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Respiration Monitoring With RFID in Driving
Environments
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Abstract— To improve driving safety and avoid accidents
caused by driving fatigue, drowsiness detection aims to alarm
the driver before he/she falls asleep. Since breathing rate is a
key indicator of the drowsy state, respiration monitoring in the
noisy driving environment is critical for developing an effective
driving fatigue detection system. In this paper, we propose, for
the first time, an RFID based respiration monitoring system for
driving environments. The system estimates the respiration rate
of a driver based on phase values sampled from multiple RFID
tags attached to the seat belt, while exploiting the tag diversity
to combat the strong noise in the driving environment. Both
tensor completion and tensor Canonical Polyadic Decomposition
(CPD) are applied to process the phase values, to overcome
the influence of frequency hopping, random sampling, vehicle
vibration, and other environmental movements. The proposed
system is analyzed and implemented with commodity RFID
devices. Its accurate and robust performance is demonstrated
with extensive experiments conducted in a real driving car.

Index Terms— Radio-frequency identification (RFID), respira-
tion monitoring, tensor decomposition, driving environment.

I. INTRODUCTION

VEHICLES play a critical role in our society. With the
drastic increase of the number of vehicles as well as

driving time, driving safety has become ever more important
than before. Driving fatigue is one of the primary causes of car
accidents, which takes many lives every year [1]. It has been
reported that there are on average 6 million car accidents in the
U.S. every year [2], and more than 90 lives are lost every day.
Such car accidents could be effectively avoided and human
lives could be saved, if drivers are warned when they become
sleepy. Drowsy driving can be indicated by multiple features
of the driver, such as eyelid movements, driving movements,
and human vital signs. Among various types of vital signs,
respiration rate is a useful indicator of driver’s fatigue state.
It has been shown that the breathing rate usually decreases
notably (i.e., for about 3 breaths per minute (bpm)) before
the driver falls asleep [3]. Thus, accurately monitoring the
respiration of the driver is a promising way, and the first step,
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to prevent drowsy driving. However, respiration monitoring
for drivers is challenging, due to the highly strong noises
in the driving environment, such as vehicle vibration and
movements of the driver and passengers. Several techniques
have been proposed for respiration monitoring using different
types of signals, including video, ultra sound, and RF signals.
Vision based methods detect respiration by analyzing the chest
movements captured by a video camera [4], but it may not
work well when lighting is poor (e.g., driving at night) and
may raise privacy concerns. RF signals, such as WiFi [5] and
UWB radar [6], have also been exploited, with the advantage
of not requiring sufficient lighting inside the vehicle. However,
due to the mutipath effect, such non-invasive RF sensors may
be easily affected by the movements of driver and passengers.
Recently, ultra sound signals generated by smartphones have
been considered in [7]. Acoustic signals are shown to be
effective to capture the human breathing signal [8], but as
RF signals, they are also sensitive to the strong noises in the
driving environment.

To this end, radio frequency identification (RFID) provides
a promising alternative solution. RFID based sensing has
become a hot problem area recently. Unlike other contact-
free sensors, RFID tags are much cheaper and can be easily
attached to the target object. As a near-field communication
technology, it is more robust to surrounding noises. However,
to exploit commodity RFID (rather than customized hard-
ware) for respiration monitoring, many challenges should be
addressed. For example, frequency hopping, as required by
the Federal Communications Commission (FCC), causes large
phase offsets, making received phase data useless. With the
Slotted ALOHA medium access control protocol, the tags
are sampled randomly, and it is common that the readings
from the same tag are sparse (many are missing). There have
been several recent works employing RFID for respiration
monitoring [9]–[11], but all the existing schemes work in
a static indoor environment. The strong interference from
the driving environment prevents their application for driver
respiration monitoring.

In this paper, we address the above challenges with novel,
effective solutions, and propose an RFID based respiration
monitoring system for the driving environment. Specifically,
we propose to attach multiple tags to the driver’s seat belt,
which allow us to exploit the tag diversity. Although the
same respiration signal is sampled by all the tags, the reader
collected data is of high diversity as resulted from the multiple
independent sampling. We also develop an effective tensor
completion technique to mitigate the effect of frequency
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hopping and random sampling. The recovered phase difference
by tensor completion helps to combat the effect of vehicle
vibration and driver/passenger body movements. Finally we
apply tensor Canonical Polyadic Decomposition (CPD) to
separate the small respiration signal from strong noises. The
idea of increasing the dimension of data is essential to detect
the weak respiration signal from noisy and sparse samples.

Specifically, we first provide an analysis of the sampled
phase data that is used in the proposed system, and investigate
the impact of frequency hopping offset as well as the chal-
lenges of respiration monitoring in driving environments. The
proposed system is designed with several novel components
to address these challenges, including data collection, data
preprocessing, CPD, and respiration signal estimation. With
multiple tags attached to the seat belt, the breathing signal
can be effectively embedded in the phase data captured by the
reader. However, the sampled phases are sparse due to random
sampling, and are greatly distorted by channel hopping, vehi-
cle vibration, and body movements. To combat such noises,
we propose a High Accuracy Low Rank Tensor Completion
(HaLRTC) based technique to estimate the phase difference
between each pair of tags in each time slot, and to eliminate
the frequency hopping effect simultaneously [12]. To extract
a clean breathing signal, we leverage a CPD based technique
to decompose the tensor data constructed by the previous
estimated phase difference. Finally, the breathing signal is
recovered from decomposed tensor data, and the breathing rate
can be estimated with a peak detection algorithm.

The main contributions of this paper are summarized below.

• To the best of our knowledge, this is the first work
on respiration monitoring in driving environments using
commodity RFID reader and tags.

• We propose a tensor completion technique to recover
missing readings in collected phase data, and a tensor
decomposition approach to extract the respiration signal
of the driver from phase values sampled from multiple
RFID tags. The proposed techniques are effective in com-
bating the strong noises caused by frequency hopping,
random sampling, vehicle vibration, and other movements
in the driving movement.

