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Abstract— In this paper, the problem of joint communication
and sensing is studied in the context of terahertz (THz) vehicular
networks. In the studied model, a set of service provider vehicles
(SPVs) provide either communication service or sensing service to
target vehicles, where it is essential to determine 1) the service
mode (i.e., providing either communication or sensing service)
for each SPV and 2) the subset of target vehicles that each
SPV will serve. The problem is formulated as an optimization
problem aiming to maximize the sum of the data rates of the
communication target vehicles, while satisfying the sensing ser-
vice requirements of the sensing target vehicles, by determining
the service mode and the target vehicle association for each
SPV. To solve this problem, a graph neural network (GNN)
based algorithm with a heterogeneous graph representation is
proposed. The proposed algorithm enables the central controller
to extract each vehicle’s graph information related to its location,
connection, and communication interference. Using this extracted
graph information, a joint service mode selection and target
vehicle association strategy is then determined to adapt to the
dynamic vehicle topology with various vehicle types (e.g., target
vehicles and service provider vehicles). Simulation results show
that the proposed GNN-based scheme can achieve 93.66% of
the sum rate achieved by the optimal solution, and yield up
to 3.16% and 31.86% improvements in sum rate, respectively,
over a homogeneous GNN-based algorithm and a conventional
optimization algorithm without using GNNs.

Index Terms— Joint communication and sensing, terahertz,
vehicular networks, graph neural networks.

I. INTRODUCTION

INTEGRATION of wireless communication and sensing
functionalities on smart vehicles has been regarded as
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a promising paradigm to improve the safety and efficiency
of vehicular networks. The joint design of communication
and sensing functionalities can mutually enhance each other
by leveraging the unified hardware, spectrum resource, and
protocol design [2], [3], [4]. However, the scarce bandwidth
of sub-6 GHz bands limits the ability of wireless networks
to meet the stringent quality-of-service (QoS) requirements of
emerging vehicular applications in terms of delivering high
data rates and high-resolution sensing [5], [6], [7], [8], [9].
A promising solution is to use the high-frequency terahertz
(THz) bands for its abundant bandwidth. However, deploying
THz for joint communication and sensing over vehicular
networks faces several challenges, such as severe path loss
and extremely directional nature of vehicular links, interfer-
ence among communication and sensing links, determining
which vehicles to provide communication or sensing service,
various QoS requirements of communication and sensing, and
adaptation to dynamics of vehicle network topology.

A. Related Work

Recently, several works, such as [10], [11], [12], [13], [14],
[15], [16], and [17], have studied the problem of resource
management for joint communication and sensing. The authors
in [10] and [11] provided a comprehensive survey of joint
communication and sensing systems, and introduced various
challenges, problems, and solutions to improve the perfor-
mance of such systems. The authors in [12] studied the use of
the time-domain duplex (TDD) scheme to achieve the fusion
of communication and sensing. In [13], the authors optimized
the scheduling of communication and sensing signals over dif-
ferent time slots. A time division duplex frame was proposed
in [14] and [15] to determine the communication and sensing
mode in each time slot. An adaptive service mode selection
algorithm was designed in [16] to maximize the resource
efficiency by selecting the communication and sensing modes
based on service requirements. However, the existing works in
[12], [13], [14], [15], and [16] might introduce mutual inter-
ference between communication and sensing systems due to
inconsistent operation modes of different vehicles. To address
this challenge, in [17], the authors analyzed the interference
between communication and sensing services so as to optimize
the time slot allocation for providing both services to each
vehicle. However, these works [12], [13], [14], [15], [16], [17]
did not consider the use of THz bands to provide high-rate
communication and high-resolution sensing services. Using
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THz bands can significantly improve both the data rate and
sensing resolution, which however, also faces the challenges
of higher path loss and attenuation [18].

To overcome such limitations, a number of existing works
such as [19], [20], [21], [22], [23], [24], and [25] studied
the use of the THz bands to provide communication ser-
vice for mobile users. The authors in [19] investigated a
target vehicle association scheme for ultra-dense THz net-
works while considering the THz channel particularities, the
antenna directivity of the base station (BS) and users, as well
as their positions and communication service requirements.
The authors in [20] studied the beam alignment problem
in THz communications by considering the effect of nar-
row beamwidth and fast mobility of connected autonomous
vehicles. In [21], the authors analyzed target vehicle asso-
ciation schemes and multi-connectivity strategies for joint
THz/millimeter wave (mmWave) deployments. The authors
in [22] optimized spectrum resource allocation for downlink
and uplink communications in unmanned aerial vehicle (UAV)
assisted THz systems. However, all the above works [19],
[20], [21], [22] simply assumed a constant THz directional
antenna gain while ignoring how the main and side lobes
affect THz communications. In [23], the authors studied the
use of a THz band for communications and modeled the THz
antenna gain as a function of beamwidth. However, this work
does not consider the radiation of the side lobes of THz
antennas. Although the authors in [24] and [25] studied the
directional THz antenna gain of the main lobe and side lobes
simultaneously, they did not consider the use of the THz
bands to provide sensing service. Therefore, these existing
solutions [19], [20], [21], [22], [23], [24], [25] cannot be
directly applied for vehicle networks that use THz for joint
communication and sensing since these two services will
interfere each other. Consequently, given the high uncertainty
of THz channels, it is critical to manage the vehicle topolog-
ical information to avoid potential mutual interference when
THz bands are used for joint communication and sensing in
vehicular networks.

