds, illustrating that CMADR is
capable of satisfying diverse constraint conditions.

A. Experimental Settings

We have conducted extensive research on the constella-
tion information of Telesat and OneWeb by analyzing the

Algorithm 1 CMADR
Initializing phase:
Initialize batch size B, number of iterations K,
number of steps per episode W , replay buffer B;

Initialize actor networks and local critic networks as{
θ0

j(i), ϕ
0
j(i),∀j, i

}
;

Initialize the central reward critic network and the
central cost critic network as

{
ϕ0

R, ϕ0
C

}
;

Initialize Lagrangian multipliers λC , λj and λi;
for k = 1, . . . ,K do

for t = 1, . . . ,W do
Interact with the environment by the joint
policy π = {πθj

, πθi
,∀j, i} and store

transitions (ot
j , a

t
j , r

t, ct, ot+1
j ) and

(ot
i, a

t
i, r

t, ct, ot+1
i ) for ground stations and

satellites in buffer B;
end
Sample a batch of B transitions from the buffer B;
for j = 1, 2, . . . , NG, i = 1, 2, . . . , NS do

Update actor parameters θj(i) by equation (21)
and (22);

Update Lagrangian multipliers λC of the
central critic and λj(i) of local critics by
equation (23) and (26), as well as
equation (24), (25), and (27);

end
Update parameters of the central reward/critic
network and local critic networks ϕR, ϕC , and
ϕj(i) by equation (28), (30), (29) and (31);

end

filings submitted to the Federal Communications Commis-
sion (FCC) [48]. Telesat operates at an orbital height of
1015km, with 13 satellites deployed in each orbit. With a
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total of 27 orbits, the Telesat constellation comprises a total
of 351 satellites. On the other hand, OneWeb operates at an
orbital height of 1200km, with 40 satellites deployed in each
orbit. The OneWeb constellation consists of 18 orbits, resulting
in a total number of 720 satellites. Through referencing the
specific orbital parameters of these constellations, includ-
ing altitude, inclination, eccentricity, and minimum elevation
angle, we have constructed a comprehensive satellite constel-
lation model. This model allows us to determine the location
information of the satellites at any given time. Additionally,
we search positions of eight ground stations across different
continents, which ensures that users from around the world
can establish communication with one another by connecting
to these ground stations and utilizing the satellite commu-
nication network. All accessible satellites for each ground
station and connectable ground stations for each satellite are
calculated depending on positions of satellites and ground
stations.

To show the effectiveness of CMADR, we utilize the
following comparison algorithms: Dijkstra [10] makes all
satellites constructing the routing tables by Dijkstra algorithm
and updates routing tables at each time slot. Moreover, the
following three algorithms are about the connection rela-
tionships between satellites and ground stations, which are
important in the whole communication system: LRST [13]
connects to the satellite with the longest remaining service
time until it moves out of the transmission range. NSD [14]
connects to the nearest satellite until it goes out of the
transmission range. CSGI [5] (Coordinated Satellite-Ground
Interconnecting) selects the satellite closest to the center
position of each ground station from the satellite cluster that
is accessible to it for connectivity. To assess the efficacy of
CMADR in comparison to similar AI algorithms, we have
chosen two state-of-the-art (SOTA) multi-agent reinforcement
learning algorithms that have demonstrated excellent perfor-
mance. HMF [19] incorporates the concept of mean field
theory to characterize the interplay between agents and their
neighbors, and it adopts this notion to develop the conventional
deep Q-learning methodology for training individual satellites
and ground stations within the ISTN. MACPO [49] integrates
central critics and local critics, explores viable policies within
a trust region, improves overall performance, and guarantees
constraint adherence through the solution of an approximate
quadratic optimization problem.

Environmental configurations and algorithm parameters are
shown in Table II.