• We develop a prototype system with commodity RFID
devices and test the system in real driving environments.
Extensive experiments are conducted to evaluate the
system performance in various driving scenarios, such
as parked, in city streets, and on a highway, and sys-
tem configurations, where a highly accurate and robust
performance is demonstrated.

In the following, we review related work in Section II and
present the preliminaries and system overview in Section III.
The detailed system design is introduced and analyzed in
Section IV. We present our experimental performance eval-
uation in Section V and conclude this paper in Section VI.

II. RELATED WORK

This work is closely related to RF based vital sign moni-
toring and RFID based sensing. We mainly review these two
classes of systems in this section.

RF based health sensing systems have been developed
that employ Radar, WiFi, and RFID techniques. Radar based
vital sign monitoring systems include frequency modulated
continuous wave (FMCW) radar [13] and Doppler Radar [14].
However, they usually require customized hardware and oper-
ate over a wide spectrum. WiFi based systems mainly use
received signal strength (RSS) and channel state information
(CSI). For example, UbiBreathe [15] and mmVital [16] utilize
WiFi RSS at 2.4 GHz and 60 GHz, respectively. To improve
accuracy, CSI based systems leverage the amplitude or phase
difference information of CSI for estimating single or multiple
persons’ breathing and heart rates [17]–[20]. Moreover, several
bimodal CSI data based systems have been proposed to tackle
the weak breathing signals at some special positions [21]–[23].

Recently, several RFID based breathing monitoring systems
have been proposed. For example, RFID tags have been used
for breathing rate estimation in [9], breathing and heart rates
estimation in [24], and breathing monitoring and sleeping
posture recognition in [25]. Furthermore, the RF-ECG system
is proposed for heart rate variability assessment using an
RFID tag array [26]. To mitigate the frequency hopping
offset in FCC-compliant RFID systems, the AutoTag system
is proposed for breathing monitoring and apnea detection with
a variational autoencoder [10], [11]. However, these existing
systems are designed for the indoor, static environment; they
may not be effective in the highly dynamic, highly noisy
driving environment.

Recently, WiFi based [5], acoustic based [7], and UWB
based [6] systems have been developed for breath monitoring
in driving environments. In fact, these existing systems are
sensitive to the environmental interference, such as the body
movements of the driver himself/herself and of the passengers,
due to their relatively large transmission ranges.

In addition to vital sign monitoring, RFID tags have also
been applied for many other applications, such as indoor
localization [27], [28], user authentication [29], material iden-
tification [30], object orientation estimation [31], vibration
sensing [32], anomaly detection [33], and drone localization
and navigation [34], [35]. To overcome the low accuracy when
RSS values are used [36], recent works are mainly focused
on the phase for indoor localization, which can be used to
derive the distance and direction of arrival (DOA). To solve the
phase ambiguity problem, synthetic aperture radar (SAR) [37]
and the hologram techniques [27], [38] are proposed. The
RFind system estimates time-of-flight with a special hardware
to achieve high localization precision [39].

This work, to the best of our knowledge, is the first to
apply RFID based sensing for monitoring breathing signals in
a driving environment. The proposed system consists of novel
and effective solutions for noise and movement interference
removal and breathing signal separation. The tensor based
approach in this work has been analyzed and proven to be
effective for the noisy driving environment.

III. CHALLENGES AND SYSTEM OVERVIEW

A. Phase of the RFID Signal

To detect the breathing signal from received phase values
from multiple RFID tags, we should firstly know how these
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phase samples are collected by the RFID reader. In RFID
systems, phase information is one type of low level data,
which is collected when the RFID reader receives the Elec-
tronic Product Code (EPC) from interrogated tags. When the
multipath effect is negligible, the measured phase sample can
be written as [40]

ϕ = mod (2π(2D) · f/c + ϕtag + ϕT + ϕR, 2π) , (1)

where D is the distance between the sampled RFID tag and the
reader antenna, f is the frequency of the currently occupied
channel, and c represents the speed of light. Moreover, ϕtag ,
ϕT , and ϕR are the additional phase rotation for the tag,
the transmitter, and the receiver, respectively. These additional
phase rotations are mainly caused by the circuits in the reader
and tag hardware. Furthermore, different reflection character-
istics of these devices also contribute to the phase distortion.

This model implies that we could use phase values to detect
the changes in the distance between the antenna and the tag.
When the tag is attached to the human chest, the phase changes
are indicative of the breathing signal. However, in addition to
D, the other parameters, i.e., f , ϕtag , ϕT , and ϕR, are all
susceptible to the current channel used by the reader. Thus,
the measured phase value will have a different phase offset
when the system hops to a new channel. Following FCC
regulations, the Ultra-High Frequency (HUF) RFID system
should hop among 50 channels within 10 seconds, so the
sampled phase data will be heavily corrupted by frequency
hopping. The frequency hopping effect poses a big challenge
for extracting the respiration signal.

B. Respiration Monitoring in Driving Environments

To capture the respiration of a driver, we attach RFID tags
on the seat belt, as illustrated in Fig. 1. Since the seat belt is
bonded on the driver’s body, it (and the tags) moves along with
the rise and fall of the chest. Such movements are carried in
the sampled phase values of each tag (see (1)), which will be
captured by the RFID reader placed on the ceiling above the
driver seat. A big challenge is that, the seat belt/tag movements
are no only caused by breathing, but also affected by other
environmental factors in the car.