To manage the vehicle topological information, a number
of existing works such as [26], [27], [28], [29], [30], [31],
[32], and [33] studied the use of graph neural network (GNN)
to extract vehicle topological information. In [26], a graph
convolutional network (GCN) with weighted adjacency matrix
was used to capture the spatial features of vehicle topology and
describe the intensities of mutual influence between vehicles.
The work in [27] trained a GCN to learn the topology
related features (e.g., vehicle location, vehicle connection, and
communication interference) for each user and then solved a
link scheduling problem based on the extracted feature vectors.
The authors in [28] used a topological GCN followed by a
sequence-to-sequence framework to predict future traffic flow
and density. The authors in [29] used a directed GCN to
predict the motion trajectories of moving vehicles in complex
traffic scenes. However, the above works [26], [27], [28],
[29] required the information of all vehicles to extract the
topology related feature vector for each vehicle, which may
not be applied for networks with a dynamic vehicle topology.
To make it adaptive to dynamic vehicle topologies, our work

herein learns a node representation method with the partial
vehicle topological information. The authors in [30] and [31]
proposed to generate topology related feature vectors by sam-
pling and aggregating the information from local neighbors.
In [32], the authors explored the graph representation methods
for link scheduling in device-to-device (D2D) networks, where
D2D devices are considered as nodes and the interference
among these devices are considered as edges. The authors
in [33] selected a fixed number of neighborhood vehicles
to participate in training to ensure that the input size will
not change with the number of vehicles. However, these
works [30], [31], [32], [33] only used homogeneous graphs
composed of a single type of nodes and edges to represent
network devices and their communication links. Hence, all
the aforementioned works [26], [27], [28], [29], [30], [31],
[32], [33] are not suited for extracting topology related feature
vectors for joint communication and sensing enabled vehicular
networks, since such networks consist of different types of
vehicles (e.g., target vehicles and service provider vehicles)
and connected links.

B. Contributions

The main contribution of this work is to design a novel
framework that enables service provider vehicles (SPVs) to
provide joint communication and sensing services to target
vehicles using THz bands. To the best of our knowledge, this is
the first work to study the use of THz for joint communication
and sensing in vehicular networks. Our key contributions
include:
• We consider the problem of joint communication and

sensing over THz vehicular networks. In the studied
model, a set of SPVs provide either communication
service or sensing service to communication target vehi-
cles or sensing target vehicles, respectively. A central
controller determines the service mode (i.e., providing
communication or sensing service) for each SPV and the
subset of target vehicles that each SPV will serve.

• We formulate an optimization problem aiming to maxi-
mize the sum of the data rates of all communication target
vehicles while satisfying the sensing service requirements
of sensing target vehicles by jointly determining the
service mode (i.e, communication or sensing) and the
target vehicle association for each SPV. The THz channel
particularities, the directivity of vehicle antennas, as well
as the dynamic vehicle topological information and the
sensing service requirements are all taken into account in
the formulation.

• To solve the formulated problem, we propose a novel
GNN method that combines GNNs with heterogeneous
graphs. The proposed algorithm enables the central con-
troller to extract each vehicle’s graph information that
represents the information related to vehicle location,
vehicle connection, and vehicle communication interfer-
ence. Compared with traditional GNN methods [30],
which used a homogeneous graph to represent vari-
ous types of vehicles, the proposed algorithm adopts a
heterogeneous graph with various types of nodes and
edges to represent different types of vehicles and their
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connected links. Using the learned graph information, the
probability distribution of each SPV serving each target
vehicle in the corresponding operating mode is obtained.
Based on the probability distribution, the non-convex
optimization problem can be simplified to a quadratically
constrained programming (QCP) problem, which can be
solved by the Gurobi tool [34].

• Extensive simulation results show that the number of
service provider vehicles, number of target vehicles, vehi-
cle orientation, and dimension of the graph information
vector will jointly affect the performance of service
mode selection and target vehicle association strategy
in THz enabled vehicular networks. In particular, the
proposed GNN-based scheme can reach 93.66% of the
sum rate produced by the optimal solution, and yield up
to 3.16% and 31.86% improvement in the sum rate over a
homogeneous graph neural network based algorithm and
the conventional optimization algorithm without using
GNNs, respectively.

The remainder of this paper is organized as follows. The
system model and the problem formulation are described in
Section II. The design of the GNN-based algorithm for service
mode selection and target vehicle association is introduced in
Section III. In Section IV, numerical results are presented and
discussed. Finally, conclusions are drawn in Section IV.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a vehicular network in which a set of vehicles
moving in a region, as shown in Fig. 1. The vehicles are
divided into three categories: service provider vehicles K,
communication target vehiclesM, and sensing target vehicles
N . Each service provider vehicle (SPV) is equipped with
both communication and sensing devices, thus can operate in
either the communication mode or the sensing mode. When
operating in the communication mode, an SPV communicates
with the target vehicles through vehicle-to-vehicle (V2V)
links. In contrast, an SPV that operates in the sensing mode
can sense the location, speed, and direction of the target
vehicles for further use (e.g., generate a high-definition map
(HD Map)) [35]. In our model, the locations and density of
vehicles vary over time with unknown distributions, and all
SPVs use the same THz band to provide communication or
sensing services. Here, we consider spectrum reuse to improve
spectrum efficiency since THz signals suffer severe path loss.
In fact, our designed method can also be used for the scenarios
where orthogonal bands are allocated to each SPV and target
vehicle. The main notations used in this paper are summarized
in Table I.

1) THz Propagation and Antenna Model: We assume that
directional three-dimensional (3D) beams are utilized at the
vehicles to compensate for the severe path loss in THz bands.
The antenna gains of the main lobe and the side lobes from
vehicle k to vehicle m are expressed as [24]

GM
km =

4π

(ε + 1)Ωθk,φk

, (1)

Fig. 1. Illustration of the vehicular network model.

GS
km =

4πε

(ε + 1) (4π − Ωθk,φk
)
, (2)

where Ωθk,φk
= 4arcsin

(
tan

(
θk

2

)
tan

(
φk

2

))
with θk and φk

being the horizontal and vertical beamwidths of the antenna
for vehicle k, and ε is the ratio of the power concentrated
along the side lobes to the power concentrated along the main
lobe.

Signal propagation in the THz bands is determined by
the molecular absorption loss and the spreading loss. The
absorption loss is given by [23]

LA
km =

1
τ(dkm)

, (3)

where dkm is the distance between vehicle k and vehicle m,
and τ(dkm) ≈ e−ϕ(f)dkm is the transmittance of the medium
following the Beer-Lambert law with ϕ(f) being the overall
absorption coefficient of the medium, and f is the operating
frequency. Assuming free space propagation, the spreading
loss is defined as

LF
km =

(4πfdkm)2

c2
, (4)

where c is the speed of light.
Therefore, the received power at vehicle m from vehicle k

can be expressed as

Skm =
PkGT

kmGR
mk

LA
kmLF

km

, (5)

where Pk is the transmit power of vehicle k. GT
km and GR

mk

are the effective antenna gains at vehicle k and vehicle m,
respectively, corresponding to the link between vehicle k and
vehicle m with T ∈ {M, S} and R ∈ {M, S}, where M stands
for the main lobe and S stands for the side lobes.