B. Performance Comparison

We set the energy consumption threshold to 10KJ for
each satellite and ground station, and the packet loss rate
threshold to 1%. We demonstrate the performance of our
CMADR algorithm by presenting the accumulated reward, the
accumulated average packet delay, the accumulated energy
consumption of all satellites and ground stations, and the
accumulated packet loss rate for each episode. A total of
300 episodes were conducted, and the results are depicted in
Figure 4 (a), (b), (c), and (d) respectively, representing the

TABLE II
ENVIRONMENTAL CONFIGURATIONS AND CMADR PARAMETERS

Telesat constellation. The accumulated reward in Figure 4 (a)
refers to the sum of rewards obtained in each time slot, with a
total of 120 slots in each episode. As the training progresses,
it becomes evident that the reward curve experiences rapid
growth, while the accumulated energy consumption and packet
loss rate curves in Figure 4 (c) and (d) converge and remain
within their respective threshold limits. This indicates that the
dynamic routing policy has been optimized to achieve efficient
packet forwarding while satisfying the constraints on energy
consumption and packet loss rate.

Furthermore, by observing Figure 4 (b), (c), and (d),
it becomes apparent that the performance of other algorithms
is inferior to our CMADR algorithm. The Dijkstra algorithm
always selects the shortest path for each time slot but fails to
consider alternative routes when satellite-ground connections
switch, resulting in relatively higher packet delays. Moreover,
it neglects the constraints on energy consumption and packet
loss rate, causing its curves to exceed the specified thresholds.
On the other hand, although the LRST, NSD, and CSGI
algorithms consider the significance of the satellite-ground
connection scheme, they still fall short in accounting for all
constraints. This is evident from their curves failing to meet
the required constraint specifications. While both the HMF and
MACPO can achieve reward convergence, their performance
in terms of average delay and meeting the constraints of
energy consumption and packet loss rate is suboptimal. This
indicates that CMADR algorithm surpasses them in overall
performance.

Similar observations can be made for the OneWeb constel-
lation, as depicted in Figure 5 (a), (b), (c), and (d). CMADR
outperforms the other comparative algorithms in terms of
average packet delay and meeting the various constraint
requirements.

The results of AI algorithms shown in Figure 4 and Figure 5
are obtained during the training phase, involving information
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Fig. 4. (a) The accumulated reward, (b) the average delay, (c) the energy consumption and (d) the packet loss rate within each episode for 300 episodes
based on Telesat. The reward curve of CMADR is growing while the average delay curve is declining. Meanwhile, the energy consumption and the packet
loss rate curves are declining, ultimately satisfying their respective constraints. CMADR performs the best among all algorithms.

Fig. 5. (a) The accumulated reward, (b) the average delay, (c) the energy consumption and (d) the packet loss rate within each episode for 300 episodes
based on OneWeb. Similarly, the reward curve of CMADR shows steady growth, while the average delay curve exhibits a decline. Additionally, both the
energy consumption and the packet loss rate curves are on a downward trend. Overall, CMADR outperforms all other algorithms.

Fig. 6. (a) The average delay, (b) the energy consumption and (c) the packet loss rate for all algorithms were evaluated in 100 tests based on Telesat. By
exclusively utilizing the trained actor network without any interactions with critics, the CMADR algorithm demonstrates the best performance compared with
other methods.

exchange with critics. In order to demonstrate the effectiveness
of the well-trained network in different testing environments
that are distinct from the training environment, we conducted
a total of 100 tests for all algorithms. These tests involved
simulating satellite failures and ground station additions by
randomly reducing ten satellites and increasing two ground
stations each time. By solely utilizing the trained actor net-
work without any exchanges with critics, the test results in
Figure 6 and Figure 7 confirmed the strong performance of
our proposed CMADR algorithm. Due to potential satellite
failures and the inevitable introduction of new ground stations,
the network topology is bound to undergo changes, rendering
various methods unstable when confronted with different envi-
ronments. In contrast to alternative algorithms, our CMADR
exhibits relatively stable performance and, on average, outper-
forms all other methods.

C. Ablation Study

To illustrate the significance of the global cost critic
and local cost critics in meeting corresponding constraints,
we performed an ablation study that involved a compari-
son of three pertinent algorithms: CMADR, CMADR-global,
and CMADR-local. CMADR represents the comprehensive
routing algorithm we proposed, which incorporates both the
global packet loss constraint and local energy consumption
constraints. On the other hand, CMADR-global solely focuses
on the global packet loss constraint, omitting the consider-
ations of local energy consumption constraints. In contrast,
CMADR-local exclusively addresses the local energy con-
sumption constraints, without considering the global packet
loss constraint.