Fig. 1 presents the sampled phase signal from a single RFID
tag collected in different scenarios. For better illustration, the
plotted phase data has already been preprocessed by removing
the frequency hopping effect (to be discussed in Section IV-
A). Theoretically, without the influence of channel hopping,
the phase samples should exhibit the periodicity of human
respiration. In fact, the collected phase signal, when the car
is parked, exhibits strong periodicity. However, the sampled
phase values in a moving vehicle, as shown in the second
subplot in Fig. 1, are highly random, i.e., far from a periodic
signal. This is because that respiration monitoring in a driving
environment is very different from other respiration monitoring
scenarios, in which the user is usually in a relative stable
state, such as sleeping or sitting [10], [11], [19], [41]. This
assumption does not hold true in driving environments. First,
the vehicle vibrates when moving fast on the road, which
makes the seat belt vibrate along with the car. Second, drivers

Fig. 1. Illustration of the respiration monitoring mechanism.

do not remain completely still. For example, the arms move
when the driver turns the steering wheel, and the head moves
when the drive looks around to check traffic conditions,
which will cause additional movements to the tags. Such
environmental movements also cause time-varying multipath
interference by reflecting the RFID signal. Accordingly, how to
mitigate the impact of vehicle vibration and body movements
poses another challenge (in addition to frequency hopping),
to be addressed in our system.

C. System Architecture Overview

To overcome the above challenges, we develop a tensor
based breath monitoring system with an architecture shown
in Fig. 2. The proposed system consists of four modules,
including data collection, breathing data preprocessing, tensor
decomposition, and respiration signal estimation.

In the data collection module, the reader keeps on interro-
gating the RFID tags attached to the seat belt and collect-
ing phase samples from each tag. The data preprocessing
module is to remove the channel hopping offset and to
mitigate the noise from the driving environment. Since the
raw phase data is corrupted by frequency hopping, it cannot be
directly employed for breathing signal extraction. Fortunately,
the phase variation within each individual channel is not
affected by channel hopping; this fact is leveraged in our
system to recover the phase data for a certain channel (see
next section). Vehicle vibration mitigation is accomplished by
calculating the recovered phase difference between a pair of
tags. Since the vibration has a similar impact on the two tags,
subtracting the phase data from the two tags can effectively
mitigate the vehicle vibration noise. However, the challenge
is that, the phase data is not sampled simultaneously from all
the tags; there is only one phase reading from one of the tags
in each time slot. To calculate the phase difference between
two tags in each time slot, the missing phase sample(s) in the
same time slot should be accurately estimated. To this end,
we leverage a compressed sensing technique named HaLRTC
to estimate the missing phase data [12], so that we can
calculate accurate phase difference for each pair of tags.
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Fig. 2. Architecture of the proposed system.

Next, we hankelize all calculated phase difference values
to construct a tensor for the following tensor decomposition
module. After the phase difference tensor is constructed,
we leverage CPD to extract the components related to driver’s
respiration. Finally, we recover the respiration signal of the
driver by fusing all breathing related components and estimate
the breathing rate with a peak detection algorithm. The system
design will be elaborated and analyzed in the next section.

IV. SYSTEM DESIGN AND ANALYSIS

A. Combating Frequency Hopping Offset

The FCC regulation requires frequency hopping for UHF
RFID systems. The phase offset generated by frequency hop-
ping should be firstly removed in signal preprocessing. We
rewrite (1) for the phases sampled from the 50 channels as

ϕ = mod (4πDfK/c + ϕK , 2π) , K = 1, 2, . . . , 50, (2)

where K is the channel index, fK represents the frequency of
channel K , and ϕK is the sum of ϕtag , ϕT and ϕR, because all
these values are irrelevant to D but are affected by frequency
hopping. From (2), we can see that the phase offset due to
channel hopping is actually caused by fK and ϕK .

Several techniques have been proposed to remove the effect
of these two factors. For example, in AutoTag [10], the phase
offset between two adjacent channels is estimated by the
difference between the mean value near the end of the previous
channel and that at the beginning of the next channel. This
technique achieves a very good performance when the number
of interrogated RFID tags is no more than 3. However, as the

number of tags is increased, it would be hard to guarantee that
enough samples can be collected from all the tags, which are
needed for calculating the mean values. In addition, Tagyro
leverages a full channel scan and calibration to measure ϕK

in each channel [31]. The technique is suitable for RFID
systems with more tags. In a driving environment, however,
the estimated ϕK could be greatly affected by vehicle vibration
and driver’s body movement.

Since our system needs to interrogate at least 4 tags for tag
diversity (see Section IV-B), we propose a novel approach to
remove the channel hopping effect. If we subtract the sampled
phase ϕn from the previous sampled phase ϕn−1, given in (2),
we can obtain the nth phase variation on channel K as

vn = 4πfK(Dn − Dn−1)/c, (3)

where vn represents the phase variation between the current
and the previous phase sample, Dn is the antenna-tag distance
in the nth sample. We find that the phase variations on
the same channel are not related to the initial phase offset
ϕK . With (3), we can easily translate the variations from all
channels to a reference channel R by multiplying a factor
fR/fK . In fact, the reference channel can be any one of the
50 channels. In our system, we set R = 1 to make channel
1 the reference channel for convenience. However, when the
nth sample and the (n − 1)th sample are not from the same
channel, Eq. (3) should be updated as

vn = 4π(fKDn − fK−1Dn−1)/c + ϕK − ϕK−1. (4)

Eq. (4) shows that when two adjacent phase samples are
not collected from the same channel, the phase variation is
still affected by the initial phase offsets of the two different
channels. To mitigate the frequency hopping offset, we should
drop these distorted phase variations. Fortunately, since only
a single phase variation is affected once the system hops to a
new channel, most of the remaining data are still usable. Such
results are illustrated in Fig. 3. We calculate the phase variation
from the raw, sampled phase data, and delete the distorted
phase variations when hopping to a new channel. It can be
observed that although the phase is corrupted by frequency
hopping (the upper plot), the phase variation is confined within
[−0.15 rad, 0.1 rad]. This result shows that most of the phase
variations are not affected by channel hopping.