2) Communication Mode: The interference to the commu-
nication target vehicle m served by SPV k is

IC
km(α, β) =

∑
i∈K\{k}

∑
m′∈M

αim′PiG
T
imGR

mi

LA
imLF

im

,

+
∑

i∈K\{k}

∑
n′∈N

βin′PiG
T
imGR

mi

LA
imLF

im

, (6)

where α = [α1, · · · , αM ] with αm = [α1m, · · · , αKm], and
β = [β1, · · · , βN ] with βn = [β1n, · · · , βKn]. Here, α and β
are the service mode selection and target vehicle association
indicator matrices. αim = 1 indicates that vehicle i is selected
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TABLE I
LIST OF MAIN NOTATION

to serve vehicle m in the communication mode; otherwise,
αim = 0. Similarly, βin = 1 means that vehicle i is selected
to detect vehicle n in the sensing mode; otherwise, βin = 0.
In (6), the first term represents the interference from other
SPVs that operate in the communication mode, while the
second term is the interference from other SPVs that operate
in the sensing mode.

The signal-to-interference-plus-noise ratio (SINR) for vehi-
cle k transmitting to vehicle m is

γC
km(α, β) =

αkmSkm

IC
km(α, β) + Nkm

, (7)

where Nkm = N0 +
∑

i∈K\{k} PiG
T
imGR

mi(1− τ(dim))/LF
im

with N0 being the Johnson-Nyquist noise power. Nkm is
caused by the thermal agitation of electrons and molecular
absorption.

Therefore, the data rate of vehicle k transmitting data to
vehicle m is

RC
km(α, β) = B log2

(
1 + γC

km(α, β)
)
,

(8)

where B denotes the channel bandwidth.
3) Sensing Mode: The interference to vehicle k operating

in the sensing mode can be expressed as

IS
kn(α, β) =

∑
i∈K\{k}

∑
m′∈M

αim′PiG
T
ikGR

ki

LA
ikLF

ik

+
∑

i∈K\{k}

∑
n′∈N

βin′PiG
T
ikGR

ki

LA
ikLF

ik
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+
∑

i∈K\{k}

∑
n′∈N

βin′PiG
T
inGR

nkσinc2

(4π)3f2d2
ind2

knLA
inLA

kn

, (9)

where σin is the target’s radar cross section (RCS) between
vehicle i and vehicle n. In (9), the first term represents the
interference caused by other SPVs operating in the commu-
nication mode. The second term represents the interference
caused by other SPVs operating in the sensing mode via direct
path. The third term represents the interference caused by other
SPVs operating in sensing mode via scattering paths.

From (6) and (9), we can see that a vehicle that operates in
the sensing mode is interfered by other vehicles that operate
in the sensing mode from scattering paths, which will not
interfere the vehicles that operate in communication mode.
This is because the impacts of scattered sensing signals on a
communication link is much weaker than that on a sensing
link [17].

Given (9), the SINR of vehicle k that operates in the sensing
mode when sensing vehicle n can be expressed as

γS
kn(α, β) =

βknPkGT
knGR

nk(LS
kn)−1(LA

kn)−1

IS
kn(α, β) + Nkn

, (10)

where LS
kn = (4π)3f2d4

kn

σknc2 is the spreading loss of the path
k → n→ k.

B. Problem Formulation

To maximize the data rates of all communication target
vehicles while satisfying the sensing service requirements,
an optimization problem is formulated as:

max
α,β

∑
k∈K

∑
m∈M

RC
km(α, β) (11)

s.t.
∑
k∈K

αkm = 1, αkm ∈ {0, 1},∀m ∈M, (11a)∑
k∈K

βkn = 1, βkn ∈ {0, 1},∀n ∈ N , (11b)∑
m∈M

αkm ≥ 0,
∑
n∈N

βkn ≥ 0,∀k ∈ K, (11c)

αkmβkn = 0,∀k ∈ K,∀m ∈M,∀n ∈ N , (11d)∑
k∈K

γS
kn(α, β) ≥ γmin,∀n ∈ N , (11e)

where γmin is the minimum SINR requirement of the sensing
service. In (11), constraint (11a) ensures that a communication
target vehicle can only be served by one SPV. Constraint (11b)
ensures that a sensing target vehicle can only be detected by
one SPV. Constraint (11c) indicates that an SPV can serve
multiple communication or sensing target vehicles simultane-
ously. Constraint (11d) indicates that an SPV can operate in
either the communication mode or the sensing mode, but not
both simultaneously. Constraint (11e) is the minimum SINR
requirement of the sensing service. From (11), we see that,
increasing the number of target vehicles served by one SPV
may increase the communication and sensing interference of
other target vehicles served by other SPVs, which may reduce
the overall data rates. Therefore, to maximize the overall data
rates, the number of target vehicles served by each SPV should
be limited.

Problem (11) is hard to solve due to the following reasons.
First, the objective function is non-convex and hence the
complexity of using traditional optimization algorithms will
be extremely high. Second, traditional optimization algorithms
require accurate channel information to obtain the free space
path gain LF

km and molecular absorption path gain LA
km

to solve problem (11). However, only periodically reported
channel information can be obtained in highly dynamic THz-
enabled vehicular networks. Third, traditional optimization
methods do not consider the dynamic vehicle network topol-
ogy such as the arrival of new vehicles. Therefore, when
the vehicle topology changes, the central controller must
execute the optimization algorithm again to re-optimize ser-
vice mode selection and target vehicle associations. Machine
learning (ML) can be developed to learn the relationship
between neighborhood nodes rather than obtaining a sep-
arate feature vector for each vehicle [36], [37]. To solve
the above formulated problem, we propose to use GNNs to
generate the feature vector for each vehicle. Compared with
other neural network methods such as multi-layer perceptrons
(MLPs) and convolutional neural networks (CNNs) that can
extract only geographical location information from a vehicle
network topology, a GNN-based algorithm can extract not
only geographical location information but also topological
information. Meanwhile, a GNN can efficiently obtain the
feature vector of a new vehicle without retraining, and then
the new service mode selection and target vehicle association
strategy can be explicitly determined based on the extracted
feature vectors.