The corresponding curves for the Telesat and OneWeb con-
stellations are illustrated in Figure 8 and Figure 9 respectively.
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Fig. 7. (a) The average delay, (b) the energy consumption and (c) the packet loss rate for all algorithms were evaluated in 100 tests based on Oneweb.
CMADR algorithm showcases superior performance when compared to other methods.

Fig. 8. For Telesat, CMADR, CMADR-global, and CMADR-local can ultimately converge while only CMADR effectively balances the average delay and
energy consumption limits, as well as the packet loss rate limit, simultaneously.

Fig. 9. For OneWeb, CMADR-global ensures the fulfillment of the packet loss rate constraint but falls short in meeting the energy consumption constraint,
whereas CMADR-local behaves in the opposite manner. Both of them do not possess the same level of expertise as CMADR in achieving overall balance.

In Figure 8 (a) and Figure 9 (a), it can be observed that the
reward curve of all three algorithms converges. By examining
Figure 8 (c), (d) and Figure 9 (c), (d), it becomes evident
that CMADR-global can only guarantee the satisfaction of the
packet loss rate constraint while failing to meet the constraint
on energy consumption. On the other hand, CMADR-local
exhibits the opposite behavior, satisfying the constraint on
energy consumption but falling short in meeting the packet
loss rate constraint. Interestingly, both the CMADR-global and
CMADR-local algorithms in Figure 8 (b) and Figure 9 (b)
show a slightly faster decrease in the average delay compared
to CMADR alone. However, this temporary improvement does
not persist in later stages. The reason behind this could be that
unrestricted energy consumption and packet loss rates actually
increase the probability of network congestion, leading to a
less favorable overall average packet delay.

The characteristics of all the comparative methods men-
tioned earlier, as well as those of the ablation experiment’s

comparative methods, are summarized in Table III. The Dijk-
stra, LRST, NSD, and CSGI algorithms are static, as they
can pre-plan the routes on the ground without considering the
dynamic link conditions. In contrast, our CMADR, CMADR-
global, and CMADR-local algorithms dynamically plan routes
based on the link environment’s real-time status. CMADR-
global focuses solely on the packet loss rate constraint, while
CMADR-local considers only the global energy consumption
constraint. CMADR, on the other hand, takes both constraints
into account.

D. Algorithm Parameters Analysis

To demonstrate the impact of different constraint thresholds
on algorithm performance, we initially maintain a constant
threshold for energy consumption and vary the threshold
values for packet loss rate, setting it to 0.5%. The correspond-
ing result curves are presented in Figure 10 and Figure 11
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Fig. 10. For Telesat, by setting different thresholds for energy consumption and packet loss rate constraints individually, CMADR can effectively optimize
the average delay while satisfying these different constraints.

Fig. 11. In the context of OneWeb, CMADR also demonstrates its capability to optimize the average delay while effectively meeting the constraints even
under different configurations.

TABLE III
SUMMARY OF ALGORITHMS

for the Telesat and OneWeb constellations, respectively. In
Figure 10 (d) and Figure 11 (d), we observe that the curves
continue to show a decreasing trend. However, as the training
progresses, it becomes difficult for them to further decrease
and reach the relatively stringent requirement of 0.5% packet
loss rate. Additionally, corresponding energy consumption
values are higher, and the average delay is also larger. This
indicates that the system faces challenges in optimizing the
objectives while satisfying all the constraints simultaneously.

Similar conclusions can be drawn from Figure 10 and
Figure 11, where we maintain a constant threshold for packet
loss rate and vary the threshold values for energy consumption,
setting it to 5KJ. Once again, the tighter energy consumption
constraint makes it difficult for them to effectively optimize
average packet delay while ensuring a low packet loss rate.

VI. CONCLUSION

In this study, we propose an ISTN system that integrates
satellites and ground stations for collaborative packet routing,

aiming to minimize average packet delay while ensuring
energy efficiency and meeting packet loss rate constraints.
We formulate this as a max-min problem and introduce the
CMADR routing algorithm, which ensures that the strategy
updates can meet the constraints while optimizing the objec-
tive, as confirmed by extensive simulations.
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