B. Recovering Phase for Each Time Slot

To combat vehicle vibration, we propose to leverage the
phase difference between two tags. However, following the
Gen2 protocol [40], when one tag is sending its EPC to the
reader, all other tags should remain silent to avoid collision.
The random sampling details are illustrated in Fig. 4, which
shows the phase data sampled by the reader from multiple tags.
A colored square indicates that a valid phase value is sampled
from the tag, a blank square means the tag is not sampled in
that time slot, and all the same colored squares are sampled
from the same channel. Because the entire transmitting process
is based on slotted ALOHA, the tags are sampled randomly.
That is, phase can be collected from only one tag in each time
slot, and the sampling interval for each tag is random.
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Fig. 3. Raw phase and the filtered phase variation signal.

Fig. 4. Slotted ALOHA based random sampling in RFID systems.

Because calculating phase difference between two tags
requires to sample phase data from both tags in the same time
slot, we need to estimate the missing phase data of all tags
in every time slot, i.e., the blank squares in Fig. 4. Several
compressed sensing approaches have been shown to achieve
a good performance on recovering the missing RFID phase
data [42], [43], where the number of deployed tags are less
than 3. For example, in [42], a missing phase is estimated
from neighboring sampled phase values with a Blackman
window, where a pair of tags are used. However, these existing
techniques are not suitable for our system, where more tags
are deployed. When there are more tags, the sparsity of data
becomes higher, thus resulting in a lower recovering accuracy.

Tensor completion is another powerful tool of compressed
sensing, which has been adopted to recover missing data in
RFID systems in our recent work [44]. We propose a tensor
completion based method to recover the phase sequences for
all tags in every time slot. Rather than directly recovering the
phase sequence as in [44], we recover the sequence of phase
variation for each tag, and then calculate phase by integrating
the recovered phase variation. This is motivated by the fact that
phase variation is not affected by frequency hopping, as proven
in Section IV-A.

We first define the ideal matrix we aim to recover, given by

VT
.=

⎡
⎢⎢⎢⎣

v1t1 v1t2 v1t3 . . . v1tn

v2t1 v2t2 v2t3 . . . v2tn

...
...

...
...

...
vmt1 vmt2 vmt3 . . . vmtn

⎤
⎥⎥⎥⎦, (5)

where m is the tag index, tn is the nth time slot, and vmtn

is the real phase variation of tag m at time tn. Due to
slotted ALOHA, only one value in each column of VT can
be sampled. The goal is to estimate a matrix V̂T , such that
V̂T ≈ VT , based on collected sparse samples. We first build
a sampled matrix V̄T , which is of the same size as VT , but
all the missing data elements are set to 0. We then filter out
thermal noise from the phase variation signal using a low-
pass filter with a 15 Hz cutoff frequency, and map the signal
to the sampled elements in V̄T . Moreover, all the distorted
phase variations in V̄T that satisfy (4), are also set to 0 (i.e.,
dropped) to avoid the influence of frequency hopping.

In the proposed system, 4 to 8 tags are attached to the
seat belt and the frequency of time slots is about 220 Hz,
which means the sparsity of V̄T is higher than 75%, and
the number of columns is much larger than the number of
rows. Because of the high sparsity and the limited number
of rows, the traditional singular value decomposition (SVD)
based matrix completion method would not be effective for
such V̄T , Therefore, we transform the data into a tensor form
and apply tensor completion to estimate the missing data.
Specifically, we reshape each row into a generalized Hankel
matrix as the frontal slice of the tensor, which has the same
format of Hankel matrix but is not square. The sparse matrix
V̄T is thus transformed into a tensor, given by

V̄(:,:,m)
.=

⎡
⎢⎢⎢⎣

vmt1 vmt2 . . . vmt(n−r+1)

vmt2 vmt3 . . . vmt(n−r+2)

...
...

...
...

vmtr vmt(r+1) . . . vmtn

⎤
⎥⎥⎥⎦, (6)

where r denotes the number of rows of the generalized Hankel
matrix. Note that a large row number in Hankelization will
lead to high complexity, while a small number of rows (i.e.,
less than 10) could considerably affect the recovering accuracy.
Thus, we set r = 20 in our system (see Section V-B.6).

Since thermal noise is filtered before tensor construction,
the ideal tensor V , which is constructed by the ideal phase
variation matrix VT , can be considered as low rank data. Thus,
V can be estimated from the sampled sparse tensor V̄ by low-
rank tensor completion, which is accomplished by solving the
following optimization problem [45]:

min
V̂

‖V̂‖∗, s.t. Ω ∗ V̂ = Ω ∗ V̄ , (7)

where V̂ is an estimate of the ideal tensor V , and Ω is a
tensor of 0 and 1 elements, where Ωijk = 1 when V̄ijk is
sampled, and Ωijk = 0 otherwise. ‖.‖∗ denotes the trace norm
of tensor [45]. We adopt the HaLRTC algorithm for tensor
completion, which can solve the optimization problem (7) with
the Augmented Lagrange Multiplier Method (ADMM) [12].
Compared with other tensor completion algorithms, HaLRTC
usually achieves a higher accuracy at an acceptable complex-
ity. A comparison of HaLRTC and a classic matrix completion
method on phase variation recovery is shown in Fig. 5.

To make the comparison, we interrogate a single tag for
10 s, and repeat for 5 times as if there were 5 virtual tags.
Since there is only one tag being interrogated each time, no
data will be missing in VT . We thus obtain the ideal phase
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Fig. 5. Recovered signals using HaLRTC and Matrix Completion.

variation data VT as ground truth, and then remove some
elements in VT according to the slotted ALOHA protocol
to obtain V̄T . The remaining elements used for recovery are
marked with � in Fig. 5. Since there are 5 virtual tags in
the emulated data, the sparsity is higher than 80%. Fig. 5
shows the first 500 samples recovered by tensor completion
and matrix completion, respectively. It can be seen that the
recovered signal by HaLRTC is very similar to the original
signal, while the recovered signal by matrix completion is
not good. Many values recovered by matrix completion are
still very close to 0. This is because there are only 5 rows
in V̄T , but the number of columns is now 500. SVD based
matrix completion cannot obtain sufficient singular values for
accurate estimation. In contrast, although tensor completion
also requires singular values for estimation, the unfolding
process can provide a sufficient matrix size for decomposing
singulars values.