III. SERVICE MODE SELECTION AND TARGET VEHICLE
ASSOCIATION BASED ON GNN

In this section, we introduce a heterogeneous GNN-based
algorithm to solve problem (11). First, we transform the joint
service mode selection and target vehicle association problem
(11) into a classification problem, where SPVs and target vehi-
cles are considered as samples and classes, respectively. Since
each SPV can simultaneously provide communication/sensing
service for multiple communication/sensing target vehicles,
the corresponding problem naturally becomes a multi-label
classification problem, where each sample belongs to a set
of classes. We study the use of a heterogeneous GNN-based
algorithm to solve this classification problem. Compared to
a homogeneous GNN-based algorithm that can only extract
the features of a single type of vehicles, our designed hetero-
geneous GNN-based algorithm can extract vehicle topology
features of several types of vehicles since it uses different
weight matrices to represent the features of different type of
vehicles. Next, we first introduce the use of a heterogeneous
graph to represent the considered system model, and then
introduce the components of our designed algorithm. Finally,
we will explain the training method for the designed algorithm.

A. Graph Representation of Vehicular Networks

We first introduce the use of a heterogeneous graph to
represent the considered vehicular network. A heterogeneous
graph G = (V, E ,O,R) consists of a node set V , an edge set
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Fig. 2. Graph representation of the vehicular network.

E , a node type set O, and a setR that consists of different edge
types. We model each vehicle as a node in the graph, and each
link between two vehicles as an edge. The nodes can be divide
into three categories, O = {O1, O2, O3}, which correspond
to the three types of vehicles. Meanwhile, we consider three
types of edges R = {RSC, RSS, RI}, where RSC represents the
communication link between an SPV and a communication
target vehicle, RSS represents the sensing link between an SPV
and a sensing target vehicle, and RI represents the interference
link between two SPVs. By using the above graph represen-
tation, we can convert the considered vehicular network into
a graphical model, as shown in Fig. 2. Specifically, the node
feature of each vehicle is fv = [ev1, . . . , evM ′ ] , v ∈ K∪M∪
N ,M′ =M∪N , where fv ∈ RQ×1, Q = (|M|+ |N |) is
the total number of target vehicles, and evm′ is the number
of SPVs within the line-of-sight link between vehicle v and
vehicle m′, as shown in Fig. 3. The node feature evaluates the
potential interference between the current vehicle and each
target vehicle. The weight of the edge between vehicle v and
vehicle v′ is gvv′ =

(
LA

vv′LF
vv′

)−1
for all v′ ∈ V \ {v} with

gvv′ ∈ R1×1.

B. Components of the GNN-Based Algorithm

A standard GNN model consists of two important mod-
ules, neighbor sampling module and feature updating module
[38], [39], [40]. Neighbor sampling module is used to
select the relevant neighborhood nodes for a given node.
Feature updating module is used to generate the graph
information vector for the given node by aggregating the
graph information from the neighborhood nodes selected
by the neighbor sampling module. Next, we will intro-
duce the components of the proposed GNN-based solution

Fig. 3. An illustration of node feature.

for problem (11). Then, we will explain its training
process.

The proposed GNN-based algorithm consists of six com-
ponents: a) agent, b) input layer, c) hidden layer I, d) hidden
layer II, e) hidden layers III-V, and f) output layer, which are
specified as follows:

• Agent: The agent is a central controller that can obtain
the geographic locations of all vehicles. In each time
slot, the central controller implements the proposed GNN-
based algorithm to determine the service mode and target
vehicle association for each SPV. Therefore, the controller
actually executes the neural network |K| times so as to
determine the service mode and target vehicle association
for the |K| vehicles.

• Input Layer: To determine the service mode of vehicle k
and its serviced vehicles, the input of the designed scheme
is based on the features of the vehicles that can connect
to vehicle k. However, since the number of vehicles
that can connect to different SPVs are varying, the size
of the input matrix may also be different. To enable a
neural network to extract graph information for different
SPVs that may connect to different number of service
target vehicles, we use uniform sampling to calculate the
average features of each connected vehicle so as to fix
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Fig. 4. Aggregate feature information from neighbors.

the size of the input. In particular, we assume that the
number of vehicles that the proposed algorithm needs
to sample for a vehicle k is si in sampling iteration
i ∈ {1, · · · , I}. Meanwhile, we assume that the set of
sampled vehicles that can directly connect to vehicle k
as the set of the first hop vehicles, which is represented by
L1 (k) with |L1(k)| = s1 being the number of vehicles in
set L1 (k). The set of sampled vehicles that can connect
to vehicle k via the first hop vehicles as the set of
the second hop vehicles represented by L2 (k), where
L2 (k) = {L1 (v′) |v′ ∈ L1 (k)}. The number of vehicles
in set L2 (k) is s2. For example, in Fig. 4, the total
number of sampled vehicles is 5 (s1 = 2 and s2 = 3),
L1 (k) = {v1, v2}, and L2 (k) = {v3, v4, v5}. We assume
that the subset of the first hop vehicles with a type R
edge is L1

R (k). For example, in Fig. 4, L1
RI

(k) = {v1}
and L1

RSS
(k) = {v2}. Given these definitions, we next

introduce the input of the proposed GNN-based method.
From Fig. 5, we see that the input is connected to four
fully connected layers and each fully connected layer has
different inputs. The inputs to the four fully connected
layers are: i) h0

k = fk ∈ RQ×1, ii) h1
RSC
∈ R(Q+1)×1,

iii) h1
RSS
∈ R(Q+1)×1, and iv) h1

RI
∈ R(Q+1)×1, where

h1
RSC

=
1

|L1
RSC

(k) |
∑

v′∈L1
RSC

(k)

h0
kv′ , (12)

h1
RSS

=
1

|L1
RSS

(k) |
∑

v′∈L1
RSS

(k)

h0
kv′ , (13)

h1
RI

=
1

|L1
RI

(k) |
∑

v′∈L1
RI

(k)

h0
kv′ , (14)

with h0
kv′ =

[
h0

v′∥gkv′
]
, h0

kv′ ∈ R(Q+1)×1, ·∥· repre-
senting the vector concatenation operation, |L1

RSC
(k) |,

|L1
RSS

(k) |, and |L1
RI

(k) | being the number of vehi-
cles in set L1

RSC
(k), L1

RSS
(k), and L1

RI
(k), respectively.

Here, (12)-(14) are the neighbor sampling module of the
designed GNN model. In (12)-(14), we use a neighbor-
hood information averaging approach for the extraction
of neighborhood vehicle features since it has a low
computational complexity but can achieve a similar per-
formance with the method that uses a neural network
layer (e.g., LSTM) to aggregate the neighborhood vehicle
information [41]. In future, we will design more effective
neighborhood sampling methods.

• Hidden Layer I: This layer consists of four fully-
connected layers and it is used to extract the graph

information of the first hop vehicles of each vehicle k.
The output of this layer is

h1
k = σ

([
w1h

0
k∥w2h

1
RSC
∥w3h

1
RSS
∥w4h

1
RI

])
, (15)

where σ (·) is the rectified linear unit function (ReLU),
w1 ∈ R(λ0/4)×Q, w2 ∈ R(λ0/4)×(Q+1), w3 ∈
R(λ0/4)×(Q+1), and w4 ∈ R(λ0/4)×(Q+1) are the weights
of the four fully connected layers, λ0 is the dimension of
the graph information vector, w1 is the weight matrix of
the current vehicle, and w2, w3, and w4 are the weight
matrices for the vehicles with the type RSC, RSS, and
RI edge, respectively. Here, (15) is the feature updating
module of the designed GNN model. To support hetero-
geneous nodes and edges, we set separate neighbourhood
weight matrices w2, w3, and w4 for each type of
vehicles, respectively. From (12) to (15), we extract only
the graph information of vehicle v. However, we need the
graph information of all the sampled first hop vehicles to
optimize service mode selection and vehicle connection.
Therefore, we need to execute (12) to (15) for each
sampled vehicle (i.e., for s1 times). After that, we obtain
h1

v′ ∈ Rλ0×1, ∀v′ ∈ L1 (k) for each sampled vehicle v′.
• Hidden Layer II: This layer consists of four fully-

connected layers and it is used to extract the graph
information of the second hop vehicles of vehicle k.
From Fig. 5, we can see that the input to each fully
connected layer in hidden layer II is different. The inputs
to the four fully connected layers are: i) h1

k ∈ Rλ0×1,
ii) h2

RSC
∈ R(λ0+1)×1, iii) h2

RSS
∈ R(λ0+1)×1, and iv)

h2
RI
∈ R(λ0+1)×1, where

h2
RSC

=
1

|L1
RSC

(k) |
∑

v′∈L1
RSC

(k)

h1
kv′ , (16)

h2
RSS

=
1

|L1
RSS

(k) |
∑

v′∈L1
RSS

(k)

h1
kv′ , (17)

h2
RI

=
1

|L1
RI

(k) |
∑

v′∈L1
RI

(k)

h1
kv′ , (18)

with h1
kv′ =

[
h1

v′∥gkv′
]

and h1
kv′ ∈ R(λ0+1)×1. The

output of this layer is

h2
k = σ

([
w5h

1
k∥w6h

2
RSC
∥w7h

2
RSS
∥w8h

2
RI

])
, (19)

where h2
k ∈ Rλ0×1, w5 ∈ R(λ0/4)×λ0 , w6 ∈

R(λ0/4)×(λ0+1), w7 ∈ R(λ0/4)×(λ0+1), and w8 ∈
R(λ0/4)×(λ0+1) are the weights of the four fully con-
nected layers, respectively. w5 is the weight matrix of
vehicle k and the others are the weight matrices for the
three types of second hop vehicles, i.e., w6 is the weight
matrix for the vehicles with a type RSC edge, w7 is the
weight matrix for the vehicles with a type RSS edge, and
w8 is the weight matrix for the vehicles with a type RI

edge. Compared to the aggregate function in [41] and
[42] that considers only node features, we consider both
node features and edge weights in both hidden layers I
and II. Here, the output h2

k can be considered as the
graph information of vehicle k, since it includes the
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Fig. 5. Structure of the proposed GNN model.

graph information of the sampled first hop and second
hop vehicles. (16)-(18) are the neighor sampling module
of the designed GNN model while (19) is the feature
updating module.

• Hidden Layers III-V: Three fully-connected layers are
used to find the relationship between the graph informa-
tion vector h2

k and the probability distribution of vehicle k
serving each target vehicle in the corresponding operating
mode.

• Output: The output of the network, yk =[
y1

k, · · · , yQ+1
k

]
, is the probability distribution of vehicle

k serving Q + 1 target vehicles in the corresponding
operating mode. Here, Q + 1 is the total number of
classification classes, including the case that vehicle k is
not connected to any target vehicles.

C. Training the Proposed GNN-Based Model

Given the components defined in the previous section,
we next introduce the entire procedure of training the proposed
GNN-based method. We use binary cross entropy (BCE) as
the loss function to minimize the difference between the
predicted multi-label classification result and the actual multi-
label classification result, which is given by:

J (w, p, b) =
Q+1∑
q=1

−zq
k log δ (yq

k)− (1− zq
k) log (1− δ (yq

k)) ,

(20)

where δ (·) is the sigmoid function; zq
k is the label of vehicle k

for class q, which is generated by exhaustive searching; w is
the weight matrix of hidden layer I; and p and b are the weight
matrix and bias of hidden layer III-V, respectively. To mini-
mize the training loss (11), we optimize w, p, and b using
the back-propagation algorithm with the mini-batch stochastic
gradient descent (SGD) approach [41]. The parameters of each
fully-connected layer j in the GNN, i.e., wj , pj′ , and bj′ , are

randomly initialized by a uniform distribution and updated by
the central controller in each training iteration t ∈ {1, · · · , T}
of the mini-batch SGD approach, where T is the number of
total training iterations. Specifically, the standard update policy
of mini-batch SGD is given by:

wt+1
j = wt

j − η
1
|B|

∑
k∈Bt

∂J (w, p, b)
∂wj

, (21)

pt+1
j′ = pt

j′ − η
1
|B|

∑
k∈Bt

∂J (w, p, b)
∂pj′

, (22)

bt+1
j′ = bt

j′ − η
1
|B|

∑
k∈Bt

∂J (w, p, b)
∂bj′

, (23)

where |B| is the size of mini-batches, Bt is a mini-batch of
training samples used in iteration t, η is the learning rate, j ∈
{1, 2, 3, 4, 5, 6, 7, 8}, and j′ ∈ {1, 2, 3}. wj ,∀j ∈ {1, 2, 3, 4}
is the weight matrix of fully-connected layer j in hidden
layer I. wj ,∀j ∈ {5, 6, 7, 8} is the weight matrix of fully-
connected layer j in hidden layer II. pj′ ,∀j′ ∈ {1, 2, 3} and
bj′ ,∀j′ ∈ {1, 2, 3} are the weight matrix and bias of fully-
connected layer j′ in hidden layer III-V. The entire training
process of the proposed GNN-based algorithm is summarized
in Algorithm 1.