Once V̂T is successfully recovered by HaLRTC, we can eas-
ily recover the phase sequence of each tag for all time slots by
integrating the corresponding phase variations. Furthermore,
the recovered phase data will not be affected by frequency
hopping, because all the distortion related phase variations are
deleted when building V̄T .

C. Dealing With Vehicle Vibration and Body Movements

Interference caused by vehicle vibration and body or envi-
ronment movements is another big challenge for breath mon-
itoring in driving environments, which should be mitigated
before tensor decomposition. The driving movement could
have different impacts for different tags, because the tags
are deployed at different parts of the seat belt. Fortunately,
most of the driving related body movements are not fast,
and the resulting interference can be considered as a direct
current (DC) component (with frequencies around 0) in the
recovered phase signal. We thus apply a Hampel filter with a
windows size of 3 s and a threshold of 0.001 to extract the
DC component and then subtract it from the original signal.

The filtered signals from 4 tags are illustrated in Fig. 6.
We find that the DC components are successfully removed,
but the respiration signal is still hard to see. This is because
the phase signals are also influenced by vibration of the

Fig. 6. Recovered phase after DC removal.

Fig. 7. Phase difference for each pair of RFID tags.

moving vehicle. The noise generated by vibration is hard to
be estimated, because both strength and frequency of the noise
are related to road conditions and speed of the car.

However, since all the tags are attached to the seat belt,
the noise generated by vibration has a similar effect on them.
With filtered recovered phase variation signal, we can obtain
the phase difference for each tag pair in each time slot. The
resulting phase difference is plotted in Fig. 7, where most
phase difference curves exhibit strong periodicity, meaning the
influence of vibration has been effectively mitigated.

D. CPD Based Respiration Signal Separation

1) Tensor Data Construction With Hankelization : Extract-
ing a clean respiration signal from the calibrated phase differ-
ence data for different tag pairs, as shown in Fig. 7, is still
challenging, because the periodicity strength of different tag
pairs could vary with the movements of the driver and in the
driving environment. It means no such tag pairs that could
always reveal the highest periodicity, and the worst pairs
could have no periodicity in the estimated phase difference.
Some traditional signal processing techniques, such as discrete
wavelet transform (DWT), can extract the respiration signal
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Fig. 8. Flow-chart of the CPD based respiration extraction method.

from the signal with sufficient periodicity, but the performance
could be poor when DWT is applied to noisy signals.

However, since the respiration signal captured by phase
difference is the same for all tag pairs, each phase difference
sequence can be considered as the same respiration signal
corrupted by different noises. Rather than employing signal
processing techniques for each individual tag pairs, we can
analyze the entire group of estimated phase difference data.
Tensor decomposition is widely used to separate a corre-
lated signal from multiple datasets [19], [46]. For example,
in TensorBeat [19], CPD is used to separate multiple breathing
signals from WiFi phase difference data. We can decompose
the breathing signal from noises in driving environments using
a CPD tensor decomposition method. The detailed process of
respiration signal extraction is shown in Fig. 8.

As Fig. 8 shows, the respiration signal is extracted from the
separated signals from CPD, so that the breathing rate could
be estimated based on the interval of the detected signal peaks.
Before decomposing the data with CPD, we transform the
phase difference matrix into a tensor structure, by reshaping
each phase difference sequence into a generalized Hankel
matrix. Hankelization is essential before CPD decomposition
is applied, because its special structure helps to separate
a periodic signal (i.e., the breathing signal) from the data.
We summarize the relationship between periodic signals and
the proposed Hankel matrix in Theorem 1. The proof is
provided in Appendix A.

Theorem 1: If the generalized Hankel matrixH with r rows
is constructed from a sinusoidal wave with length n, it can be
decomposed as: H =

∑2
i=1 αi · βT

i , where both αi ∈ R
r,1

and βi ∈ R
(n−r+1),1 represent sinusoidal signals with the

same frequency as the original signal.
Theorem 1 provides the theoretical underpinning for esti-

mating respiration rate from the generalized Hankel matrix
derived from the phase difference sequence. It also determines
the number of sinusoidal components to be decomposed from
the generalized Hankel matrix. In our system, we build the
generalized Hankel matrix with 30 s of data and leverage 10 s
of data to build each column of the matrix. This is because
10 s of data can guarantee that at least one full period of the
breathing signal can be decomposed in αi.

2) CPD Based Breathing Signal Separation : With the ten-
sor constructed by Hankelization, denoted by Γ, the respiration
signal can be separated from noise by applying CPD, which

decomposes the tensor into a sum of the outer products of
three vectors as [47]

Γ ∈ R
I,J,K ≈

M∑
m=1

�am ◦�bm ◦ �cm, (8)

where M is the tensor rank used for CPD, which also indicates
the number of components in the decomposition result; �am,
�bm, �cm are the vectors at the mth position for the three
dimensions, respectively. We have �am ∈ R

I,1,�bm ∈ R
J,1,

�cm ∈ R
K,1, and (�am ◦�bm ◦ �cm)(i, j, k) = �am(i)�bm(j)�cm(k),

for all i, j, k. According to the definition of outer product,
we can construct the matrix from the vectors for each dimen-
sion. For example, matrix A is defined as [�a1,�a2, . . . ,�aM ],
and matrices B and C are defined similarly with �bm and �cm,
respectively. The process of CPD is implemented by solving
the following optimization problem.

min
A,B,C

‖Γ −
M∑

m=1

�am ◦�bm ◦ �cm‖2
F . (9)

Although the above problem is not convex, CPD leverages the
Alternating Least Squares (ALS) algorithm to optimize one
matrix while fixing the other two. With the ALS algorithm, the
optimization problem can be reduced to a linear least squares
problem, and the three matrices can be finally estimated.