D. Solution for the Formulated Problem

Once the probability distribution yk of each SPV k is
obtained, the service mode selection and target vehicle associ-
ation can be determined. In particular, given yk, the objective
function in (11) can be approximated by

E(α, β) =
∑

m∈M

∑
k∈K

αkmym
k +

∑
n∈N

∑
k∈K

βkny
|M|+n
k , (24)

where the first term
∑

m∈M
∑

k∈K αkmym
k is the sum of

the probabilities of establishing all the communication links,
and the second term

∑
n∈N

∑
k∈K βkny

|M|+n
k represents the

sum of the probabilities of establishing all the sensing links.
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Algorithm 1 GNN-Based Method for the Joint Service Mode
Selection and Target Vehicle Association Problem

1: Input: Vehicle features {fv,∀v ∈ V}, edge weights
{gvv′ ,∀v′ ∈ V \ {v}}, and sampling size s1 and s2;

2: Initialize: wj , pj′ , and bj′ ;
3: h0

v ← fv , h0
vv′ ←

[
h0

v′∥gvv′
]
, ∀v ∈ V,∀v′ ∈ V \ {v};

4: for k = 1→ K do
5: Sample the first hop vehicles L1 (k) and second hop

vehicles L2 (k) for vehicle k;
6: Extract the graph information h1

k of vehicle k based on
(12)-(15);

7: for v′ ∈ L1 (k) do
8: Extract the graph information h1

v′ of vehicle v′ based
on (12)-(15);

9: end for
10: h1

kv′ ← [h1
v′∥gkv′ ], ∀v′ ∈ L1 (k);

11: Aggregate the neighborhood feature vectors of vehicle
k, h2

RSC
, h2

RSS
, and h2

RI
, based on (16)-(18);

12: Concatenate the vehicle’s current representation, h1
k,

with the aggregated neighborhood vector based on (19);
13: Obtain the graph information vector h2

k for vehicle k;
14: Use h2

k as input to predict the probability distribution
yk of vehicle k;

15: Calculate loss J (w, p, b) based on (20);
16: Update the weight matrices and bias using (21)-(23);
17: end for
18: Output: The probability distribution yk for each vehicle

k ∈ K.

Here, a small gap may exist between the original objective
function in (11) and the approximated objective function in
(24). However, this approximation can significantly simplify
the solution procedure for determining service mode selection
and target vehicle association. We will use simulation results
in Section IV to verify the accuracy of this approximation
process. Given (24), the problem in (11) can be rewritten as

max
α,β

E(α, β) (25)

s.t.
∑
k∈K

αkm = 1, αkm ∈ {0, 1},∀m ∈M, (25a)∑
k∈K

βkn = 1, βkn ∈ {0, 1},∀n ∈ N , (25b)∑
m∈M

αkm ≥ 0,
∑
n∈N

βkn ≥ 0,∀k ∈ K, (25c)

αkmβkn = 0,∀k ∈ K,∀m ∈M,∀n ∈ N , (25d)∑
k∈K

γS
kn(α, β) ≥ γmin,∀n ∈ N . (25e)

In (25), constraints (25d) and (25e) are non-linear. Therefore,
we need to rewrite and linearize these two constraints. For
constraint (25d), we can rewrite it as αkm + βkn ≤ 1,
which guarantees that a service provider vehicle can only
operate in either the communication mode or the sensing
mode. For constraint (25e), since a sensing target vehicle n
can only be connected with one service provider vehicle k,

i.e.,
∑

k∈K γS
kn(α, β) = γS

kn(α, β) when βkn = 1, we have
γS

kn(α, β) ≥ βknγmin.
Given the rewritten constraints (25d) and (25e), the opti-

mization problem in (24) is now given by

max
α,β

E(α, β) (26)

s.t. (25a)− (25c), (26a)
αkm + βkn ≤ 1,∀k ∈ K,∀m ∈M,∀n ∈ N , (26b)

γS
kn(α, β) ≥ βknγmin,∀k ∈ K,∀n ∈ N . (26c)

Problem (26) is a quadratically constrained programming
(QCP) problem. Thus, it can be solved by using a convex
optimization tool, such as Gurobi [34].

E. Implementation of the Proposed GNN-Based Algorithm

Next, we analyze the implementation of the GNN-based
algorithm. To implement the GNN-based algorithm for find-
ing the optimal service mode selection and target vehicle
association matrices α and β, the central controller must
first obtain the vehicle topology. The vehicle topology is
constructed based on the vehicles’ periodically reported GPS
data. Then, we need to transform the vehicle topology into the
heterogeneous graph representation. To establish the heteroge-
neous graph representation, the central controller must know
1) the path loss (i.e., the spreading loss and the absorption
loss) between each two vehicles v, v′ ∈ V to obtain the
edge feature gvv′ , and 2) the antenna direction between each
vehicle v ∈ V and each service target vehicle m′ ∈ M′ to
obtain the node feature fv . The central controller can use
channel estimation methods to learn the path loss and the
antenna direction of each pair of vehicles [43]. Based on
the heterogeneous graph representation, a GNN is used to
determine the probability distribution yk for each SPV. Given
yk, the convex optimization tool can be used to find the
optimal service mode selection and target vehicle association
matrices α and β. Since the optimization function in (26) is
convex, it will finally find the optimal α and β.