In CPD, the number of components M should be prescribed,
which is determined by the target signal and the uniqueness of
the decomposition. Thus, we propose Theorem 2 to determine
the range of M , which is proved in Appendix A.

Theorem 2: The tensor rank used for CPD in the proposed
system should satisfy 2 � M � 4 and the CPD is unique.

The noise in the tensor is usually considerably large in
driving environments (i.e., much larger than the respiration
signal). Some other noise components could also be decom-
posed. To separate noise and precisely extract the respiration
signal, we set M = 4 for CPD. The decomposed matrix B
is illustrated in Fig. 9. We can see that two sinusoidal signals
with the same period are decomposed by CPD (i.e., the 3rd
and 4th components), while the other components (i.e., the first
and 2nd components) are for the residual noise after data
preprocessing.

E. Breathing Rate Estimation

With the respiration signal separated by CPD, we can
estimate the breathing rate using a peaks detection algorithm.
However, we still need to differentiate the periodic signal
from all decomposed signals before we estimate the breathing
rate. Thus, we leverage a frequency spectrum based method
to figure out which decomposed signal is for the breathing
signal. We first calculate the proportion of the power spectrum
between 0.2 Hz and 0.5 Hz in the frequency domain, which
is the range of normal human breathing. Then, we search for
the two signals with the first two largest proportions and fuse
them to obtain the final breathing signal. The fused signal is
illustrated in Fig. 10. It can be seen that the respiration signal
is precisely extracted and the noises from vehicle vibration
and other movements in the driving movement are effectively
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Fig. 9. Decomposed signals by CPD.

Fig. 10. Signal fused by all breathing related components.

removed. The intervals τ between each pair of adjacent peaks
are calculated and the breathing rate F is determined by the
average interval τave as F = 60/τave.

V. SYSTEM PERFORMANCE EVALUATION

A. Experiment Configuration

To evaluate the performance of our respiration monitoring
system in the driving environment, we implement a prototype
system with an Impinj R420 reader equipped with a polarized
antenna S9028PCR.1 The setup up of the system is illustrated
in Fig. 11. As the figure shows, multiple ALE-9470 RFID
tags are attached to the seat belt of the driver. The size of
the polarized antenna utilized in the system could be smaller,
because many small-sized antennas have been developed, such
as Keonn Advantenna-p11 and Thingmagic EL6E.

Although the cost of the RFID reader used in the pro-
totype system is not very low, some other cheaper readers
could be adopted for reduced cost. For example, since only
one antenna is required in our system, one port reader like

1Although we used such commodity RFID devides in our proof-of-concept
prototyping and experiments, the size of the system can be greatly reduced
by using smartphones with an attached reader, e.g., made by Zebra.

Fig. 11. Illustration of the system setup in a car in our experiments.

Impinj R120 can be used. Furthermore, medium range readers,
such as Feig MRU102-PoE, will be another low-cost option,
because the interrogate range for car environment monitoring
is not demanding. Furthermore, our system is currently com-
posed of multiple commodity devices. The cost of the future
system could be further reduced, if customized readers are
used and mass produced.

The channel used by the reader hops every 0.2 s among
50 channels from 902 MHz to 928 MHz when interrogating
RFID tags. The processor used for signal processing is an
MSI laptop with a Navidia GTX 1080 GPU and Intel Core i7-
6820HK CPU. The model of the test vehicle is BMW 328i.
Five volunteers (1 female and 4 males) are tested with our
prototype system. The breathing rates of the volunteers are
also estimated by a NEULOG sensor, which is considered to
be the ground truth in our experimental result analysis.

B. Results and Discussions

1) Overall Accuracy for Different Rates: Our system is
tested by five volunteers with different breathing rates. The
cumulative distribution function (CDF) of estimation errors
is presented in Fig. 12. The figure shows that the median
errors for the three ranges of breathing rates are 0.11 bpm,
0.12 bpm, and 0.14 bpm, respectively, which are all very
close to each other. However, the maximum error for the
10 ∼ 15 bpm range is 0.33 bpm, which is much smaller than
that for the 16 ∼ 23 bpm range and that for the 24 ∼ 30 bpm
range. This implies that the accuracy of the system is higher
when the driver breaths slowly. This is because breathing
rate is calculated by F = 60/τave, where τave is estimated
by peak detection. As the driver’s breathing gets faster, τave

will become smaller, and the estimation error in τave will be
amplified in F .

We next compare with the traditional RFID based method
presented in [10], [11] in Fig. 13, when the driver is driving on
a highway (i.e., interstate I-85). Other RFID based respiration
monitoring techniques, such as Tagbreathe [9], can achieve
high accuracy in a stationary testing environment. How-
ever, the Tagbreathe system is not well suited for operation
with Ultra High Frequency (UHF) RFID devices in the US,
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Fig. 12. System performance for different breathing rates.

Fig. 13. System performance compared with a traditional RFID based
respiration sensing technique for stationary environments [10], [11].

which requires frequency hopping. Thus, we only provide the
experimental result of the RFID breathing monitoring system
in a stationary environment proposed in [10], [11] to illustrate
the robustness of our system in noisy driving environments.

The CDFs of estimation errors achieved by the traditional
and proposed methods are presented in Fig. 13. We find
that the median error of the traditional method is 1.71 bpm
and 36.11% data has an estimation error larger than 2 bpm.
In contrast, the median error of our proposed method is
0.12 and the maximum error is 0.36 bpm. From the results,
we can conclude that the performance of the traditional
method is quite limited in driving environments, because of
the considerable interference caused by the vehicle, driver,
and passengers. However, due to effective noise mitigation,
our proposed method can achieve high accuracy in respiration
monitoring in such noisy environments.