The proposed GNN-based algorithm includes an offline
training phase and an online decision making phase. A well
trained GNN model is transferred from the offline phase to the
online phase. In the offline phase, the model is trained during
the idle time of the central controller leveraging the historical
geographic locations and network topological information.
When the GNN model is well trained, a series of reasonable
weights that can accurately map an input to an output are
obtained. During the online decision making phase, the trained
weights can be directly used for generating the probability
distribution of each SPV without updating the weights of
GNNs.

F. Complexity Analysis

Next, we analyze the computational complexity of the
proposed GNN-based scheme for service mode selection and
target vehicle association optimization. The complexity of the
proposed scheme is analyzed from two parts: 1) complexity for
training GNN-based scheme and 2) complexity for inference.
The training process of the proposed GNN model is conducted
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once in the offline training phase, while the inference process
of determining the service mode of each service provider
vehicle and target vehicle association is conducted for each
vehicle topology.

1) Complexity for Training GNN-Based Scheme: The com-
plexity for training GNN-based scheme lies in computing the
graph information vector and performing multi-label classifi-
cation. The computational complexity for graph information
vector computation depends on the size of neighbor sampling
si, the number of sampling iteration I , the dimension of graph
information vector λ0, and the number of SPVs |K|. Hence,
the computational complexity for graph information vector
computation is given by O

(
λ0|K|

∏I
i=1 si

)
. According to

[44], the complexity of training a neural network depends on
its width, depth, and number of parameters. The complexity of
training hidden layer III-V to perform multi-label classification
is O

(∏J
j=3 Hj

)
, where Hj is the number of the neurons in

layer j and J is the number of hidden layers. Therefore, the
computational complexity for training GNN-based scheme is
given by

O

(λ0|K|
I∏

i=1

si

)
J∏

j=3

Hj

 . (27)

2) Complexity for Inference: The complexity for inference
lies in determining the service mode selection and target vehi-
cle association strategy based on the multi-label classification
results. To solve problem (26), the computational complexity
for determining the service mode selection and target vehicle
association matrices is O (C|K||M||N |) ≈ O (|K||M||N |),
where C denotes the number of multiplications per search
step. It can be seen that given the structure of the proposed
GNN-based model (i.e., si, Hj , λ0, and I), the complexity
of inference depends on the number of SPVs, the number
of communication target vehicles, and the number of sensing
target vehicles.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we perform extensive simulations to evaluate
the performance of our proposed scheme in a specific region
of 100 m × 100 m. The other detailed parameters are listed
in Table II [23], [24]. The GPS dataset used to generate
vehicle topologies is obtained from Shanghai Traffic Depart-
ment, which consists of ID, timestamp, latitude and longitude
information of 18,900 vehicles [45]. We first select a specific
region of 100 m × 100 m in Shanghai, which includes three
main streets, as shown in Fig. 6. Then, we collect 3,500 vehicle
topologies within this region. The time interval between two
vehicle topologies is 30 seconds. Among these 3,500 vehi-
cle topologies, 1,500 vehicle topologies are considered as a
training dataset, 1,000 vehicle topologies are considered as a
testing dataset, and 1,000 vehicle topologies are considered
as a validation dataset. For comparison purposes, we consider
three baselines. Baseline a is an exhaustive search algorithm,
which can be considered as the optimal solution for problem
(11). Baseline b is based on homogeneous graph. For a
fair comparison, Baseline b uses the same neural network

TABLE II
SYSTEM PARAMETERS

Fig. 6. Visualization of the GPS data.

Fig. 7. The sum rate as the vehicle topology varies (|K| = 5, |M| = 2,
and |N | = 2).

architecture as the proposed method, but a different graph
information extraction method given in [30], where different
types of nodes and edges are not distinguished. Baseline c
directly uses the geographic location information to optimize
service mode selection and target vehicle association scheme,
without using GNNs to extract the graph information vectors.

Fig. 7 shows how the sum of data rates of all communi-
cation target vehicles change as the vehicle topology varies.
In this figure, different indexes represent different non time-
dependent vehicle topologies. From Fig. 7, we see that the
proposed scheme improves the sum rate by up to 3.16% and
31.86% compared to baselines b and c. The 3.16% gain stems
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Fig. 8. The sum rate as the number of target vehicles varies (|K| = 5, |M|
and |N | vary from 2 to 6).

from the fact that the proposed scheme uses a heterogeneous
graph to represent a vehicle topology, hence, the impact of
different types of vehicles on service mode selection and target
vehicle association is considered. The 31.86% gain stems from
the fact that the proposed scheme uses a GNN to extract a
graph information vector for each SPV. In Fig. 7, we can also
observe that, there is only a small performance gap between
the proposed scheme and baseline a, which verifies the high
approximation accuracy of (26).

Fig. 8 shows how the sum of data rates of all communication
target vehicles changes as the number of communication and
sensing target vehicles varies. From this figure, we can see
that, as the number of communication and sensing target
vehicles increases, the sum of data rates of all communication
target vehicles increases since more communication links are
established. Fig. 8 also shows that, compared to baselines b
and c, the proposed scheme can achieve up to 2.94% and
35.45% gains in terms of the sum rate of all communication
target vehicles. The 2.94% gain stems from the fact that the
proposed scheme considers the use of heterogeneous GNNs
to extract geographical location information and topological
information from different types of vehicles. The 35.45% gain
stems from the fact that the proposed scheme determines
the target vehicle association based on the learned graph
information vector and hence, it optimizes target vehicle asso-
ciation while considering all vehicle’s location, connection,
and communication interference. Fig. 8 also shows that the gap
between the proposed scheme and baseline a is less than 7%.
This indicates that the proposed GNN-based scheme enables
the trained GNN to adapt to different vehicle topologies with
different number of vehicles.

Fig. 9 shows how the sum of data rates of all communication
target vehicles changes as the number of SPVs varies. From
this figure, we can see that, as the number of SPVs increases,
the sum of data rates of all communication target vehicles
increases. This is due to the fact that the increase of the number
of SPVs makes more SPVs available for communication target
vehicles to select. In consequence, the communication target
vehicles are more likely to select the SPVs with an appropriate
direction and distance. Fig. 9 also shows that, compared to
baseline c, the proposed scheme can achieve up to 36.45%

Fig. 9. The sum rate as the number of SPVs varies (|M| = |N | = 2 and
|K| varies from 5 to 9).