To compare the accuracy of breathing rate estimation for
different types of systems, we summarize the mean estimation
error as provided in related papers [4], [6] in Table I (note that
we compare mean error rather than median error here, since
those are provided in the two related papers). As shown in the

TABLE I

COMPARISON OF DIFFERENT BREATHING RATE MONITORING SYSTEMS
FOR THE DRIVING ENVIRONMENT

Fig. 14. System performance for different driving scenarios.

table, the video camera based method and UWB radar based
method have higher estimation errors, which are 0.79 bpm
and 0.31 bpm, respectively. The mean estimation error of
the proposed system is 0.11 bpm, which is much lower than
the other two. This is because RFID tags can provide high
accuracy as wearable sensors, and the effect of interference
from other passengers is limited too. Moreover, with measured
phase from multiple RFID tags, the CPD based approach can
effectively mitigate the influence of vehicle vibration and other
noises in driving movements.

2) Accuracy in Different Driving Scenarios: The system is
evaluated in 3 different scenarios, including (i) driving on a
highway, (ii) driving in a city street, and (iii) parked. The CDF
of errors for the three scenarios are plotted in Fig. 14. The
median error is 0.11 bpm for the parked scenario and 0.12 bpm
for the two driving scenarios. It proves that the influence of the
driving environment is effectively mitigated by the proposed
scheme. The figure also shows that the maximum error for
in-town driving is 0.48 bpm, which is the highest among the
three scenarios. This is because the driver needs to turn the
wheel frequently and stops from time to time when driving in
town, and the influence of the driving movements cannot be
completely eliminated.

3) Impact of Passenger Movement: We also test the per-
formance of our system when there are different numbers of
passengers. In these experiments, all the passengers are asked
to move naturally. As Fig. 15 shows, when no passenger is
present, the median error is 0.09 bpm, which is the smallest
among all the cases. The error increases to 0.11 bpm when
there is one passenger in the car. The movement of the
passenger does affect the sampled phase data, although the

Authorized licensed use limited to: Auburn University. Downloaded on February 10,2025 at 18:33:53 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: RESPIRATION MONITORING WITH RFID IN DRIVING ENVIRONMENTS 509

Fig. 15. System performance with different numbers of passengers.

impact is small. The median error is not obviously affected by
increased number of passengers, and the maximum errors are
almost the same for the different cases. This result shows that
the performance of our system is not sensitive to the movement
of passengers, because the tags are only attached to the seat
belt of the driver as well as the near-field nature of RFID
communications.

4) Impact of Antenna Position: We try different antenna
deployment in our experiments to identify the most suitable
way to place the antenna. The first scenario is to attach
the antenna on the ceiling above the driver seat, as shown
in Fig. 11. The second deployment is to attach the antenna to
the front control panel of the vehicle. The third scenario is to
bond the antenna on the side of the back of the co-pilot seat.
The CDF results are plotted in Fig. 16. It can be seen that the
deployment of the antenna has a considerable impact on the
system performance. The median error is 0.73 bpm when the
antenna is placed on the side of the diver, because the phase
changes caused by the movement of human chest is harder
to detect. The accuracy is also not high when the antenna is
attached to the front panel, with a median error of 0.28 bpm.
This is because the range of the polarized antenna is limited,
and some of the tags cannot be scanned by the antenna. Thus,
we conclude that the best deployment position of the antenna
is the ceiling, which can guarantee full-tag interrogation and
high sensitivity of detecting the respiration signal.

5) Impact of Number of Tags and Coupling Effect: We next
evaluate the accuracy of our system with different numbers of
tags. Since we need to calculate phase difference between tag
pairs and build the tensor data, the minimum number of tags
is 3 in our system. Fig. 17 shows the accuracy under different
numbers of tags. The mean error is relatively high when only
3 tags are deployed, which is 0.45 bpm. This is because
the 3 tags can only generate 3 phase difference sequences
for CPD. The respiration signal is hard to be decomposed
from the small tensor constructed by 3 tags. We also observe
that when 5 or more tag are deployed, the error is reduced
to 0.11 bpm. However, the error becomes 0.21 when 9 tags
are used, because the error in recovering the missing samples

Fig. 16. System performance under different deployment locations of the
polarized antenna.

Fig. 17. Estimation error for different numbers of deployed tags.

becomes large with 9 tags. Moreover, more time will be
consumed in data recovering and tensor decomposition when
more tags are used. We use 5 tags on the seat belt in our
system.

Fig. 17 also shows that the accuracy of the system is not
seriously affected by the coupling effect, because the estima-
tion error remains small (around 0.11 bpm) even when 8 tags
are used. With 8 tags attached to the seat belt, the density
of RFID tags is quite high, which generates large mutual
coupling among these tags. Fortunately, the coupling effect
only affects the phase value received by the reader [31], while
the breathing rate estimation is dependent on the periodicity
of the signal. Thus the system is robust to the mutual coupling
effect. The figure also shows that, the error increases a little
(to 0.2 bpm) when 9 tags are deployed. This is because the
considerable larger mutual coupling effect may introduce low
backscattering power from the tags in this case. Since the
reader uses a power threshold for receiving tag response, tags
with low backscattering power will hardly be interrogated by
the reader. To make sure that all tags can provide enough
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Fig. 18. Impact of Hankelization size on HaLRTC complexity and recovering
accuracy.

information to the reader, we conclude that 8 tags are the
maximum number of tags for the prototype system.

6) Complexity Reduction: Since the system requires solv-
ing two optimization problems for data recovery and tensor
decomposition, the complexity of the algorithm could be a
problem that needs to be investigated. We aim to reduce the
complexity of HaLRTC and CPD by reducing the size of the
tensors and by downsampling. For phase recovery, we can
reduce the size of the tensors by adjusting the number of rows
in Hankelization. We utilize the 20 s data used in Fig. 5 to
test the influence of the number of rows on complexity and
accuracy. The results are shown in Fig. 18. We can see that as
the number of rows is increased, the consumed time increases
exponentially, while the Root Mean Square Error (RMSE)
decreases exponentially. To trade off between accuracy and
complexity, we choose 20 as the row number for building
generalized Hankel matrix.