Fig. 10. The classification accuracy as the number of target vehicles varies
(|K|=5, |M| and |N | varies from 2 to 4).

gain in terms of sum rate. This is because the proposed
algorithm considers both geographical location information
and topological information. In Fig. 9, we can also see that
the proposed scheme can achieve up to 2.06% gain in terms
of sum rate compared to baseline b. This is due to the fact
that the proposed algorithm uses heterogeneous GNN to learn
the information of different types of vehicles.

Fig. 10 shows how the classification accuracy changes as
the number of communication and sensing target vehicles
varies. From this figure, we can see that, as the number
of communication and sensing target vehicles increases, the
classification accuracy resulting from all considered algorithms
decreases. This is due to the fact that each SPV may now
serve more target vehicles simultaneously. As the number
of target vehicles increases, the interference among differ-
ent vehicles increases and the connections among different
vehicles become more complicated. Fig. 10 also shows that,
compared to baseline c, the proposed scheme can achieve
up to 46.77% gain in terms of classification accuracy. The
reason is that the proposed scheme use GNNs to extract the
graph information vectors, which can capture the location,
connection, and interference information between vehicles.
In Fig. 10, we can also see that the proposed scheme can
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Fig. 11. The training loss as the number of training iterations varies.

Fig. 12. The sum rate as the number of communication target vehicles varies
(|K| = 7, |N | = 2, and |M| varies from 3 to 7).

Fig. 13. The sum rate as the number of target vehicles varies (|K| = 5,
|M| and |N | vary from 2 to 6).

achieve up to 4.05% gain in terms of classification accuracy
compared to baseline b. This is due to the fact that the
proposed scheme uses separate weight matrices for each type
of vehicle, hence, the graph information vectors of different
types of vehicles can be better represented.

In Fig. 11, we show how the training loss changes as the
number of training iterations varies. From Fig. 11, we see that,
as the number of training iterations increases, the training loss
of all considered learning algorithms decreases first and, then
remains unchanged. The fact that the training loss remains
unchanged demonstrates the convergence of the GNN-based

Fig. 14. Impact of the graph information vector dimension λ0.

algorithm. From Fig. 11, we can also see that the proposed
scheme can reduce training loss by 43.17%, compared to
baseline b. This is due to the fact that the proposed scheme
uses different weight matrices (e.g., w2, w3 and w4) for
different type of vehicles, and hence, better graph information
vectors can be learned.

In Fig. 12, we show how the sum of data rates of all
communication target vehicles changes as the number of
communication target vehicles varies. From this figure, we see
that, as the number of communication target vehicles increases,
the gap between the proposed scheme and baseline b increases.
In particular, the proposed algorithm can improve the sum rate
of all communication target vehicles by up to 7.75% compared
to baseline b when the number of SPVs, communication
target vehicles, and sensing target vehicles in the network
are |K| = 7, |M| = 7, and |N | = 2, respectively. This
is because the vehicle topology is more complicated as the
number of communication target vehicles increases. Therefore,
homogeneous GNN-based algorithms may not be able to fully
extract the graph information from complex vehicle topolo-
gies. Compared to a homogeneous GNN-based algorithm,
the proposed heterogeneous GNN-based algorithm can extract
more vehicle topology features since it uses different weight
matrices to represent the features of different type of vehicles.

Fig. 13 shows how the sum of data rates of all communica-
tion target vehicles changes as the number of communication
and sensing target vehicles varies. Fig. 13 shows that the pro-
posed scheme can achieve up to 19.76% gains in terms of the
sum rate of all communication target vehicles compared to the
CNN-based method. This is because the proposed scheme can
capture the graph information related to vehicle connection,
communication interference, and sensing interference of each
vehicle.

Fig. 14 shows how the classification accuracy changes as the
dimension of graph information vector varies. From Fig. 14,
we can see that, as the dimension of graph information vector
increases, the classification accuracy increases since better
heterogeneous graph representation can be learned. However,
as the dimension of graph information vector continues to
increase, the performance of all considered algorithms are
stabilized. For example, in Fig. 14, all considered algorithms
reach the best performance when the dimension of graph
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Fig. 15. Visualization of service mode selection and target vehicle association strategy obtained by the proposed method.

information vector λ0 is 64, and then the performance becomes
stable or even slightly worse. This is due to the fact that, the
trained GNN model will be over fitted when the dimension of
graph information vector becomes too large.

Fig. 15 is a visualization of using our proposed method
for determining the mode of service provider vehicles and
target vehicle association. In this figure, the blue, yellow,
and green points refer to SPVs, sensing target vehicles, and
communication target vehicles, respectively. From Fig. 15(a),
we can see that the target vehicles do not necessarily select the
geographically closest SPV. For example, in Fig. 15(a), sensing
target vehicle n1 selects SPV k2 instead of its geographically
closest SPV k4. This is because the sensing link between
vehicle k4 and vehicle n1 will cause interference to the
communication link between vehicle k1 and vehicle m1. From
Fig. 15(b), we can also see that if the geographical locations
of two target vehicles are close to each other, an SPV is more
likely to provide services for both of them simultaneously.
For example, SPV k1 provides communication services to
communication target vehicles m1 and m2 at the same time.
Fig. 15(c) shows that a sensing target vehicle prefers to select
an SPV which can provide a sensing link that is orthogonal
to communication links. For example, sensing target vehicle
n1 selects SPV k1 instead of SPVs k4, k5. This is because
the directions of the communication link k2 → m1 and
the sensing link k1 → n1 are nearly orthogonal and hence,
the interference between communication link k2 → m1 and
sensing link k1 → n1 can be minimized.

V. CONCLUSION

In this paper, we developed a novel framework that uses
THz for joint communication and sensing in vehicular net-
works. Our goal was to maximize the sum of data rates of
all communication target vehicles while satisfying the sensing
service requirements of all sensing target vehicles. To this end,
we formulated an optimization problem that jointly consid-
ers service mode selection, target vehicle association, THz
channel features, and dynamic vehicle topologies. To solve
this problem, we developed a novel heterogeneous GNN-
based scheme, which can effectively find the strategy of
service mode selection and target vehicle association. The
proposed scheme enables the trained GNN to quickly adapt
to dynamic vehicle topologies with various vehicle types.
Simulation results showed that, compared with the baseline

methods, the proposed method can achieve significant gains
in terms of the sum rate of all communication target vehicles.
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