Downsampling is not implemented in the phase recover-
ing process, because the sparsity of the data is very high
and downsampling could considerably affect the recovery
performance. However, downsampling is an effective way
to reduce the complexity of CPD. Following Theorem 1,
the rows of the generalized Hankel matrix in CPD should be
large enough, or the periodicity of the signal can hardly be
revealed in αi. Thus, we fix the number of rows and test the
performance of CPD with different downsampling indices. As
Fig. 19 shows, when the index is larger than 12 the consumed
time by CPD is shorter than 0.82 s, and the estimation error is
smaller than 0.2 bpm when the index is smaller than 14. When
the downsampling index gets higher, the accuracy decreases
sharply, because the remaining data is not enough for CPD
to precisely separate the breathing signal. To achieve high
accuracy with an acceptable complexity, we downsample the
data by 12 before constructing the tensor input for CPD.

In conclusion the total time consumed for data processing
in our system is about 2 s. Since drowsy driving is a relatively
long, slowly developing process (i.e., people do not fall asleep
suddenly), such a latency should be sufficient to warn the

Fig. 19. Impact of downsampling on CPD complexity and system perfor-
mance.

driver in advance (e.g., the safe distance to the vehicle ahead
of one’s car is 2 or 3 s). In addition, the processing speed can
be improved by specific embedded hardware. The complexity
of the prototype system is acceptable.

VI. CONCLUSION

In this paper, we proposed an RFID based respiration rate
monitoring system for the driving environment. The proposed
system included several novel components, including data
collection, breathing data preprocessing, CP tensor decompo-
sition, and respiration signal estimation, to combat the strong
noise caused by frequency hopping, random sampling, vehicle
vibration, and other movements in the environment. The
proposed system was implemented with commodity RFID tags
and reader, and was evaluated under real driving scenarios.
Our experiments showed that the tensor completion and CPD
approaches were effective for respiration monitoring in driving
environments.

APPENDIX A
PROOF AND DISCUSSION OF THE THEOREMS IN CPD

PROCESSING

A. Proof of Theorem 1

Proof: To analyze the features of the generalized Hankel
matrix, we first assume the original signal is a noise-free,
discrete sinusoidal signal sampled at a constant period t, which
is given by y(n) = a sin(wtn+ϕ0), where a, w, and ϕ0 are the
amplitude, frequency, and initial phase offset of the sinusoidal
signal, respectively.

For convenience, we define

�Sq
p

.= [sin(wtp + ϕ0), sin(wt(p + 1) + ϕ0), . . . ,
sin(wtq + ϕ0)],

and rewrite the generalized Hankel matrix as

H = a ·
[
�S

(n−r+1)
1 , �S

(n−r+2)
2 , · · · , �Sn

r

]T

. (10)
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We also define

�Cq
p

.= [cos(wtp+ϕ0), cos(wt(p+1)+ϕ0), . . . , cos(wtq+ϕ0)].

Since sin(wt(n + 1) + ϕ0) = sin(wtn + ϕ0) cos(wt) +
cos(wtn + ϕ0) sin(wt), we can convert the time-shift of
Hankelization to a summation format. The generalized Hankel
matrix H can be rewritten as

H=a·

⎡
⎢⎢⎢⎢⎢⎣

�S
(n−r+1)
1 cos(0) + �C

(n−r+1)
1 sin(0)

�S
(n−r+1)
1 cos(wt) + �C

(n−r+1)
1 sin(wt)

�S
(n−r+1)
1 cos(w2t) + �C

(n−r+1)
1 sin(w2t)

· · ·
�S

(n−r+1)
1 cos(w(r−1)t)+ �C

(n−r+1)
1 sin(w(r−1)t)

⎤
⎥⎥⎥⎥⎥⎦

.

Note that both vectors [cos(0), cos(wt), . . . , cos(w(r − 1)t)]
and [sin(0), sin(wt), . . . , sin(w(r − 1)t)] are discrete sinu-
soidal signals with the same period w. Thus, we can rewrite
H as H = ψT

1 ·ψ2, where ψ1 = [α1, α2]T given by

ψ1 = 1 ·
[
cos(0), cos(wt), . . . , cos(w(r − 1)t)
sin(0), sin(wt), . . . , sin(w(r − 1)t)

]
, (11)

and ψ2 = [β1, β2]T given by

ψ2 = a ·
[
S

(n−r+1)
1 , C

(n−r+1)
1

]T

, (12)

where each row of ψ1 and ψ2 is a sinusoidal signal with
period w. Therefore, both αi and βi are sinusoidal signals
with the same period w. �

B. Discussion of Theorem 2

Since only the driver’s breathing signal is captured by the
phase difference sequence, the modified Hankel matrices can
be regarded to be generated by a single sinusoidal signal (i.e.,
the breathing signal) plus noises from the driving environment.
Following Theorem 1, the two related components should be
decomposed, and thus we have M � 2.

Next we consider the upper bound of M to satisfy the
uniqueness requirement of CPD. It is given that the output
of CPD is unique only when RA +RB +RC ≥ 2M +2 [47],
where RA, RB , and RC are the number of independent
rows in matrix A, B, and C. In the constructed tensor, RC

is determined by the number of independent signals, while
RA and RB are determined by the sampled signal used for
hankelization. In our system, each tag can be considered
as an independent sensor. So RC equals to the number of
deployed tags, which means RC � 4 (since 4 to 8 tags
are used). In addition, we have RA = RB � 3 because
the breathing signal itself takes 2 rows and the noise in
sampled data occupies at least one independent row. Therefore,
to satisfy the uniqueness condition of CPD, we should have
2M+2 � min{RA}+min{RB}+min{RC} = 3+3+4 = 10,
i.e., M � 4. Thus, we conclude that the tensor rank used for
CPD in the proposed system should satisfy 2 � M � 4 and
the CPD is unique.
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